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INTRODUCTION

1.1. The magnetic Laplacian on model domains.

' Motivation from the semiclassical problem. Let p´ih∇ ´Aq 2 be the magnetic Schrödinger operator (also called the magnetic Laplacian) on an open simply connected subset Ω of R 3 . The magnetic potential A : R 3 Þ Ñ R 3 satisfies curl A " B where B is a regular magnetic field and h ą 0 is a semiclassical parameter. For Ω bounded with Lipschitz boundary, the operator p´ih∇ ´Aq 2 assorted with its natural Neumann boundary condition is an essentially self-adjoint operator with compact resolvent. Due to gauge invariance, the spectrum depends on A only through the magnetic field B.

Many works have been dedicated to understanding the influence of the geometry (defined by the domain Ω and the magnetic field B) on the asymptotics of the first eigenvalue of the magnetic Laplacian and on the localization of the associated eigenfunctions in the semiclassical limit h Ñ 0. When Ω is a two-dimensional polygon and for a non-vanishing magnetic field, the first eigenvalue behaves at first order like hE pB, Ωq where E pB, Ωq ą 0 is the minimum of the ground state of model magnetic Laplacians (with constant magnetic field) on the plane, the half-plane and infinite sectors, in connection respectively with the interior, the regular parts of the boundary and the corners of Ω (see [START_REF] Bernoff | Onset of superconductivity in decreasing fields for general domains[END_REF][START_REF] Lu | Eigenvalue problems of Ginzburg-Landau operator in bounded domains[END_REF][START_REF] Helffer | Magnetic bottles in connection with superconductivity[END_REF][START_REF] Fournais | Accurate eigenvalue estimates for the magnetic Neumann Laplacian[END_REF] when Ω is regular and [START_REF] Bonnaillie | On the fundamental state energy for a Schrödinger operator with magnetic field in domains with corners[END_REF][START_REF] Ël | Asymptotics for the low-lying eigenstates of the Schrödinger operator with magnetic field near corners[END_REF][START_REF] Ël | Computations of the first eigenpairs for the Schrödinger operator with magnetic field[END_REF] when Ω has corners).

In dimension 3, the regular case is studied in [START_REF] Lu | Surface nucleation of superconductivity in 3-dimensions[END_REF][START_REF] Helffer | Magnetic bottles for the Neumann problem: curvature effects in the case of dimension 3 (general case)[END_REF][START_REF] Raymond | On the semi-classical 3D Neumann Laplacian with variable magnetic field[END_REF], in particular it is proven that the first eigenvalue still has the asymptotic behavior hE pB, Ωq when h Ñ 0 where the constant E pB, Ωq now involves model problems on the space and the half-space. When the boundary of Ω Ă R 3 has singularities, only few particular cases have been published and new model magnetic Laplacians associated with the different kind of singularities of the boundary appear. In [START_REF] Pan | Upper critical field for superconductors with edges and corners[END_REF], the domain is a cuboid and the author studies model operators on the octant and on the infinite wedge of opening π 2 in connection with the corners and the edges of the cuboid. In [START_REF] Popoff | When the 3d-magnetic laplacian meets a curved edge in the semi-classical limit[END_REF], the authors treat the case of a lens (a domain with an edge that is a closed loop) and a particular orientation of the magnetic field and are led to introduce a model magnetic Laplacian on a infinite wedge with a specific magnetic field.

In all these different cases, the key of success is the study of "local" model magnetic Laplacians on the tangent cones to the boundary and the minimization of their ground state energy along all possible local geometries of Ω. To treat the Schrödinger operator on general 3d domains with edges and (possibly variable) magnetic field, we are led to study the magnetic Laplacian on infinite wedges with constant magnetic field.

Let us add that the main physical motivation for the analysis of the first eigenvalue of the magnetic Laplacian in the semi-classical limit is its applications toward the phenomenon of surface superconductivity for type II superconductors under strong magnetic field (see [START_REF] Fournais | Spectral methods in surface superconductivity[END_REF] where a lot of information on the subject can be found). Indeed the asymptotic behavior of the first eigenpairs in the semi-classical limit provides informations on the existence of non-trivial minimizers for the Ginzburg-Landau functional in the large magnetic field limit.

' The magnetic Laplacian on wedges. The study of the semi-classical magnetic Laplacian on domains of R 3 with edges involves new model problems on the tangent cones. The tangent cone to an edge is an infinite wedge. Let us denote by px 1 , x 2 , x 3 q the cartesian coordinates of R 3 . Let α P p0, πq Y pπ, 2πq be the opening angle, we denote by W α the model wedge of opening α:

(1.1) W α :" S α ˆR where S α is the infinite sector defined by tpx 1 , x 2 q P R 2 , |x 2 | ď x 1 tan α 2 u when α P p0, πq and tpx 1 , x 2 q P R 2 , |x 2 | ě x 1 tan α 2 u when α P pπ, 2πq. We extend these notations by using W π (respectively S π ) for the model half-space (respectively the model half-plane). For α ‰ π the x 3 -axis defines the edge of W α .

Let B be a non-zero constant magnetic field and A an associated linear potential. We define (1.2) HpA, W α q :" p´i∇ ´Aq 2 the model magnetic Laplacian on the model domain W α with its natural Neumann boundary condition. More precisely the domain of this operator is tu P L 2 pW α q, p´i∇ ´Aq 2 u P L 2 pW α q, p´i∇ ´Aqu ¨n " 0 on BW α u

where n is the outward normal of the boundary BW α of the wedge (note that n is well defined almost everywhere). The operator HpA, W α q is essentially self-adjoint and we denote by (1.3) EpB, W α q the bottom of the spectrum of HpA, W α q .

Remark 1.1. Due to the elementary scaling y " |B| 1{2 x, we have EpB, W α q " |B|Ep B |B| , W α q and therefore it is sufficient to consider unitary magnetic fields.

In this article we investigate the bottom of the spectrum of the operator HpA, W α q and the influence of the geometry defined by pB, αq with B P S 2 on the ground state EpB, W α q. This operator has already been introduced in particular cases (see subsection 1.4). Our results cover some of these particular cases in a more general context. The consequences of our results on the semiclassical problem on bounded domains are described in Subsection 1.3.

Problematics and results.

' Tangent substructures of the wedge. For α ‰ π, the wedge W α is a cone of R 3 with tangent substructures corresponding to its structure far from its edge. There are three tangent substructures: The half-space Π ὰ corresponding to the upper face, the half-space Π ά corresponding to the lower face and the space R 3 corresponding to interior points. These subsets are linked with the notion of singular chains of a cone, see [START_REF] Maz'ya | Elliptic boundary value problems on manifolds with singularities[END_REF] or [START_REF] Dauge | Elliptic boundary value problems on corner domains[END_REF]. When α P p0, πq (convex case) we have Π ὰ " tpx 1 , x 2 , x 3 q P R 3 , x 2 ď x 1 tan α 2 u and Π ά " tpx 1 , x 2 , x 3 q P R 3 , x 2 ě ´x1 tan α 2 u. Similar expressions can be found for α P pπ, 2πq (non convex case). When the model domain is a half-space (α " π), there is only one tangent substructure: The whole space R 3 . The magnetic Laplacian on half-spaces and on R 3 and their ground state energy are naturally defined as in (1.2)-(1.3). On the full space the ground state is well known:

(1.4) @B P S 2 , EpB, R 3 q " 1 .

For α ‰ π we introduce the spectral quantity

(1.5) E ˚pB, W α q :" min EpB, Π ὰ q, EpB, Π ά q, EpB, R 3 q ( .
When α " π, we let E ˚pB, W π q :" EpB, R 3 q " 1.

' The operator on half-spaces. Before describing the meaning of E ˚, we recall known result about the magnetic Laplacian on half-spaces and we exhibit the influence of the geometry on E ˚pB, W α q . Let Π Ă R 3 be a half-space. The bottom of the spectrum of the magnetic Laplacian on Π depends only on the unoriented angle between the magnetic field B and the boundary of Π. We denote by θ P r0, π 2 s this angle. Let σpθq :" EpB, Πq be the bottom of the spectrum of the operator HpA, Πq. This function has already been studied in [START_REF] Lu | Surface nucleation of superconductivity in 3-dimensions[END_REF], [START_REF] Helffer | Magnetic bottles for the Neumann problem: the case of dimension 3[END_REF] or more recently [START_REF] Ël | Discrete spectrum of a model Schrödinger operator on the half-plane with Neumann conditions[END_REF]. In particular θ Þ Ñ σpθq is increasing over r0, π 2 s with σp0q " Θ 0 and σp π 2 q " 1 (see [START_REF] Lu | Surface nucleation of superconductivity in 3-dimensions[END_REF]) where the universal constant Θ 0 « 0.59 is a spectral quantity associated with a unidimensional operator on a half-axis (see [START_REF] Saint-James | Onset of superconductivity in decreasing fields[END_REF][START_REF] Bolley | An application of semi-classical analysis to the asymptotic study of the supercooling field of a superconducting material[END_REF][START_REF] Dauge | Eigenvalues variation. I. Neumann problem for Sturm-Liouville operators[END_REF] and Subsection 2.2).

Let us denote by θ `(respectively θ ´) the unoriented angle between the magnetic field B and Π ὰ (respectively Π ά ). We have EpB, Π ὰ q " σpθ `q, EpB, Π ά q " σpθ ´q and EpB, R 3 q " 1. Since σ is increasing we get (1.6) E ˚pB, W α q " σpmintθ `, θ ´uq .

' Main goals and results. When α ‰ π, the quantity E ˚pB, W α q can be interpreted as the lowest energy of the magnetic Laplacian far from the edge (x 3 -axis). One of the main results of this paper is the following inequality:

(1.7) @α P p0, 2πq, EpB, W α q ď E ˚pB, W α q , roughly speaking that means that the ground state energy associated with an edge is lower than the one of regular adjacent model problems.

Remark 1.2. When α " π, we have θ ´" θ `" θ and EpB, W π q " σpθq. Since σpθq ď 1 with equality if and only if θ " π 2 , we notice that inequality (1.7) is already known for α " π with equality if and only if B is normal to the boundary of the half-space W π .

