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THE MODEL MAGNETIC LAPLACIAN ON WEDGES

NICOLAS POPOFF

ABSTRACT. The object of this paper is model Schrodinger operators with constant magnetic
fields on infinite wedges with natural boundary conditions. Such model operators play an
important role in the semiclassical behavior of magnetic Laplacians on 3d domains with edges.
We show that the ground state energy along the wedge is lower than the energy coming from
the regular part of the wedge. A consequence of this is the lower semi-continuity of the local
ground state energy near an edge for semi-classical Laplacians. We also show that the ground
state energy is Holder with respect to the magnetic field and the wedge aperture, and even
Lipschitz when the ground state energy is strictly less than the energy coming from the faces.
We finally provide an upper bound for the ground state energy on wedges of small aperture. A
few numerical computations illustrate the theoretical approach.

1. INTRODUCTION

1.1. The magnetic Laplacian on model domains.

e Motivation from the semiclassical problem. Let (—ihV — A)? be the magnetic Schrodinger
operator (also called the magnetic Laplacian) on an open simply connected subset {2 of R3.
The magnetic potential A : R?® — R3 satisfies curl A = B where B is a regular magnetic
field and A > 0 is a semiclassical parameter. For ) bounded with Lipschitz boundary, the
operator (—ihV — A)? assorted with its natural Neumann boundary condition is an essentially
self-adjoint operator with compact resolvent. Due to gauge invariance, the spectrum depends
on A only through the magnetic field B.

Many works have been dedicated to understanding the influence of the geometry (defined by
the domain €2 and the magnetic field B) on the asymptotics of the first eigenvalue of the mag-
netic Laplacian and on the localization of the associated eigenfunctions in the semiclassical
limit ~ — 0. When (2 is a two-dimensional polygon and for a non-vanishing magnetic field,
the first eigenvalue behaves at first order like h&' (B, 2) where & (B, ) > 0 is the minimum of
the ground state of model magnetic Laplacians (with constant magnetic field) on the plane, the
half-plane and infinite sectors, in connection respectively with the interior, the regular parts of
the boundary and the corners of €2 (see [5, 31, 22, 19] when {2 is regular and [8, 9, 10] when 2
has corners).

In dimension 3, the regular case is studied in [32, 24, 44], in particular it is proven that the
first eigenvalue still has the asymptotic behavior h&' (B, ) when h — 0 where the constant
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& (B, Q) now involves model problems on the space and the half-space. When the boundary
of Q < R? has singularities, only few particular cases have been published and new model
magnetic Laplacians associated with the different kind of singularities of the boundary appear.
In [38], the domain is a cuboid and the author studies model operators on the octant and on
the infinite wedge of opening 7 in connection with the corners and the edges of the cuboid. In
[43], the authors treat the case of a lens (a domain with an edge that is a closed loop) and a
particular orientation of the magnetic field and are led to introduce a model magnetic Laplacian
on a infinite wedge with a specific magnetic field.

In all these different cases, the key of success is the study of “local” model magnetic Lapla-
cians on the tangent cones to the boundary and the minimization of their ground state energy
along all possible local geometries of ). To treat the Schrodinger operator on general 3d
domains with edges and (possibly variable) magnetic field, we are led to study the magnetic
Laplacian on infinite wedges with constant magnetic field.

Let us add that the main physical motivation for the analysis of the first eigenvalue of the
magnetic Laplacian in the semi-classical limit is its applications toward the phenomenon of
surface superconductivity for type II superconductors under strong magnetic field (see [20]
where a lot of information on the subject can be found). Indeed the asymptotic behavior of the
first eigenpairs in the semi-classical limit provides informations on the existence of non-trivial
minimizers for the Ginzburg-Landau functional in the large magnetic field limit.

o The magnetic Laplacian on wedges. The study of the semi-classical magnetic Laplacian on
domains of R? with edges involves new model problems on the tangent cones. The tangent
cone to an edge is an infinite wedge. Let us denote by (z1, 2, x3) the cartesian coordinates
of R3. Let o € (0,7) U (m, 2m) be the opening angle, we denote by W,, the model wedge of
opening o

(1.1) Wy i=8a xR

where S, is the infinite sector defined by {(x1,22) € R?, |22| < 21tan$} when « € (0, )
and {(z1,22) € R?, |25 > x1 tan $} when a € (7, 27). We extend these notations by using

W, (respectively S;) for the model half-space (respectively the model half-plane). For o # 7
the z3-axis defines the edge of W,

Let B be a non-zero constant magnetic field and A an associated linear potential. We define
(1.2) H(A, W,) = (—iV — A)?

the model magnetic Laplacian on the model domain W, with its natural Neumann boundary
condition. More precisely the domain of this operator is

fue L*W,), (—iV — A)*ue L*(W,), (—iV — A)u-n =0 on oW, }

where n is the outward normal of the boundary 0V, of the wedge (note that n is well defined
almost everywhere). The operator H (A, W,,) is essentially self-adjoint and we denote by

(1.3) E(B,W,) the bottom of the spectrum of H(A, W,,) .

Remark 1.1. Due to the elementary scaling y = |B|"/2z, we have E(B, W, ) = \B]E(%, W)
and therefore it is sufficient to consider unitary magnetic fields.
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In this article we investigate the bottom of the spectrum of the operator H (A, W,,) and the
influence of the geometry defined by (B, o) with B € S? on the ground state £(B,W,,). This
operator has already been introduced in particular cases (see subsection 1.4). Our results cover
some of these particular cases in a more general context. The consequences of our results on
the semiclassical problem on bounded domains are described in Subsection 1.3.

1.2. Problematics and results.

e Tangent substructures of the wedge. For o # m, the wedge W, is a cone of R? with tan-
gent substructures corresponding to its structure far from its edge. There are three tangent
substructures: The half-space 1T} corresponding to the upper face, the half-space II, corre-
sponding to the lower face and the space R? corresponding to interior points. These subsets
are linked with the notion of singular chains of a cone, see [35] or [17]. When a € (0, 7)
(convex case) we have II} = {(z1, 2, 23) € R®, 25 < zytan$} and 1T, = {(z1, 22, 23) €
R?, 25 > —xy tan §}. Similar expressions can be found for « € (7, 27) (non convex case).

When the model domain is a half-space (o« = ), there is only one tangent substructure:
The whole space R?. The magnetic Laplacian on half-spaces and on R? and their ground state
energy are naturally defined as in (1.2)-(1.3). On the full space the ground state is well known:

(1.4) vBeS? EB,RY)=1.

For a # 7 we introduce the spectral quantity

(1.5) &*(B,W,) := min {E(B,1I}), E(B,1I), E(B,R?)} .
When a = 7, we let £*(B,W,) := E(B,R?) = 1.

o The operator on half-spaces. Before describing the meaning of &*, we recall known result
about the magnetic Laplacian on half-spaces and we exhibit the influence of the geometry
on &*(B,W,) . Let Il = R3 be a half-space. The bottom of the spectrum of the magnetic
Laplacian on II depends only on the unoriented angle between the magnetic field B and the
boundary of II. We denote by ¢ € [0, 7] this angle. Let o(¢) := E(B,II) be the bottom of
the spectrum of the operator H (A, II). This function has already been studied in [32], [23]
or more recently [13]. In particular § — o () is increasing over [0, 7] with o(0) = ©, and
o(5) = 1 (see [32]) where the universal constant ©y ~ 0.59 is a spectral quantity associated
with a unidimensional operator on a half-axis (see [47, 6, 18] and Subsection 2.2).

Let us denote by 67 (respectively #7) the unoriented angle between the magnetic field B and
17 (respectively IT,). We have E(B,I1}) = o(6"), E(B,II;) = 0(6~) and F(B,R3) = 1.
Since o is increasing we get

(1.6) E*(B,W,) = o(min{f*,07}) .
e Main goals and results. When o # 7, the quantity &*(B, W, ) can be interpreted as the

lowest energy of the magnetic Laplacian far from the edge (x3-axis). One of the main results
of this paper is the following inequality:

(1.7) Vae (0,27), E(B,W,) < &*(B,W,),
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roughly speaking that means that the ground state energy associated with an edge is lower than
the one of regular adjacent model problems.

