Stefan Ratschan
email: stefan.ratschan@risc.uni-linz.ac.at

Luc Jaulin
email: jaulin@univ-angers.fr

Solving Composed First-Order Constraints from Discrete-Time Robust Control

This paper deals with a problem from discrete-time robust control which requires the solution of constraints over the reals that contain both universal and existential quanti ers. For solving this problem we formulate it as a program in a (ctitious) constraint logic programming language with explicit quanti er notation. This allows us to clarify the special structure of the problem, and to extend an algorithm for computing approximate solution sets of rst-order constraints over the reals to exploit this structure. As a result we can deal with inputs that are clearly out of reach for current symbolic solvers.

1 Introduction A discrete time system can be described by state-space equations of the form x k+1 = f (x k ; u k ; w k), where k is the discrete time, f is a non-linear real function, x k is the state vector at time k, u k is the control vector which can be chosen arbitrarily in a set U k , and w k is the perturbation vector which cannot be in uenced by us but remains inside a known set W k . In this paper we deal with the problem of computing the set of state vectors x 0 for which we can set the controls in such a way that future state vectors x 1 ; : : : ; x n will belong to certain sets X 1 ; : : : ; X n chosen by us.

This problem is closely related to the problem of characterization of viability sets involved when studying the evolution of macro-systems arising in biology, economics, cognitive sciences, games, and similar areas, as well as in nonlinear systems of control theory. A good reference is the book of Aubin 4].

When trying to solve this problem one immediately runs into constraints that contain a large number of universally and existentially quanti ed variables. In this paper we report on ongoing research on a method for solving such constraints. This method is already able to compute (approximate) solutions that are far too hard to compute for current symbolic solvers (e.g., QEPCAD 12]).

We proceed by giving a recursive formulation of the problem which can be read as a program in a constraint logic programming language with explicit quanti er notation. This formulation will allow us to clarify the special structure ? Supported by the Austrian Science Fund FWF in the frame of the project SFB F1303 of the resulting rst-order constraint (i.e., formula in the rst-order predicate language with predicate symbols = and , function symbols + and , and rational constants, all of them with their usual interpretation). We exploit this structure by breaking the constraint into parts, where each part corresponds to one stage of the system, and these parts are glued together by a syntactic entity called \function inversion quanti er". We show how to extend the method of approximate quanti ed constraint solving (AQCS 32,30]), as developed by one of the authors, to deal with such function inversion quanti ers. This will allow us to solve non-trivial instances of the mentioned problem from discrete-time robust control.

The resulting approach is also applicable to several other problems from discrete-time control, and even to the general case of rst-order constraints with composition structure, that is, rst-order constraints that have the form C(f n (: : :f 1 (x) : : :)). Since de ning objects in hierarchies is ubiquitous in the human modeling and problem-solving process, and since such a composition structure very often is (implicitly) encoded in programs in CLP languages, we believe that according support in constraint solvers will become more and more important.

Problem De nition

A discrete-time system with control and perturbation (or short a system) is a tuple (f; n; X; U; W), where { f : IR a+u+w ! IR a , { n 2 IN, { A f1; : : :; ng IR a , { U f1; : : :; ng IR u , and { W f1; : : :; ng IR w .

The function f is called transition function, the predicate A allowed state, the predicate U allowed control, the predicate W possible perturbation. Intuitively (see Figure 1), such a system models a process which starts with some value x 0 (the initial state) and then applies the function f n-times to x 0 , where at each application additional user-de nable input (control) u k s.t. U(k; u k), and perturbation w k s.t. W(k; w k) in uence the function f | resulting in the state at stage k. In this paper we solve the problem of computing the robust feasible initial set: Given a discrete-time system with control and perturbation nd an initial state such that for all following stages the state is allowed (i.e., the predicate A holds).

Given a system S = (f; n; A; U; W) we can formalize this using the following predicate, which models the states x at stage k for which we can apply input such that for all possible perturbations the state at all future stages is allowed:

C S (x; k) : ! A(x; k) k < n ! 9u U(u; k) 8w W(w; k) ! C S (f(x; u; w); k + 1) (1)
Our problem is to compute the robust feasible initial set C S (x 0 ; 0). After expanding this query and writing the predicates U and W as sets, we get:

A 0 (x 0) ^9u 0 2 U 0 8w 0 2 W 0 A 1 (f(x 0 ; u 0 ; w 0)) ^9u 1 2 U 1 8w 1 2 W 1 A 2 (f(f(x 0 ; u 0 ; w 0); u 1 ; w 1)) ^9u 2 2 U 2 8w 2 2 W 2 : : : A n (f(f(: : : f(x 0 ; u 0 ; w 0); u 1 ; w 1); u 2 ; w 2))

This is an expression that is de nitely too hard to solve for current symbolic solvers like QEPCAD 12] (for which the border between solvable and unsolvable problems is around 3-5 variables), and in its raw form also for the approximate solver developed by one of the authors 32,30]. Thus we have to exploit the special structure of such a constraint in order to be able to solve it.