Relation (1.7) may either be strict or be an equality. When inequality (1.7) is strict the singularity makes the energy lower than in the regular cases close to the edge (see Subsection 1.3 for a range of the applications to the semi-classical problem). It has been shown on examples that both cases are possible, see Subsection 1.4. However even in the particular case where the magnetic field is tangent to the edge so that the operator reduces to a pure 2d operator on a sector, the sharp geometrical condition for which (1.7) is strict is only conjectured, see [START_REF] Bonnaillie | On the fundamental state energy for a Schrödinger operator with magnetic field in domains with corners[END_REF][START_REF] Ël | Computations of the first eigenpairs for the Schrödinger operator with magnetic field[END_REF]. At this stage, a simple geometrical necessary and sufficient condition for (1.7) to be strict does not seem reachable to us. In Section 5 we will give a sufficient geometrical condition: if the opening angle of the wedge is small enough (depending on B), then (1.7) is strict. This condition may express with analytical functions (see Remark 5.5) and leads to explicit numerical values of the geometrical parameters which ensures that (1.7) is strict.

As we will see, the operator HpA, W α q is fibered: after Fourier transform along the axis of the wedge, it reduces to the family of two-dimensional operators p p H τ pA, W α qq τ PR defined on the sector S α (see (2.1)-(2.2)). The operators p p H τ pA, W α qq τ PR are sometimes called the fibers of HpA, W α q. Its eigenvalues-whenever they exist-seen as functions of τ are called the band functions. Their study is the core of the understanding of the spectrum of the magnetic Laplacian on the wedge. By computing both the limit of the first band function and the bottom of the essential spectrum of the fibers, we link E ˚pB, W α q and spectral quantities associated with the fibers. As a consequence we will deduce inequality (1.7), moreover when the inequality is strict, we prove the existence of generalized eigenpairs for HpA, W α q with energy EpB, W α q, moreover these generalized eigenfunctions are localized near the edge (see Corollary 3.8).

Remark 1.3. This kind of analysis of the band functions has its interest for a wider class of fibered operator. This is the case of a two-dimensional Iwatsuka Hamiltonian which is a magnetic Laplacian on R 2 involving a magnetic field Bpx, yq " Bpxq constant in the y direction, monotonous in the x direction and satisfying Bpxq Ñ B ˘when x Ñ ˘8 (see [START_REF] Iwatsuka | Examples of absolutely continuous Schrödinger operators in magnetic fields[END_REF][START_REF] Mantoiu | Some propagation properties of the Iwatsuka model[END_REF]). The case of a piecewise constant magnetic field is treated in [START_REF] Hislop | Edge states induced by Iwatsuka Hamiltonians with positive magnetic fields[END_REF] (see also [START_REF] Reijniers | Snake orbits and related magnetic edge states[END_REF] for a physical approach). An analog analysis can be made by setting E ˚" minpB ´, B `q, that is the ground state energy far from the variation of the magnetic field. The existence of localized (in the x variable) ground state is then given by the analysis of the band functions and depends on whether E ď E ˚is strict or not.

' Consequences on regularity and positivity of the ground state energy. The stability of the spectrum of a Schrödinger operator in R 3 under long range perturbation of the magnetic field (this includes perturbation with constant magnetic field) is not described by the standard Kato's perturbation theory and has been the subject of many articles. Under suitable assumptions on the magnetic field and the electric potential, the continuity with respect to the strength of the perturbation has been proved in [START_REF] Avron | Stability of gaps for periodic potentials under variation of a magnetic field[END_REF][START_REF] Nenciu | Stability of energy gaps under variations of the magnetic field[END_REF], then in a more general context in [START_REF] Nenciu | On asymptotic perturbation theory for quantum mechanics: almost invariant subspaces and gauge invariant magnetic perturbation theory[END_REF] and [START_REF] Athmouni | On the continuity of spectra for families of magnetic pseudodifferential operators[END_REF]. On one hand, one expects the isolated eigenvalues to have a Lipschitz behavior, on the other hand it is more difficult to study the boundary of the spectrum when it has a band structure (as it is the case here). It is proved implicitly in [START_REF] Nenciu | Stability of energy gaps under variations of the magnetic field[END_REF] that the boundary of the band-spectrum is 1 2 -Hölder, the exponent is then pushed to 2 3 in [START_REF] Briet | Locating the spectrum for magnetic Schrödinger and Dirac operators[END_REF], and recently Cornean has proved in [START_REF] Cornean | On the Lipschitz continuity of spectral bands of Harper-like and magnetic Schrödinger operators[END_REF] that for constant magnetic field, bands spectrum have Lipschitz stability. Notice that the study of the spectral bands of several Harper-like operators leads to the same stability questions.

In our case perturbations of the magnetic field have a non trivial interaction with the boundary and the results from the above literature do not apply. Moreover we are also interested with perturbation of the geometry of the wedge (that is variation of the aperture angle). The standard resolvent and kernel estimates used in the above citations do not seem suitable in our case, and our approach is based on refined Agmon estimates for the fiber operators. We will prove the continuity of pB, αq Þ Ñ EpB, W α q on S 2 ˆp0, 2πq, see Theorem 4.5. Let us remark that the continuity is proven even for the degenerate case α " π. In section 4.4 we improve the result by showing that pB, αq Þ Ñ EpB, W α q is Lipschitz when inequality (1.7) is strict and α ‰ π, that is not surprising because in some sense we are not so far from Kato's perturbation theory in that case since there exists generalized eigenfunctions associated with EpB, W α q. When (1.7) is an equality, we prove 1 3 -Hölder regularity (see Proposition 4.7). As this stade we do not know whether the 1 3 exponent is optimal or not. Numerical simulations of EpB, W α q as a function of α P p0, πq for a particular B P S 2 are provided in Figure 3 and suggest that EpB, W α q is not C 1 in general.

The diamagnetic inequality is well known and states that the energy is larger in presence of a magnetic field (see [START_REF] Kato | Schrödinger operators with singular potentials[END_REF] or [START_REF] Simon | Universal diamagnetism of spinless bose systems[END_REF]). A strict diamagnetic inequality has been proved for the Neumann magnetic Laplacian in bounded domains in [START_REF] Fournais | Spectral methods in surface superconductivity[END_REF]Chapter 2]. A direct consequence of our analysis is a strict diamagnetic inequality for this problem on an unbounded domain, namely EpB, W α q ą 0 for all non-zero magnetic field B (see Corollary 3.9). 1.3. Application of our results to the semi-classical problem. We come back here to the analysis of the semi-classical magnetic Laplacian on a bounded singular domain Ω. What we call the local ground state energy of a point x P Ω is the bottom of the spectrum of the magnetic Laplacian on the tangent cone to Ω at x with a linear potential associated with the magnetic field frozen at x. It is well known that this local ground state energy is Lipschitz continuous on the regular boundary of Ω (indeed it expresses as a function of the quantity σp¨q described above). As said before, the presence of edges in the boundary of Ω leads to the model magnetic Laplacian on wedges that was only described for particular cases and that is systematically studied in this article. The main direct consequence of inequality (1.7) combined with Theorem 4.5 is that the local ground state energy is lower semi-continuous on a domain Ω whose boundary singularities are edges. For a non-vanishing magnetic field B, define E pB, Ωq the infimum of the local ground state energy along Ω. As a consequence of the lower-semi continuity together with Corollary 3.9, this infimum is reached and E pB, Ωq ą 0. Moreover when inequality (1.7) is strict at x 0 belonging to an edge of Ω, the local ground state energy is discontinuous when coming from faces toward x 0 . Using the existence of generalized eigenfunction with exponential decay far from the edge (see Corollary 3.8), standard semiclassical tools bring asymptotics and localization properties for the lowest eigenpairs of the magnetic Laplacian in the semiclassical limit (see [START_REF] Pan | Upper critical field for superconductors with edges and corners[END_REF], [START_REF] Bonnaillie | On the fundamental state energy for a Schrödinger operator with magnetic field in domains with corners[END_REF], [START_REF] Ël | Asymptotics for the low-lying eigenstates of the Schrödinger operator with magnetic field near corners[END_REF] and [START_REF] Popoff | When the 3d-magnetic laplacian meets a curved edge in the semi-classical limit[END_REF]). More precisely the first eigenvalue behaves like hE pB, Ωq `Oph 5{4 q (see [START_REF] Popoff | Sur l'opérateur de Schrödinger magnétique dans un domaine diédral[END_REF]Section 8] and [START_REF] Popoff | When the 3d-magnetic laplacian meets a curved edge in the semi-classical limit[END_REF] for particular domains with edges, and [START_REF] Ël | Polyhedral bodies in large magnetic fields[END_REF] for polyhedral domains, on which the results of this article are used). Due to standard Agmon estimates, we also expect that the associated eigenvectors are localized near the minimizers of E pB, Ωq, that are likely 1 , due to (1.7), to be on an edge if Ω has non corners. Some of our results are key ingredients in order to analyse the asymptotic behavior of the first eigenvalue of p´ih∇ ´Aq 2 for a non-vanishing magnetic field in a general corner domain Ω. In [START_REF] Ël | Ground energy of the magnetic laplacian on general three-dimensional corner domains[END_REF], we show that when Ω belongs to a wide class of corner domains, the first eigenvalue behaves like hE pB, Ωq and remainders as a power of h depending on the geometry are provided. The lower semi-continuity near edges is needed when looking for a minimizer of the local ground state energy, and the existence of generalized eigenfunctions for the model Laplacian on the wedge brings quasi-modes for the semi-classical problem. The Lipschitz regularity of the ground state depending on the geometry allows a better estimation of the quasi-mode for the semi-classical problem.

State of the art on wedges. The model operator on infinite wedges has already been explored for particular cases:

In [START_REF] Pan | Upper critical field for superconductors with edges and corners[END_REF], X. B. Pan studies the case of wedges of opening π 2 and applies his results to the semiclassical problem on a cuboid. In particular he shows that inequality (1.7) is strict if the magnetic field is tangent to a face of the wedge but not to the axis. These results can hardly be extended to the general case.

The case of the magnetic field B 0 :" p0, 0, 1q tangent to the edge reduces to a magnetic Laplacian on the sector S α . This case is studied in [START_REF] Bonnaillie | On the fundamental state energy for a Schrödinger operator with magnetic field in domains with corners[END_REF] (see also [START_REF] Jadallah | The onset of superconductivity in a domain with a corner[END_REF] for α " π

2 ): There holds E ˚pB, W α q " σp0q " Θ 0 and it is proven that inequality (1.7) is strict at least for α P p0, π 2 s. V. Bonnaillie shows in particular that EpB, W α q " α ? 3 when α Ñ 0 and gives a complete expansion of EpB, W α q in power of α.

In [START_REF] Popoff | The Schrödinger operator on a wedge with a tangent magnetic field[END_REF], a magnetic field tangent to a face of the wedge is considered. In that case inequality (1.7) is proven with E ˚pB, W α q " Θ 0 . Moreover it is shown that inequality (1.7) is strict for α small enough but cases of equality are also exhibited.

