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THE MODEL MAGNETIC LAPLACIAN ON WEDGES

NICOLAS POPOFF

ABSTRACT. We study a model Schrédinger operator with constant magnetic field on an infinite
wedge with natural boundary conditions. This problem is related to the semiclassical magnetic
Laplacian on 3d domains with edges. We show that the ground energy is lower than the one
coming from the regular part of the wedge and is continuous with respect to the geometry.
We provide an upper bound for the ground energy on wedges of small opening. Numerical
computations enlighten the theoretical approach.

1. INTRODUCTION

1.1. The magnetic Laplacian on model domains.

e Motivation from the semiclassical problem. Let (—ihV — A)? be the magnetic Schrodinger
operator (also called the magnetic Laplacian) on an open simply connected subset ) of R?.
The magnetic potential A : R?® — R3? satisfies curl A = B where B is a regular magnetic
field and A > 0 is a semiclassical parameter. For ) bounded with Lipschitz boundary, the
operator (—ihV — A)? assorted with its natural Neumann boundary condition is an essentially
self-adjoint operator with compact resolvent. Due to gauge invariance, the spectrum depends
on A only through the magnetic field B. We denote by A(B, (2, h) the first eigenvalue of
(—ihV — A)2

Many works have been dedicated to understanding the influence of the geometry (given by
the domain €2 and the magnetic field B) on the asymptotics of A\(B, (2, h) and on the local-
ization of the associated eigenfunctions in the semiclassical limit ~ — 0. In dimension 2,
let us cite the works [2, 20, 15, 13] when €2 is regular and [5, 6, 7] when 2 is polygonal. In
dimension 3, the regular case is studied in [21, 17, 30]. When the boundary of 2 = R3 has
singularities, only few particular cases have been treated ([24, 29]).

In order to find the main term of the asymptotics of A\(B, €2, k), we are led to study the
magnetic Laplacian without semiclassical parameter (h = 1) on unbounded model domains
with a constant magnetic field. More precisely to each point € ) we associate its tangent
cone II,, for example if x belongs to the regular boundary of €2, II, is a half-space. We also
introduce B, := B(z) the magnetic field “frozen” at x and A, an associated linear potential
satisfying curl A, = B,. We define

H(Ax7 H:L“) = (—ZV - Az)2
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2 NICOLAS POPOFF

the tangent magnetic Laplacian on the model domain II, with its natural Neumann boundary
condition. We denote by

(1.1) E(B,,II,) the bottom of the spectrum of H(A,, II,) .

When (2 is polyhedral ' and if the magnetic field does not vanish, we expect that A(B, 2, h)
behaves like hinf, 5 F(B,,II,) at first order when ~ — 0. A work with M. Dauge and
V. Bonnaillie-Noél is in progress to prove this rigorously with an estimate of the remainder
([8]). Therefore we are led to find the points = € © whose tangent model problem minimizes
E(B,,II,), in particular it is natural to investigate to continuity properties of z — F(B,,I1,)
on €). It is known that the restriction of this application to the regular part of the boundary of
Q) is continuous. When z is in the singular part of the boundary of €2 (edge or corner), it has
already been proved for particular cases that F(B,, I1,) can be strictly lower that the ground
energy of model problems associated to regular points close to x (faces). In this article we
investigate the model problems associated to edges: When x belongs to an edge, we compare
E(B,,1I,) and the other spectral model quantities in a neighborhood of .

o The magnetic Laplacian on wedges. The tangent cone to an edge is an infinite wedge. Let
us denote by (x1, 5, x3) the cartesian coordinates of R3. Let o € (0,7) u (7, 27) be the
opening angle, we denote by 1V, the model wedge of opening «:

(1.2) Wy =8, xR

where S,, is the infinite sector defined by {(z1,%2) € R?, |z5] < xytan$} when o € (0, )
and {(z1,22) € R?, |23 = x1 tan $} when a € (7, 27). We extend these notations by using
Wi (respectively S, ) for the model half-space (respectively the model half-plane). For o # 7
the z3-axis defines the edge of W,

Due to an elementary scaling, it is sufficient to consider unitary magnetic fields when dealing
with tangent model problems, therefore in the following the magnetic field will always be
constant and unitary. Let B € S? and A be an associated linear potential satisfying curl A =
B. In this article we investigate the bottom of the spectrum of the operator H(A,W,,) and
the influence of the geometry given by (B, «). This operator has already been introduced in
particular cases (see subsection 1.3). Our results recover some of these particular cases in a
more general context.

1.2. Problematics.

e Singular chains. For @ # 7, the wedge W, is a cone of R? with singular chains (also
called strata) corresponding to its structure far from its edge (see [23] or [11]). There are
three singular chains: The half-space I} corresponding to the upper face, the half-space II
corresponding to the lower face and the space R?® corresponding to interior points. When
o € (0,7) (convex case) we have II} = {(x1,29,23) € R 2y < zytan$} and II; =
{(z1, 22, 23) € R®, 25 = —x; tan §}. Similar expressions can be found for o € (7, 27) (non
convex case).

IThis analysis has its interest for a more general class of corner domains described for example in [11, Section
2].
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When the model domain is a half-space (o« = ), there is only one singular chain: The
whole space R?. The bottom of the spectrum of the magnetic Laplacian on R? is well known:

(1.3) EB,R*) =1.
For a # 7 we introduce the spectral quantity
(1.4) E*(B,W,) := min {E(B,II}), E(B,1I), E(B,R%)} .

When o = 7, we let E*(B,W,) := E(B,R?) = 1.

o The operator on half-spaces. Before describing the meaning of £*, we recall known result
about the magnetic Laplacian on half-spaces and we exhibit the influence of the geometry
on E*(B,W,) . Let IT = R? be a half-space. The bottom of the spectrum of the magnetic
Laplacian on II depends only on the unoriented angle between the magnetic field B and the
boundary of II. We denote by 6 € [0, 7] this angle. We denote by o (f) the bottom of the
spectrum of the operator H (A, II). This function has already been studied in [21], [16] or
more recently [9]. In particular § — o(6) is increasing over [0, 7] with 0(0) = ©, and
a(g) = 1 (see [21]) where the universal constant O, ~ 0.59 is a spectral quantity associated
to a unidimensional operator on a half-axis (see [32, 3, 12] and Subsection 2.2).

Let us denote by 67 (respectively ) the unoriented angle between the magnetic field B and
T} (respectively IT;). We have E(B,II}) = o(61), E(B,II;)) = o(0~) and E(B,R?) = 1.
Since o is increasing we get

(1.5) E*(B,W,) = o(min{6*,07}) .

e Main goals and consequences. When « # m, the quantity £*(B,,,) can be interpreted
as the lowest energy of the magnetic Laplacian far from the z3-axis. Remind the semiclassical
problem on a bounded domain €2 with edges described in Subsection 1.1. If = € 2 belongs to
an edge and if W, is the tangent cone to () at z, the quantity £*(B,W,,) corresponds to the
lowest energy among the £(B,, I1,)) for all regular points y near x. In this article we prove

(1.6) Vae (0,21), E(B,W.) < E*(B,W,) ,

roughly speaking that means that the ground energy associated to an edge is lower than the
one of regular adjacent model problems.

