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This paper deals with the robust stabilization of the spatial distribution of tokamak plasmas current profile using a sliding mode feedback control approach. The control design is based on the 1D resistive diffusion equation of the magnetic flux that governs the plasma current profile evolution. The feedback control law is derived in the infinite dimensional setting without spatial discretisation. Numerical simulations are provided and the tuning of the controller parameters that would reject uncertain perturbations is discussed. Closed loop simulations performed on realistic test cases using a physics based tokamak integrated simulator confirm the relevance of the proposed control algorithm in view of practical implementation.

Introduction

Fossil fuels (oil, gas, coal) account for approximately 85% of the worldwide sources of primary energy today. But they should run out with in some tens of years and they are responsible for a climate change via the contribution in the greenhouse effect of the CO 2 generated by their combustion. The controlled thermonuclear fusion is one of the options being studied in order to eventually provide an answer to these issues. Its main assets are to be a potential inexhaustible and safe source of energy because the reserves in nuclear fuel are plenty (Deuterium can be extracted from sea water, and Lithium, that has to be used to breed Tritium, can be found in continental crust) and because there is no risk of runaway reaction nor long lasting radioactive waste.

The key world project in the domain, ITER, is led by seven partners (Europe, United States of America, Japan, China, India, South Korea, Russia) accounting for one half of the world population. The main objective of the ITER project is to demonstrate the scientific feasibility of thermonuclear fusion.

Several conditions have to be met to produce fusion reactions [START_REF] Wesson | Tokamaks. Tokamaks 3rd Edition by John Wesson[END_REF]): the fuels have to be heated up to very high temperature (around 100 millions degrees) in order to overcome the electrostatic potential barrier between positively charged nucleus. To reach such a temperature, the ionized gas or plasma must be confined, for example by magnetic confinement which seems to be the most promising way. This magnetic confinement is obtained in a tokamak [START_REF] Wesson | Tokamaks. Tokamaks 3rd Edition by John Wesson[END_REF] and [START_REF] Saoutic | Tore supra : toward steady state in a superconducting tokamak[END_REF]) by superimposing different electric currents in a torus-like configuration device, including a high current, of the order of the MA, within the plasma itself (see Fig. 1).

This plasma current can be produced by inductive means, in particular at the beginning of the plasma pulses, and by non-inductive means through the injection of fast particles and /or waves [START_REF] Wesson | Tokamaks. Tokamaks 3rd Edition by John Wesson[END_REF] and [START_REF] Fisch | Theory of current drive plasmas[END_REF]). The 1D radial profile of this plasma current, via the so-called safety factor profile, is known to be a key parameter for tokamak plasma performance. It indeed plays a crucial role in the global magnetohydrodynamic (MHD) [START_REF] Wesson | Tokamaks. Tokamaks 3rd Edition by John Wesson[END_REF] and [START_REF] Freidberg | Plasma Physics and Fusion Energy[END_REF]) stability of plasma experiments. Moreover, it has been observed that some specific profiles may generate some enhanced confinement of the plasma energy (see for example the work of [START_REF] Baranov | On the link between the q-profile and internal transport barriers[END_REF], [START_REF] Challis | Influence of the q-profile shape on plasma performance in jet[END_REF], [START_REF] Taylor | Physics of advanced tokamaks[END_REF] and [START_REF] Wolf | Internal transport barriers in tokamak plasmas[END_REF]). It is obvious that such profiles are very attractive and may at the end reduce the size and cost of future fusion reactors. Several approaches have been developed regarding the control of tokamak plasmas current profile. The control of one single shape parameter, based on Single Input -Single Output (SISO) semi-empirical approaches, has been performed experimentally (e.g plasma internal inductance by [START_REF] Wijnands | Feedback control of the current profile on Tore Supra[END_REF] or non-inductive current drive profile width by [START_REF] Mazon | Real time control of internal transport barriers in JET plasma[END_REF]). But this is clearly not enough to match the main requirements of MHD stability and/or internal transport barrier issues in advanced tokamak scenarios.