In [START_REF] Popoff | When the 3d-magnetic laplacian meets a curved edge in the semi-classical limit[END_REF], the magnetic field is normal to the plane of symmetry of the wedge and it is shown that inequality (1.7) is strict at least for α small enough.

The results of this article cover these particular cases and give a more general approach about the model problem on wedges. 1.5. Organization of the article. In Section 2 we reduce the operator HpA, W α q to a family of fibers p p H τ pA, W α qq τ PR on the sector S α . In Section 3, we link the problem on the wedge with model operators on half-spaces corresponding to the two faces and we deduce inequality (1.7). In section 4 we prove that EpB, W α q is continuous with respect to the geometry defined by pB, αq P S 2 ˆp0, 2πq. We also prove Lipschitz and Hölder regularity depending on whether inequality (1.7) is strict or not. In Section 5 we use a 1d operator to construct quasimodes for 1 This depends also on the variations of the magnetic field.

α small and we exhibit cases where inequality (1.7) is strict. In Section 6 we give numerical computation of the eigenpairs of the reduced operator on the sector.

FROM THE WEDGE TO THE SECTOR

2.1. Reduction to a sector. Due to the symmetry of the problem (see [START_REF] Popoff | Sur l'opérateur de Schrödinger magnétique dans un domaine diédral[END_REF]Proposition 3.14] for the detailed proof) we have the following: Proposition 2.1. Let B " pb 1 , b 2 , b 3 q be a constant magnetic field and A an associated potential. The operator HpA, W α q is unitary equivalent to Hp r A, W α q where r A satisfies curl r

A " p|b 1 |, |b 2 |, |b 3 |q.
Therefore we can restrict ourselves to the case b i ě 0.

We assume that the magnetic potential A " pa 1 , a 2 , a 3 q satisfies curl A " B and the magnetic Schrödinger operator writes:

HpA, W α q " 3 ÿ j"1 pD x j ´aj q 2
with D x j " ´iB x j . Due to gauge invariance, the spectrum of HpA, W α q does not depend on the choice of A as soon as it satisfies curl A " B. Moreover we can choose A independent of the x 3 variable. The magnetic potential will be chosen explicitly later, see (2.4).

We denote by SpP q (respectively S ess pP q) the spectrum (respectively the essential spectrum) of an operator P . Due to the invariance by translation in the x 3 -variable, there holds SpHpA, W α qq " S ess pHpA, W α qq.

2.1.1. Partial Fourier transform. Let τ P R be the Fourier variable dual to x 3 and F x 3 the associated Fourier transform. We recall that A has been chosen independent of the x 3 variable and for τ P R we introduce the operator (2.1) p H τ pA, W α q :" pD x 1 ´a1 q 2 `pD x 2 ´a2 q 2 `pa 3 ´τ q 2 acting on L 2 pS α q with natural Neumann boundary condition. We have the following direct integral decomposition (see [45, Chapter XIII]):

(2.2)

F x 3 HpA, W α qF x3 " ż À τ PR p H τ pA, W α q dτ .
Note that this decomposition is quite close to the operators studied in [30, Section 8.2]. The operator HpA, W α q is a fibered operator (see [START_REF] Érard | The Mourre theory for analytically fibered operators[END_REF] for a general setting, although our operator does not satisfy fully the definitions of an analytically fiber operator) whose fibers are the 2d operators p H τ pA, W α q with τ P R. Let spB, S α ; τ q :" inf Sp p H τ pA, W α qq be the bottom of the spectrum of p H τ pA, W α q, also called the band function.Thanks to (2.2) we have the following fundamental relation:

(2.3) EpB, W α q " inf τ PR spB, S α ; τ q .
As a consequence we are reduced to study the spectrum of a 2d family of Schrödinger operators. We denote by s ess pB, S α ; τ q :" inf S ess p p H τ pA, W α qq the bottom of the essential spectrum.

2.1.2. Description of the reduced operator. We write

B " B K `B
where B K " pb 1 , b 2 , 0q and B " p0, 0, b 3 q. We take for the magnetic potential

(2.4) Apx 1 , x 2 , x 3 q " pA px 1 , x 2 q, a K px 1 , x 2 qq with A px 1 , x 2 q :" p0, b 3 x 1 q and a K px 1 , x 2 q " x 2 b 1 ´x1 b 2 .
The magnetic potentiel A is linear, does not depend on x 3 and satisfies curl A " B. We introduce the reduced electric potential on the sector:

V τ B K px 1 , x 2 q :" px 2 b 1 ´x1 b 2 ´τ q 2 . We have (2.5) p H τ pA, W α q " HpA , S α q `V τ B K . The quadratic form of HpA , S α q `V τ B K is Q τ B,α puq :" ż Sα |p´i∇ ´A qu| 2 `V τ B K |u| 2 dx 1 dx 2
defined on the form domain (2.6) DompQ τ B,α q " tu P L 2 pS α q, p´i∇ ´A qu P L 2 pS α q, |x 2 b 1 ´x1 b 2 ´τ |u P L 2 pS α qu . The form domain coincides with: tu P L 2 pS α q, p´i∇ ´A qu P L 2 pS α q, |x 2 b 1 ´x1 b 2 |u P L 2 pS α qu , therefore it does not depend on τ . Kato's perturbation theory (see [START_REF] Kato | Perturbation theory for linear operators[END_REF]) provides the following: Proposition 2.2. The function τ Þ Ñ spB, S α ; τ q is continuous on R.

2.2.

Model problems on regular domain. We describe here the case α " π where W π is a half-space. The operator HpA , S π q `V τ B K can be analyzed using known results about regular domain. We have EpB, W π q " σpθq (see Subsection 1.2 and [START_REF] Helffer | Magnetic bottles for the Neumann problem: the case of dimension 3[END_REF]) where θ P r0, π 2 s is the angle between the magnetic field and the boundary. We recall that we have E ˚pB, W π q " 1.

When θ ‰ 0, HpA , S π q`V τ B K is unitary equivalent to HpA , S π q`V 0 B K and s ess pB, S π ; 0q " 1 ([23, Proposition 3.4]). There holds spB, S π ; 0q " σpθq ď 1. If θ ‰ π 2 , σpθq ă 1 and therefore the operator HpA , S π q`V 0 B K has an eigenfunction associated with σpθq with exponential decay (see [START_REF] Ël | Discrete spectrum of a model Schrödinger operator on the half-plane with Neumann conditions[END_REF]).

When θ " 0, there holds s ess pB, S π ; τ q " spB, S π ; τ q. A partial Fourier transform can be performed and shows that inf τ PR spB, S π ; τ q " Θ 0 .

In Subsection 2.3 and Section 3 we will focus on α P p0, πq Y pπ, 2πq. Most of the results can be compared and extended to α " π using the results recalled above.

2.3.

Link between the geometry and the essential spectrum of the reduced problem. In this section we give the essential spectrum of the operator HpA , S α q `V τ B K depending on the geometry. Let Υ :" pV τ B K q ´1pt0uq be the line where the electric potential vanishes. Let us notice that V τ B K pxq is the square of the distance from x to Υ. Let pγ, θq be the spherical coordinates of the magnetic field where γ is the angle between the magnetic field and the x 3 -axis and θ is the angle between the projection pb 1 , b 2 q and the x 2 -axis:

B " psin γ sin θ, sin γ cos θ, cos γq .

Due to symmetries we restrict ourselves to pγ, θq P r0, π 2 s ˆr0, π 2 s. We will use the following terminology:

' The magnetic field is outgoing if α P p0, πq and θ P r0, π´α 2 q. ' The magnetic field is tangent if either γ " 0 or θ " |π´α| 2 . ' The magnetic field is ingoing in the other cases.

The outgoing case corresponds to a magnetic field pointing outward the wedge (this can happen only if the wedge is convex). The tangent case corresponds to a magnetic field tangent to a face of the wedge and has already been explored for convex wedges in [START_REF] Popoff | The Schrödinger operator on a wedge with a tangent magnetic field[END_REF]. The ingoing case corresponds to a magnetic field pointing inward the wedge, in that case the intersection between Υ and S α is always unbounded. The essential spectrum of HpA , S α q `V τ B K depends on the situation as described below: Proposition 2.3. Let α P p0, πq and B P S 2 be an outgoing magnetic field. Then for all τ P R the operator HpA , S α q `V τ B K has compact resolvent.

Proof. We remark that @τ P R, lim

|px 1 ,x 2 q|Ñ`8 px 1 ,x 2 qPSα V τ B K px 1 , x 2 q " `8 .
This implies that the injection from the form domain (2.6) into L 2 pS α q is compact, see for example [START_REF] Reed | Methods of modern mathematical physics. IV. Analysis of operators[END_REF]. We deduce that the operator HpA , S α q `V τ B K has compact resolvent.

The following proposition shows that the essential spectrum is much more different when the magnetic field is ingoing: Proposition 2.4. Let α P p0, πq Y pπ, 2πq and B P S 2 be an ingoing magnetic field. Then @τ P R, s ess pB, S α ; τ q " 1 .

When α P p0, πq, the detailed proof can be found in [40, Subsection 4.2.2]. The proof for α P pπ, 2πq is rigorously the same. The idea is to construct a Weyl's quasimode for Q τ B,α far from the origin and near the line Υ using the operator HpA , R 2 q `V τ B K whose first eigenvalue is 1. Persson's lemma (see [START_REF] Persson | Bounds for the discrete part of the spectrum of a semi-bounded Schrödinger operator[END_REF]) provides the result.

In the tangent case, the essential spectrum depends on the parameters and can be expressed using the first eigenvalue of the classical 1d de Gennes operator (see the proof below). The bottom of the essential spectrum is given explicitly in (2.7) however we will only need the following: Proposition 2.5. Let α P p0, πq Y pπ, 2πq and B P S 2 be a magnetic field tangent to W α . Then we have inf τ PR s ess pB, S α ; τ q " Θ 0 .

Proof. We introduce the first eigenvalue µpξq of the 1d de Gennes operator ´B2 t `pt ´ξq 2 defined on the half-line tt ą 0u with a Neumann boundary condition. This classical spectral quantity has already been investigated, see [START_REF] Saint-James | Onset of superconductivity in decreasing fields[END_REF][START_REF] Bolley | An application of semi-classical analysis to the asymptotic study of the supercooling field of a superconducting material[END_REF][START_REF] Dauge | Eigenvalues variation. I. Neumann problem for Sturm-Liouville operators[END_REF]. In particular µpξq reaches a unique minimum Θ 0 « 0.59 for ξ 0 " ? Θ 0 . We recall the result from [42, Proposition 3.6]:

(2.7) s ess pB, S α ; τ q " inf ξPR `µpξ cos γ `τ sin γq `pξ sin γ ´τ cos γq 2 ˘.

where γ P r0, π 2 s is the angle between the magnetic field and the axis of the wedge. Note that the proof of this relation is done in [START_REF] Popoff | The Schrödinger operator on a wedge with a tangent magnetic field[END_REF] for α P p0, πq and the extension to α P pπ, 2πq does not need any additional work. We deduce from (2.7) that (2.8) @τ P R, s ess pB, S α ; τ q ě Θ 0 .