Remark 1.1. When « = 7w, we have = = 07 = § and E(B, W,,) = o(6). Since o(#) < 1 with
equality if and only if 6 = 7, we notice that (1.6) is already known for o = 7 with equality if
and only if B is normal to the boundary of the half-space WV,.

Relation (1.6) may either be strict or be an equality. It has been shown on examples that both
cases are possible, see Subsection 1.3. When (1.6) is strict the singularity makes the energy
lower than in the regular cases close to the edge, moreover this would bring more precise
asymptotics and localization properties for the lowest eigenpairs of the magnetic Laplacian
in the semiclassical limit (see [24], [5], [6] and [29]). In Section 5.1 we will give a generic
geometrical condition for which (1.6) is strict.

As we will see, the operator H(A,W,) is fibered and reduces to a family of 2d operators
after Fourier transform along the axis of the wedge. We will Link £*(B,W,,) and spectral
quantities associated to the reduced operator family. As a consequence when the inequality
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(1.6) is strict, this will provide existence of generalized eigenpairs for H(A,W,,) with en-
ergy F£(B,W,), moreover these generalized eigenfunctions are localized near the edge (see
Corollary 3.8).

We will also prove the continuity of (B, o) — FE(B,W,) on S? x (0, 27). Let us remark that
the continuity is proven even for the degenerate case « = m. When (2 is polyhedral, this fact
and (1.6) are key ingredients in order to prove that = — F(B,,Il,) is lower semi-continuous
on § (see [8]) in order to find a minimizer for E(B,,II,) on Q.

1.3. State of the art on wedges. The model operator on infinite wedges has already been
explored for particular cases:

In [24], X. B. Pan studies the case of wedges of opening 7 and applies his results to the
semiclassical problem on a cuboid. In particular he shows that the inequality (1.6) is strict if
the magnetic field is tangent to a face of the wedge but not to the axis. These results can hardly
be extended to the general case.

The case of the magnetic field By := (0,0, 1) tangent to the edge reduces to a magnetic
Laplacian on the sector S,. This case is studied in [5] (see also [18] for a = 5): There
holds E*(B,W,) = 0(0) = © and it is proved that the inequality (1.6) is strict at least for
a € (0,%]. V. Bonnaillie shows in particular that £(B, W,) ~ < when a — 0 and gives a
complete expansion of F/(B,W,,) in power of a.

In [28], the author considers a magnetic field tangent to a face of the wedge. In that case he
proves (1.6) with £*(B,W,) = ©,. He shows that the inequality (1.6) is strict for o small
enough but he also exhibits cases of equality.

In [29], the authors deal with a magnetic field normal to the plane of symmetry of the wedge
and show that (1.6) is strict at least for o small enough.

The results of this article recover these particular cases and give a more general approach
about the model problem on wedges.

1.4. Organization of the article. In Section 2 we reduce the operator H(A,W,) to a family
of fibers on the sector S,,. In Section 3, we link the problem on the wedge with model operators
on half-spaces corresponding to the two faces and we deduce (1.6). In section 4 we prove
that F(B,W,) is continuous with respect to the geometry given by (B, o) € S? x (0, 27). In
Section 5 we use a 1d operator to construct quasimodes for « small and we exhibit cases where
the inequality (1.6) is strict. In Section 6 we give numerical computation of the eigenpairs of
the reduced operator on the sector.

2. FROM THE WEDGE TO THE SECTOR

2.1. Reduction to a sector. Due to the symmetry of the problem (see [26, Proposition 3.14]
for the detailed proof) we have the following:

Proposition 2.1. Let B = (b1, by, b3) be a constant magnetic field and A an associated
potential. The operator H(A, W,,) is unitary equivalent to H(A,W,) where A satisfies
curl A = ([by], [bal, [bs]).
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Therefore we can restrict ourselves to the case b; > 0.

We assume that the magnetic potential A = (a1, as, ag) satisfies curl A = B and the mag-
netic Schrodinger operator writes:

H(A,W,) = Z(ij — a;)?

with D,; = —i0,,. Due to gauge invariance, the spectrum of I (A, W,) does not depend on
the choice of A as soon as it satisfies curl A = B. Moreover we can choose A independent of
the x5 variable. The magnetic field will be chosen explicitly later, see (2.3).

We denote by S(P) (respectively Sq(P)) the spectrum (respectively the essential spec-
trum) of an operator P. Due to the invariance by translation in the x3-variable, the spectrum
of H(A, W,,) is absolutely continuous and we have S(H (A, W,)) = Ses(H (A, W,)).

2.1.1. Partial Fourier transform. Let 7 € R be the Fourier variable dual to z3 and F,, the
associated Fourier transform. We recall that A has been chosen independent of the =3 variable
and we introduce the operator

H(AW,) = (Dy, — a1)? + (Dg, — a2)? + (a5 — 7)°

acting on L*(S,) with natural Neumann boundary condition. We have the following direct
integral decomposition (see [31]):

D .
2.1 Fus H(A, Wo) Fy, = f H™(AW,)dr.

TeR
The operator H (A, W,) is a fibered operator (see [14]) whose fibers are the 2d operators
H™(A,W,) with 7 € R. Let

$(B,Su;7) = inf@(ﬁ[T(A,Wa))

be the bottom of the spectrum of i (A, W,), also called the band function.Thanks to (2.1)
we have the following fundamental relation:

(2.2) EB,W,) = inﬂgs(B,Sa;T) :
TE

As a consequence we are reduced to study the spectrum of a 2d family of Schrodinger opera-
tors. We denote by

Sess(B, Su: 7) := inf Gegs(H (A, W,))

the bottom of the essential spectrum.

2.1.2. Description of the reduced operator. We write

B = B! + Bl
where B+ = (by, by,0) and Bl = (0,0, b3). We take for the magnetic potential
(2.3) A(xy, 29, 25) = (Al(21, 22), 0t (21, 22))
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with Al (21, 25) := (0, b321) and a* (21, 25) = 22by —x1by. The magnetic potentiel A is linear,
does not depend on z3 and satisfies curl A = B. We introduce the reduced electric potential
on the sector:

Vg (z1, ) = (21by — w2by — 7)2.
We have
(2.4) H.(AW,) = HAILS,) + Vi, .