Main Idea

Observe that in the recursive de nition of C S in Expression 1, we only have a xed number of variables in each recursion step. When expanding the de nition, each step maps the newly introduced variables into a variable vector of lower dimension by applying the function f. In the other direction, when collecting results, we can rst compute the solution set of step n, plug the result into step n 1, compute this solution set, and so on.

Here we have to solve a rst-order constraint in a + u + w variables for each step. But even if we could compute the solution set of step n by a symbolic solver, the size of the result will blow up when plugging it into the preceding steps n 1, n 2, and so on. The reason is that the complexity of real quanti er elimination results from the size of its quanti er-free output [START_REF] Weispfenning | The complexity of linear problems in elds[END_REF][START_REF] Davenport | Real quanti er elimination is doubly exponential[END_REF]. So we use the same idea to compute approximate solutions instead.

For this we abstract from our concrete example and assume a constraint C for which we want to compute the solution set of C(f(x)), where the dimension of x is higher than the dimension of f(x). However, we want to avoid substituting f(x) into the constraint because that would blow up the complexity by forcing us to solve a constraint with the additional variables x.

Thus we try to deal with such a situation in a special, more e cient way. For this we write it by using function inversion quanti ers, that is, syntactical entities of the form f(x) = z] C(z). Semantically such a constraint is equivalent to C(f(x)). Operationally it will be handled in a di erent, more e cient way. Now our problem reads as follows:

A 0 (x 0) ^9u 0 2 U 0 8w 0 2 W 0 f(x 0 ; u 0 ; w 0) = x 1] A 1 (x 1) ^9u 1 2 U 1 8w 1 2 W 1 f(x 1 ; u 1 ; w 1) = x 2] A 2 (x 2) ^9u 2 2 U 2 8w 2 2 W 2 f(x 2 ; u 2 ; w 2) = x 3] : : : A n (x n) (3)
Observe that in this constraint each sub-constraint beginning at a certain line has exactly one free-variable vector x i . Now we can view our problem of computing the robust feasible initial set as the problem of solving n constraints that are glued together by function inversion quanti ers. For 1 i n, the i-th of these constraints only contains the variable vectors x i , u i , and w i .

For solving these constraints we use the method for approximate quanti ed constraint solving (AQCS) as developed by the rst author 32,30]. In the rest of the paper we will describe how to glue together several instances of this solver by implementing function inversion quanti ers. However, the scope of this paper will only allow us to explain these details of AQCS that are absolutely necessary for understanding how we deal with function inversion quanti ers.

Function Inversion in Quanti ed Constraint Solving

In approximate quanti ed constraint solving we approximate solution sets by functions that assign \true" to elements that are guaranteed to be in the solution set, \false" to elements that are guaranteed to be out of the solution set, and that assign \unknown" otherwise: De nition 1. An approximate set on B IR n is a function in B ! fT; F; Ug. The error err(S) of an approximate set S on B is the volume of the x such that S(x) = U. An approximate set S on B is an approximation of a set S B i for all x 2 B, S(x) = T implies that x 2 S, and S(x) = F implies x 6 2 S.

We delay the description of a concrete computer representation of approximate sets to the end of this section.

The basic idea of the algorithm for approximate quanti ed constraint solving 32], is to de ne for every syntactic element p (e.g., ^, 8) a propagation function prop p that computes an approximation of the solution set of a constraint of the form p(C 1 ; : : :; C n) from approximations of the solution set of each sub-constraint C 1 ; : : : ; C n 31]. For example, for the constraint 9x x2 + y 2 1 the propagation function prop 9 takes an approximation of the solution set of x 2 + y 2 1 and returns an approximation of the solution set of 9x x 2 + y 2 1.

We follow this approach by simply de ning such a propagation function also for function inversion quanti ers. This means that we show how to compute an approximation of the solution set of f(x) = z]C(z) (i.e., C(f(x))) from an approximation of the solution set of C(z). In a rst attempt we de ne for an approximate set S on B, prop f(x)=z] (S) to be x 2 B: S(f(x)) 1 . We will see later how to implement this in detail. Now a naive approach would apply the idea from Section 3 by computing an approximate solution set of stage n, then using this information to compute an approximate solution set of stage n 1, and so on (this corresponds to a computation that follows the arrows in reverse order in Figure 1). The problem is that here we do not know how small we have to make the error of these approximate solution sets in order to reach a certain desired output error. Furthermore we do not know which parts of these approximate solution sets are needed for the end result. Thus we compute all of them on demand. This is also how approximate solution sets are computed within AQCS. For this it uses a function re ne that takes a constraint C and a set B, and returns an approximation of the solution set of C on B (an exact discussion of how large the error of this approximation is allowed to be is beyond the scope of this paper). The argument B is chosen on demand within the algorithm | it is usually just a small part of the solution set we want to compute, and during the algorithm execution the limit of its volume goes to zero. So we have to extend this re nement function for the case when the outermost symbol of C is a function inversion quanti er:

re ne(f(x) = z]C; B) : = prop f(x)=z] (re ne(C; f(B)))
The resulting overall function is recursive, the base case is reached when called with an atomic constraint (i.e., an equality or inequality). We will deal with the problem of how to compute f(B) (i.e., the range of f on B) later.

However, this solution does not yet su ce to solve the complexity problem. The reason is that for each input set B it computes an approximate solution set of C on f(B). In other words, it substitutes f(x) into C at the level of solving instead of at the syntactic level, and we do not gain anything in terms of complexity.

This problem comes up because we never represent the approximate solution set of the sub-constraint C of f(x) = z]C explicitly. This means that, even if for many di erent x the value of f(x) is the same, we recompute the solution set of C for di erent x that result in the same f(x) by new calls to the re nement function. We solve this problem by remembering already computed parts of the solution set of C. We do this by wrapping the above call to the re nement function into the following memoization function which keeps the current knowledge about the solution set of C by caching it in the global variable S, which we initialize by the everywhere unknown approximate solution set x 2I R:U: re neMemo(C; B) : = if err(restr(S; B)) > " then S embed(S; re ne(C; choose(S; B))) return restr(S; B)

Here " is a pre-de ned real constant, restr(S; B) returns the restriction of the approximate set S (as a function) to B, choose(S; B) returns a subset of B for which S is U, and embed(S; S0) is an approximate set that is equal to S except that it is equal to S0 on its domain of de nition.

Up to now we have allowed approximate sets to be arbitrary functions in B ! fT;F;Ug. For computer representation we restrict this class to functions that are constant on nitely many oating-point boxes. We can represent these by a set of boxes for which the approximate set is T, a set of boxes for which the approximate set is F, and a set of boxes for which the approximate set is U. Now we can easily implement the above functions using this representation. Especially, we can implement the computation of f(B) in the re nement function by interval methods for computing an overestimation of the range of the function f on a box B 29].

The only problem lies in the implementation of the propagation function for function inversion quanti ers: First, the resulting approximate solution set can have an extremely complicated structure, which can be hard or even impossible to represent by nitely many oating point boxes. Second, all the approximate solution sets occurring in the algorithm have to ful ll the additional property of cylindricity 32,3] (the clari cation of this notion is beyond the scope of this paper). To solve these problems remember that the second argument to the re nement function is a set B (i.e., a box), whose volume goes to zero during the algorithm execution. The smaller this box B is, the more probable it is that the argument to the propagation function in the re nement function is an approximate solution set that returns the same truth value everywhere. So we can remove both problems easily by just returning approximate solution sets that return the same truth value everywhere. This means that, given an approximate set S on a set B, we de ne: prop f(x)=z] (S) : = if for all x2f(B); S(x) = T then return x2B:T else if for all x 2 f(B); S(x) = F then return x2B:F else return x2B:U This propagation function always computes constant approximate sets which means that it returns the everywhere unknown function very often. In this case AQCS will bisect the resulting box and do further calls to the re nement function on the single pieces. This need for bisection instead of more intelligent box pruning methods is one of the weaknesses of the current approach.

Example

We did timings on the following example: { f(x 1 ; x 2 ; u; w) = (3x 1 x 2 + wu; 2x 2 + x 1) { A(x 1 ; x 2 ; t) :$ 1 x 1 1, 1 x 2 1 { U(u; t) :$ 0:5 u 0:5 { W(w; t) :$ 0:1 w 0:1

For n = 0 we simply need to solve 1 x 1 1, 1 x 2 1. For example for n = 3, the total number of involved variables is 12. We list timings for n > 0 in the table below. All numbers denote seconds needed on a 500MhZ Intel Celeron PC running Linux, where 1 denotes that the run either needed more than 64MB of memory or more than 20min of time. The column with the title \err=0.2" shows the time for computing an approximate solution set of error 0:2 on the box 1; 1] 1; 1], the column with the title \single" the time for computing one single true box. The last column lists the time for computing an exact symbolic solution with the solver QEPCAD 12]. For the latter we did not simply feed the input into the program | this would be de nitely too hard to solve | but we applied the idea of Section 3 also to this case, by computing a solution of stage n, and then recursively back-substituting the result for computing earlier stages. The gure shows the computed approximate solution set for n = 2 with error 0:2 again on the box 1; 1] 1; 1] (green=T, red=F, white=U). First-order constraints occur frequently in control, and especially robust control. Up to now they either have been solved by specialized methods 1,41,6] or by applying general solvers like QEPCAD 12]. In the rst case one is usually restricted to conditions like linearity, and in the second case one su ers from the high run-time complexity of computing exact solutions [START_REF] Weispfenning | The complexity of linear problems in elds[END_REF][START_REF] Renegar | On the computational complexity and geometry of the rst-order theory of the reals[END_REF]. We know of only one case where general solvers for rst-order constraints have been applied to discrete-time systems 28], but they have been frequently applied to continuous systems [START_REF] Jirstrand | Nonlinear control system design by quanti er elimination[END_REF][START_REF] Dorato | Robust multi-objective feedback design by quanti er elimination[END_REF][START_REF] Dorato | Quanti ed multivariate polynomial inequalities[END_REF]. For non-linear discrete-time systems without perturbations or control, interval methods have also proved to be an important tool [START_REF] Jaulin | Global numerical approach to nonlinear discrete-time control[END_REF][START_REF] Kie Er | Robust autonomous robot localization using interval analysis[END_REF].

Apart from the method used in this paper 32], there there have been several successful attempts at solving special cases of rst-order constraints, for example using classical interval techniques [START_REF] Shary | Algebraic approach to the interval linear static identi cation, tolerance, and control problems, or one more application of Kaucher arithmetic[END_REF][START_REF] Shary | Outer estimation of generalized solution sets to interval linear systems[END_REF] or constraint satisfaction 7], and very often in the context of robust control [START_REF] Garlo | Solving strict polynomial inequalities by Bernstein expansion[END_REF][START_REF] Jaulin | Guaranteed tuning, with application to robust control and motion planning[END_REF][START_REF] Malan | Robust analysis and design of control systems using interval arithmetic[END_REF][START_REF] Veh | Analysis of the robustness of predictive controllers via modal intervals[END_REF].

Conclusion

We have designed a method for solving composed rst-order constraints arising in discrete-time robust control by extending a solver (AQCS) developed by one of the authors. The result can solve problems that are far too hard to compute for state-of-the-art symbolic solvers. However it is still too slow for solving problems of practical interest. We believe that the method is promising also in other situations where composed rst-order constraints occur.

In problems without function inversion quanti ers, AQCS spends most of the time on computing information for atomic constraints, using tightening 20] and range computation. However, for inputs containing function inversion quanti ers, this is not the case. Usually more than 90 percent of the time is spent on propagating (usually unknown) boxes in tasks like memo lookup or choosing boxes for further processing. We envision two basic approaches for dealing with this situation: { Try to produce less unknown boxes. { Try to handle the produced boxes more e ciently.

For producing less unknown boxes, the following approaches seem promising:

{ Instead of bisection, develop a method similar to tightening 20] or to box consistency methods [START_REF] Hentenryck | Solving polynomial systems using a branch and prune approach[END_REF][START_REF] Benhamou | Revising hull and box consistency[END_REF] on the level of function inversion quanti ers, for example by implementing the following speci cation: Given a box B, compute a box B 0 such that f(B 0) B. Then the fact that B is in the solution set of a constraint C(z) implies that B 0 is in C(f(x)). { Pruning boxes that do not contribute to the overall results (in a similar way as the monotonicity test in global optimization).

For handling the produced boxes more e ciently we can:

{ Devise strategies for choosing boxes in the context of function inversion quanti ers 33]. { Design e cient algorithms for the memo lookup. { Parallelize the method by putting each stage on a di erent processor.

Fig. 1 .

 1 Fig. 1. Discrete Time System

 The behavior of various algebraic objects, such as Gr obner bases 19] or subresultants 18], under composition is becoming an important topic in computer algebra. The composition structure of constraints has also been exploited for reuse of certain shared interval function evaluation in global optimization[START_REF] Kearfott | Decomposition of arithmetic expressions to improve the behavior of interval iteration for nonlinear systems[END_REF][START_REF] Hyv | Shared computations for e cient interval function evaluation[END_REF], and for computing good range overestimations of functions[START_REF] Ceberio | Solving nonlinear systems by constraint inversion and interval arithmetic[END_REF][START_REF] Stahl | Interval Methods for Bounding the Range of Polynomials and Solving Systems of Nonlinear Equations[END_REF].Inversion of functions on sets is done implicitly by every algorithm for solving systems of equations 29] | in this case the input set just contains one zero vector. It is mentioned explicitly mostly for computing the solution set of systems of inequalities 9,39].

The notation x

B:f(x) denotes a function that takes an argument x 2 B and returns f(x) 5].