Choosing ξ " ξ 0 cos γ in the r.h.s. of (2.7) and τ " ξ 0 sin γ we get s ess pB, S α , ξ 0 sin γq " µpξ 0 q " Θ 0 and the proposition is proven.

Remark 2.6. We have σp0q " Θ 0 where the function σ is defined in Subsection 1.2.

Since spB, S α ; τ q ď s ess pB, S α ; τ q, the relation (2.

3) provides for a tangent magnetic field:

(2.9) @α P p0, 2πqzπ, EpB, W α q ď Θ 0 .

Therefore we have proven inequality (1.7) for a tangent magnetic field.

LINK WITH PROBLEMS ON HALF-PLANES

In this section we will investigate the link between the model operator on a wedge of opening α P p0, πq Y pπ, 2πq and the model operators on the half-spaces Π ὰ , Π ά and the space R 3 (see Subsection 1.2). These domains are the tangent substructure of W α . We recall that E ˚pB, W α q is the lowest energy of the magnetic Laplacian p´i∇´Aq 2 acting on these tangent substructures and is given by E ˚pB, W α q " σpmintθ `, θ ´uq where θ ˘is the angle between B and Π α and σp¨q is defined in Subsection 1.2. In this section we prove inequality (1.7). Moreover when this inequality is strict we show that the band function τ Þ Ñ spB, S α ; τ q reaches its infimum and that this infimum is a discrete eigenvalue for the reduced operator on the sector. Let us remark that these questions were investigated in [START_REF] Pan | Upper critical field for superconductors with edges and corners[END_REF] and [START_REF] Popoff | The Schrödinger operator on a wedge with a tangent magnetic field[END_REF] for particular cases.

We denote by H ὰ and H ά the half-planes such that Π ὰ " R ˆHὰ and Π ά " R ˆHά . Let HpA , H ὰ q `V τ B K be the reduced operator defined on H ὰ with a Neumann boundary condition. When B is not tangent to Π ὰ we deduce from Subsection 2.2:

(3.1) @τ P R, inf SpHpA , H ὰ q `V τ B K q " σpθ `q
Similarly when the magnetic field is not tangent to Π ά we have:

(3.2) @τ P R, inf SpHpA , H ά q `V τ B K q " σpθ ´q 3.1. Limits for large Fourier parameter. In this section we investigate the behavior of spB, S α ; τ q when the Fourier parameter τ goes to ˘8. We introduce the quantity (3.3) s 8 pB, S α q :" min

" lim inf τ Ñ´8 spB, S α ; τ q, lim inf τ Ñ`8 spB, S α ; τ q * .
In the tangent case, we recall the results from [42, Section 4]:

Proposition 3.1. Let α P p0, πq Y pπ, 2πq and let B P S 2 be a magnetic field tangent to a face of the wedge W α . Then we have s 8 pB, S α q " σpmaxpθ ´, θ `qq .

Note that in [START_REF] Popoff | The Schrödinger operator on a wedge with a tangent magnetic field[END_REF], this result is proved only for α P p0, πq. The proof of [42, Proposition 4.1] is mimicked to the case α P pπ, 2πq.

We recall the useful IMS localization formula (see [START_REF] Cycon | Schrödinger operators with application to quantum mechanics and global geometry[END_REF]Theorem 3.2] and also [START_REF] Simon | Semiclassical analysis of low lying eigenvalues. I. Nondegenerate minima: asymptotic expansions[END_REF]): Lemma 3.2. Let pχ j q be a finite regular partition of the unity satisfying ř χ 2 j " 1. We have for u P DompQ τ B,α q:

Q τ B,α puq " ÿ j Q τ B,α pχ j uq ´ÿ j }∇χ j u} 2 L 2 .
The following lemma gives a lower bound on the energy of a function supported far from the corner of the sector. This lemma will also be useful in Section 4. We denote by Bp0, Rq the ball centered at the origin of radius R ą 0 and ABp0, Rq its complement. Lemma 3.3. There exist C 1 ą 0 and R 0 ą 0 such that for all α P p0, πq Y pπ, 2πq and for all B P S 2 , for all R ě R 0 , for all τ P R, for all u P DompQ τ B,α q such that Supppuq Ă ABp0, Rq:

Q τ B,α puq ě ˆE ˚pB, W α q ´C1 α 2 R 2 ˙}u} 2 L 2 .
Proof. Let pχ j q j"1,2,3 be a partition of unity satisfying χ j P C 8 0 pr´1 2 , 1 2 s, r0, 1sq, Supppχ j q Ă r j´3 4 , j´1 4 s and ř j χ 2 j " 1. We defined the cut-off functions χ pol j,α pr, ψq :" χ j p ψ α q where pr, ψq P R `ˆp´α 2 , α 2 q are the polar coordinates. We denote by χ j,α the associated functions in cartesian coordinates. Since the χ j,α do not depend on r, there exists C 1 ą 0 such that @α P p0, 2πq, @R ą 0, @px 1 , x 2 q P ABp0, Rq,

3 ÿ j"1 |∇χ j,α px 1 , x 2 q| 2 ď C 1 R 2 α 2 .
Let u P Dom Q τ B,α such that Supppuq Ă ABp0, Rq. The IMS formula (see Lemma 3.2) provides

(3.4) Q τ B,α puq ě 3 ÿ j"1 Q τ B,α pχ j,α uq ´C1 α 2 R 2 }u} 2 L 2 .
Moreover χ 1 u and χ 3 u are extended to functions of L 2 pH ὰ q and L 2 pH ά q with the suitable Neumann boundary conditions by setting χ j u " 0 outside Supppχ j q. We deduce from (3.1) and the min-max principle that Q τ B,α pχ 1,α uq ě σpθ `q}χ 1,α u} 2 L 2 . Similarly we prove Q τ B,α pχ 3,α uq ě σpθ ´q}χ 3,α u} 2 L 2 . The function χ 2,α u is extended in the same way to a function of R 2 . It is elementary that

@τ P R, inf SpHpA , R 2 q `V τ B K q " EpB, R 3 q " 1 , therefore Q τ B,α pχ 2,α uq ě }χ 2,α u} 2 L 2 .
We conclude with (3.4) and the definition of E ˚pB, W α q (see (1.5)). Proposition 3.4. Let α P p0, πq Y pπ, 2πq and let B P S 2 be a magnetic field which is not tangent to a face of the wedge W α . We have

(3.5)
s 8 pB, S α q " E ˚pB, W α q .

Remark 3.5. The relation (3.5) is not true when the magnetic field is tangent to a face of the wedge, see Proposition 3.1 and (1.6).

Proof. LOWER BOUND: Let pχ 1 , χ 2 q be two cut-off functions in C 8 pR `, r0, 1sq satisfying χ 2 1 `χ2 2 " 1, χ 1 prq " 1 if r P p0, 1 2 q and χ 1 prq " 0 if r P p 3 4 , `8q. For τ P R ˚we define the cut-off functions χ j,τ px 1 , x 2 q :" χ j p r |τ | q with r "

a x 2 1 `x2 2 .
We have

DC ą 0, @τ P R ˚, @px 1 , x 2 q P R 2 , 2 ÿ j"1 |∇χ j,τ | 2 ď C τ 2 .
For u P DompQ τ B,α q, the IMS formula (see Lemma 3.2) provides

(3.6) Q τ B,α puq ě 2 ÿ j"1 Q τ B,α pχ j,τ uq ´C τ 2 }u} 2 L 2 .
Since Supppχ 1,τ q Ă Bp0, 3 4 τ q, we have distpΥ, Supppχ 1,τ qq ě τ 4 and therefore we have @px 1 , x 2 q P Supppχ 1,τ q, V τ B K px 1 , x 2 q ě 1 16 τ 2 . We deduce that for all τ ‰ 0:

(3.7) Q τ B,α pχ 1,τ uq ě τ 2 16 }χ 1,τ u} 2 L 2 .
On the other part Lemma 3.3 provides a constant C 1 ą 0 such that for all u P DompQ τ B,α q we have:

@τ P R ˚, Q τ B,α pχ 2,τ uq ě ˆE ˚pB, W α q ´C1 α 2 τ 2 ˙}χ 2,τ u} 2 L 2 .
We deduce by combining this with (3.6) and (3.7) that

Q τ B,α puq ě min " E ˚pB, W α q ´C1 α 2 τ 2 , τ 2 16 * }u} 2 L 2 ´C τ 2 }u} 2 L 2 .
We deduce from the min-max principle that there exists τ 0 ą 0 such that for all τ satisfying |τ | ą τ 0 :

spB, S α ; τ q ě E ˚pB, W α q ´C1 α 2 τ 2 ´C τ 2
and therefore s 8 pB, S α q ě E ˚pB, W α q .

UPPER BOUND: We suppose that θ `ď θ ´, the other case being symmetric. We have in that case E ˚pB, W α q " σpθ `q. Since we have assumed that we are not in the tangent case, we have 0 ă θ `. Let ą 0, we deduce from (3.1) that there exists u P C 8 0 pH ὰ q such that (3.8)

x `HpA , H ὰ q `V 0

B K ˘u , u y L 2 pH ὰ q " σpθ `q ` .
We use u to construct a quasimode of energy σpθ `q ` . Let t `:" pcos α 2 , sin α 2 q be a vector tangent to the boundary of H ὰ . For x " px 1 , x 2 q, we define the test-function: u , τ pxq :" e iτ x^A pt `qu px ´τ t `q .