The quadratic form of H(Al'S,) + Vg, is
Bal(u) == J |(—iV — AH)u|2 + Vg |u? dzy day
Sa

defined on the form domain
(2.5) Dom(Qf,) = {ue L*(S,), (—iV — Aue L*(S,), |z1bs — z2b1 — T|u e L*(S.)} .
The form domain coincides with:
{ue L}(S,), (—iV — Au e L3(S,), |x1by — zobi|u € L*(S,)},
therefore it does not depend on 7. Kato’s perturbation theory (see [19]) provides the following:

Proposition 2.2. The function 7 — s(B,S,; T) is continuous on R.

2.2. Model problems on regular domain. We describe here the case & = 7m where W, is a
half-space. The operator H (Al S;) + V5. can be analyzed using known results about regular
domain. We have £(B,W,) = o(f) (see Subsection 1.2 and [16]) where ¢ € [0, 7] is the
angle between the magnetic field and the boundary. We recall that we have £*(B, W, ) = 1.

When ¢ # 0, H(All, S;)+V{, is unitary equivalent to H(Al, S;)+ V3, and s ess(B, Sy; 0) =
1 ([16, Proposition 3.4]). There holds s(B,S,;0) = o(0) < 1. If 0 # 7, 0(0) < 1 and there-
fore the operator H(All, S,) + V3. has an eigenfunction associated to o(¢) with exponential
decay (see [9]).

When 6 = 0, there holds s.(B,Sy;7) = s(B,Sy; 7). A partial Fourier transform can be
performed and shows that inf,cg (B, S;; 7) = O,.

In Subsection 2.3 and Section 3 we will focus on a € (0, 7) U (7, 27). Most of the results
can be compared and extended to o = 7 using the results recalled above.

2.3. Link between the geometry and the essential spectrum of the reduced problem. In
this section we give the essential spectrum of the operator H(All' S,) + V5. depending on
the geometry. Let T := (V3.) '({0}) be the line where the electric potential vanishes. Let
us notice that V3, (x) is the square of the distance from = to Y. Let (v, 0) be the spherical
coordinates of the magnetic field where v is the angle between the magnetic field and the
xg-axis and 6 is the angle between the projection (b1, by) and the z5-axis:

B = (sinysin#,siny cosf,cosv) .
Due to symmetries we restrict ourselves to (y,6) € [0, 7] x [0, 5]. We will use the following
terminology:

e The magnetic field is outgoing if v € (0,7) and 6 € [0, 75%).
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[r—a

e The magnetic field is tangent if either v = 0 or 6 =

e The magnetic field is ingoing in the other cases.

The ongoing case corresponds to a magnetic field pointing outward the wedge (this can happen
only if the wedge is convex). The tangent case corresponds to a magnetic field tangent to a
face of the wedge and has already been explored for convex wedges in [28]. The ingoing
case corresponds to a magnetic field pointing inward the wedge, in that case the intersection
between T and S,, is always unbounded. The essential spectrum of H(All| S, ) + V3. depends
on the situation as described below:

Proposition 2.3. Let a € (0, 7) and B € S* be an outgoing magnetic field. Then for all T € R
the operator H(All S,,) + Vg1 has compact resolvent.

Proof. We remark that

V1 e R, lim  Vgi(x1,22) = +00.
[(z1,22)|—>+00
(z1,22)ESx

This implies that the injection from the form domain (2.5) into L*(S,) is compact, see for
example [31]. We deduce that the operator H(Al,S,) + V5. has compact resolvent. U

The following proposition shows that the essential spectrum is much more different when
the magnetic field is ingoing:

Proposition 2.4. Let a € (0,7) U (7, 27) and B € S? be an ingoing magnetic field. Then
VreR, $¢s(B,Sy;7)=1.

When « € (0, ), the detailed proof can be found in [26, Subsection 4.2.2]. The proof for
« € (m,2m) is rigorously the same. The idea is to construct a Weyl’s quasimode for Qf , far
from the origin and near the line T using the operator H (All, R?) + Vg1 whose first eigenvalue
is 1. The persson’s lemma (see [25]) provides the result.

In the tangent case, the essential spectrum depends on the parameters and can be expressed
using the first eigenvalue of the classical 1d de Gennes operator (see the proof below). The
bottom of the essential spectrum is given explicitly in (2.6) however we will only need the
following:

Proposition 2.5. Let a € (0, 7) U (7, 27) and B € S? be a magnetic field tangent to W,,. Then
we have

inf $ess(B,Sa; 7) = O -

TeR

Proof. We introduce the first eigenvalue 1i(7) of the 1d de Gennes operator
—02 + (t—T1)°

defined on the half-line {¢ > 0} with a Neumann boundary condition. This classical spectral
quantity has already been investigated, see [32, 3, 12]. In particular p(7) reaches a unique
minimum 6y ~ 0.59 for £, = 1/0y. We recall the result from [28, Proposition 3.6]:

(2.6) Sess(B,Sa;T) = énIg (1(&cosy + Tsin7y) + ({siny — 7 cosy)?) .
€
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us

where y € [0, 7] is the angle between the magnetic field and the axis of the wedge. Note that
the proof of this relation is done in [28] for @ € (0, 7) and the extension to « € (7, 27) does
not need any additional work. We deduce from (2.6) that

2.7 VT eR, Ses(B,Su;7) = 0.
Choosing & = &y cos~y in (2.6) we get Sess(B, Sa, {osiny) = p(§o) = Op and the proposition

is proven. 0

Remark 2.6. We have 0(0) = O, where the function o is defined in Subsection 1.2.

Since s(B, Sy;7) < Sess(B, Sa; 7), the relation (2.2) provides for a tangent magnetic field:
(2.8) Va e (0,2n)\x, E(B,W,) < 6q.

Therefore we have proved (1.6) for a tangent magnetic field.

3. LINK WITH PROBLEMS ON HALF-PLANES

In this section we will investigate the link between the model operator on a wedge of opening
a € (0,7) u (m,27) and the model operator on the half-spaces I}, I, and the space R? (see
Subsection 1.2). These domains are the singular chains of W,. We recall that £*(B, W,,) is
the lowest energy of the magnetic Laplacian (—iV — A)? acting on these singular chains and
is given by
E*(B,W,) = o(min{6*,07})

where 0+ is the angle between B and ITE and o(-) is defined in Subsection 1.2. In this section
we prove the inequality (1.6). Moreover when this inequality is strict we show that the band
function 7 — s(B,S,;7) reaches its infimum and that this infimum is a discrete eigenvalue
for the reduced operator on the sector. Let us remark that these questions were investigated in
[24] and [28] for particular cases.