Remark 1.2. When o = 7, we have = = 0% = § and E(B,W,) = o(f). Since 0(f) < 1
with equality if and only if 6 = 7, we notice that inequality (1.7) is already known for o = 7
with equality if and only if B is normal to the boundary of the half-space W,.

Relation (1.7) may either be strict or be an equality. When inequality (1.7) is strict the sin-
gularity makes the energy lower than in the regular cases close to the edge (see Subsection 1.3
for a range of the applications to the semi-classical problem). It has been shown on examples
that both cases are possible, see Subsection 1.4. However even in the particular case where
the magnetic field is tangent to the edge so that the operator reduces to a pure 2d operator on a
sector, the sharp geometrical condition for which (1.7) is strict is only conjectured, see [8, 10].
At this stage, a simple geometrical necessary and sufficient condition for (1.7) to be strict does
not seem reachable to us. In Section 5 we will give a sufficient geometrical condition: if the
opening angle of the wedge is small enough (depending on B), then (1.7) is strict. This con-
dition may express with analytical functions (see Remark 5.5) and leads to explicit numerical
values of the geometrical parameters which ensures that (1.7) is strict.

As we will see, the operator H(A,W,,) is fibered: after Fourier transform along the axis of
the wedge, it reduces to the family of two-dimensional operators (ﬁ "(A, W,))rer defined on
the sector S, (see (2.1)-(2.2)). The operators (}AI (A, W,))rer are sometimes called the fibers
of H(A,W,). Its eigenvalues-whenever they exist-seen as functions of 7 are called the band
functions. Their study is the core of the understanding of the spectrum of the magnetic Lapla-
cian on the wedge. By computing both the limit of the first band function and the bottom of
the essential spectrum of the fibers, we link &*(B, W,,) and spectral quantities associated with
the fibers. As a consequence we will deduce inequality (1.7), moreover when the inequality is
strict, we prove the existence of generalized eigenpairs for H(A,W,) with energy E(B, W,,),
moreover these generalized eigenfunctions are localized near the edge (see Corollary 3.8).

Remark 1.3. This kind of analysis of the band functions has its interest for a wider class
of fibered operator. This is the case of a two-dimensional Iwatsuka Hamiltonian which is
a magnetic Laplacian on R? involving a magnetic field B(z,y) = B(x) constant in the y
direction, monotonous in the z direction and satisfying B(z) — B* when z — +o0 (see
[26, 33]). The case of a piecewise constant magnetic field is treated in [25] (see also [46] for
a physical approach). An analog analysis can be made by setting &* = min(B~, B"), that is
the ground state energy far from the variation of the magnetic field. The existence of localized
(in the z variable) ground state is then given by the analysis of the band functions and depends
on whether F/ < & is strict or not.

o Consequences on regularity and positivity of the ground state energy. The stability of the
spectrum of a Schrodinger operator in R? under long range perturbation of the magnetic field
(this includes perturbation with constant magnetic field) is not described by the standard Kato’s
perturbation theory and has been the subject of many articles. Under suitable assumptions on
the magnetic field and the electric potential, the continuity with respect to the strength of the
perturbation has been proved in [4, 36], then in a more general context in [37] and [3]. On one
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hand, one expects the isolated eigenvalues to have a Lipschitz behavior, on the other hand it is
more difficult to study the boundary of the spectrum when it has a band structure (as it is the
case here). It is proved implicitly in [36] that the boundary of the band-spectrum is %—Hélder,
the exponent is then pushed to % in [14], and recently Cornean has proved in [15] that for
constant magnetic field, bands spectrum have Lipschitz stability. Notice that the study of the
spectral bands of several Harper-like operators leads to the same stability questions.

In our case perturbations of the magnetic field have a non trivial interaction with the bound-
ary and the results from the above literature do not apply. Moreover we are also interested
with perturbation of the geometry of the wedge (that is variation of the aperture angle). The
standard resolvent and kernel estimates used in the above citations do not seem suitable in
our case, and our approach is based on refined Agmon estimates for the fiber operators. We
will prove the continuity of (B, ) — E(B,W,,) on S? x (0, 2n), see Theorem 4.5. Let us
remark that the continuity is proven even for the degenerate case &« = 7. In section 4.4 we
improve the result by showing that (B, o) — FE(B,W,) is Lipschitz when inequality (1.7) is
strict and o« # T, that is not surprising because in some sense we are not so far from Kato’s
perturbation theory in that case since there exists generalized eigenfunctions associated with
E(B,W,). When (1.7) is an equality, we prove %—Hdlder regularity (see Proposition 4.7). As
this stade we do not know whether the % exponent is optimal or not. Numerical simulations
of E(B,W,) as a function of o € (0, ) for a particular B € S? are provided in Figure 3 and
suggest that F(B, W, ) is not C! in general.

The diamagnetic inequality is well known and states that the energy is larger in presence
of a magnetic field (see [28] or [48]). A strict diamagnetic inequality has been proved for the
Neumann magnetic Laplacian in bounded domains in [20, Chapter 2]. A direct consequence
of our analysis is a strict diamagnetic inequality for this problem on an unbounded domain,
namely F(B,W,) > 0 for all non-zero magnetic field B (see Corollary 3.9).

1.3. Application of our results to the semi-classical problem. We come back here to the
analysis of the semi-classical magnetic Laplacian on a bounded singular domain 2. What
we call the local ground state energy of a point € Q is the bottom of the spectrum of the
magnetic Laplacian on the tangent cone to {2 at z with a linear potential associated with the
magnetic field frozen at x. It is well known that this local ground state energy is Lipschitz
continuous on the regular boundary of €2 (indeed it expresses as a function of the quantity
o(+) described above). As said before, the presence of edges in the boundary of () leads to
the model magnetic Laplacian on wedges that was only described for particular cases and
that is systematically studied in this article. The main direct consequence of inequality (1.7)
combined with Theorem 4.5 is that the local ground state energy is lower semi-continuous on
a domain €2 whose boundary singularities are edges. For a non-vanishing magnetic field B,
define &(B, ) the infimum of the local ground state energy along €. As a consequence of the
lower-semi continuity together with Corollary 3.9, this infimum is reached and &' (B, Q) > 0.
Moreover when inequality (1.7) is strict at xy belonging to an edge of €2, the local ground state
energy is discontinuous when coming from faces toward x,. Using the existence of generalized
eigenfunction with exponential decay far from the edge (see Corollary 3.8), standard semi-
classical tools bring asymptotics and localization properties for the lowest eigenpairs of the
magnetic Laplacian in the semiclassical limit (see [38], [8], [9] and [43]). More precisely the



6 NICOLAS POPOFF

first eigenvalue behaves like h&' (B, Q) + O(h**) (see [40, Section 8] and [43] for particular
domains with edges, and [12] for polyhedral domains, on which the results of this article are
used). Due to standard Agmon estimates, we also expect that the associated eigenvectors are
localized near the minimizers of & (B, (2), that are likelyl, due to (1.7), to be on an edge if 2
has non corners.

Some of our results are key ingredients in order to analyse the asymptotic behavior of the
first eigenvalue of (—ihV — A)? for a non-vanishing magnetic field in a general corner domain
Q. In [11], we show that when (2 belongs to a wide class of corner domains, the first eigen-
value behaves like h&' (B, ) and remainders as a power of h depending on the geometry are
provided. The lower semi-continuity near edges is needed when looking for a minimizer of the
local ground state energy, and the existence of generalized eigenfunctions for the model Lapla-
cian on the wedge brings quasi-modes for the semi-classical problem. The Lipschitz regularity
of the ground state depending on the geometry allows a better estimation of the quasi-mode
for the semi-classical problem.

1.4. State of the art on wedges. The model operator on infinite wedges has already been
explored for particular cases:

In [38], X. B. Pan studies the case of wedges of opening 7 and applies his results to the
semiclassical problem on a cuboid. In particular he shows that inequality (1.7) is strict if the
magnetic field is tangent to a face of the wedge but not to the axis. These results can hardly be
extended to the general case.

The case of the magnetic field By := (0,0, 1) tangent to the edge reduces to a magnetic
Laplacian on the sector S,. This case is studied in [3] (see also [27] for a = 7): There holds
&*(B,W,) = 0(0) = O and it is proven that inequality (1.7) is strict at least for a € (0, 7].
V. Bonnaillie shows in particular that £(B,W,,) ~ <5 When a — 0 and gives a complete
expansion of £(B,W,,) in power of a.