We have Supppu , τ q " Supppu q `τ t `. Since t `is pointing outward the corner of S α along the upper boundary, there exists τ 0 ą 0 such that for all τ ą τ 0 we have Supppu , τ q Ă S α and Supppu , τ q X BΠ ά " H. Therefore u , τ P DompQ τ B,α q. Elementary computations (see the geometrical meaning of

V τ B K pxq in Subsection 2.3) provides V τ B K px ´τ t `q " V 0 B K pxq. Due to gauge invariance we get x `HpA , S α q `V τ B K ˘u ,τ , u ,τ y L 2 pSαq " x `HpA , H ὰ q `V 0 B K ˘u , u y L 2 pH ὰ q .
We deduce from (3.8) and from the min-max principle that @ ą 0, Dτ 0 ą 0, @τ ą τ 0 , spB, S α ; τ q ď σpθ `q ` and therefore lim inf τ Ñ`8 spB, S α ; τ q ď σpθ `q. Remark that in this proof we have taken τ Ñ `8 in order to construct a test-function of energy close to σpθ `q. When θ ´ď θ `, the proof is the same but we use τ Ñ ´8.

3.2.

Comparison with the spectral quantities coming from the regular case.

Theorem 3.6. Let α P p0, πq Y pπ, 2πq and B P S 2 , we have

(3.9) EpB, W α q ď E ˚pB, W α q .
Moreover if EpB, W α q ă E ˚pB, W α q then the band function τ Þ Ñ spB, S α ; τ q reaches its infimum. We denote by τ c P R a critical point such that spB, S α ; τ c q " EpB, W α q .

Then there exists an eigenfunction with exponential decay for the operator HpA , S α q `V τ c B K associated with the value EpB, W α q.

Remark 3.7. Note that in the tangent case the band function τ Þ Ñ spB, S α ; τ q always reaches its infimum.

Proof. Tangent case:

We have E ˚pB, W α q " Θ 0 and (3.9) is already proven (see (2.9)). Since the function τ Þ Ñ spB, S α ; τ q is continuous, we deduce from Proposition 3.1 and (2.3) that the band function τ Þ Ñ spB, S α ; τ q reaches its infimum. Let τ c be a minimizer of spB, S α ; τ q. Assume that EpB, W α q ă E ˚pB, W α q. Since s ess pB, S α ; τ c q ě Θ 0 (see Proposition 2.5), spB, S α ; τ c q is a discrete eigenvalue of the operator HpA , S α q `V τ c B K .

Non tangent case: We deduce (3.9) from Proposition 3.4 and (2.3). Assume that EpB, W α q ă E ˚pB, W α q. Since the function τ Þ Ñ spB, S α ; τ q is continuous, Proposition 3.4 and (2.3) imply that the band function τ Þ Ñ spB, S α ; τ q reaches its infimum. We denote by τ c a Fourier parameter such that EpB, W α q " spB, S α ; τ c q. The bottom of the essential spectrum of HpA , S α q `V τ c B K is either `8 (outgoing case) or 1 (ingoing case), see Subsection 2.3. Since E ˚pB, W α q ă 1 we deduce that EpB, W α q is a discrete eigenvalue of the operator HpA , S α q `V τ c B K . In both cases we denote by u τ c an eigenfunction associated with EpB, W α q for the operator HpA , S α q `V τ c B K . The fact that u τ c has exponential decay is classical (see [START_REF] Agmon | Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of N -body Schrödinger operators[END_REF]) and we will give precise informations about the decay rate of the eigenfunctions in Proposition 4.2.

Several particular cases where EpB, W α q ă E ˚pB, W α q can be found in literature (see [START_REF] Pan | Upper critical field for superconductors with edges and corners[END_REF], [START_REF] Bonnaillie | On the fundamental state energy for a Schrödinger operator with magnetic field in domains with corners[END_REF] or [START_REF] Popoff | The Schrödinger operator on a wedge with a tangent magnetic field[END_REF]). Theorem 5.4 below gives geometrical conditions for this inequality to be satisfied. Let us also note that in [START_REF] Popoff | The Schrödinger operator on a wedge with a tangent magnetic field[END_REF]Section 5], it is proved that EpB, W α q " E ˚pB, W α q for a magnetic field tangent to a face, normal to the edge with an opening angle larger that π 2 . We now show that when inequality (1.7) is strict, there exists a generalized eigenfunction (in some sense we will define below) for HpA, W α q associated with the ground state energy EpB, W α q. This generalized eigenfunction is localized near the edge and can be used to construct quasimodes for the semiclassical magnetic Laplacian on a bounded domain with edges (see [START_REF] Ël | Polyhedral bodies in large magnetic fields[END_REF]).

We denote by L 2 loc pW α q (respectively H 1 loc pW α )) the set of the functions u which are in L 2 p Kq (respectively H 1 p Kq) for all compact K included in W α where K denotes the interior of K.

We introduce the set of the functions which are locally in the domain of HpA, W α q: Dom loc pHpA, W α qq :"

tu P H 1 loc pW α q, p´i∇ ´Aq 2 u P L 2 loc pW α q, p´i∇ ´Aqu ¨n " 0 on BW α u , where n is the outward normal of the boundary BW α of the wedge. Corollary 3.8. Let α P p0, πq Y pπ, 2πq and B P S 2 . Assume EpB, W α q ă E ˚pB, W α q. Then there exists a non-zero function ψ P Dom loc pHpA, W α qq satisfying

# p´i∇ ´Aq 2 ψ " EpB, W α qψ in W α p´i∇ ´Aqψ ¨n " 0 on BW α .
Moreover ψ has exponential decay in the px 1 , x 2 q variables.

Proof. Let τ c be a minimizer of τ Þ Ñ spB, S α ; τ q given by Theorem 3.6. Let u τ c be an eigenfunction of HpA , S α q`V τ c B K associated with EpB, W α q. It has exponential decay and satisfies the boundary condition p´i∇ ´A qu τ c ¨n " 0 where n is the outward normal to the boundary of S α . Let (3.10) ψpx 1 , x 2 , x 3 q :" e iτ c x 3 u τ c px 1 , x 2 q .

4.1. Uniform Agmon estimates. Here we give Agmon's estimates of concentration for the eigenfunctions of the operator HpA , S α q`V τ B K associated with the ground state energy Epgq. First we recall a basic commutator formula (see [START_REF] Cycon | Schrödinger operators with application to quantum mechanics and global geometry[END_REF]Chapter 3]): Lemma 4.1. Let Φ be a uniformly Lipschitz function on S α and let pE, uq be an eigenpair of the operator HpA , S α q `V τ B K . Then we have

(4.1) @u P DompQ τ g q, Q τ g pe Φ uq " ż Sα `E `|∇Φ| 2 ˘e2Φ |u| 2 .
We introduce the lowest energy of HpA , S α q `V τ B K far from the origin:

(4.2) r E ˚pgq :" " E ˚pB, W α q if α ‰ π , EpB, W α q if α " π .
We have r E ˚pgq " σpθ 0 q where θ 0 is the minimum angle between the magnetic field and the boundary of

W α . Since θ Þ Ñ σpθq is Lipschitz continuous we deduce that g Þ Ñ r E ˚pgq is Lipschitz continuous on S 2 ˆp0, 2πq.
Denote by (4.3) δpgq :" r E ˚pgq ´Epgq and recall that when δpgq ą 0 we can apply Theorem 3.6. The following proposition gives the exponential decay for the first eigenfunctions of HpA , S α q `V τ pgq B K , provided that δpgq ą 0, including the precise control of the decay depending on δpgq: Proposition 4.2. Let g " pB, αq P S 2 ˆp0, 2πq and δpgq defined in (4.3). We suppose that δpgq ą 0. Let τ pgq P R be a value of the Fourier parameter given in Theorem 3.6 such that spg; τ pgqq " Epgq. For ν P p0, a δpgqq let φ ν px 1 , x 2 q :" ν a x 2 1 `x2 2 be an Agmon distance. Then there exist universal constants C ą 0 and C 1 ą 0 such that for all eigenfunctions u g of HpA , S α q `V τ pgq B K associated with Epgq we have

(4.4) Q τ pgq g pe φν u g q ď C 1 δpgq ´ν2 e f pδpgq,ν,αq }u g } 2 L 2 where (4.5) f pδ, ν, αq " C 1 ν α ? δ ´ν2 .
Proof. We know from the results of [START_REF] Agmon | Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of N -body Schrödinger operators[END_REF] that e φν u g P L 2 pS α q. Since |∇φ ν | 2 " ν 2 the commutator formula (4.1) provides (4.6)

ż Sα pEpgq `ν2 qe 2φν |u g | 2 " Q τ pgq g pe φν u g q .
We use cut-off functions χ 1,R and χ 2,R in C 8 pS α , r0, 1sq that satisfy χ 1,R pxq " 0 when |x| ě 2R and χ 1,R pxq " 1 when |x| ď R and χ 2 1,R `χ2 2,R " 1. We also assume without restriction that there exists C ą 0 such that (4.7) @R ą 0,

2 ÿ j"1 |∇χ j,R | 2 ď C R 2 .
Lemma 3.2 provides

Q τ pgq g pe φν u g q " 2 ÿ j"1 Q τ pgq g pχ j,R e φν u g q ´2 ÿ j"1 }∇χ j,R e φν u g } 2
and from (4.6) and (4.7) we get

ˆEpgq `ν2 `C R 2 ˙}e φν u g } 2 L 2 ě 2 ÿ j"1 Q τ pgq g pχ j,R e φν u g q .
Note that since δpgq ą 0 we have α ‰ π and Lemma 3.3 provides a universal constant

C 1 ą 0 such that Q τ pgq g pχ 2,R u g q ě p r E ˚pgq ´C1 α 2 R 2 q}χ 2,R e φν u g } 2 L 2 . We deduce another constant C ą 0 such that (4.8) ˆδpgq ´ν2 ´C R 2 p1 `1 α 2 q ˙}χ 2,R e φν u g } 2 L 2 ď ˆEpgq `ν2 `C R 2 p1 `1 α 2 q ˙}χ 1,R e φν u g } 2 L 2 .
We now choose R ą 0 such that:

(4.9) C R 2 p1 `1 α 2 q " δpgq ´ν2 2 
Moreover since Epgq ă r E ˚pgq ď 1 and ν P p0, a δpgqq we have Epgq `ν2 `C R 2 p1 `1 α 2 q ď 2. We deduce from (4.8)

(4.10) }e φν u g } 2 L 2 ď ˆ4 δpgq ´ν2 `1˙} χ 1,R e φν u g } 2 L 2 ď ˆ4 δpgq ´ν2 `1˙e 4νR }u g } 2 L 2 .
Notice now that due to the choice of R in (4.9) we have

νR ď C 1 1 α ν ? δpgq´ν 2 :" f pδpgq, ν, αq with C 1 ą 0. Recall that δpgq ď 1, we get another constant C ą 0 such that (4.11) }e φν u g } 2 L 2 ď C ˆ1 δpgq ´ν2 ˙efpδpgq,ν,αq }u g } 2 L 2 .
We deduce the estimates on the quadratic form from the identity (4.6).