We denote by H} and H_, the half-planes such that [T} = R x H}! and [T, = R x H_.
Let H(Al,H}) + Vg, be the reduced operator defined on 7} with a Neumann boundary
condition. When B is not tangent to IT} we deduce from Subsection 2.2:

(3.1) vreR, inf&SHALH) +VE.) =007
Similarly when the magnetic field is not tangent to II we have:
(3.2) VreR, inf&SHALH)+VE)=0(0")

3.1. Limits for large Fourier parameter. In this section we investigate the behavior of
s(B, S.; 7) when the Fourier parameter 7 goes to +00. We introduce the quantity

(3.3) s*(B,S,;7T) := min {liminfs(B,Sa;T),liminfs(B,Sa;T)} .

T——00 T—+00

In the tangent case, we recall the results from [28, Section 4]:
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Proposition 3.1. Let a € (0,7) U (7, 27) and let B € S? be a magnetic field tangent to a face
of the wedge W,,. Then we have
s°(B,84;7) = o(max(6,67)) .
Note that in [28], this result is proved only for « € (0, 7). The proof of [28, Proposition 4.1]
is mimicked to the case v € (7, 27).
We recall the useful IMS localization formula (see [10, Theorem 3.2]):

Lemma 3.2. Let (x;) be a finite regular partition of the unity satisfying 3, x; = 1. We have
for u e Dom(Qg )

OB o(u ZQBa (xju) ZHVXJ‘UH%Q :
J

The following lemma gives a lower bound on the energy of a function supported far from
the corner of the sector. This lemma will also be useful in Section 4. We denote by B(0, R)
the ball centered at the origin of radius R > 0 and CB(0, R) its complementary.

Lemma 3.3. There exists Cy > 0 and Ry > 0 such that for all a € (0, 7) U (7, 27) and for all
B € S forall R > Ry, forall T € R, for all u € Dom(Qg ,,) such that Supp(u) < CB(0, R):

. Ch
) > (BB~ b ) lulfs.

Proof. Let (X;);-1,2,3 be a partition of unity satisfying x; € C5°([—3, 3], [0, 1]), Supp(x;)

[22, ]41] and ) x3 = 1. We defined the cut-off functions XPOI( ) = X]( ) where (r,v) €
R, x(—§, §) are the polar coordinates. We denote by ;. the associated functions in cartesian
coordinates. Since the ; , do not depend on 7, there exists C; > 0 such that

Va e (0,27),VR >0, V(x1,22) € CB(0, R), 2 VX1, 22)* < ot

j=1
such that Supp(u) < CB(0,R). The IMS formula (see Lemma 3.2)

Let v € Dom Qf
provides

e’

C
(34) Z QBa X] Oéu 2%2 HUH%2 .

Moreover y;u and ysu are extended to functions of L*(H7) and L?(H_ ) with the suitable
Neumann boundary conditions by setting x,u = 0 outside Supp(x;). We deduce from
(3.1) and the min-max principle that Qf . (x1,au) = 0(0")|x1,qul?.. Similarly we prove
OB (X3.at) = 0(07)]x3.au]7.. The function x, 4u is extended in the same way to a function
of R2. It is elementary that

VreR, inf&SH(AIR?) +VE)=EBRY) =1,

therefore QF ,(X2.a%) = |X2.aul7.. We conclude with (3.4) and the definition of E* (see
(1.4)). 0
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Proposition 3.4. Let o € (0,7) U (7,27) and let B € S* be a magnetic field which is not
tangent to a face of the wedge W,. We have

(3.5) sP(B, S, 7) = E*(B,W,).

Remark 3.5. The relation (3.5) is not true when the magnetic field is tangent to a face of the
wedge, see Proposition 3.1 and (1.5).

Proof. LOWER BOUND: Let (1, x2) be two cut-off functions in C*(R_, [0, 1]) satisfying
4+ xi=1,xa(r)=1ifre (0, 1) andxl( )=0ifre (4,+oo) For 7 € R* we define the
cut-off functions x; - (21, z2) 1= X;( T | ) with r = 4/z% + 2. We have

2
C
* 2 2
3C > 0,1 e R*,  V(z1,2,) € R?, Z\vxm <§,

For u € Dom(QF ), the IMS formula (see Lemma 3.2) provides

2
C
(3.6) Qs o (1 ZQBaxﬂu 5 lulZz -

Since Supp(x1,r) < B(0, 37), we have dist(Y, Supp(x1,;)) = % and therefore we have

v(3717 1'2) € Supp(Xl,‘r)? V]_;;J- (1'1, 1‘2) = %72 :
We deduce that for all 7 # O:
3.7) OF o (X1,r) = T |x1rul2s .

On the other part Lemma 3.3 provides a constant C; > 0 such that for all u € Dom(Qg ) we

have:

. C
WER, Opulan) > (BB - g5 ) sl

We deduce by combining this with (3.6) and (3.7) that

T * ¢, 7 2 ¢ e
Qpofu) > min { E(B.Wa) - 1 T ul — Sl
We deduce from the min-max principle that there exists 7o > 0 such that for all 7 satisfying
|7] > 70:

4 C

$(B,Su;7) = E*(B,W,) —

0272 12
and therefore

s7(B,Sa;7) = E*(B, W) .
UPPER BOUND: We suppose that 87 < 6, the other case being symmetric. We have in that
case E*(B,W,) = o(f"). Since we have assumed that we are not in the tangent case, we
have 0 < 6*. Let € > 0, we deduce from (3.1) that there exists u. € C{°(H7) such that

(3.8) (HALHD) + VB e, teypary = o(07) + €.
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We use u, to construct a quasimode of energy o(6") + €. Let t* := (cos §,sin §) be a vector

tangent to the boundary of #_. For x = (x1, z5), we define the test-function:
Ue () 1= €T Ay (2 — 77

We have Supp(u. ») = Supp(u.) + 7t*. Since t* is pointing outward the corner of S, along
the upper boundary, there exists 7, > 0 such that for all 7 > 7, we have Supp(u. ,) < S,, and
Supp(ue,-) N Ol = . Therefore u. , € Dom(QF ,). Elementary computations (see the
geometrical meaning of V3, () in Subsection 2.3) provides Vg3, (z — 7t*) = V3, (z). Due to
gauge invariance we get

<(H(AH7SO¢) + V[:;rl) Ue,r, ue,T>L2($a) = <(H(A”a H;) =+ V]gL) Ue, ue>L2(’H;r) .
We deduce from (3.8) and from the min-max principle that
Ve > 0,319 > 0,V7 > 75, s(B,S4;7) <o(0%) +¢

and therefore liminf, ., s(B,S,;7) < o(f"). Remark that in this proof we have taken
T — +0o0 in order to construct a test-function of energy close to o(6*). When 0~ < 6%, the
proof is the same but we use 7 — —a0. 0

3.2. Comparison with the spectral quantities coming from the regular case.
Theorem 3.6. Let o € (0,7) U (7,27) and B € S?, we have
(3.9) EB,W,) < E*(B,W,) .