The control of the safety factor profile in a few number of points, based on a Multi Input Multi Output (MIMO) approach in finite dimensional setting was developed using linear models identified from experimental data [START_REF] Moreau | A two-scale dynamic model approach for magnetic and kinetic profile control in advanced tokamak scenarios on JET[END_REF]). It was experimentally tested but showed severe limitations in terms of robustness, given also the lack of power from the actuators as shown by [START_REF] Ariola | Integrated plamsa shape and boundary flux control on jet tokamak[END_REF]. Some other recent approaches have been developed on simulations (see the work of Ou & Schuster (2009a), [START_REF] Xu | Ramp-up phase current profile control of tokamak plasmas via nonlinear programming[END_REF], [START_REF] Argomedo | Model-based control of the magnetic flux profile in a tokamak plasma[END_REF], [START_REF] Ou | Optimal tracking control of current profile in tokamaks[END_REF] and [START_REF] Gaye | H ∞ Stabilization of the Current Profile in Tokamak Plasmas via LMI Approach[END_REF]).

Some nonlinear control techniques for tokamak reactors are presented in [START_REF] Ou | Extremum-Seeking Finite-Time Optimal Control of Plasma Current Profile at the DIII-D Tokamak[END_REF], [START_REF] Ou | Model predictive control of parabolic PDE systems with dirichlet boundary conditions via galerkin model reduction[END_REF] and [START_REF] Ou | Robust Control Design for the Poloidal Magnetic Flux Profile Evolution in the Presence of Model Uncertainties[END_REF]. In [START_REF] Ou | Extremum-Seeking Finite-Time Optimal Control of Plasma Current Profile at the DIII-D Tokamak[END_REF], extremum seeking approach is implemented for optimal control of a nonlinear distributed parameter system. In [START_REF] Ou | Model predictive control of parabolic PDE systems with dirichlet boundary conditions via galerkin model reduction[END_REF] and [START_REF] Ou | Robust Control Design for the Poloidal Magnetic Flux Profile Evolution in the Presence of Model Uncertainties[END_REF], the evolution of the poloidal magnetic flux profile (modeled by a nonlinear partial differential equation), is controlled using a proper orthogonal decomposition (POD) and Galerkin projection.

The approach proposed in this paper is to design the control law in the infinite dimensional setting (without spatial discretisation) and without linearisation. This allows to keep as long as possible the physical phenomena at stake, and in particular the meaning of the terms manipulated, and thus to better integrate the knowledge of model uncertainties and disturbances during the design control process (whereas for linear finite dimensional models obtained for instance from identification, the physics parameters are mixed up in the resulting transfert functions of A, B, C, D matrices coefficients, thus making the physical uncertainties very difficult to handle). The model reduction is performed at the latest stage, that is to say when the real engineering inputs have to be set using a model based optimisation process (a realistic estimation of the infinite dimensional control inputs is then obtained).

In order to investigate the practical revelance of the proposed control approach, closed loop simulations using one of the internationally recognised physics based tokamak integrated simulator have been performed.

The paper is organized as follows. The overall description of the control problem is given in section 2. In section 3 a mathematical analysis of the distributed control model is proposed. Details are given on the transformation of the PDE that are required in order to prepare the control design. Section 4 is devoted to the construction of a control law. Simulation results, using the METIS (see the work of [START_REF] Artaud | Metis User's Guide[END_REF]) code dedicated to plasma scenario studies, are provided in section 5. A preliminary version of the proposed results without simulation METIS has been published by [START_REF] Gaye | Sliding mode stabilization of the current profile in tokamak plasmas[END_REF]. Finally, 

Control problem description

The quantity to be controlled is the so called q safety factor profile. Indeed, this physics quantity which characterises the twisting of the magnetic field lines on the magnetic equilibrium surfaces (q measures the number of turns around the tokamak main axis that a magnetic field lines has to make before going back to the same position in a meridian plane) is extremely important in tokamak research. In particular, different energy confinement regimes were observed depending on the q profile being either monotonous or reversed. Rational values of q play also a very important role for what concerns MHD stability.

An equivalent output quantity is the magnetic flux profile relative to its edge value (at x = 1)

ψ r (t, x) = ψ(t, x) -ψ(t, 1) (1) 
as

ψ r (t, x) = a 2 B 0 1 x r q(t, r)
dr.

In order to calculate ψ target r , we have the relation between the new variable ψ r (t, x) and the safety factor q(t, x). Then, considering a realistic desired distribution of the safety factor q (issued for example from experimentations or from analytical resolution), ψ target r can be defined. Provided usual assumptions (axisymmetry, MHD equilibrium, averaging over the magnetic surfaces, cylindrical approximation, etc. (see the work of [START_REF] Blum | Numerical Simulation and Optimal Control in Plasma Phisics with Application to Tokamaks[END_REF] and [START_REF] Witrant | A control-oriented model of the current profile in tokamak plasma[END_REF])), the evolution of the plasma safety factor q can be obtained by solving the following 1D PDE

   ∂ψ ∂t = η || µ0a 2 1 x ∂ ∂x x ∂ψ ∂x + η || R 0 j ni ; ∂ψ ∂x x=0 = 0, ∂ψ ∂t (t, 1) = -V 0 (t).
(2)

q = - a 2 xB 0 ∂ψ ∂x and j T = - 1 µ 0 R 0 a 2 x ∂ ∂x x ∂ψ ∂x
where x ∈ (0, 1) is the 1D (radial) profile coordinate, ψ(t, x) the magnetic flux. R 0 the major radius, a the minor radius of the plasma boundary (assumed to be fixed), µ 0 the permeability of vacuum, B 0 the toroidal magnetic field at R 0 are known parameters. Plasma loop voltage V 0 is the boundary control and non inductive current density j ni is the interior control. η || (t, x) the parallel resistivity of the plasma is not accurately known and depends on the plasma temperature. However, considering thermal evolution in tokamak plasma, it is natural to consider for physical reasons that η || is bounded. j T (t, x) is the total current density. q(t, x) is the safety factor to be controlled (plant output).

The second boundary condition in (2) ∂ψ ∂t (t, 1) = -V 0 (based on a time derivative) can be also found in numerous references [START_REF] Witrant | A control-oriented model of the current profile in tokamak plasma[END_REF], [START_REF] Argomedo | Model-based control of the magnetic flux profile in a tokamak plasma[END_REF], [START_REF] Ouarit | Validation of plasma current profile model predictive control in tokamaks via simulations[END_REF] and [START_REF] Gaye | Sliding mode stabilization of the current profile in tokamak plasmas[END_REF].

The control variables in the infinite dimensional setting are the plasma loop voltage V 0 (t) and the non-inductive current density j ni (t, x). V 0 can basically be directly set using the inner poloidal magnetic field coils voltage (see Fig. 1). The non-indutive current density is composed of the bootstrap current density which is self-generated by the plasma [START_REF] Hirshman | Finite-aspect-ratio effects on the bootstrap current in tokamaks[END_REF]) and of additional source terms provided by different actuators, namely the Lower Hybrid, Electron Cyclotron or Ion Cyclotron wave systems and/or the Neutral Beam Injection system. The most efficient is the Lower Hybrid Current Drive (LHCD) system that is routinely used on the Tore Supra tokamak [START_REF] Saoutic | Tore supra : toward steady state in a superconducting tokamak[END_REF], which now has a capability to inject up to around 7 MW in steady state that shall allow to sustain plasma currents in the megaAmpere range on very long pulse (see the work of [START_REF] Ekedahl | Validation of the ITER-relevant passive-activemultijunction LHCD launcher on long pulses in Tore Supra[END_REF] and [START_REF] Becoulet | Steady state long pulse tokamak operation using Lower Hybrid Current Drive[END_REF]).