This Agmon estimates will be applied to different situations: either a set of g " pB, αq such that δpgq is uniformly bounded from below (and therefore for a fix ν P p0, a δpgqq, the above estimate will be uniform with respect to g); either a set of g such that δpgq tends to 0, and in that case we will choose ν " 1 2 a δpgq and use the explicit control with respect to δpgq. In both cases we will ask the opening angle α to be not too small. 4.2. Polar coordinates. Let pr, ψq P R `ˆp´α 2 , α 2 q be the usual polar coordinates of S α . We use the change of variables associated with the normalized polar coordinates pr, φq :" pr, ψ α q P Ω 0 :" R `ˆp´1 2 , 1 2 q. After a change a gauge (see [START_REF] Bonnaillie | On the fundamental state energy for a Schrödinger operator with magnetic field in domains with corners[END_REF]Section 3] and [42, Section 5]) we get that the quadratic form Q τ g is unitary equivalent to the quadratic form (4.12) r Q τ g puq :"

ż

Ω 0 ˆ|pB r ´iαrφb 3 qu| 2 `1 α 2 r 2 |B φ u| 2 `r V τ g pr, φq|u| 2 ˙r dr dφ
with the electric potential in polar coordinates:

(4.13) r V τ g pr, φq :" `r cospφαqb 2 ´r sinpφαqb 1 ´τ ˘2 .
The form domain is

Domp r Q τ g q " " u P L 2 r pΩ 0 q, pB r ´iαrφb 3 qu P L 2 r pΩ 0 q, 1 r B φ u P L 2 r pΩ 0 q, b r V τ g u P L 2 r pΩ 0 q *
where L 2 r pΩ 0 q stands for the set of the square-integrable functions for the weight r dr. Notation 4.3. Let g 0 " pB 0 , α 0 q P S 2 ˆp0, 2πq and η ą 0. We denote by Bpg 0 , ηq the ball of S 2 ˆR of center g 0 and of radius η related to the euclidean norm }g} :" p}B} 2 2 `α2 q 1{2 . Lemma 4.4. Let g 0 " pB 0 , α 0 q P S 2 ˆp0, 2πq. There exist C ą 0 and η ą 0 such that Bpg 0 , ηq Ă S 2 ˆp0, 2πq and for all g P Bpg 0 , ηq we have for all u P Domp r

Q τ g q X Domp r Q τ g 0 q: @τ P R, r Q τ g puq ď r Q τ g 0 puq `C}g ´g0 } ´}ru} 2 L 2 r pΩ 0 q `r Q τ g 0 puq ¯.
Proof. Let g 0 " pB 0 , α 0 q and g " pB, αq be in S 2 ˆp0, 2πq. We denote by pb j,0 q j and pb j q j the cartesian coordinates of B 0 and B. Let d :" }g ´g0 }. We discuss separately the three terms of r Q τ g puq written in (4.12). For the first one we write |pB r ´iαb 3 rφqu| 2 ď|pB r ´iα 0 b 3,0 rφqu| 2

`|α 0 b 3,0 ´αb 3 | 2 r 2 |u| 2 `2r|u||α 0 b 3,0 ´αb 3 ||pB r ´iα 0 b 3,0 rφqu| We have |α 0 b 3,0 ´αb 3 | ď α 0 |b 3,0 ´b3 | `|b 3 ||α 0 ´α| ď p2π `1qd, and 
2r|u||α 0 b 3,0 ´αb 3 ||pB r ´iα 0 b 3,0 rφqu| ď p2π `1qd `r2 |u| 2 `|pB r ´iα 0 b 3,0 rφqu| 2 ˘.
Therefore there exists C 1 ą 0 such that for all g P S 2 ˆp0, 2πq:

(4.14) |pB r ´iαb 3 rφqu| 2 ď |pB r ´iα 0 b 3,0 rφqu| 2 `C1 d `r2 |u| 2 p1 `dq `|pB r ´iα 0 b 3,0 rφqu| 2 ˘.
We deal with the second term: we have

ˇˇˇ1 α 2 r 2 |B φ u| 2 ´1 α 2 0 r 2 |B φ u| 2 ˇˇˇ" d α `α0 α 2 α 0 1 α 0 r 2 |B φ u| 2 .
Therefore there exist η ą 0 and C 2 ą 0 such that Bpg 0 , ηq Ă S 2 ˆp0, 2πq and (4.15) @g P Bpg 0 , ηq,

1 α 2 r 2 |B φ u| 2 ď 1 α 2 0 r 2 |B φ u| 2 `C2 d 1 α 0 r 2 |B φ u| 2 .
For the third term we write r V τ g pr, φq ď r V τ g 0 pr, φq `|cospαφqb 2 ´cospα 0 φqb 2,0 `sinpα 0 φqb 1,0 ´sinpαφqb 1 | 2 r 2 `2b r V τ g 0 pr, φq |cospαφqb 2 ´cospα 0 φqb 2,0 `sinpα 0 φqb 1,0 ´sinpαφqb 1 | r . We get C 3 ą 0 and C 4 ą 0 such that for all g P S 2 ˆp0, 2πq and for all τ P R:

(4.16)
@pr, φq P Ω 0 , r V g,τ pr, φq ď p1 `C3 dq r V τ g 0 pr, φq `C4 r 2 d . Combining (4.14), (4.15) and (4.16) we get C ą 0 such that for all g P Bpg 0 , ηq:

r Q τ g puq ď r Q τ g 0 puq| `C}g ´g0 } ´}ru} 2 L 2 r pΩ 0 q `r Q τ g 0 puq ¯.
4.3. Continuity.

Theorem 4.5. The function g Þ Ñ Epgq is continuous on S 2 ˆp0, 2πq.

Proof. Let g 0 P S 2 ˆp0, 2πq. We distinguish different cases depending on whether (3.9) is strict or not. Recall that δpgq is defined in (4.3). Case 1: When (4.17) δpg 0 q ą 0 .

Let us note that in that case α 0 ‰ π (see (4.2)). We use Theorem 3.6: There exists τ c P R such that the band function τ Þ Ñ spg 0 ; τ q reaches its infimum in τ c and there exists a normalized eigenfunction (in polar coordinate) u 0 for r Q τ c g 0 with exponential decay in r. We use this function as a quasimode for r Q τ c g . We get from Lemma 4.4 constants C ą 0 and η ą 0 such that for all g P Bpg 0 , ηq:

r Q τ c g pu 0 q ď r Q τ c g 0 pu 0 q `C}g ´g0 } ´}ru 0 } 2 L 2 r `r Q τ c g 0 pu 0 q " Epg 0 q `C}g ´g0 } ´}ru 0 } 2 L 2
r `Epg 0 q ānd therefore the min-max principle and relation (2.3) provide (4.18)

Epgq ď Epg 0 q `C}g ´g0 } ´}ru 0 } 2 L 2 r `Epg 0 q ¯.
Since u 0 has exponential decay in r we get Using this upper bound, the assumption (4.17) and the continuity of g Þ Ñ r E ˚pgq, we deduce that there exist κ ą 0 and 0 ą 0 such that Bpg 0 , κq Ă S 2 ˆpp0, 2πqzπq and (4.20) @g P Bpg 0 , κq, 0 ă δpgq . Let g P Bpg 0 , κq, Theorem 3.6 provides τ pgq P R such that spg; τ pgqq " Epgq is a discrete eigenvalue for the operator HpA , S α q `V τ pgq B K . We denote by u g an associated normalized eigenfunction in polar coordinates. We use (4.20) and Proposition 4.2: For a fix ν P p0, ? 0 q there exists C 0 ą 0 such that (4.21) @g P Bpg 0 , κq, }e ν r u g } L 2 r pΩ 0 q ă C 0 . We use u g as a quasimode for r Q τ pgq g 0 : (4.21) and Lemma 4.4 yields (4.22) DC 1 ą 0, @g P Bpg 0 , κq, r Q τ pgq g 0 pu g q ď r Q τ pgq g pu g q `C1 }g ´g0 } and since u g satisfies r Q τ pgq g pu g q " Epgq we deduce from the min-max principle and (2.3):

(4.23) @g P Bpg 0 , κq, Epg 0 q ď Epgq `C1 }g ´g0 } .

This last upper bound combined with (4.19) brings the continuity of Ep¨q in g 0 when Epg 0 q ă r E ˚pg 0 q.

Case 2: When (4.24) δpg 0 q " 0 .

Let us suppose that for all ą 0 there exists κ ą 0 such that for all g P Bpg 0 , κq we have

r E ˚pgq ´ ď Epgq ď r E ˚pgq .
In that case we deduce the continuity of Ep¨q in g 0 from the continuity of r E ˚p¨q.

Let us write the contraposition of the previous statement and exhibit a contradiction. We suppose that there exists 0 ą 0 such that for all κ ą 0 there exists g P S 2 ˆp0, 2πq satisfying }g ´g0 } ă κ and Epgq ă r E ˚pgq ´ 0 . This implies α ‰ π (see (4.2)). Theorem 3.6 provides τ pgq P R such that Epgq " spg; τ pgqq and we denote by u g an associated normalized eigenfunction for HpA , S α q `V τ pgq B K . Again Proposition 4.2 shows that this eigenfunction has exponential decay uniformly in g: For each ν P p0, ? 0 q, we have C 0 ą 0 that does not depend on g such that }e ν r u g } L 2 r pΩ 0 q ă C 0 . We use u g as a quasimode for r Q τ pgq g 0 : There exists a constant C 1 ą 0 that does not depend on g such that

r Q τ pgq g 0 pu g q ď r Q τ pgq g pu g q `C1 }g ´g0 } ă r E ˚pgq ´ 0 `C1 κ.
The min-max Principle and (2.3) provide

Epg 0 q ă r E ˚pgq ´ 0 `C1 κ .
Let ą 0, the continuity of r E ˚p¨q implies that for κ ą 0 small enough there holds r E ˚pgq ă r E ˚pg 0 q ` . We have proved:

D 0 ą 0, DC 1 ą 0, @ ą 0, Dκ 0 ą 0, @κ P p0, κ 0 q, Epg 0 q ă r E ˚pg 0 q ´ 0 `C1 κ ` .

Choosing ą 0 and κ ą 0 small enough we get a contradiction with (4.24).

4.4.

Lipschitz and Hölder continuity. Looking at the previous proof, and more particularly (4.18) and (4.23), we get: Proposition 4.6. Assume that g 0 P S 2 ˆp0, 2πq is such that Epg 0 q ă r E ˚pg 0 q. Then g Þ Ñ Epgq is Lipschitz in a neighborhood of g 0 .