Moreover if E(B,W,) < E*(B,W,) then the band function 7 — s(B,S,;T) reaches its
infimum. We denote by 7° € R a critical point such that

s(B,84;7¢) = E(B,W,) .

Then there exists an eigenfunction with exponential decay for the operator H(Al, S, + VPi
associated to the value E(B, W,,).

Remark 3.7. Note that in the tangent case the band function 7 — s(B,S,; 7) always reaches
its infimum.

Proof. Tangent case: We have E*(B,W,,) = O and (3.9) is already proven (see (2.8)). Since
the function 7 — s(B,S,;7) is continuous, we deduce from Proposition 3.1 and (2.2) that
the band function 7 — s(B, S,; 7) reaches its infimum. Let 7¢ be a minimizer of s(B, S,; 7).
Assume that £(B,W,,) < E*(B,W,). Since Sq(B,S,;7¢) = ©q (see Proposition 2.5),
(B, S,; 7¢) is a discrete eigenvalue of the operator H(Al, S,) + V..

Non tangent case: We deduce (3.9) from Proposition 3.4 and (2.2). Assume that £(B,W,) <
E*(B,W,). Since the function 7 — s(B,S,;7) is continuous, Proposition 3.4 and (2.2)
imply that the band function 7 — s(B,S,; 7) reaches its infimum. We denote by 7¢ a
Fourier parameter such that £(B,W,) = s(B,S,; 7). The bottom of the essential spec-
trum of H(All,S,) + V]_Z,i is either +00 (ongoing case) or 1 (ingoing case), see Subsection
2.3. Since E*(B,W,,) < 1 we deduce that £/(B,)V,) is a discrete eigenvalue of the operator
H(AIS,) + V.
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In both cases we denote by u.. an eigenfunction associated to F(B,W,,) for the operator
H (A”,Sa) + V];i. The fact that u,. has exponential decay is classical (see [1]) and we will
give precise informations about the decay rate of the eigenfunctions in Proposition 4.2. 0

Several particular cases where £(B,W,) < E*(B,W,) can be found in literature (see
[24], [5] or [28]). Theorem 5.4 below gives geometrical conditions for this inequality to be
satisfied. Let us also note that in [28, Section 5], it is proved that £(B,W,) = E*(B,W,,) for
a magnetic field tangent to a face, normal to the edge with an opening angle larger that 7.

We now show that when (1.6) is strict, there exists a generalized eigenfunction (in some
sense we will define below) for H(A, W,,) associated to the ground energy £(B,W,,). This
generalized eigenfunction is localized near the edge and can be used to construct quasimodes
for the semiclassical magnetic Laplacian on a bounded domain with edges (see [8]).

We denote by L? (Wa) (respectively Hﬁ)c (Wa)) the set of the functions © which are in

loc

L2(K) (respectively H'(K)) for all compact K included in VW, where K denotes the interior
of K.

We introduce the set of the functions which are locally in the domain of H (A, W,,):

Dom . (H(A,W,)) :=
{ue HL . W,), (—iV — A)’ue L}

loc

W,), (=iV —A)u-n =0 on dW,},
where n is the outward normal of the boundary 0W,, of the wedge.

Corollary 3.8. Let a € (0,7) U (,27) and B € S%. Assume E(B,W,) < E*(B,W,). Then
there exists a non-zero function 1) € Dom . (H(A,W,,)) satisfying

(—iV — A = EB, W)Y in W,
(=iV—-—A)-n=0 on W,.

Moreover 1) has exponential decay in the (x1, z5) variables.

Proof. Let 7¢ be a minimizer of 7 — s(B,S,;7) given by Theorem 3.6. Let ®.. be an

eigenfunction of H(Al,S,) + V5. associated to E(B,W,). It has exponential decay and

satisfies the boundary condition (—iV — Al Jurc - n = 0 where n is the outward normal to the
boundary of S,. Let

(3.10) Y(x1, T9, 23) 1= €T 3D (21, 29)

We clearly have u € Domyo.(H (A, W,)). Moreover writing A = (Al 250, — 21b,) we get
(—iV = A = (—iVayy — AN @rc + (79 — 22y + 2105)? @) €77 = E(B,W,)0 .
Therefore ¢ satisfies the conditions of the corollary. 0

We say that the function ¢ is a generalized eigenfunction of H(A,W,,). Since it has the

form (3.10), we say it is admissible and we shall use it to construct quasimode for the operator
Hp(A, Q) when € has an edge (see [8]).
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4. CONTINUITY

In this section we prove the continuity of the application (B, o) — E(B, W, ). The domain
of the quadratic form Qf , depends on the geometry (see (2.5)), moreover the bottom of the
spectrum of the operator H(AllS,) + Vg1 may be essential, see Subsection 2.3. Therefore
we cannot apply directly Kato’s perturbation theory.

In this section we use the generic notation g (like geometry) for a couple (B, a) € S? x
(0,27). We denote by E(g) := E(B,W,) and s(g;7) := s(B,S,; 7). We also note QF the
quadratic form Qf ,

4.1. Uniform Agmon estimates. Here we give Agmon’s estimates of concentration for the
eigenfunctions of the operator H(All,S,) + Vi, associated to the ground energy E(g).

First we recall a basic commutator formula (see [ 10, Chapter 3]):

Lemma 4.1. Let  be a uniformly Lipschitz function on S, and let (E, u) be an eigenpair of
the operator H(All, S,,) + Vg.1. Then we have

4.1) Vu e Dom(Qj), Qj(e®u) = f (E+|VOP) e®ul?.
Sa

We introduce the lowest energy of H(AllS,) + V%, far from the origin:

. E*(B,W,) if a#m,
£*(g '={

*2) EB,W,) if a=r.

We have £*(g) = o(0°) where ¢° is the minimum angle between the magnetic field and the
boundary of W,. Since 6 — o(0) is continuous we deduce that g — E£*(g) is continuous on
S? x (0, 27).

The following proposition gives the exponential decay uniformly with respect to the geom-

etry for the first eigenfunctions of H(All,S,) + Vgﬁg ), provided that there exists a gap between
E(g) and £*(g):

Proposition 4.2. Let G = S* x ((0,2m)\m). We suppose that there exist ag > 0 and § € (0, 1)
such that for all g = (B,«a) € G we have o > «ag and £*(g) — E(g) = 0. Let 7(g) € R
be a value of the Fourier parameter given in Theorem 3.6 such that s(g;7(g)) = E(g). Let
¢ (21, 2) 1= vA/22 + 22 be an Agmon distance. Then for all v € (0,+/6) there exists C(v) >
0 such that for all g € G and for all eigenfunction u, of H(AlLS,) + Vgﬁg) associated to
s(g; 7(g)) we have

Q;(Q)(e¢”ug) < C(V)HUQH%Q .