The control law design that will be derived in section 4 is generic to all kinds of current drive system. However, in this paper, the numerical simulations will be performed on Tore Supra typical conditions, using mainly Lower Hybrid waves as current drive means, so that in this particular case :

j ni = j bs + j lh
where j bs and j lh are respectively the bootstrap current density and the current density provided by the LHCD system. j bs can be modelled by a nonlinear function of the flux [START_REF] Hirshman | Finite-aspect-ratio effects on the bootstrap current in tokamaks[END_REF]). j lh is modelled by Gaussian fonctions controlled by two engineering parameters: the LH power P lh and the wave refractive index N lh , (see the work of [START_REF] Witrant | A control-oriented model of the current profile in tokamak plasma[END_REF] for further details). V 0 , P lh and N lh are the considered control variables (plant inputs) for the simulations of section 5.

In the present investigation, the resistivity η || (t, x) is assumed to be lower and upper bounded by some positive constants η 1 and η 2 . The upper-and lower boundedness of the resistivity is required to valide the applicability of the sliding mode approach from [START_REF] Orlov | Discontinuous Unit Feedback Control of Uncertain Infinite-Dimensional Systems[END_REF] to the present case. Moreover, let us consider that η || (t, x) is available for feedback purposes through some on-line estimation, basically from electronic temperature measurements (see the work of [START_REF] Witrant | A control-oriented model of the current profile in tokamak plasma[END_REF] for more details).

The feedback control designed in this paper is composed of two steps (see Fig. 3).

The first step provides the current density j target to be applied to the system. Here, a sliding mode controller has been designed in infinite dimensional setting whose derivation will be detailed in the following. It takes as inputs the target flux profile ψ target r and the current flux profile provided by the plant. The output j target has to be reachable by the actuators. Thus preliminary numerical simulations or experimental observations have to be taken into account. The difference between the target current density j target and the one that the actuators can provide is handled by the robustness of the controller as an unknown bounded disturbance on the input

(|j T -j target | < ∆ j , ∀x ∈ [0, 1]).
The second step is an optimization process which finds the best set of parameters P lh , N lh and V 0 to fit the current density target j target provided by the sliding mode control law in the infinite dimensional setting. The optimisation algorithm miminizes the quadrature [START_REF] Ouarit | Validation of plasma current profile model predictive control in tokamaks via simulations[END_REF])

ε (P lh , N lh , V 0 ) = 1 0 (j target -(j Ω + j lh + j bs )) 2 dx
under the constraints

V min < V 0 < V max , P min < P lh < P max , N min < N lh < N max
where j Ω = j T -j ni is the steady state ohmic part of the current density, equal to -V0 η || R0 . In the simulations, the minimum / maximum value of the engineering inputs will be taken from the Tore Supra tokamak constraints, i.e.

-5V < V 0 < 5V, 0M W < P lh < 7M W, 1.43 < N lh < 2.37
At each time step, the optimization algorithm looks for the set of control variables that minimize the quadratic criterion ε (P lh , N lh , V 0 ) considering the previous constraints on P lh , N lh and V 0 . Then P lh , N lh and V 0 are applied at the following time step. In practice, the minimization is performed using a numerical MATLAB optimization toolbox (gradient-based algorithm fmincon).

Control model mathematical analysis

The state equation (2), rewritten in terms of ψ r , reduces to

   ∂ψr ∂t = η || µ0a 2 1 x ∂ ∂x x ∂ψr ∂x + η || R 0 j ni + V 0 (t) ∂ψr ∂x x=0
= 0, ψ r (t, 1) = 0

(3)

In order to obtain the second boundary condition in (3), the definition of ψ r given in ( 1) is considered:

ψ r (t, x) = ψ(t, x) -ψ(t, 1) implies ψ r (t, 1) = ψ(t, 1) -ψ(t, 1) = 0.
Then, let us introduce the error variable

φ(t, x) = ψ r (t, x) -ψ target r (x) (4) 
with respect to the steady state target ψ target r (x) which has to be reached in the Sobolev space

W 2,2 (0, 1) = ψ ∈ L 2 (0, 1) : ∂ψ ∂x ∈ L 2 (0, 1) and ∂ 2 ψ ∂x 2 ∈ L 2 (0, 1)
of differentiable functions, whose spatial derivative is square integrable on the interval (0, 1). Then the error variable is governed by

   ∂φ ∂t = η || µ0a 2 1 x ∂ ∂x x ∂φ ∂x + η || µ0a 2 1 x ∂ ∂x x ∂ψ target r ∂x + η || R 0 j ni + V 0 (t); ∂φ ∂x x=0 = - ∂ψ target r ∂x x=0
, φ(t, 1) = -ψ target r

(1).

(5)

In order to deal with the regular term 1 These assumptions lead to the system with homogeneous boundary conditions

   ∂φ ∂t = η || µ0a 2 1 x ∂ ∂x x ∂φ ∂x + η || µ0a 2 1 x ∂ ∂x x ∂ψ target r ∂x + η || R 0 j ni + V 0 (t); ∂φ ∂x x=0 = 0, φ(t, 1) = 0. (8) Since η || x ∂ ∂x x ∂φ ∂x = ∂ ∂x η || ∂φ ∂x + η || x - ∂η || ∂x ∂φ ∂x (9) 
the equation ( 8) with the singular term 1

x can be brought into the regular form without singularities by applying the following feedback transformation

η || R 0 j target = η || R 0 j ni + V 0 = η || u + v (10)
with a virtual control input u and the relation

v = 1 µ 0 a 2 - η || x + ∂η || ∂x ∂φ ∂x - η || µ 0 a 2 1 x ∂ ∂x x ∂ψ target r ∂x (11) 
is deduced from the state transformations ( 1) and ( 4). Then substituting (10) subject to ( 11) into (8) yields

   ∂φ ∂t = ∂ ∂x η || µ0a 2 ∂φ ∂x + η || u; ∂φ ∂x x=0 φ(t, 1) = 0. ( 12 
)
The feedback transformation method is first used to bring the infinite-dimensional system with a non self-adjoint operator into the standard form captured by the sliding mode approach [START_REF] Orlov | Discontinuous Unit Feedback Control of Uncertain Infinite-Dimensional Systems[END_REF].

The resulting equation is a standard parabolic equation in the Sobolev space

H = φ ∈ W 2,2 (0, 1) : ∂φ ∂x x=0 = φ| x=1 = 0
of the square integrable functions subject to the boundary conditions corresponding to the boundary value problem (12) and equipped with the norm

φ H = 1 0 φ 2 dx + 1 0 ∂φ ∂x 2 dx + 1 0 ∂ 2 φ ∂x 2 2 dx. The operator Aφ = ∂ ∂x η || µ 0 a 2 ∂φ ∂x , (13) 
that appears in the right-hand side of the PDE (12), is defined on the domain D(A) = H ⊂ L 2 (0, 1). This operator is recognized as a Sturm-Liouville operator (see [START_REF] Naylor | Linear Operator Theory in Engineering and Science[END_REF]) and its spectrum consists of the discrete values

λ k = - 1 µ 0 a 2   k -1 2 π 1 0 ds η || (s)   2 , k = 1, 2, . . . that correspond to the following eigenfunctions φ 0 k (x) = cos   k - 1 2 π x 0 ds η || (s) 1 0 ds η || (s)   (14)
for the scalar product x) and for all k

< f |g > 1 η || = 1 0 f (x)g(x) dx η || (
I 1 (k) = φ 0 k (x) 1 η || = 1 0 φ 0 k (x) 2 dx η || (x) .
The Sturm-Liouville operator A generates an exponentially stable semigroup.

The relation η 1 ≤ η || implies that operator A is exponentially stable and η || ≤ η 2 implies that operator B (Bu = η || u) is bounded. In order to apply the sliding mode controller in infinite dimensional based on the approach proposed in [START_REF] Orlov | Discontinuous Unit Feedback Control of Uncertain Infinite-Dimensional Systems[END_REF], the system must be exponentially stable.

The following theorem, being applied to ( 12), shows that the system (12) has continuous solutions (see the work of [START_REF] Cannarsa | Persistent regional controllability for a class of degenerate parabolic equations[END_REF] and [START_REF] Rosier | A survey of controllability and stabilization results for partial differential equations[END_REF] for more details).

Theorem 1. For given z 0 ∈ H where H is a Hilbert space, let us consider the Cauchy problem

ż = Az + Bu; z(0) = z 0 . ( 15 
)
where A is the infinitesimal generator of a strongly continuous semigroup (S(t)) t≥0 on L 2 (0, 1). Let u belongs to L 2 ((0, T ) × (0, 1)) for all T > 0. Then for all z 0 ∈ D(A) where D(A) is the domain of the operator, there exists a unique strong solution z ∈ C ([0, +∞); D(A)) of ( 15); and for all z 0 ∈ L 2 (0, 1) there exists a unique weak solution z ∈ C [0, +∞); L 2 (0, 1) of ( 15). The strong solution of ( 15) is given by the Duhamel formula

z(t) = S(t)z 0 + t 0 S(t -s)Bu(s)ds ∀t ∈ [0, T ].
The above formula is still meaningful and defines the weak solution of (15).

The system ( 12) is null controllable if u belongs to L 2 (see the work of [START_REF] Cannarsa | Persistent regional controllability for a class of degenerate parabolic equations[END_REF][START_REF] Cannarsa | Regional controllability of semilinear degenerate parabolic equations in bounded domains[END_REF] for details). It implies that the system ( 12) is exponentially stabilizable ( (Rosier, 2007, Theorem 4.12, p. 407)). Consequently, the sliding mode strategy developed by [START_REF] Orlov | Discontinuous Unit Feedback Control of Uncertain Infinite-Dimensional Systems[END_REF] can be applied.

The controller developed in [START_REF] Orlov | Discontinuous Unit Feedback Control of Uncertain Infinite-Dimensional Systems[END_REF] is applicable only for systems which are exponentially stable. The partial differential equation system (2) contains a non self-adjoint infinitesimal operator that has not been addressed in the literature.

In order to control (2), the control law is expressed in order to obtain a new PDE (12) that is exponentially stable. Then, in this new framework, the approach proposed by Y. [START_REF] Orlov | Discontinuous Unit Feedback Control of Uncertain Infinite-Dimensional Systems[END_REF] is developed in order to build a robust control law.

Sliding mode controller

The problem of the control of partial differential equations (PDEs) is an active area of research (see the work of [START_REF] Coron | Control and Nonlinearity[END_REF] and [START_REF] Smyshlyaev | Adaptive Control of Parabolic PDEs[END_REF] for example), but very few constructive methods are available. For robust stabilization, a sliding mode strategy has nevertheless recently been developed by [START_REF] Orlov | Discontinuous Unit Feedback Control of Uncertain Infinite-Dimensional Systems[END_REF].

The sliding mode control approach, developed by [START_REF] Orlov | Discontinuous Unit Feedback Control of Uncertain Infinite-Dimensional Systems[END_REF] for infinite dimensional systems, is further adapted to be applied to our control problem. The virtual control input u is designed as follows:

u(φ) = -   N + L k=N d k=0 (P k (φ)) 2   sign k=N d k=0 c k P k (φ) ( 16 
)
where C = (c k )

N d
k=0 is the matrix which defines the sliding surface, N is determined to reject the disturbances, L is determined to ensure the Lyapunov stability and N d is the number of projections P k on the eigenfunctions of the operator A defined by P k (φ) = 1

I1(k) 2 1 0 φ(t, x)φ 0 k (x) dx η || , k ∈ {0, 1, . . .}.
The following relation describes the sliding motion along the sliding surface (see the work of Orlov ( 2000)

) ẋ1 = [A 1 -B 1 (CB 1 ) -1 CA 1 ]x 1 (17) 
where x 1 = P 0 φ(t, .), ..., P N d φ(t, .)

T is the projection of φ on the first N d + 1 eigenfunctions of operator A and where

A 1 = diag {λ k } N d k=0 ∈ R N d +1×N d +1 and B 1 = P 0 η || , P 1 η || , ..., P N d η || T .

Let us consider

A c = A 1 -B 1 (CB 1 ) -1 CA 1 (18) then CA c = CA 1 -CB 1 (CB 1 ) -1 CA 1 = 0 ⇔ A T c C T = 0. ( 19 
)
Consequently C T is an eigenvector of A T c associated to the eigenvalue λ = 0. Now let us introduce K = (CB 1 )

-1 CA 1 . From ( 17),

ẋ1 = [A 1 -B 1 K]x 1 . (20) 
The matrix K is chosen in order to define an appropriate system dynamics on the sliding surface. The choice of K does not affect the stability but determine the characteristics of sliding mode. K is chosen such that A T c has a first eigenvalue equal to zero while other eigenvalues are strictly negative. In order to determine L, the system in x 1 without disturbance (N = 0) is considered

ẋ1 = A 1 x 1 + B 1 u (21) 
and the Lyapunov function

V = 1 2 S 2 > 0, with S = Cx 1 .
It follows that

dV dt = S Ṡ = Cx 1 C (A 1 x 1 + B 1 u) = Cx 1 CA 1 x 1 -Cx 1 CB 1 L x 1 sign(S).
Then V < 0 if and only if

Cx 1 CA 1 x 1 < CB 1 L x 1 |Cx 1 | . (22) 
Knowing that

Cx 1 CA 1 x 1 ≤ |Cx 1 | CA 1 x 1 (23) 
and

CB 1 L x 1 |Cx 1 | ≤ |Cx 1 | CB 1 L x 1 . (24) 
In order to have V < 0 it is sufficient to have

|Cx 1 | CA 1 x 1 < CB 1 L x 1 |Cx 1 | .
Then from ( 23) and ( 24),

L > CA 1 CB 1 . (25) 
The constant L is lower bounded. Moreover, the proposed control law ( 16), specified with (12), rejects any additive external disturbances satisfying a matching condition

α(t, x) = η || h(t, x) (26) 
   ∂φ ∂t = ∂ ∂x η || µ0a 2 ∂φ ∂x + η || u + α(t, x); ∂φ ∂x x=0 = φ(t, 1) = 0. ( 27 
)
with a priori known upper bounds H > 0 provided that

h ≤ H < N . (28) 
The difference between the target current density j target and j T (which can be provided by real actuators) is denoted by δ(t, x) = j target -j T . It appears in EDP system in the form η || R 0 δ = η || h, which is the matching condition. Then the difference δ(t, x) is handled by the robustness of the controller if h < N .

The optimal approximation of the theoretically obtained controller is utilized and reasoning of this approach is then verified numerically.

In equation ( 16), N and L are constant. The parameter L is lower bounded (see ( 25)) and ensures the stability in the nominal case (without perturbations). Parameter N allows to reject the disturbances h if N > h (see ( 28)).

Summarizing the following result is obtained.

Theorem 2. Consider the error system (12) with the assumption (25). Let it be driven by the sliding mode controller (16) under the constraints ( 25)-( 28).

Then the closed-loop system is globally exponentially stable in the state space H.

The stability remains in force even if system ( 27) is additively affected by an external disturbance ( 26) satisfying ( 28).

In the controller ( 16), the matrice C are given by the formula (18) with

A 1 = diag {λ k } N d k=0 ∈ R N d +1×N d +1 , B 1 = P 0 η || , P 1 η || , ..., P N d η || T .
The system ( 12) is approximated by the finite dimensional system (21) which is indeed finite time stabilized by the proposed controller ( 16). However, the infinite-dimensional rest of the system possesses the spectrum with negative real parts so that it is globally exponentially stable in the open-loop and it remains so while driven by the sliding mode controller, vanishing in finite time.

Simulation results

In this section, numerical simulations are performed in order to illustrate the sliding mode approach relevance in the context investigated (robust stabilisation of the current profile in Tokamak plasmas in infinite dimension). Evolution of the current spatial profile q from an initial state to a desired target profile is considered (see Fig. 4) (the goal is to ensure that the surface q = 1.5 is not in the plasma in order to avoid MHD instability). We then also checked the effect of the disturbance

h(t, x) = 0, 0s ≤ t < 10s - 5 100µ0R0a 2 1 x ∂ ∂x x ∂ψ target r ∂x , 10s ≤ t ≤ 20s (29)
added at the time instant t = 10s and representing 5% of the target total current density j target T . First of all, without engineering parameters research optimization process, parameters of the sliding mode controller are tuned. In order to illustrate closed loop system behavior, time evolution of ψ r is drawn at point x = 0.4 (behaviors are similar for other points). In Fig. 5a, Fig. 5b and6 we have the result of simulations without using the METIS code. In Fig. 5a, effect of parameter L is shown (while other control parameters are fixed). In Fig. 5b, effect of parameter N is shown for disturbances rejection purpose. As expected, (i) the closed loop system is stable, (ii) the larger the parameter L, the smaller the steady state error resulting from a disturbance; moreover time response can be speeded up using large parameter L at the expense of possibly overshoots, (iii) parameter N allows to reject the steady state disturbance (N in section 4 aims to reject the disturbances α(t, x) = η || h(t, x) if N > h ), (iv) large values of parameter N can speed up the rejection of steady state disturbance (but can induce large overshoots). In Fig. 6 we have the evolution of the variable ψ r at some instants.

Then, in order to evaluate if the proposed control approach is realistic from the experimental point of view, simulations using METIS (Minute Embedded Tokamak Integrated Simulator) [START_REF] Artaud | Metis User's Guide[END_REF]) tokamak plant simulator are performed. METIS is a simplified version of the CRONOS suite of codes developed by [START_REF] Artaud | The cronos suite of codes for integrated tokamak modeling[END_REF] control algorithms on physics relevant model. The METIS code includes a full fast current diffusion solver and takes into account various nonlinear couplings between physical quantities. Such numerical simulator is quite time consuming (simulation for a 20s long Tore Supra tokamak plasma discharge takes about 3 hours). In the following, METIS is used jointly with the M atlab/Simulink T M toolbox to simulate Tore Supra plasma discharges. Preliminary METIS open loop simulation based on real pulse engineering inputs (V 0 = 0V , P lh = 4.17M W and N lh = 1.7) were performed in order to find a reachable target profile The sliding mode controller feedback is then implemented with N = 3 × 10 5 , L = 10 5 and N d = 10 (parameters previously adjusted in infinite dimension see 5a and Fig. 5b). The global feedback control scheme described in section 2 (see Fig. 3) is taken into account. In order to illustrate the method robustness, disturbance is added (see (29)).

An example of simulation results is given at Fig. 7, 8a, 8b, 9a and 9b. At t = 1s, the controller is activated in order to force the magnetic flux profile to reach the desired target. The time evolution of the magnetic flux ψ r at point x = 0.2, x = 0.6 and x = 0.8 are shown on Fig. 8b, 9a and 9b. Time evolution of the engineering plant inputs is plotted in Fig. 8a. The P lh , N lh and V 0 parameters behave as expected and experimental constraints for the engineering inputs are satisfied. 

Conclusion and future work

In this paper, a sliding mode control in the infinite dimensional setting has been designed for the control of tokamak plasma current profiles using 1D resistive diffusion equation of the magnetic flux. The investigated PDE system was reformulated so as to exhibit a Sturm-Liouville operator. Recent results on sliding mode control in infinite dimension were further developed to this control problem.

Then a model-based optimisation process was used to derive the engineering plant inputs related to both inductive and non-inductive current drive means. Numerical simulations were performed using typical Tore Supra values that provide quite positive results with promissing robustness properties. The practical interest of the new robust controler based on sliding mode approach in infinite dimension is demonstrated using METIS (Minute Embedded Tokamak Integrated Simulator). Future work will consist in preparing implementation on real Tore Supra experiments.
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 1 Figure 1: Tokamak magnetic configuration
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 2 Figure 2: 1D geometry of the simplified formulation of the problem
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 3 Figure 3: Control scheme of the system
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 45 Figure 4: Initial and target profile of safety factor q
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 6 Figure 6: Evolution of ψr at some instants with N = 3 × 10 5 , L = 10 5 and N d = 10
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 789 Figure 7: Initial and target profile of safety factor q with METIS code
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