Remark that the hypothesis of the above proposition applies only for α ‰ π.

When Epg 0 q " r E ˚pg 0 q, the situation is more complicated, indeed for g close to g 0 such that Epgq ă r E ˚pgq we do not have a uniform lower bound on δpgq and the exponential decay of the eigenfunction u g (used as a quasi-mode in (4.22)) becomes worse and worse, see Proposition 4.2. Therefore we do not know any uniform upper bound for the error term }ru g }. To solve the situation we follow the dependence upon δpgq of the constants appearing in the estimation of }ru g }. Proposition 4.7. Assume that g 0 P S 2 ˆp0, 2πq is such that Epg 0 q " r E ˚pg 0 q. Then g Þ Ñ Epgq is 1 3 -Hölder in a neighborhood of g 0 . Proof. Since θ Þ Ñ σpθq is Lipschitz on r0, 2πq, using (1.6) we restrict to the g ‰ g 0 that lie in a small neighborhood of g 0 such that Epgq ă r E ˚pgq. Denote by V ˚pg 0 q such a set. Assume that g P V ˚pg 0 q satisfies Epgq ě Epg 0 q then there holds 0 ď Epgq ´Epg 0 q ď r E ˚pgq ´r E ˚pg 0 q and one gets 0 ď Epgq ´Epg 0 q ď C}g ´g0 } with C ą 0 that does not depend on g since we know that g Þ Ñ r E ˚pgq is Lipschitz. We now have to deal with the case g P V ˚pg 0 q and Epgq ď Epg 0 q. Denote by τ pgq P R a minimizer for the band function τ Þ Ñ spg, τ q and u g an associated normalized eigenfunction as in the proof of Theorem 4.5. Noticing that @ν ą 0, @r ą 0, prνq 2 e ´2νr ď 1 we get (4.25) @ν P p0, a δpgq q, }ru g } 2 ď ν ´2}e νr u g } 2 .

We set ν :" 1 2 a δpgq and we get f pδpgq, ν, αq " C 1 ? 3 (see (4.5)). We deduce from (4.11) and (4.25) a constant C ą 0 such that (4.26) @g P V ˚pg 0 q, }ru g } 2 ď Cpδpgqq ´2 .

Combining Lemma 4.4 with (4.26) we get r Q τ pgq g 0 pu g q ď Epgq `C}g ´g0 } `Cpδpgqq ´2 `Epgq ȃnd using the min-max principle we get C 0 ą 0 such that 0 ď pEpg 0 q ´Epgqqδpgq 2 ď C 0 }g ´g0 } .

Writing δpgq " Epg 0 q ´Epgq ´p r E ˚pg 0 q ´r E ˚pgqq and using that r E ˚is Lipschitz, we get another constant C 2 ą 0 such that 0 ď pEpg 0 q ´Epgqq 3 ď C 2 }g ´g0 } and therefore Epgq is 1 3 -Hölder in a neighborhood of g 0 .

Lemma 5.1. Let B P S 2 with b 2 ą 0. For u P B 1 r pR `q we denote by u sc prq :" b 1{2 2 upb 1{2 2 rq the associated rescaled function. We have }u sc } L 2 r pR `q " }u} L 2 r pR `q and

(5.3) r Q τ ? b 2 B,α pu sc q " b 2 q τ puq `α2 12 }ru} 2 L 2 r pR `q b 2 3 b 2 `1 2 p1 ´sinc αq}ru} 2 L 2 r pR `q b 2 1 ´b2 2 b 2 `2τ b 2 ´1 ´sinc α 2 ¯}? ru} 2 L 2 r pR `q .
with sinc α :" sin α α .

Proof. We evaluate r

Q τ B,α puq for u P B 1 r pR `q: r Q τ B,α puq " ż R ``|u 1 prq| 2 `prb 2 ´τ q|uprq| 2 ˘r dr `żΩ 0 α 2 φ 2 b 2 3 r 2 |uprq| 2 r dr dφ `żΩ 0 ´r V τ B K pr, φq ´prb 2 ´τ q 2 ¯|uprq| 2 r dr dφ .
We have (5.4)

ż Ω 0 α 2 r 2 φ 2 b 2 3 |uprq| 2 r dr dφ " α 2 12 }ru} 2 L 2 r pR `qb 2 3 . 
Elementary computations yield:

r V τ B K pr, φq ´prb 2 ´τ q 2 " r 2 sin 2 pαφqpb 2 1 ´b2
2 q ´2rb 2 τ pcospαφq ´1q 2 ´2rb 1 sinpαφq prb 2 cospαφq ´τ q .

Since the term ´2rb 1 sinpαφq prb 2 cospαφq ´τ q is odd with respect to φ, its integral on Ω 0 vanishes. For the other terms we use:

ż 1{2 ´1{2 sin 2 pαφq dφ " 1 2 p1 ´sinc αq and ż 1{2 ´1{2 `cospαφq ´1˘d φ " sinc α 2 ´1 .
We deduce for all u P B 1 r pR `q and τ P R: ż

Ω 0 ´r V τ B K pr, φq ´prb 2 ´τ q 2 ¯|uprq| 2 r dr dφ " 1 2 p1 ´sinc αq}ru} 2 L 2 r pR `qpb 2 1 ´b2 2 q `2τ `1 ´sinc α 2 ˘}? ru} 2 L 2 r pR `qb 2
and therefore (note that we have make the change τ Ñ τ ? b 2 ):

(

5.5) r Q τ ? b 2 B,α puq " ż R `´|u 1 prq| 2 `prb 2 ´τ a b 2 q 2 |uprq| 2 ¯r dr `α2 12 }ru} 2 L 2 r pR `qb 2 3 `1 2 p1 ´sinc αq}ru} 2 L 2 r pR `qpb 2 1 ´b2 2 q `2τ `1 ´sinc α 2 ˘}? ru} 2 L 2 r pR `qb 3{2 2 . Let u sc prq :" b 1{2 2 upb 1{2 2
rq. An elementary scaling provides ż R `´|pu sc q 1 prq| 2 `prb 2 ´τ a b 2 q 2 |u sc prq| 2 ¯r dr " b 2 q τ puq .

Moreover we have

}ru sc } 2 L 2 r pR `q " b ´1 2 }ru} 2 L 2 r pR `q and } ? ru sc } 2 L 2 r pR `q " b ´1{2 2 } ? ru} 2 L 2
r pR `q , therefore we deduce (5.3) from (5.5). Proposition 5.2. Let B P S 2 with b 2 ą 0. There exists CpBq ą 0 such that (5.6) @α P p0, πq, EpB, W α q ď b 2 Ξ 0 `CpBqα 2 .

Proof. We recall that z τ P B 1 r pR `q is a normalized eigenfunction associated with ζpτ q for the operator g τ (see Subsection 5.1). We define

z sc τ 0 prq :" b 1{2 2 z τ 0 prb 1{2 
2 q where τ 0 P R satisfies ζpτ 0 q " Ξ 0 (see (5.1)). For all α ą 0 we have:

(5.7) 0 ď 1 ´sinc α ď α 2 6 and 0 ď 1 ´sinc α 2 ď α 2 24 .
We have q τ 0 pz τ 0 q " Ξ 0 , therefore Lemma 5.1 and (5.7) provides

r Q τ 0 ? b 2 B,α pz sc τ 0 q ď b 2 Ξ 0 `α2 12 
ˆb2 3 `|b 2 1 ´b2 2 | b 2 }rz τ 0 } 2 L 2 r `τ0 b 2 } ? rz τ 0 } 2 L 2 r pR `q˙.
Since }z sc τ 0 } L 2 r pΩ 0 q " }z τ 0 } L 2 r pR `q " 1 the min-max principle provides: DCpBq ą 0, @α P p0, πq, spB,

S α ; τ 0 a b 2 q ď b 2 Ξ 0 `CpBqα 2 .
We deduce the proposition with (2.3).

As a direct consequence we get Corollary 5.3. Let B P S 2 with b 2 ą 0. We have the following upper bound:

(5.8) lim sup αÑ0 EpB, W α q ď b 2 Ξ 0 .
Numerical computations show that EpB, W α q seems to go to b 2 Ξ 0 when α goes to 0 (see Section 6 and [40,Section 6.4]). This question remains open. However the upper bound (5.8) is sufficient to give a comparison between the spectral quantity associated with an edge and the one coming from regular model problem: Theorem 5.4. Let B P S 2 with b 2 ą 0. Then there exists αpBq P p0, πq such that for all α P p0, αpBqq we have EpB, W α q ă E ˚pB, W α q.

Proof. We introduce θ 0 :" mintθ `, θ ´u (θ 0 depends on α and B). For α P p0, πq we have E ˚pB, W α q " σpθ 0 q. We recall the inequality from [23, Section 3.4]: σpθ 0 q ě b Θ 2 0 cos 2 pθ 0 q `sin 2 pθ 0 q . Since θ 0 goes to arcsin b 2 when α goes to 0, we get lim inf αÑ0 E ˚pB, W α q " lim inf The theorem follows.

Remark 5.5. It is possible to use gaussian quasimodes in (5.3) and to deduce for EpB, W α q a polynomial in α upper bound with explicit constants (see [START_REF] Popoff | Sur l'opérateur de Schrödinger magnétique dans un domaine diédral[END_REF]Section 6.3]). This allows to get analytic value of αpBq, for example we get with numerical approximations αpBq ě 0.38π for the magnetic field B " p0, 1, 0q normal to the plane of symmetry.

Remark 5.6. The previous theorem remains true in the special case b 2 " 0 (see [START_REF] Popoff | Sur l'opérateur de Schrödinger magnétique dans un domaine diédral[END_REF]Section 7]) but the proof is different since the limit operator when α goes to 0 is not anymore the operator q τ introduced in Section 5.1.

NUMERICAL SIMULATIONS

Let C :" p0, Lq 2 be the square of length L. We perform a rotation by ´π 4 around the origin and the scaling X 2 :" x 2 tan α 2 along the x 2 -axis. The image of C by these transformations is a rhombus of opening α denoted by Rpα, Lq. The length of the diagonal supported by the x 1 -axis is ? 2L. Using the finite element library Mélina ([34]), we compute the first eigenpairs of p´i∇ ´A q 2 `V τ B K on Rpα, Lq with a Dirichlet condition on the artificial boundary tBRpα, Lq X tx 1 ą 1 ? 2 Lu. We denote by spB, S α ; τ q the numerical approximation of the first eigenvalue of this operator. For L large, spB, S α ; τ q is a numerical approximation of spB, S α ; τ q. We refer to [START_REF] Popoff | Sur l'opérateur de Schrödinger magnétique dans un domaine diédral[END_REF]Annex C and Chapter 5] for more details about the meshes and the degree of the approximations we have used.