Proof. We know from the results of [1] that e®u, € L*(S,). Since |V¢,|* = v? the IMS
formula (4.1) provides

4.3) J (s(g;7(g9)) + V2)62¢”|ug\2 = Q;(g)(e‘b”ug) .
Sa
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We use cut-off functions x1 g and x2 g in C°(S,, [0, 1]) that satisfy x1 r(z) = 0 when |z| >
2R and x1 g(x) = 1 when |z| < R and XiR + X%,R = 1. We also assume without restriction
that there exists C' > 0 such that

2

(44) VR > 0, Z |VXj,R|2 <

j=1

C
ﬁ .
Lemma 3.2 provides

2 2
Qg(g)(e¢“ug) _ Z Q;(g)(vaReaﬁuug) _ Z HVX]‘,RFJ%UQHQ

j=1 j=1
and from (4.3) and (4.4) we get

C 2
(8(9;7(9)) V0t > le®ugl32 = > Q0 (xjre? uy) -
7j=1

When o # 7 Lemma 3.3 provides Q;(g)(X27RU9) > (E*(g)
we have forall g € G:

557 )| X2,rE” g7 2, therefore

4 C

45 (€200~ slo7(0) 1 = 1~ ) Iene i
0

C C
. 2 1 v 12
< (S(g, T(9) + v+ 55 + Rag> Ix1,rE ug 72 -
From the hypotheses on G we can choose R > 0 and € > 0 such that:

x C C
Vgel, e< (5 (9) = s(g;7(9)) —v* - R2a? ﬁ) :

Moreover since s(g;7(g)) < 1 and v < v/§ < 1 we can choose R such that s(g; 7(g)) + v? +
R2 + R2 2 < 2. We deduce from (4.5)

2 2
WG levult < (201) huneulhs < (24 1) R

We deduced the estimate on the quadratic form from the IMS formula (4.3). O

4.2. Polar coordinates. Let (r,v) € R, x (=%, 5) be the usual polar coordinates of S,. We

use the change of variables associated to the normalized polar coordinates (r, ¢) := (r, %) €

Qp =Ry x (1 2 2) After a change a gauge (see [5, Section 3] and [28, Section 5]) we get
that the quadratic form Q7 is unitary equivalent to the quadratic form

(4.6) é;(u) = J (|((?T —dargbs)ul* +
Qo
with the electric potential in polar coordinates:

4.7) ‘7;(7“, ¢) := (rcos(¢pa)by — rsin(pa)b; — 7')2 :

+ ‘N/gT(r, ¢)|u2) rdrdg
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The form domain is
Dom(Q7) = {u e L2 (), (0, — iargbs)u € L2(Qy) 1a¢u e L2(Q0), \/V7ue L2(QO)}
g r ) r r ’ r r ) g r

where L?(€)) stands for the set of the square-integrable functions for the weight r dr.

Notation 4.3. Let gy = (Bg, ) € S* x (0,27) and p > 0. We denote by B(go, 1) the ball of

S? x R of center gy and of radius 7 related to the euclidean norm |g| := (|B|3 + a2)1/ 2,

Lemma 4.4. Let gy = (Bg,ap) € S? x (0,27). There exist C > 0 and n > 0 such that
B(go,n) = S* x (0,27) and for all g € B(go,n) we have for all u € Dom(Q7) n Dom(Qy} ):

vreR, Q(u) < &y, () + Clg - goll (Irul3zay + Op(w) -

Proof. Let gy = (By, ap) and g = (B, ) be in S? x (0, 27). We denote by (b;); and (), the
cartesian coordinates of By and B. Let d := |g — go|. We discuss separately the three terms
of Q7 (u) written in (4.6). For the first one we write

(0, — iabsré)ul* <|(0, — iagbsore)ul?
+ Jagbs o — abs|*r?|ul® + 2r|ul|aobs o — abs|| (6, — ianbsord)ul

We have |agbs o — abs| < ag|bs o — bs| + |bs||ag — ] < (27 + 1)d, and

2r|ullaobso — abs|(0r — icnbsord)ul < (2m + 1)d (r?|ul® + |(0, — iagbsore)ul?) .
Therefore there exists C; > 0 such that for all g € S* x (0, 27):
4.8) (0, — iabgro)ul® < |(0, — iagbsore)ul®

+ Cid (P|ul’ (1 + d) + [ (0, — icnbsore)ul?) .

We deal with the second term: we have

1
272

a+ay 1
2

|(3¢u\2 = d

2
adr? a ol

2.2 -
|(/¢u| % a0r2

Therefore there exist 7 > 0 and Cy > 0 such that B(go,n) = S? x (0, 27) and

|(3¢u|2 .

1 2 1 2
4.9) Vg € B(go,7), o |Opul” < W!%M + CQdOéOT2

For the third term we write
V7 (r,¢) <Vii(r,¢) + [cos(ag)by — cos(ag)ban + sin(aod)br o — sin(ag)b; [* r?
+ 20/ Vir (r, ) |cos(ag)bs — cos(agd)bao + sin(age)bro — sin(ae)b| 7.
We get C5 > 0 and Cy > 0 such that for all g € S? x (0, 27) and for all 7 € R:
(4.10) V(r,¢) € Qo, Voo (r,¢) < (1+ Csd)Vi(r,¢) + Cur’d..
Combining (4.8), (4.9) and (4.10) we get C' > 0 such that for all g € B(go,n):

Q;(u) < Gy, ()| + Cllg = goll (Irulzay + T, (1)) -



16 NICOLAS POPOFF

4.3. Main result.

Theorem 4.5. The function g — FE(g) is continuous on S* x (0, 2).

Proof. Let gy € S* x (0,27). We distinguish different cases depending on whether (3.9) is
strict or not.

Case 1: When
4.11) E(g0) < £*(g0) -

Let us note that in that case oy # 7 (see (4.2)). We use Theorem 3.6: There exists 7¢ € R
such that the band function 7 — s(go; 7) reaches its infimum in 7¢ and there exists a normal-

ized eigenfunction (in polar coordinate) u, for @g; with exponential decay in 7. We use this

function as a quasimode for @; We get from Lemma 4.4 constants C' > 0 and 7 > 0 such
that for all g € B(go,n):

0y () < Qg (o) + Clg = goll (o2 + Qs (o))

— B(g0) + Cllg — gol (Iruoll + Elgo)) -
Let e > 0. Since ug has exponential decay in r we get for g close enough to go:

égc(%) < E(go) + €.
The min-max Principle and the relation (2.2) provide

(4.12) limsup E(g) < E(go) -

g—9go
Using this upper bound, the assumption (4.11) and the continuity of g — £*(g), we deduce
that there exist £ > 0 and € > 0 such that B(gy, k) = S? x ((0,27)\x) and

(4.13) Vg € Blgo, k), €0 <E(g) = E(9) -

Let g € B(go, ), Theorem 3.6 provides 7(g) € R such that s(g;7(g)) = E(g) is a discrete

eigenvalue for the operator H(All S,) + Vggg ). We denote by u, an associated normalized

eigenfunction in polar coordinates. We apply the uniform exponential estimates of Proposition
4.2 to the set G := B(go, k) and we get:

(4.14) Vv e (0,+4/€0), 3Co(v), Yg € B(go, k), € ug|r200) < Co(v) .
We use u, as a quasimode for Q79 (4.14) and Lemma 4.4 yields
3C1 >0, Yg € Blgo, k). Qi (ug) < Q9 (ug) + Cillg — g0
and since u,, satisfies @;(g ) (uy) = E(g) we deduce from the min-max principle and (2.2):

Vg€ B(go, k), E(g) < E(g9) + Ci]g— g0l -

This last upper bound combined with (4.12) brings the continuity of E(-) in go when E(go) <
£*(90)-
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Case 2: When

(4.15) E(g0) = € (90) -

Let us suppose that for all € > 0 there exists x > 0 such that for all g € B(go, ) we have
E(g) —e< Elg) <&(9) -

In that case we deduce the continuity of F(-) in g from the continuity of £*(-).

Let us write the contraposition of the previous statement and exhibit a contradiction. We
suppose that there exists €y > 0 such that for all x > 0 there exists g € S? x (0,27) satis-
fying |g — gol| < K and E(g) < £*(g) — €o. This implies o # 7 (see (4.2)). Theorem 3.6
provides 7(g) € R such that E(g) = s(g; 7(g)) and we denote by u, an associated normalized

eigenfunction for H(All S,) + VPT,EQ ), Again Proposition 4.2 shows that this eigenfunction has
exponential decay uniformly in g: For each v € (0, \/€y), we have Cjy > 0 that does not depend
on g such that

[ ugll2(00) < Cho -

We use u, as a quasimode for @go(g ): There exists a constant ('} > 0 that does not depend on g
such that

Q59 (uy) < 059 () + Cillg — ol
< &%(g) — €0 + Cik.
The min-max Principle and (2.2) provide
E(g(]) < 5*(9) — €y + Clli .

Let ¢ > 0, the continuity of £*(-) implies that for £ > 0 small enough there holds £*(g) <
E*(go) + €. We have proved:

deg > 0, 3C; > 0, Ve > 0, drg > 0,Vk € (0, ko), E(go0) < E*(go) — €0+ C1k + €.

Choosing € > 0 and x > 0 small enough we get a contradiction with (4.15). 0

5. UPPER BOUND FOR SMALL ANGLES

5.1. An auxiliary problem on a half-line. Let L?(R, ) be the space of the square-integrable
functions for the weight r dr and let

B;(Ry) = {ue L}(R"),u' € LY(R"),rue L7 (R")} .
We define the 1d quadratic form

mww=L>WMMP+w—Tﬂmmmrw

on the domain B!(R,). As we will see later, if u is a function of S,, that does not depend
on the angular variable and if by # 0, by 1QTB,O((u) written in polar coordinates degenerates
formally toward q. (u) when a goes to 0.
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We denote by g, the Friedrichs extension of the quadratic form q... This operator has been
introduced in [33] and studied in [27] as the reduced operator of a 3d magnetic hamiltonian
with axisymmetric potential.

The technics from [4] show that g has compact resolvent. We denote by ((7) its first
eigenvalue. For all 7 € R, {(7) is a simple eigenvalue and we denote by z, an associated
normalized eigenfunction. Basic estimates of Agmon show that z; has exponential decay. The
following properties are shown in [27]:

The function 7 — ((7) reaches its infimum. We denote by

(5.1 Zo := inf (1)

TER

the infimum. Let 75 > 0 be the lowest real number such that {(7y) = Zy. We have

(5.2) O <So<vVi-7.

Numerical simulations show that =y ~ 0.8630.

5.2. Upper bounds and consequences. Let B = (b;, by, b3) be a magnetic field in S?. Due
to symmetry we assume b; > 0 for all j € {1, 2, 3} (see Proposition 2.1). Recall the quadratic

form Qf , associated to H (AH,Sa) + Vg1 in polar coordinates (see (4.6)). The injection
from (B}(R.), | - |r2(r,)) into (Dom(égva(u)), | - \\Lg(go)) is an isometry, therefore we can

restrict égva to B!(R,) and in the following for v € B}(R,) we denote again by u the
associated function defined on {2y. Assume b, > 0, that means that the magnetic field is
not tangent to the symmetry plane of the wedge. For u € B}(R,) we have formally that

by' OF ,(u) goes to q,.(u) when a goes to 0.

The following lemma makes this argument more rigorous:

Lemma 5.1. Let B € S with by > 0. For u € B}(R ) we denote by u™(r) := b;ﬂu(béﬂr) the
associated rescaled function. We have ||u*| 12, ) = |u]r2(r, ) and
2 2
53) Op () = boa () + Il 2
bi — b
by

1 . e
451 = sinea)rulfe,) 2 + 2nby (1 - sine S ) IVruly,

sin v

with sinc o :=

Proof. We evaluate @g’a(u) forue B}R,):

5y, (u) = f (I ()2 + (b — )|ua(r)) rdr

Ry

" L Q2P u(r)|Pr dr dé + L (V5. (0) — (rba —7)2) [u(r)Prardo
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We have
(5.4) LO ?r? b3 u(r)|*r drde = ?—;\ru%%(ﬂh)bg .
Elementary computations yield:
Vo (r,0) — (rby — 1) = 12 sin® () (b3 — b3) — 2rby7 (cos(ag) — 1)
— 2rby sin(ag) (rby cos(ap) — 1) .

Since the term —2rb; sin(ag) (rbe cos(ap) — 7) is odd with respect to ¢, its integral on €
vanishes. For the other terms we use:
1/2

/
Jl 2 sin?(ap) do = %(1 —sinca) and J (cos(ang) — 1) d¢ =sincg —1.

—1/2 —-1/2

We deduce for all u € B} (R, ) and 7 € R:

J (‘N/Bl (r, @) — (rby — 7')2) lu(r)[*rdrd¢ =
Qo

(1 — sinc a)HruH%%(R”(b% —b3) + 27 (1 —sinc §) H\/;UH%E(R+)b2
and therefore (note that we have make the change 7 — 7+/by):

(5.5) O/ (u) = J

Ry

a2
(I )+ (o = T3/B2 )2 () 2) 7 dr + 35 e, B3
+ (1 — sinc ) [rul3age,, (B3 — b3) + 27 (1 — sinc §) H\/Fuﬂig(&)bgﬂ .

Let u*°(r) := bé/ 2u(b;/ ’r). An elementary scaling provides

| (1R + b = r /B ()) = bog ().
N
Moreover we have

HWSC”%g(Rg = 52_1”7“““%3(&) and H\/;USC”%E(RQ = 551/2||\/;U||%g(1g+) 5
therefore we deduce (5.3) from (5.5). ]
Proposition 5.2. Let B € S? with by > 0. There exists C'(B) > 0 such that
(5.6) Vae (0,7), E(B,W,) <bZ+C(B)a*.

Proof. We recall that 2, € B!(R,) is a normalized eigenfunction associated to ((7) for the
operator g, (see Subsection 5.1). We define

sc 1/2 1/2
22(r) = b2/ zo(er/ )

70
where 7y € R satisfies ((79) = Zq (see (5.1)). For all « > 0 we have:

2 042

5.7 Oél—sincozé% and Oél—sincgéﬂ.
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We have q. (2;,) = Zo, therefore Lemma 5.1 and (5.7) provides

. B2+ b2 — b3
O‘[( 25) < bZo + B <—2\"”Zro%g + Toba [V 2 | Fa .y ) -

by
Since | 23] z2(00) = |#7llz2(r,) = 1 the min-max principle provides:
JC(B) > 0, Ya e (0,7), s(B,Sa;700/b2) < b5 + C(B)a?
We deduce the proposition with (2.2). 0

As a direct consequence we get

Corollary 5.3. Let B € S? with by > 0. We have the following upper bound:
(5.8) limsup E(B, W,,) < b5, .

a—0

Numerical computations show that F(B, W, ) seems to go to by=y when « goes to 0 (see
Section 6 and [26, Section 6.4]). This question remains open. However the upper bound (5.8)
is sufficient to give a comparison between the spectral quantity associated to an edge and the
one coming from regular model problem:

Theorem 5.4. Let B € S? with by > 0. Then there exists o(B) € (0,7) such that for all
€ (0,(B)) we have E(B,W,,) < E*(B,W,,).

Proof. We introduce 6° := min{f", 0~} (6° depends on o and B). For o € (0, 7) we have
E*(B,W,) = o(0°). We recall the inequality from [16, Section 3.4]:

0°) > \/@3 cos?(6°) + sin*(6°) .

Since §° goes to arcsin b, when a goes to 0, we get

lim iglf E*(B,W,) = lim iglfa(@o) > \/(1 — ©32)b3 + 63

Since = € (0, 1) (see Subsection 5.2), we get:

Vb, € [0, ].], Eobg < \/(]. — @%)b% + @g
and we deduce from Corollary 5.3:
limsup E(B,W,) < liminf E*(B,W,) .

a—0 a—0

The theorem follows. O

Remark 5.5. Tt is possible to use gaussian quasimodes in (5.3) and to deduce for £(B,W,) a
polynomial in o upper bound with explicit constants (see [26, Section 6.3]). This allows to get
analytic value of «(B), for example we get with numerical approximations a(B) > 0.387 for
the magnetic field B = (0, 1, 0) normal to the plane of symmetry.

Remark 5.6. The previous theorem remains true in the special case b, = 0 (see [26, Section 7])
but the proof is different since the limit operator when « goes to 0 is not anymore the operator
q. introduced in Section 5.1.
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6. NUMERICAL SIMULATIONS

Let C' := (0, L)? be the square of length L. We perform a rotation by —% around the origin
and the scaling X, := x, tan 5 along the z5-axis. The image of C by these transformations is
a rhombus of opening « denoted by R(«, Li). The length of the diagonal supported by the x-
axis is v/2L. Using the finite element library Mélina ([22]), we compute the first eigenpairs of
(—iV—Al)+VZ, on R(, L) with a Dirichlet condition on the artificial boundary {0R (e, L) N
{x; > \/%L} We denote by $(B,S,; 7) the numerical approximation of the first eigenvalue
of this operator. For L large, $(B,S,;7) is a numerical approximation of s(B,S,;7). We
refer to [26, Annex C and Chapter 5] for more details about the meshes and the degree of the
approximations we have used.

We make numerical simulations for the magnetic field B = <\/L§’ \/Li’ 0) which is normal to
the edge. An associated linear potential is A (x1, 22, x3) = (0,0, -5+ f/—%) and we have
HALS,) + V5. = -A+ (% -3 —7)%.

We notice that in that case the reduced operator on S, is real and therefore its eigenfunctions
have real values. For numerical simulations of eigenfunction with complex values, see [28,
Section 7].
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FIGURE 1. Magnetic field: B = (\/Li’ \%, 0). Opening angle: o = “. The

%)

numerical approximation of s(B,

a(67).

«; T) versus 7 compared with o(6%) and

On Figure 1 we have set o = 43”: the magnetic field is ingoing. In that case we have 6+ = 3—3

and 6~ = It We have shown §(B, S,; 7) for 7 = 4 with —30 < k < 40. We have also shown
o(0%) and o(6~) where the numerical approximations of o(-) comes from [9]. §(B,S,;7)
seems to converge to o(#F) when 7 goes to +o0 in agreement with Proposition 3.1. Moreover
T — §(B,S,; 7) reaches its infimum and this infimum is strictly below o(6) = E*(B, W,,).
Therefore we think that (1.6) is strict for these values of B and «.

On figure 2 we show normalized eigenfunctions of (—iV — Al) + V7, on R(“F, 20) associ-

ated to 5(B, S i} 7) for 7 = k, —3 < k < 4. We see that the eigenfunctions are localized near
the line T where the potential V5. vanishes.
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T=1 T=2 T=3 T=4

FIGURE 2. Magnetic field: B = (\%, \%,O). Opening angle: v = <. Nor-

malized Eigenvectors of H(Al, S,,) + Vi, associated to s(B, S,; 7). From top
to bottom and left to right: 7 = £k, —3 < k < 4. Computational domain:
R(20, ).
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FIGURE 3. Magnetic field: B = (\%, \%, 0). The numerical approximation of
E(B,W,) versus ¢ compared with £*(B, W, ), b;Z, and O.
On figure 3 we show numerical approximations of E(B,W,). For each value of o we
compute s(B,S,; 7) for several values of 7 and we define

E(B,W,) := inf (B, S,;7)

a numerical approximation of E(B, W, ). The magnetic field is outgoing when a € (0, %),

™

ingoing when o € (7, 7) and tangent when o = 7. We notice that E(B,W,) seems to
converge to by= by below (see Subsection 5.2). We have also plotted E*(B,W,,) according

to (1.5) and to the numerical values of o(-) coming from [9]. We see that for o # 5, we have
E(B,W,) < E*(B,W,) whereas E(B,W%) ~ ©g = E*(B,Wx). Let us also notice that
o — E(B,W,) seems notto be C' in v = 3.
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