In [42], a magnetic field tangent to a face of the wedge is considered. In that case inequality
(1.7) is proven with &*(B, W, ) = ©,. Moreover it is shown that inequality (1.7) is strict for

« small enough but cases of equality are also exhibited.

In [43], the magnetic field is normal to the plane of symmetry of the wedge and it is shown
that inequality (1.7) is strict at least for o small enough.

The results of this article cover these particular cases and give a more general approach
about the model problem on wedges.

1.5. Organization of the article. In Section 2 we reduce the operator H (A, W, ) to a family
of fibers (I:T (A, W,))-er on the sector S,,. In Section 3, we link the problem on the wedge
with model operators on half-spaces corresponding to the two faces and we deduce inequality
(1.7). In section 4 we prove that F/(B, W, ) is continuous with respect to the geometry defined
by (B, a) € §? x (0, 27). We also prove Lipschitz and Holder regularity depending on whether
inequality (1.7) is strict or not. In Section 5 we use a 1d operator to construct quasimodes for

IThis depends also on the variations of the magnetic field.
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o small and we exhibit cases where inequality (1.7) is strict. In Section 6 we give numerical
computation of the eigenpairs of the reduced operator on the sector.

2. FROM THE WEDGE TO THE SECTOR

2.1. Reduction to a sector. Due to the symmetry of the problem (see [40, Proposition 3.14]
for the detailed proof) we have the following:

Proposition 2.1. Let B = (b1, by, b3) be a constant magnetic ﬁeld and A an associated
potential. The operator H(A, W,,) is unitary equivalent to H (A W,.) where A satisfies
curl A = ([by], [bal, [bs]).

Therefore we can restrict ourselves to the case b; > 0.

We assume that the magnetic potential A = (ay, as, ag) satisfies curl A = B and the mag-
netic Schrédinger operator writes:

3
= Z<D$J - a])Q
j=1

with D,; = —id,,. Due to gauge invariance, the spectrum of (A, W,) does not depend on
the choice of A as soon as it satisfies curl A = B. Moreover we can choose A independent of
the x5 variable. The magnetic potential will be chosen explicitly later, see (2.4).

We denote by S(P) (respectively Sq(P)) the spectrum (respectively the essential spec-
trum) of an operator P. Due to the invariance by translation in the x3-variable, there holds
S(H(A, W,)) = Sess(H(A, W,)).

2.1.1. Partial Fourier transform. Let 7 € R be the Fourier variable dual to x5 and F,, the
associated Fourier transform. We recall that A has been chosen independent of the x5 variable
and for 7 € R we introduce the operator

2.1) H (A W,) = (Dy, — a1)? + (Dy, — a2)* + (a5 — 7)°

acting on L?(S,) with natural Neumann boundary condition. We have the following direct
integral decomposition (see [45, Chapter XIII]):

(2.2) FoH(A, W,) f H (A, W,)dr .

Note that this decomposition is quite close to the operators studied in [30, Section 8.2]. The
operator H (A, W,) is a fibered operator (see [21] for a general setting, although our operator
does not satisfy fully the definitions of an analytically fiber operator) whose fibers are the 2d
operators H™(A,W,) with 7 € R. Let

$(B,S,:7) := inf S(H™ (A, W,))

be the bottom of the spectrum of H (A, W,), also called the band function.Thanks to (2.2)
we have the following fundamental relation:

(2.3) EB,W,) = inﬂgs(B,Sa;T) :
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As a consequence we are reduced to study the spectrum of a 2d family of Schrodinger opera-
tors. We denote by

Sess(B, Sa;T) :=inf 6CSS(FIT(A, Wa))

the bottom of the essential spectrum.

2.1.2. Description of the reduced operator. We write

B = B! + Bl
where B+ = (b1, by,0) and Bl = (0,0, bs). We take for the magnetic potential
(2.4) A(zy, 9, 73) = (A”(Ihxz),aL(%,@))

with Al (21, 25) := (0, b321) and a* (21, 22) = 22by —1by. The magnetic potentiel A is linear,
does not depend on x3 and satisfies curl A = B. We introduce the reduced electric potential
on the sector:

V]_;:L(I'l, IEQ) = ([Egbl — [L’lbg — T)2 .
We have
(2.5) H.(AW,) = HAILS,) + V5. .
The quadratic form of H(All'S,) + Vg, is

Bal(u) == J |(—=iV — ANul? + Vi Jul? dzy das

defined on the form domain
(2.6) Dom(QFf,) = {ue L*(S,), (—iV — Au e L*(S,), [x2by — z1b2 — T|u € L*(S.)} -
The form domain coincides with:
{ue L*(S,), (—iV — Au e L3(S,), |x2b1 — x1bs]u € L*(S,)},
therefore it does not depend on 7. Kato’s perturbation theory (see [29]) provides the following:

Proposition 2.2. The function T — s(B,S,; T) is continuous on R.

2.2. Model problems on regular domain. We describe here the case a = 7 where W, is a
half-space. The operator H (Al S;) + V5. can be analyzed using known results about regular

domain. We have E(B,W,) = o(f) (see Subsection 1.2 and [23]) where 6 € [0, %] is the

' 2
angle between the magnetic field and the boundary. We recall that we have &*(B, W,) = 1.

When 6 0, H(All,S;)+VZ, is unitary equivalent to H(Al, S;)+ V3, and s ess(B, Sy; 0) =
1 ([23, Proposition 3.4]). There holds s(B,S,;0) = o(0) < 1. If 0 # 7, 0(f) < 1 and there-
fore the operator H(AllS,) + V3, has an eigenfunction associated with o(f) with exponential
decay (see [13]).

When 6 = 0, there holds s.(B,S,;7) = s(B,Sy; 7). A partial Fourier transform can be
performed and shows that inf . cg (B, Sy; 7) = Oy.

In Subsection 2.3 and Section 3 we will focus on « € (0,7) U (7, 27). Most of the results
can be compared and extended to o = 7 using the results recalled above.
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2.3. Link between the geometry and the essential spectrum of the reduced problem. In
this section we give the essential spectrum of the operator H(All S,) + V5. depending on
the geometry. Let T := (VZ.) *({0}) be the line where the electric potential vanishes. Let
us notice that V3, () is the square of the distance from x to Y. Let (v, ) be the spherical
coordinates of the magnetic field where v is the angle between the magnetic field and the
xz-axis and 6 is the angle between the projection (b, by) and the x5-axis:

B = (sinysinf,siny cosf,cosv) .

Due to symmetries we restrict ourselves to (v,6) € [0, 5] x [0, 7]. We will use the following
terminology:

e The magnetic field is outgoing if o € (0,7) and 6 € [0, 75%).

[m—a]

e The magnetic field is tangent if either v = 0 or 6 =

e The magnetic field is ingoing in the other cases.

The outgoing case corresponds to a magnetic field pointing outward the wedge (this can hap-
pen only if the wedge is convex). The tangent case corresponds to a magnetic field tangent to
a face of the wedge and has already been explored for convex wedges in [42]. The ingoing
case corresponds to a magnetic field pointing inward the wedge, in that case the intersection
between T and S,, is always unbounded. The essential spectrum of H(All| S, ) + V5. depends
on the situation as described below:

Proposition 2.3. Let o € (0, 7) and B € S? be an outgoing magnetic field. Then for all T € R
the operator H(AllS,,) + VB has compact resolvent.

Proof. We remark that

Vr e R, lim  Vgi(x1,22) = +00.
|(z1,2)|—+00
(z1,22)ESx
This implies that the injection from the form domain (2.6) into L?*(S,) is compact, see for
example [45]. We deduce that the operator H(All,S,,) + Vg1 has compact resolvent. 0

The following proposition shows that the essential spectrum is much more different when
the magnetic field is ingoing:

Proposition 2.4. Let a € (0,7) U (7, 27) and B € S? be an ingoing magnetic field. Then
VT eR, Ses(B,Su;7)=1.

When « € (0, ), the detailed proof can be found in [40, Subsection 4.2.2]. The proof for
a € (m,2m) is rigorously the same. The idea is to construct a Weyl’s quasimode for Qf , far

from the origin and near the line T using the operator H (Al R?) + V5. whose first eigenvalue
is 1. Persson’s lemma (see [39]) provides the result.

In the tangent case, the essential spectrum depends on the parameters and can be expressed
using the first eigenvalue of the classical 1d de Gennes operator (see the proof below). The
bottom of the essential spectrum is given explicitly in (2.7) however we will only need the
following:
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Proposition 2.5. Let o € (0, 7) U (m, 27) and B € S be a magnetic field tangent to W,,. Then
we have

inf sess(B,Sa; 7) = O .

TeR

Proof. We introduce the first eigenvalue 1(§) of the 1d de Gennes operator
—0 +(t—¢)’

defined on the half-line {¢ > 0} with a Neumann boundary condition. This classical spectral
quantity has already been investigated, see [47, 6, 18]. In particular (&) reaches a unique
minimum 6y ~ 0.59 for £, = 1/0y. We recall the result from [42, Proposition 3.6]:

(2.7) Sess(B, Sa;T) = énﬂg (1(&cosy + Tsin7y) + (£siny — 7 cosy)?) .
€
where vy € [0, 7] is the angle between the magnetic field and the axis of the wedge. Note that

the proof of this relation is done in [42] for « € (0, 7) and the extension to « € (7, 27) does
not need any additional work. We deduce from (2.7) that

(2.8) VT eR, Ses(B,Su;7) = 0y .
Choosing £ = &ycos~ in the rh.s. of (2.7) and 7 = &psiny we get Sess(B, Sa, {osiny) =
1(&) = O and the proposition is proven. O

Remark 2.6. We have o(0) = O, where the function o is defined in Subsection 1.2.

Since (B, Su;7) < Sess(B, Sa; 7), the relation (2.3) provides for a tangent magnetic field:
(2.9) Va e (0,2n)\w, E(B,W,) <06y.

Therefore we have proven inequality (1.7) for a tangent magnetic field.

3. LINK WITH PROBLEMS ON HALF-PLANES

In this section we will investigate the link between the model operator on a wedge of open-
ing « € (0,7) U (7, 27) and the model operators on the half-spaces IT, II_ and the space
R3 (see Subsection 1.2). These domains are the tangent substructure of ¥/,,. We recall that
&* (B, W, ) is the lowest energy of the magnetic Laplacian (—iV — A)? acting on these tangent
substructures and is given by

E*(B,W,) = o(min{f*,07})
where 6% is the angle between B and ITF and o () is defined in Subsection 1.2. In this section
we prove inequality (1.7). Moreover when this inequality is strict we show that the band
function 7 — s(B, S,; 7) reaches its infimum and that this infimum is a discrete eigenvalue
for the reduced operator on the sector. Let us remark that these questions were investigated in
[38] and [42] for particular cases.
We denote by H} and #H_, the half-planes such that [I} = R x H and [T, = R x #H_.

Let H(Al, %) + V3, be the reduced operator defined on 4 with a Neumann boundary
condition. When B is not tangent to II} we deduce from Subsection 2.2:

(3.1) vreR, infSHALH) +VE.) =007
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Similarly when the magnetic field is not tangent to I we have:
(3.2) VreR, infSHALH) +VE) =0(0)

3.1. Limits for large Fourier parameter. In this section we investigate the behavior of
s(B, S.; 7) when the Fourier parameter 7 goes to +00. We introduce the quantity

T——00 T—+00

(3.3) s*(B,S,) := min {lim inf s(B,S,; 7), liminf s(B, S,; T)} .

In the tangent case, we recall the results from [42, Section 4]:

Proposition 3.1. Let a € (0,7) U (m, 27) and let B € S? be a magnetic field tangent to a face
of the wedge W,,. Then we have

s*(B,S,) = o(max(6~,60%)) .

Note that in [42], this result is proved only for o € (0, 7). The proof of [42, Proposition 4.1]
is mimicked to the case o € (7, 27).

We recall the useful IMS localization formula (see [16, Theorem 3.2] and also [49]):

Lemma 3.2. Let (x;) be a finite regular partition of the unity satisfying X? = 1. We have
foru e Dom(Qg )

9OB,q(u ZQBa (xju) ZHVXJ‘UH%Q :
J

The following lemma gives a lower bound on the energy of a function supported far from
the corner of the sector. This lemma will also be useful in Section 4. We denote by B(0, R)
the ball centered at the origin of radius R > 0 and CB(0, R) its complement.

Lemma 3.3. There exist C, > 0 and Ry > 0 such that for all a € (0,7) U (m, 27) and for all
B € S, forall R > Ry, for all 7 € R, for all w € Dom(Qg ,,) such that Supp(u) < CB(0, R):

: : c
) > (2B W)~ oo ) ol

Proof. Let (x;);-1,2,3 be a partition of unity satisfying x; € C5°([—3, 3],[0,1]), Supp(x;)
(L2, 2 ] and ) X3 = 1. We defined the cut-off functions XPOI( V) = X]( ) where (r,v) €
R, x ( S, §) are the polar coordinates. We denote by ;. the associated functions in cartesian

coordinates. Since the ; , do not depend on 7, there exists C; > 0 such that

Gy

R2a2

Va e (0,27),VR >0, V(xq1,22) € CB(0, R), Z IV Xa(T1, 22)* <
7=1
Let u € Dom QF , such that Supp(u) < CB(0,R). The IMS formula (see Lemma 3.2)

provides

,

Ch

(34) Z oot = =73

— s lulze -
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Moreover y;u and yszu are extended to functions of L*(H7) and L?(H, ) with the suitable
Neumann boundary conditions by setting x,u = 0 outside Supp(x;). We deduce from
(3.1) and the min-max principle that Qf ,(x1,au) = 0(07)|x1,qul7.. Similarly we prove
Q.o (Xx3.at) = 0(07)]x3.aul7.. The function x, ,u is extended in the same way to a function
of R2. It is elementary that
VreR, inf S(HAIR?) +V3,)=FE®B,R? =1,

therefore Qf ,(X2,a%) = [x2.au[7.. We conclude with (3.4) and the definition of £*(B, W,)
(see (1.5)). O

Proposition 3.4. Let o € (0,7) U (m,27) and let B € S* be a magnetic field which is not
tangent to a face of the wedge W,,. We have

(3.5) s*(B,S,) = £*(B,W,) .

Remark 3.5. The relation (3.5) is not true when the magnetic field is tangent to a face of the
wedge, see Proposition 3.1 and (1.6).

Proof. LOWER BOUND: Let (1, x2) be two cut-off functions in C*(R, [0, 1]) satisfying
Xi+x3=1xi(r)=1ifre(0,3)and x1(r) = 0if r € (2, +0). For 7 € R* we define the
cut-off functions x;, (1, ¥2) := x;(77) with r = /a7 + 23. We have
2
30 > 0,¥r e R*, V(xp,22) eR?, Y |Vx;.> < 5
j=1
For u € Dom(QF ), the IMS formula (see Lemma 3.2) provides

X C
(36) QB No" Z QB a X] Tu) 2 ||U||%2 :

Since Supp(x1,r) < B(0, 37), we have dist(Y, Supp(x1,;)) = % and therefore we have
V(z1,22) € Supp(xi,r),  VEi(a1,22) = 3577

We deduce that for all 7 # 0:

37 Qpo (x1.71) = Tgllx-ul s -

On the other part Lemma 3.3 provides a constant C; > 0 such that for all u € Dom(Qg ) we
have:

. Ch
R, Opaliar) > (82BN - 55 ) ertls
We deduce by combining this with (3.6) and (3.7) that

T ¢, 7 2 ¢
Op o(w) = min { (B, W) ~ £, Tl = S
We deduce from the min-max principle that there exists 75 > 0 such that for all 7 satisfying
|| > 70:
Ch C

5 [

$(B,Su;7) = (B, W,) —

a2 72
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and therefore
s?(B,S,) = &*(B,W,) .

UPPER BOUND: We suppose that 7 < 0, the other case being symmetric. We have in that
case &*(B,W,) = o(6%). Since we have assumed that we are not in the tangent case, we
have 0 < 6*. Let € > 0, we deduce from (3.1) that there exists u. € C{°(H7) such that

(3.8) (HALHE) + VB ue ey oy = 0(07) + €.

We use u, to construct a quasimode of energy o(6™) + . Let t™ := (cos §,sin §) be a vector

tangent to the boundary of H_. For x = (x1, z5), we define the test-function:
Ue, () 1= e"T“AH(H)ue(m —7t%).

We have Supp(u, ) = Supp(u.) + 7t*. Since t* is pointing outward the corner of S,, along
the upper boundary, there exists 7y > 0 such that for all 7 > 7y we have Supp(u., ,) < S, and
Supp(ue,,) N Jll; = &. Therefore u. » € Dom(QF ,). Elementary computations (see the
geometrical meaning of V3, (x) in Subsection 2.3) provides Vg, (z — 7t*) = V3, (). Due to
gauge invariance we get

<(H(AH’Sa) + V];l) Ue, T, UE,T>L2($Q) = <(H(A”7 ,H;z_) + V]gi) Ues u€>L2(H§§) :
We deduce from (3.8) and from the min-max principle that
Ve > 0,319 > 0,V7 > 75, s(B,S4;7) <o(0%) +¢

and therefore liminf, , ., s(B,S,;7) < o(6%). Remark that in this proof we have taken
T — +0o0 in order to construct a test-function of energy close to o(6*). When 0~ < 67, the
proof is the same but we use 7 — —o0. 0J

3.2. Comparison with the spectral quantities coming from the regular case.
Theorem 3.6. Let o € (0,7) U (7,27) and B € S?, we have
(3.9) EB,W,) < &*(B,W,).

Moreover if E(B,W,,) < &*(B,W,) then the band function T — s(B,S,;T) reaches its
infimum. We denote by 7¢ € R a critical point such that

s(B,S.;7%) = E(B,W,) .

Then there exists an eigenfunction with exponential decay for the operator H(All, S,,) + V];i
associated with the value E(B, W,,).

Remark 3.7. Note that in the tangent case the band function 7 — s(B, S,; ) always reaches
its infimum.

Proof. Tangent case: We have &*(B,W,,) = O and (3.9) is already proven (see (2.9)). Since
the function 7 — s(B,S,;7) is continuous, we deduce from Proposition 3.1 and (2.3) that
the band function 7 — s(B, S,; 7) reaches its infimum. Let 7¢ be a minimizer of s(B, S,; 7).
Assume that E(B,W,) < &*(B,W,). Since s.(B,S,;7¢) = O, (see Proposition 2.5),
(B, S,; 7¢) is a discrete eigenvalue of the operator H(Al, S,) + V1.
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Non tangent case: We deduce (3.9) from Proposition 3.4 and (2.3). Assume that £(B,W,) <
&*(B,W,). Since the function 7 — s(B,S,;7) is continuous, Proposition 3.4 and (2.3)
imply that the band function 7 — s(B,S,;7) reaches its infimum. We denote by 7¢ a
Fourier parameter such that £(B, W, ) = s(B,S,;7°). The bottom of the essential spec-
trum of H (AH,SQ) + Vgi is either +o0 (outgoing case) or 1 (ingoing case), see Subsection
2.3. Since £*(B,W,) < 1 we deduce that (B, W,,) is a discrete eigenvalue of the operator
H(AILS,) + V5.

In both cases we denote by .. an eigenfunction associated with (B, W,,) for the operator
H (AH ,Sa) + ng. The fact that u,. has exponential decay is classical (see [1]) and we will
give precise informations about the decay rate of the eigenfunctions in Proposition 4.2. U

Several particular cases where £(B,W,) < &*(B,W,) can be found in literature (see
[38], [8] or [42]). Theorem 5.4 below gives geometrical conditions for this inequality to be
satisfied. Let us also note that in [42, Section 5], it is proved that £(B, W,,) = &*(B,W,,) for
a magnetic field tangent to a face, normal to the edge with an opening angle larger that 7.

We now show that when inequality (1.7) is strict, there exists a generalized eigenfunction
(in some sense we will define below) for H(A,W,,) associated with the ground state energy
E(B,W,). This generalized eigenfunction is localized near the edge and can be used to
construct quasimodes for the semiclassical magnetic Laplacian on a bounded domain with
edges (see [12]).

We denote by L2 _(W,) (respectively HL _(W,)) the set of the functions u which are in

L2(K) (respectively H'(K)) for all compact K included in W, where K denotes the interior
of K.

We introduce the set of the functions which are locally in the domain of H (A, W,,):

Dom o (H(A, W,)) =
{ue HE . (W,), (—iV — A)ue L}

loc

W), (=iV —A)u-n =0 on dW,},
where n is the outward normal of the boundary 0W,, of the wedge.

Corollary 3.8. Let a € (0,7) U (m,27) and B € S2. Assume E(B,W,)) < &*(B,W,). Then
there exists a non-zero function 1) € Dom . (H(A,W,,)) satisfying

(—iV — A = EB, W)Y in W,

(—=iV—A)Y-n=0 on N,.

Moreover 1 has exponential decay in the (x1, x5) variables.

Proof. Let 7° be a minimizer of 7 — s(B, S,; 7) given by Theorem 3.6. Let u,. be an eigen-
function of H(All S,) + Vgi associated with £(B,W,,). It has exponential decay and satisfies

the boundary condition (—iV — Al)u. -n = 0 where n is the outward normal to the boundary
of S,. Let

(310) w($1,$2,$3) = eiTcxsuTC('xlwrQ) :
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We clearly have ¢ € Domy,.(H (A, W,)). Moreover writing A = (Al 2,0, — 21b,) we get
(—iV — A% = ((—=iViy 2 — A 2upe + (79 — 2b1 + 21b9)1re ) €77 = E(B, W, )1 .
Therefore 1) satisfies the conditions of the corollary. OJ
We say that the function 1) is a generalized eigenfunction of H(A,W,). Since it has the
form (3.10), we say it is admissible and we shall use it to construct quasimode for the operator

(—ihV — A)? on ) when ( has an edge (see [12]). This form is linked to the notion of L*
spectral pair, see for example [2, Section 2.4].

We also deduce from Theorem 3.6 the following strict diamagnetic inequality:
Corollary 3.9. Let (B, ) € S? x (0,27). Then we have E(B,W,) > 0.
Proof. Assume E(B,W,,) = 0, then using (1.6) there holds F(B,W,) < &*(B,W,,) and

we use Theorem 3.6: there exists 7° € R and u,- a non-zero eigenfunction for the operator
H(AlS,) + Véi associated with 0. Looking at the associated rayleigh quotient we get

J [(=iV — ANure)® + VL Jtge|* day day = 0.
Sa

When B+ # 0 (that means when the magnetic field is not tangent to the axis of the wedge),
we have V]_I,l > ( a.e. and we deduce u,. = 0, that is a contradiction.

Assume now that B+ = 0, then Vg (r1,20) = 72 and therefore 7¢ = 0. Denote by

pre = |usc|, due to the standard diamagnetic inequality (see [28]), it satisfies

J ‘Vp7-6|2 =0.
Sa

and therefore p,c = 0 a.e. that is a contradiction. 0

Together with the continuity result Theorem 4.5 of the next section, this shows that the
infimum of the local ground state energy of the semiclassical magnetic Laplacian along edges
(see Section 1.1 and Section 1.3) does not vanish. Notice that there is no hope of proving a
uniform lower bound for F(B, W,) since it goes to 0 for a magnetic field tangent to a face
when o — 0 ([42, Section 5]).

4. REGULARITY OF THE GROUND STATE ENERGY

In this section we prove the continuity of the application (B, o) — F(B,W,). The domain
of the quadratic form Qf , depends on the geometry (see (2.6)), moreover the bottom of the
spectrum of the operator H(AllS,,) + Vg1 may be essential, see Subsection 2.3. Therefore
we cannot apply directly Kato’s perturbation theory.

In this section we use the generic notation g (like geometry) for a couple (B, ) € S? x
(0,27). We denote by E(g) := E(B,W,) and s(g;7) := s(B,S,; 7). We also note QF the
quadratic form Qf ,
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4.1. Uniform Agmon estimates. Here we give Agmon’s estimates of concentration for the
eigenfunctions of the operator H (Al S,,) + Vg, associated with the ground state energy F(g).

First we recall a basic commutator formula (see [16, Chapter 3]):

Lemma 4.1. Let ® be a uniformly Lipschitz function on S, and let (E,u) be an eigenpair of
the operator H(All S, + Vg.. Then we have

(4.1) Vue Dom(Q]), Qj(e®u) = J (E+|VO|*) e*®|ul?.

[e3

We introduce the lowest energy of H(All S,) + V5. far from the origin:

‘5 s E*B,W,) if a#r,
4.2) (g)'_{E(B,Wa) if a=nm.

We have &* (9) = o(0°) where 0" is the minimum angle between the magnetic field and the
boundary of W,. Since § — o(0) is Lipschitz continuous we deduce that g — &*(g) is
Lipschitz continuous on S§? x (0, 27).

Denote by
(4.3) 3(9) = &*(g) — E(g)

and recall that when 6(g) > 0 we can apply Theorem 3.6. The following proposition gives the

exponential decay for the first eigenfunctions of H(Al, S,) + V];Eq ), provided that § (9) >0,
including the precise control of the decay depending on d(g):

Proposition 4.2. Let g = (B,a) € S? x (0,27) and 6(g) defined in (4.3). We suppose that
d(g) > 0. Let 7(g) € R be a value of the Fourier parameter given in Theorem 3.6 such that

s(g;7(g)) = E(g). Forv € (0,4/0(g)) let ¢, (x1,22) := vo/2? + 23 be an Agmon distance.

Then there exist universal constants C' > 0 and Cy > 0 such that for all eigenfunctions ug of
H(AILS,) + VBT.EQ) associated with E(g) we have

1
(4.4) Q;(g)(ed’”ug) < Cmef(a(g),u,a)HugH%2
where
(45) f((sa v, Oé) = Cl Y

aVo — 12

Proof. We know from the results of [1] that e?*u, € L*(S,). Since |V, |> = v? the commu-
tator formula (4.1) provides

(4.6) J (E(g) + v°)e |ug|* = Q79 (% uy) .

[e%

We use cut-off functions X1 g and x2 r in C*(S,, [0, 1]) that satisty x1 r(z) = 0 when |z| >
2R and x1,z(z) = 1 when |z| < R and x7 ; + x3 z = 1. We also assume without restriction
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that there exists C' > 0 such that
2
(4.7) VR >0, Z Vel < T2

Lemma 3.2 provides

[\

QT(g Z QT g) JR€¢" - Z HVXJ-,Red)”ug\P

and from (4.6) and (4.7) we get

C 2
(mm+u+ﬁge%@;/2 Qe ).

Note that since 6(g) > 0 we have o # 7 and Lemma 3.3 provides a universal constant C; > 0

such that Q5 (s gu,) = (£*(g) — 1) x2,rE? ug |22 We deduce another constant C' > 0
such that

C
48 (300~ 0+ ) banc

C
< (B)+ 7+ 50+ ) el
We now choose R > 0 such that:
C
(4.9) —(1+ %)=

Moreover since E(g) < &*(g) < 1and v € (0,+/3(g)) we have E(g) + v + S+ %) <2
We deduce from (4.8)

4 4 v
(4.10) |‘6¢”ugH2L2 < (W + 1) HXI,R€¢”U9H%Q < (W + 1) et RHUgH%Z .

Notice now that due to the choice of R in (4.9) we have vR < 01

\/W = f(6(9),v,a)

with C| > 0. Recall that §(g) < 1, we get another constant C' > 0 such that

1 6(g),v,a
(411) |‘6¢VUg|‘%2 <C (W) ef( (9):v )Hug”%/Q )
We deduce the estimates on the quadratic form from the identity (4.6). 0

This Agmon estimates will be applied to different situations: either a set of g = (B, «v) such
that 6(g) is uniformly bounded from below (and therefore for a fix v € (0,4/d(g)), the above
estimate will be uniform with respect to g); either a set of ¢ such that §(g) tends to 0, and in
that case we will choose v = 14/6(g) and use the explicit control with respect to 4(g). In both
cases we will ask the opening angle « to be not too small.
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4.2. Polar coordinates. Let (r,v) € R, x (=%, 5) be the usual polar coordinates of S,. We

use the change of variables associated with the normalized polar coordinates (7, ¢) := (r, %) €
Qo := Ry x (—3,1). After a change a gauge (see [8, Section 3] and [42, Section 5]) we get

that the quadratic form Q7 is unitary equivalent to the quadratic form
~ 1 ~
@1 G [ (16~ danbul ¢ ol T ) v

with the electric potential in polar coordinates:
(4.13) 1797(7“, ¢) = (7’ cos(pa)by — rsin(pa)by — 7)2 )

The form domain is
Dom(37) = Lu e L2(Q), (6, — iardbs)u € L2(), ~dsu e L2(Q0), \/V7 u e LX)
g r 0 9 T 3 r 0 ) r (15 r 0 9 g r 0

where L?(€)) stands for the set of the square-integrable functions for the weight r dr.

Notation 4.3. Let gy = (B, ) € S? x (0,27) and n > 0. We denote by B(go, ) the ball of
S? x R of center gq and of radius 7 related to the euclidean norm | g| := (|B|2 + a2)"/*.

Lemma 4.4. Let gy = (Bg,ap) € S? x (0,27). There exist C > 0 and n > 0 such that
B(go,n) = $* x (0,27) and for all g € B(go,n) we have for all u € Dom(Q7) N Dom(Q7 ):
vreR, Qp(u) < Oy, (w) + Clg - goll (Irulza + Op(w) -

Proof. Let go = (B, ) and g = (B, ) be in S? x (0, 27). We denote by (b;¢); and (b;); the
cartesian coordinates of By and B. Let d := ||g — go|. We discuss separately the three terms
of Q7 (u) written in (4.12). For the first one we write

(0, — iabsré)ul* <|(0, — iagbsoro)ul?
+ |agbs o — abs|*r?|ul® + 2r|ul|agbso — abs||(0, — iagbs ore)ul
We have |agbs g — abs| < aglbso — bs| + |bs||ao — ] < (27 + 1)d, and
2r|ullaobso — absl|(0r — icgbsord)ul < (2m + 1)d (r*|ul® + |(0, — iagbsord)ul?) .
Therefore there exists C; > 0 such that for all g € S* x (0, 27):
(4.14) |(0, — iabsré)ul® < |(0, — iapbs gro)ul?
+ Cid (P|ul’ (1 + d) + [ (0, — icbs oro)ul?) .

We deal with the second term: we have

1 2 2
a2T2|a¢u| - Q%T2|a¢u‘ =d N

Therefore there exist 7 > 0 and Cy > 0 such that B(gy,n) = S* x (0, 27) and

1 1 1
4.15 Yg € B(go,n), Oul? + Cod Opul? .
( ) g (gO 77) 272 0437”2 ’ ¢U” 2 CY07’2 ’ ¢>u|

|0pul? <
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For the third term we write
‘7;(7“, o) <‘N/g:)(r, ®) + |cos(ap)by — cos(agd)ba o + sin(agd)br o — sin(o«;ﬁ)bl\Q r?
+ 24/ ‘7;0 (7, ¢) |cos(ap)by — cos(app)beo + sin(an)by o — sin(ag)b | r .
We get C5 > 0 and Cy > 0 such that for all g € S? x (0, 27) and for all 7 € R:
(4.16) V(r, @) € Qo,  Vyrl(r,¢) < (1+ Cod) VI (r,¢) + Cur’d .
Combining (4.14), (4.15) and (4.16) we get C' > 0 such that for all g € B(go,n):

0y (u) < Qg (W)l + Clg = goll (Irulza + Opy () -

4.3. Continuity.

Theorem 4.5. The function g — E(g) is continuous on S? x (0, 2).

Proof. Let gy € S? x (0,27). We distinguish different cases depending on whether (3.9) is
strict or not. Recall that d(g) is defined in (4.3).

Case 1: When
4.17) 5(g0) > 0.

Let us note that in that case oy # 7 (see (4.2)). We use Theorem 3.6: There exists 7€ € R
such that the band function 7 — s(go; 7) reaches its infimum in 7¢ and there exists a normal-

ized eigenfunction (in polar coordinate) g for @;0 with exponential decay in . We use this

function as a quasimode for @gc. We get from Lemma 4.4 constants C' > 0 and > 0 such
that for all g € B(go,7n):

3y’ () < Qs (o) + Clg — goll (o3 + O (o))

= B(g0) + Cllg — gol (Iruols + E(go))

and therefore the min-max principle and relation (2.3) provide

(4.18) Elg) < Elgo) + Clg — gol (Iruol?s + Elg0) )
Since 1y has exponential decay in r we get
(4.19) limsup E(g) < E(go) -

g—9o

Using this upper bound, the assumption (4.17) and the continuity of g — & *(g), we deduce
that there exist £ > 0 and €, > 0 such that B(go, k) = S* x ((0,27)\r) and

(4.20) Vge B(go, k), €0 <9d(g).

Let g € B(go, k), Theorem 3.6 provides 7(g) € R such that s(g;7(g)) = E(g) is a discrete

eigenvalue for the operator H(All S,) + VP':Eg ). We denote by u4 an associated normalized
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eigenfunction in polar coordinates. We use (4.20) and Proposition 4.2: For a fix v € (0, \/€)
there exists Cy > 0 such that

4.21) Vg€ B(go, k), e uglL2(00) < Co -
We use u, as a quasimode for Q7. (4.21) and Lemma 4.4 yields
(4.22) 3C1 > 0, Vg € B(go, ), 919 (uy) < Q79 (uy) + Cillg — g0l

and since u,, satisfies é;(g ) (uy) = E(g) we deduce from the min-max principle and (2.3):

(4.23) Vg € Blgo, k), E(g0) < E(g) + Cilg — gol -

This last upper bound combined with (4.19) brings the continuity of E(-) in go when E(go) <
&*(90)-

Case 2: When

(4.24) 5(g0) =0.

Let us suppose that for all € > 0 there exists £ > 0 such that for all g € B(go, k) we have
&% (g) —e< E(g) < &%(9g) -

In that case we deduce the continuity of E(-) in gy from the continuity of &*(-).

Let us write the contraposition of the previous statement and exhibit a contradiction. We
suppose that there exists €y > 0 such that for all x > 0 there exists g € S* x (0,27) satis-

fying |g — gol| < x and E(g) < & (9) — €o. This implies a # 7 (see (4.2)). Theorem 3.6
provides 7(g) € R such that £(g) = s(g; 7(g)) and we denote by u, an associated normalized

eigenfunction for H(All, S,) + V];Sg ), Again Proposition 4.2 shows that this eigenfunction has
exponential decay uniformly in g: For each v € (0, ,/€;), we have C; > 0 that does not depend
on g such that

[ ugllz2(00) < Co -

We use u, as a quasimode for @;0(9 ): There exists a constant C'; > 0 that does not depend on g

such that
O (ug) < Q9 (ug) + Cillg — g0l
< &*(g) — €0 + Chk.
The min-max Principle and (2.3) provide
E(go) < 6*(g) — €0 + Curs

Let € > 0, the continuity of &*(-) implies that for > 0 small enough there holds &*(g) <
&*(go) + €. We have proved:

deg > 0, 3CT > 0, Ve > 0, kg > 0,V € (0, ko), El(go) < g*(go) — €+ Cik + €.

Choosing € > 0 and x > 0 small enough we get a contradiction with (4.24). 0
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4.4. Lipschitz and Holder continuity. Looking at the previous proof, and more particularly
(4.18) and (4.23), we get:

Proposition 4.6. Assume that gy € S x (0, 27) is such that E(go) < &*(go). Then g — E(g)
is Lipschitz in a neighborhood of gp.

Remark that the hypothesis of the above proposition applies only for o # 7.

When E(gy) = & (g0), the situation is more complicated, indeed for g close to go such that

E(g) < & (g) we do not have a uniform lower bound on §(g) and the exponential decay of the
eigenfunction u, (used as a quasi-mode in (4.22)) becomes worse and worse, see Proposition
4.2. Therefore we do not know any uniform upper bound for the error term ||ru,|. To solve
the situation we follow the dependence upon §(g) of the constants appearing in the estimation
of .

Proposition 4.7. Assume that gy € S* x (0, 27) is such that E(gy) = &* (g0). Then g — E(g)
is %—Hdlder in a neighborhood of g.

Proof. Since 6 — o(0) is Lipschitz on [0, 27), using (1.6) we restrict to the g # g, that lie in a

small neighborhood of gq such that E(g) < &*(g). Denote by V*(go) such a set. Assume that
g € V*(go) satisfies F(g) = E(go) then there holds

0 < E(g) — Elgo) < 6*(9) — 6*(90)
and one gets 0 < E(g) — E(g0) < C|lg — go| with C' > 0 that does not depend on ¢ since

we know that g — &*(g) is Lipschitz. We now have to deal with the case g € V*(go) and
E(g) < E(go). Denote by 7(g) € R a minimizer for the band function 7 — s(g, 7) and u, an
associated normalized eigenfunction as in the proof of Theorem 4.5. Noticing that

Vv >0,¥r >0, (rv)%e " <1
we get
(4.25) Y e (0,4/0(9)),  lrug|* < v=?eug|*.

We set v := 34/0(g) and we get f(6(g),v,a) = % (see (4.5)). We deduce from (4.11) and

(4.25) a constant C' > 0 such that
(4.26) Y9 e V*(g0),  lrugl® < C(3(9)) 7
Combining Lemma 4.4 with (4.26) we get
Q5 (ug) < E(9) + Cllg — goll (C(6(9))™ + Eg))
and using the min-max principle we get Cjy > 0 such that
0 < (E(9) — E(9))(9)* < Collg — o]

Writing 0(g) = E(go) — E(g) — (£*(go) — £*(g)) and using that &* is Lipschitz, we get
another constant C', > 0 such that

0 < (E(g) — E(9))* < Callg — ol
and therefore E(g) is 3-Holder in a neighborhood of gj.
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O

Remark 4.8. These regularity results are obtained for unitary constant magnetic fields. Using
the scaling (1.1), these results are easily extended to any non-zero constant magnetic fields.

5. UPPER BOUND FOR SMALL ANGLES

5.1. An auxiliary problem on a half-line. Let L?(R, ) be the space of the square-integrable
functions for the weight r dr and let

BMR,) = {ue LA(R),u € LX(R"), rue L(R)} .
We define the 1d quadratic form

m@%=L}WﬂﬂF+U—TﬂMﬂmrw

on the domain B! (R, ). As we will see later, if u is a function of L?(S,,) that does not depend
on the angular variable and if by # 0, b, 1Q]T_D,va(u) written in polar coordinates degenerates
formally toward q.(u) when « goes to 0.

We denote by g the Friedrichs extension of the quadratic form q.. This operator has been
introduced in [50] and studied in [41] as the reduced operator of a 3d magnetic Hamiltonian
with axisymmetric potential.

The technics from [7] show that g, has compact resolvent. We denote by ((7) its first
eigenvalue. For all 7 € R, ((7) is a simple eigenvalue and we denote by z, an associated
normalized eigenfunction. Basic estimates of Agmon show that z, has exponential decay. The
following properties are shown in [41]:

The function 7 — ((7) reaches its infimum. We denote by

(5.1) Zo := inf (1)

TER

the infimum. Let 75 > 0 be the lowest real number such that {(7y) = =,. We have

(52) ®0<50<\/4—7T.

Numerical simulations show that =y ~ 0.8630.

5.2. Upper bounds and consequences. Let B = (b;, by, b3) be a magnetic field in S. Due
to symmetry we assume b; > 0 for all j € {1, 2, 3} (see Proposition 2.1). Recall the quadratic

form @TB’Q associated with H (AH,Sa) + V3. in polar coordinates (see (4.12)). The injection
from (B!(R4), | - |r2(r,)) into (Dom(é]g,a(u)), | - HLg(QO)> is an isometry, therefore we can
restrict @{37(1 to B}(R,) and in the following for v € B}(R,) we denote again by u the

associated function defined on (2. Assume b, > 0, that means that the magnetic field is
not tangent to the symmetry plane of the wedge. For u € B}(R,) we have formally that

b;lég@(u) goes to q, (u) when « goes to 0.

The following lemma makes this argument more rigorous:
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Lemma 5.1. Let B € S? with by > 0. For u € B} (R, ) we denote by u*(r) := bé/Qu(bé/Qr) the
associated rescaled function. We have ||u*| 2w,y = |u|r2(r,) and
2 2
53) Op () = boa () + Il 2
bi — b
by

1 . e
451 = sinea)rulf e, 2 + 2nby (1 - sine S ) IVruly,

sin v

with sinc o :=

Proof. We evaluate @g’a(u) forue BY(R,):

Gl = [ (WP + (b = 7)lu(r) )
Ry
+ J 2G5 u(r) [P dr dg + f (V52 (r,0) = (rba = 7)%) Ju(r) Prdr do
Q() Q0
We have
2
a
(5.4) f ?r?¢?b3|u(r)’r drdo = EHT@LH%%(RJF)I% )
Qo
Elementary computations yield:
f/gl(r, ¢) — (rby — 7)% = r?sin®(ag) (b? — b2) — 2rby7 (cos(ag) — 1)
— 2rb; sin(ag) (rbg cos(ap) — 7) .

Since the term —27b; sin(ag) (rby cos(ap) — 7) is odd with respect to ¢, its integral on €
vanishes. For the other terms we use:
1/2

/
Jl 2 sin®(ap) do = %(1 —sinca) and J (cos(ocgzﬁ) — 1) dgp =sinc§ —1.

~1/2 ~1/2
We deduce for all u € B} (R,) and 7 € R:
J <~];L (r,¢) — (rby — T)2> lu(r)|*rdrde =
Qo
%(1 — sinc oz)HruH%g(RJr)(bf —b3) + 27 (1 — sinc %) H\/;UH%g(uh)@

and therefore (note that we have make the change 7 — 74/b):

(5.5) O/ (u) = f

Ry

042
(1 )2 + (b2 = /B2 |u(r) ) dr + 35 [l e, 03
+ (1 — sinc @) |rulZag, ) (63 — b3) + 27 (1 — sinc ) [v/rul2a, by .

Let u*(r) := bé/ 2u(b§/ ’r). An elementary scaling provides

[y + = o) rar = b,
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Moreover we have

_ —1/2
Hmsc”%g(&) = b21”7“u\|%g(11h) and H\/;USCH%E(RQ = b, / H\/;UH%;%(R” ;

therefore we deduce (5.3) from (5.5). O]

Proposition 5.2. Let B € S? with by > 0. There exists C'(B) > 0 such that
(5.6) Vae (0,7), E(B,W,) < bZ+ C(B)a?

Proof. We recall that z, € B!(R,) is a normalized eigenfunction associated with {(7) for the
operator g.. (see Subsection 5.1). We define

22(r) = I);/QZTO (T‘b;/Q)

70
where 7y € R satisfies ((79) = Zq (see (5.1)). For all « > 0 we have:

2 O{2

(5.7) 0<1—sinca<% and Oél—sinc%éﬂ.

We have q. (2;,) = Zo, therefore Lemma 5.1 and (5.7) provides

. B2+ b2 — b3
0{( 25) < bZo + — B <—2‘TZTO%% + Toba [V 2 | Fa g,y ) -

bo
Since | 25| 12(00) = ||#rllz2(r.) = 1 the min-max principle provides:
JCB) > 0, Va e (0,7), s(B,Sa; 700/ b2) < b= + C(B)a?
We deduce the proposition with (2.3). U

As a direct consequence we get

Corollary 5.3. Let B € S? with by > 0. We have the following upper bound:
(5.8) limsup E(B, W,) < by= .

a—0

Numerical computations show that F(B, W,,) seems to go to by=y when « goes to 0 (see
Section 6 and [40, Section 6.4]). This question remains open. However the upper bound (5.8)
is sufficient to give a comparison between the spectral quantity associated with an edge and
the one coming from regular model problem:

Theorem 5.4. Let B € S? with by > 0. Then there exists «(B) € (0,7) such that for all
€ (0,(B)) we have E(B,W,,) < &*(B, W,).

Proof. We introduce ¢° := min{f", 0~} (6° depends on o and B). For o € (0, 7) we have
&E*(B,W,) = c(0°). We recall the inequality from [23, Section 3.4]:

0°) > \/@3 cos?(0°) + sin?(69) .

Since 6° goes to arcsin by when « goes to 0, we get

lim inf (B, W,) = liminf o(6") > /(1 — ©3)13 + O3
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Since = € (0, 1) (see Subsection 5.2), we get:

ng € [0, 1], Eobg < \/(1 — @%)b% + @%
and we deduce from Corollary 5.3:
limsup E(B,W,) < lim iglf E*(B,W,) .
a—0 a—

The theorem follows. ]

Remark 5.5. Tt is possible to use gaussian quasimodes in (5.3) and to deduce for £(B,W,,) a
polynomial in o upper bound with explicit constants (see [40, Section 6.3]). This allows to get
analytic value of a(B), for example we get with numerical approximations «(B) > 0.387 for
the magnetic field B = (0, 1, 0) normal to the plane of symmetry.

Remark 5.6. The previous theorem remains true in the special case b, = 0 (see [40, Section 7])
but the proof is different since the limit operator when « goes to 0 is not anymore the operator
q., introduced in Section 5.1.

6. NUMERICAL SIMULATIONS

Let C' := (0, L)? be the square of length L. We perform a rotation by —7 around the origin
and the scaling X, := 75 tan § along the xo-axis. The image of C' by these transformations
is a thombus of opening « denoted by R(«, L.). The length of the diagonal supported by the
x1-axis is v/2L. Using the finite element library Mélina ([34]), we compute the first eigen-
pairs of (—iV — A2 + VI, on R(a, L) with a Dirichlet condition on the artificial boundary
{OR(a, L) n {x; > %L} We denote by $(B,S,;7) the numerical approximation of the
first eigenvalue of this operator. For L large, $(B,S,;7) is a numerical approximation of
s(B, S4; 7). We refer to [40, Annex C and Chapter 5] for more details about the meshes and

the degree of the approximations we have used.
We make numerical simulations for the magnetic field B = <T hich is normal to

the edge. An associated linear potential is A (z1, x2, x3) = (0,0, —
H(A||7So¢)+V];—L— A_{_(T_ip_}_,]_)

We notice that in that case the reduced operator on S, is real and therefore its eigenfunctions
have real values. For numerical simulations of eigenfunction with complex values, see [42,
Section 7].

H%I

,0) w
’“"7) and we have

Gl
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FIGURE 1. Magnetic field: B 75+ 75+ 0). Opening angl . Th

%)

numerical approximation of s(B,

a(67).

«; T) versus 7 compared with o(6%) and

On Figure 1 we have set o = 43”: the magnetic field is ingoing. In that case we have 6+ = 3—3
and 6~ = It We have shown §(B, S,; 7) for 7 = 4 with —30 < k < 40. We have also shown
o(0%) and o(0~) where the numerical approximations of o(-) comes from [13]. §(B,S,;7)
seems to converge to o(#F) when 7 goes to +o0 in agreement with Proposition 3.1. Moreover
7 — §(B, S,; 7) reaches its infimum and this infimum is strictly below o(6%) = &*(B, W,,).
Therefore we think that inequality (1.7) is strict for these values of B and .

On figure 2 we show normalized eigenfunctions of (—iV — All) + VI, on R(“Z, 20) asso-
ciated with §(B, S an T) for 7 = k, —3 < k < 4. We see that the eigenfunctions are localized
near the line T where the potential Vg vanishes.
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T=1 T=2 T=3 T=4

FIGURE 2. Magnetic field: B = (= 75 %@ 0). Opening angle: a = “*. Nor-

malized Eigenvectors of H(Al,S,) + Vg, associated with s(B, S,; ) From
top to bottom and left to right: 7 = k, —3 < k£ < 4. Computational domain:

R(20, ).

27
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FIGURE 3. Magnetic field: B = (\%, \%, 0). The numerical approximation of
E(B,W,) versus ¢ compared with &*(B, W,,), b=, and ©y.
On figure 3 we show numerical approximations of E(B,W,). For each value of o we
compute s(B,S,; 7) for several values of 7 and we define

E(B,W,) := inf (B, S,;7)

a numerical approximation of E(B, W, ). The magnetic field is outgoing when a € (0, %),

m s

ingoing when o € (7, 7) and tangent when o = 7. We notice that E(B,W,) seems to
converge to by= (see Subsection 5.2). We have also plotted &*(B,W,,) according to (1.6)
and to the numerical values of o(-) coming from [13]. We see that for & # 7, we have
E(B,W,) < &*(B,W,) whereas EU(B,Wg) ~ ©g = &*(B,Wsz). Let us also notice that
o — E(B,W,) seems notto be C' in v = 3.
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