We make numerical simulations for the magnetic field B " p 1 ? 2 , 1 ? 2 , 0q which is normal to the edge. An associated linear potential is Apx 1 , x 2 , x 3 q " p0, 0, ´x1 ? 2 `x2 ?

2 q and we have HpA , S α q `V τ B K " ´∆ `p x 2 ? 2 ´x1 ? 2 ´τ q 2 . We notice that in that case the reduced operator on S α is real and therefore its eigenfunctions have real values. For numerical simulations of eigenfunction with complex values, see [START_REF] Popoff | The Schrödinger operator on a wedge with a tangent magnetic field[END_REF]Section 7]. 2 , 0q. Opening angle: α " 4π 5 . The numerical approximation of spB, S α ; τ q versus τ compared with σpθ `q and σpθ ´q.

On Figure 1 we have set α " 4π 5 : the magnetic field is ingoing. In that case we have θ `" 3π 20 and θ ´" 7π 20 . We have shown spB, S α ; τ q for τ " k 10 with ´30 ď k ď 40. We have also shown σpθ `q and σpθ ´q where the numerical approximations of σp¨q comes from [START_REF] Ël | Discrete spectrum of a model Schrödinger operator on the half-plane with Neumann conditions[END_REF]. spB, S α ; τ q seems to converge to σpθ ¯q when τ goes to ˘8 in agreement with Proposition 3.1. Moreover τ Þ Ñ spB, S α ; τ q reaches its infimum and this infimum is strictly below σpθ `q " E ˚pB, W α q. Therefore we think that inequality (1.7) is strict for these values of B and α.

On figure 2 we show normalized eigenfunctions of p´i∇ ´A q `V τ B K on Rp 4π 5 , 20q associated with spB, S4π 5 ; τ q for τ " k, ´3 ď k ď 4. We see that the eigenfunctions are localized near the line Υ where the potential V τ B K vanishes.

τ " ´3 τ " ´2 τ " ´1 τ " 0 τ " 1 τ " 2 τ " 3 τ " 4 2 , 0q. The numerical approximation of EpB, W α q versus α π compared with E ˚pB, W α q, b 2 Ξ 0 and Θ 0 .

On figure 3 we show numerical approximations of EpB, W α q. For each value of α we compute spB, S α ; τ q for several values of τ and we define ȆpB, W α q :" inf τ spB, S α ; τ q a numerical approximation of EpB, W α q. The magnetic field is outgoing when α P p0, π 2 q, ingoing when α P p π 2 , πq and tangent when α " π 2 . We notice that ȆpB, W α q seems to converge to b 2 Ξ 0 (see Subsection 5.2). We have also plotted E ˚pB, W α q according to (1.6) and to the numerical values of σp¨q coming from [START_REF] Ël | Discrete spectrum of a model Schrödinger operator on the half-plane with Neumann conditions[END_REF]. We see that for α ‰ π 2 , we have ȆpB, W α q ă E ˚pB, W α q whereas ȆpB, W π 2 q « Θ 0 " E ˚pB, W π 2 q. Let us also notice that α Þ Ñ EpB, W α q seems not to be C 1 in α " π 2 . ' Acknowledgement. Some of this work is part of a PhD. thesis. The author would like to thank M. Dauge and V. Bonnaillie-Noël for sharing lot of ideas and for useful discussions. He is also grateful to M. Dauge for careful reading and suggestions.
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(4.19) lim sup gÑg 0

 0 Epgq ď Epg 0 q .

αÑ0 σpθ 0 q ě b p1 ´Θ2 0 qb 2 2 `Θ2 0 .EpB, W α q ă lim inf αÑ0 E

 20αÑ0 Since Ξ 0 P p0, 1q (see Subsection 5.2), we get: @b 2 P r0, 1s, Ξ 0 b 2 ă ˚pB, W α q .
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 1121 FIGURE 1. Magnetic field: B " p 1 ? 2 , 1 ?

FIGURE 2 . 1 ? 2 , 1 ? 2 ,FIGURE 3 . 1 ? 2 , 1 ?

 212123121 FIGURE 2. Magnetic field: B " p 1 ? 2 , 1 ? 2 , 0q. Opening angle: α " 4π 5 .Normalized Eigenvectors of HpA , S α q `V τ B K associated with spB, S α ; τ q. From top to bottom and left to right: τ " k, ´3 ď k ď 4. Computational domain: Rp20, 4π 5 q.

We clearly have ψ P Dom loc pHpA, W α qq. Moreover writing A " pA , x 2 b 1 ´x1 b 2 q we get p´i∇ ´Aq 2 ψ " `p´i∇ x 1 ,x 2 ´A q 2 u τ c `pτ c ´x2 b 1 `x1 b 2 q 2 u τ c ˘eiτ c x 3 " EpB, W α qψ .

Therefore ψ satisfies the conditions of the corollary.

We say that the function ψ is a generalized eigenfunction of HpA, W α q. Since it has the form (3.10), we say it is admissible and we shall use it to construct quasimode for the operator p´ih∇ ´Aq 2 on Ω when Ω has an edge (see [START_REF] Ël | Polyhedral bodies in large magnetic fields[END_REF]). This form is linked to the notion of L 8 spectral pair, see for example [START_REF] Almog | Superconductivity near the normal state under the action of electric currents and induced magnetic fields in R 2[END_REF]Section 2.4].

We also deduce from Theorem 3.6 the following strict diamagnetic inequality: Corollary 3.9. Let pB, αq P S 2 ˆp0, 2πq. Then we have EpB, W α q ą 0.

Proof. Assume EpB, W α q " 0, then using (1.6) there holds EpB, W α q ă E ˚pB, W α q and we use Theorem 3.6: there exists τ c P R and u τ c a non-zero eigenfunction for the operator HpA , S α q `V τ c B K associated with 0. Looking at the associated rayleigh quotient we get

When B K ‰ 0 (that means when the magnetic field is not tangent to the axis of the wedge), we have V τ c B K ą 0 a.e. and we deduce u τ c " 0, that is a contradiction. Assume now that B K " 0, then V τ B K px 1 , x 2 q " τ 2 and therefore τ c " 0. Denote by ρ τ c :" |u τ c |, due to the standard diamagnetic inequality (see [START_REF] Kato | Schrödinger operators with singular potentials[END_REF]), it satisfies

and therefore ρ τ c " 0 a.e. that is a contradiction.

Together with the continuity result Theorem 4.5 of the next section, this shows that the infimum of the local ground state energy of the semiclassical magnetic Laplacian along edges (see Section 1.1 and Section 1.3) does not vanish. Notice that there is no hope of proving a uniform lower bound for EpB, W α q since it goes to 0 for a magnetic field tangent to a face when α Ñ 0 ([42, Section 5]).

REGULARITY OF THE GROUND STATE ENERGY

In this section we prove the continuity of the application pB, αq Þ Ñ EpB, W α q. The domain of the quadratic form Q τ B,α depends on the geometry (see (2.6)), moreover the bottom of the spectrum of the operator HpA , S α q `V τ B K may be essential, see Subsection 2.3. Therefore we cannot apply directly Kato's perturbation theory.

In this section we use the generic notation g (like geometry) for a couple pB, αq P S 2 p0, 2πq. We denote by Epgq :" EpB, W α q and spg; τ q :" spB, S α ; τ q. We also note Q τ g the quadratic form Q τ B,α Remark 4.8. These regularity results are obtained for unitary constant magnetic fields. Using the scaling (1.1), these results are easily extended to any non-zero constant magnetic fields. [START_REF] Bernoff | Onset of superconductivity in decreasing fields for general domains[END_REF]. UPPER BOUND FOR SMALL ANGLES 5.1. An auxiliary problem on a half-line. Let L 2 r pR `q be the space of the square-integrable functions for the weight r dr and let B 1 r pR `q :" tu P L 2 r pR `q, u 1 P L 2 r pR `q, ru P L 2 r pR `qu . We define the 1d quadratic form

1 prq| 2 `pr ´τ q 2 |uprq| 2 ˘r dr on the domain B 1 r pR `q. As we will see later, if u is a function of L 2 pS α q that does not depend on the angular variable and if b 2 ‰ 0, b ´1 2 Q τ B,α puq written in polar coordinates degenerates formally toward q τ puq when α goes to 0.

We denote by g τ the Friedrichs extension of the quadratic form q τ . This operator has been introduced in [START_REF] Yafaev | On spectral properties of translationally invariant magnetic Schrödinger operators[END_REF] and studied in [START_REF] Popoff | On the lowest energy of a 3d magnetic laplacian with axisymmetric potential[END_REF] as the reduced operator of a 3d magnetic Hamiltonian with axisymmetric potential.

The technics from [START_REF] Bolley | Sur une classe d'opérateurs elliptiques et dégénérés à une variable[END_REF] show that g τ has compact resolvent. We denote by ζpτ q its first eigenvalue. For all τ P R, ζpτ q is a simple eigenvalue and we denote by z τ an associated normalized eigenfunction. Basic estimates of Agmon show that z τ has exponential decay. The following properties are shown in [START_REF] Popoff | On the lowest energy of a 3d magnetic laplacian with axisymmetric potential[END_REF]:

The function τ Þ Ñ ζpτ q reaches its infimum. We denote by (5.1) Ξ 0 :" inf τ PR ζpτ q the infimum. Let τ 0 ą 0 be the lowest real number such that ζpτ 0 q " Ξ 0 . We have

Numerical simulations show that Ξ 0 « 0.8630.

5.2.

Upper bounds and consequences. Let B " pb 1 , b 2 , b 3 q be a magnetic field in S 2 . Due to symmetry we assume b j ě 0 for all j P t1, 2, 3u (see Proposition 2.1). Recall the quadratic form r Q τ B,α associated with HpA , S α q `V τ B K in polar coordinates (see (4.12)). The injection from `B1 r pR `q, } ¨}L 2 r pR

`q˘i nto ´Domp r Q τ B,α puqq, } ¨}L 2 r pΩ 0 q ¯is an isometry, therefore we can restrict r Q τ B,α to B 1 r pR `q and in the following for u P B 1 r pR `q we denote again by u the associated function defined on Ω 0 . Assume b 2 ą 0, that means that the magnetic field is not tangent to the symmetry plane of the wedge. For u P B 1 r pR `q we have formally that b ´1 2 r

B,α puq goes to q τ puq when α goes to 0. The following lemma makes this argument more rigorous: