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ARTICLE INFO ABSTRACT

ArtiC{e history: In this study a typical coastal karst aquifer, developed in lower Cretaceous limestones, on the western Med-
Received 1 December 2012 iterranean seashore (La Clape massif, southern France) was investigated. A combination of geochemical
Accepted 6 July 2013 and isotopic approaches was used to investigate the origin of salinity in the aquifer. Water samples were

Available online 15 July 2013

Editorial handling by L. Aquilina collected between 2009 and 2011. Three groundwater groups (A, B and C) were identified based on the

hydrogeological setting and on the ClI~ concentrations. Average and maximum Cl~ concentrations in the
recharge waters were calculated (Clger. and Clgermax) to be 0.51 and 2.85 mmol/L, respectively). Group A
includes spring waters with Cl~ concentrations that are within the same order of magnitude as the Clger
concentration. Group B includes groundwater with ClI~ concentrations that range between the Clger and
Clgefmax concentrations. Group C includes brackish groundwater with ClI~ concentrations that are signifi-
cantly greater than the Clgesmax cOncentration. Overall, the chemistry of the La Clape groundwater evolves
from dominantly Ca—-HCO5 to NaCl type. On binary diagrams of the major ions vs. Cl, most of the La Clape
waters plot along mixing lines. The mixing end-members include spring waters and a saline component
(current seawater or fossil saline water). Based on the Br/Clyo1ar ratio, the hypothesis of halite dissolution
from Triassic evaporites is rejected to explain the origin of salinity in the brackish groundwater.

Groundwaters display &7Sr/6Sr ratios intermediate between those of the limestone aquifer matrix and
current Mediterranean seawater. On a Sr mixing diagram, most of the La Clape waters plot on a mixing line.
The end-members include the La Clape spring waters and saline waters, which are similar to the deep geo-
thermal waters that were identified at the nearby Balaruc site. The *Cl/Cl ratios of a few groundwater sam-
ples from group C are in agreement with the mixing hypothesis of local recharge water with deep saline
water at secular equilibrium within a carbonate matrix. Finally, PHREEQC modelling was run based on cal-
cite dissolution in an open system prior to mixing with the Balaruc type saline waters. Modelled data are
consistent with the observed data that were obtained from the group C groundwater. Based on several trac-
ers (i.e. concentrations and isotopic compositions of Cl and Sr), calculated ratios of deep saline water in the
mixture are coherent and range from 3% to 16% and 0% to 3% for groundwater of groups C and B, respec-
tively.

With regard to the La Clape karst aquifer, the extension of a lithospheric fault in the study area may
favour the rise of deep saline water. Such rises occur at the nearby geothermal Balaruc site along another
lithospheric fault. At the regional scale, several coastal karst aquifers are located along the Gulf of Lion and
occur in Mezosoic limestones of similar ages. The 87Sr/25Sr ratios of these aquifers tend toward values of
0.708557, which suggests a general mixing process of shallow karst waters with deep saline fossil waters.
The occurrence of these fossil saline waters may be related to the introduction of seawater during and after
the Flandrian transgression, when the highly karstified massifs invaded by seawater, formed islands and
peninsulas along the Mediterranean coast.

© 2013 The Authors. Published by Elsevier Ltd. Open access under CC RY-NC:-ND license.
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1. Introduction

In the Mediterranean basin, water resources are primarily found
in alluvial aquifers that are linked with stream deltas, and in karst
aquifers that are widely dispersed across the coastline (Aureli et al.,
2008; Nicod, 2009). This vulnerable water resource is overused for
drinking, irrigation, domestic use and industrial development
(Margat and Vallée, 1999; MED-EUW1 WG, 2006). Pressure on this
resource increases strongly during the summer when the natural
supply considerably decreases. In addition, Mediterranean coasts
are characterised by rapid population growth, mass tourism and
strong rainfall in the autumn and winter. This period of strong
rainfall favours the infiltration of contaminants and wastewater
discharge into coastal aquifers, especially in karst regions.

Moreover, salinisation processes may affect karst and alluvial
coastal aquifers in the Mediterranean basin. Salinisation is caused
by over-exploitation of these aquifers to meet the demands of irri-
gation and drinking water (D6ll, 2002; Aureli et al., 2008). Previ-
ously, the salinity of the Mediterranean coastal aquifers has been
attributed to (1) modern seawater intrusion (Pulido-Leboeuf
et al., 2003; Pulido-Leboeuf, 2004; de Montety et al., 2008; Carol
et al., 2009; Kouzana et al., 2009; Schiavo et al., 2009), (2) contri-
butions of deep saline waters, which are usually warmer and de-

rived from fossil seawater which has evolved through water-rock
interaction (Schmerge, 2001; Aquilina et al., 2002; Hébrard et al.,
2006; Duriez et al., 2007), and (3) water-rock interaction with Tri-
assic evaporites (Mongelli et al., 2013). Pollution may overlap with
concomitant salinisation processes (Gimenez Forcada and Morell
Evangelista, 2008; Cary et al., in press). In future, decreasing mete-
oric water inputs, increasing temperatures and rising sea level, be-
cause of global warming and climate change, will enhance the
salinisation processes in Mediterranean coastal aquifers (Woppel-
mann and Marcos, 2012; Feng et al., 2013). After 2025, Mediterra-
nean countries will likely be impacted by climatic change, which
will increase fresh groundwater resource losses (DETR, 1997;
Arnell, 1999; Ranjan et al., 2006; Kundzewicz and Déll, 2009). At
a regional scale, several groundwaters with high salinities can be
found. At Balaruc, Aquilina et al. (2002) identified mixing of karst
waters with deep fossil thermal waters. An additional two karst
springs with Cl concentrations of 39 mmol/L and 34 mmol/L,
respectively, are located in the eastern Corbiéres massif in the
SW of the study area (Doerfliger et al., 2004; Hébrard et al.,
2006). Finally, 8 km NE of Balaruc, in the La Gardiole massif, a karst
spring water has average Cl concentrations of 54 mmol/L (Hébrard
et al.,, 2006). Based on temperature, Pco, and Li/SO,4 ratios greater
than that of current seawater, Hébrard et al. (2006) concluded that
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there has been mixing of upper karst water with deep thermal sal-
ine groundwater.

Thus, it is of prime importance to improve knowledge regarding
the salinisation processes, which affect the quality and quantity of
karst groundwater. Limestone massifs on the Mediterranean coast-
line were deeply karstified during the Messinian event and were
partially invaded by seawater at the end of the last glaciation.
These massifs constitute propitious targets for salinisation pro-
cesses. This study focused on brackish groundwater in the La Clape
massif (Aude, southern France; Fig. 1), which was chosen to repre-
sent a typical coastal karst aquifer on the western Mediterranean
seashore. The La Clape massif is characterised by common features
that affect Mediterranean karst systems, including (1) the deep
karstification of the massif, which was induced by the Messinian
crisis and is evident based on petroleum boreholes; (2) the com-
plex structural environment because of the occurrence of litho-
spheric faults, overthrust and normal faults; (3) the potential
introduction of seawater into the karst system during and after
the Flandrian transgression when the La Clape massif was an island
and; (4) the occurrence of recent events of groundwater
salinisation.

The La Clape massif is geomorphologically and hydrogeological-
ly isolated, which makes its groundwater resource highly vulnera-
ble to salinisation. The recharge area is limited to a small karst
outcrop of 88 km?. Furthermore, decreasing rainfall in the last 10
a and groundwater overuse by vineyards during the dry seasons
have increased the vulnerability of this resource.

The geochemistry of La Clape groundwater has not been
investigated previously. In this complex karst system, the origin
of salinisation is characterised and the associated hydrochemical
processes studied on water samples with a multitracer approach
that included major and trace (Br, Sr) elements and isotopes
(87sr/85sr, 880, 5%H and 3Cl/Cl). Combining chemical and isoto-
pic tools can lead to relevant information regarding the origin
of karst water mineralisation (Aquilina et al., 2002; Wang and
Guo, 2006; Jorgensen et al., 2008). In addition, the identified
geochemical processes were simulated using PHREEQC
modelling.

In hydrogeology, the 87Sr/2Sr ratio is a useful tracer to charac-
terise groundwater origin, mixing of groundwater, mixing ratio
calculations, water-rock interaction and groundwater flowpaths
in the upper and deeper parts of karst aquifers. The high precision
of Sr isotope measurements by mass spectrometry and the lack of
isotopic fractionation of Sr during hydrogeologic processes, en-
hance the suitability of this tracer (Starinsky et al., 1986; Chauduri
et al., 1987; Banner et al., 1994; Schmerge, 2001; Dogramaci and
Herczeg, 2002; Frost and Toner, 2004; Wang and Guo, 2006; Jor-
gensen et al., 2008). The 36Cl/Cl ratio is generally used in hydroge-
ology to identify mixing processes in groundwater and to estimate
the groundwater’s residence time (Aquilina et al.,, 2002; Davis
etal,, 2003; Lenahan et al., 2005; Rao et al., 2005). Recent analytical
developments have significantly reduced the uncertainties on
36C1/Cl ratio measurements, which had limited the applications of
this tracer in hydrogeology.

2. Geological and hydrogeological settings
2.1. Geological background

The La Clape massif (Fig. 1a and b) is located east of the oriental
Corbiéres overthrust formed during the main Pyrenean phase (Cal-
vet, 1996). This massif is separated from the Mediterranean Sea by
a narrow coastal plain and is composed of Cretaceous limestones
and marls. In the west, allochthonous terranes of the overthrust
(Fig. 1b) are composed of Jurassic and lower Cretaceous limestones

and marls that overlay a highly deformed and faulted Keuper arg-
ilaceous and gypsiferous series (Lespinasse et al., 1982). Tertiary
and Quaternary sediments in the Narbonne basin mask the struc-
tural relationships between the La Clape horst and the overthrust
(Fig. 1a and b). The results of the ECORS seismic program placed
the structure of the Gulf of Lion in a general geodynamic frame-
work (Guennoc et al., 1994; Gorini et al., 1994). According to this
interpretation, the La Clape massif is considered as a part of the
Corbiéres overthrust and the decollement level of the Triassic
evaporitic beds is at least 2 km below the La Clape massif.

In the study area, the upper Jurassic and lower Cretaceous
boundary is approximately 1100 m bsl based on the La Clape 1
deep drilling (Lespinasse et al., 1982). The massif is bordered by
a subvertical fault on the NW, which was identified by the Lespi-
gnan 1 deep drilling (Lespinasse et al., 1982). On the SE margin
of the La Clape massif, Oligocene normal faults that are associated
with rifting in the Gulf of Lion (Séranne, 1999), divide the Creta-
ceous formations into blocks that thin toward the coast (Fig. 1b).
Offshore, 500-600 m thick Tertiary and Quaternary deposits over-
lay Mesozoic limestones (Baudrimont and Dubois, 1977). The con-
tinental margins of the La Clape massif are surrounded by the
Narbonne basin, which was formed during the extensional Oligo-
cene phase (Séranne, 1999). This basin is filled by 500 m of conti-
nental clays, conglomerates, marls and lacustrine Oligocene and
Miocene limestones.

The upper Miocene Messinian event caused sea level lowering
to —1500 m bsl (Clauzon, 1973; Hsu et al., 1973). Hence, important
karstification effects in the carbonate massif outcrops along the
Mediterranean seashore were associated with this Messinian event
(Audra et al., 2004). According to Doerfliger et al. (2008), the sub-
marine outlets of these coastal karsts were sealed by the accumu-
lation of off shore post-Cretaceous sediments.

Following the Flandrian transgression (10 ka), the faulted and
karstified La Clape massif formed an island that emerged from a
gulf. This gulf still existed during Roman times (Gayraud, 1981).
Consequently, the Narbonne basin is partially overlain by fluvial
deposits (old and recent stream channels of the Aude River)
(Fig. 1a) and by Holocene lagoonal or marine deposits (Ambert,
1993).

2.2. Hydrogeological setting

On the La Clape massif a marl unit, referred as the Middle Marl
Unit (MMU) separates two deeply karstified limestone units (UKU
and LKU). The MMU is 80 m thick and is made of sandstone-glau-
conitic marls with interbedded limestones. The Upper Karst Unit
(UKU) is 50 m thick and is made of Urgonian facies limestones.
The Lower Karst Unit (LKU) is approximately 1000 m thick. The
top of the LKU is made of rudist limestones from the Urgonian fa-
cies. The LKU represents the main aquifer formation in the La Clape
massif.

The lithostratigraphic log of the La Clape drilling (Fig. 1a), which
was 1974 m deep, indicated the presence of highly fissured hori-
zons and karst cavities in the LKU (Lespinasse et al., 1982). On
the La Clape massif, numerous sinkholes occur parallel to the coast
along the NE-SW fault direction and are prevalent in the centre
and SE parts of the massif. The recharge area of the La Clape aquifer
is limited to the small karst outcrop of 88 km?. Most of the re-
charge occurs in the autumn and winter, mainly by rapid recharge
through sinkholes, open fissures and fractures (Fox and Ruhston,
1976). However, some of the rainwater infiltration may also occur
through thin and scarce soils. However, the hydrographic system is
limited. Discharge of the UKU occurs through a series of springs
that are located at its contact with the MMU. The discharge of
the LKU is inhibited by the thick Tertiary and Quaternary deposits
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that surround the offshore and onshore limits of the La Clape mas-
sif (Ambert, 1993; Doerfliger et al., 2008).

Between 2003 and 2011, the annual average rainfall recorded in
one of the La Clape vineyards (Fig. 1a) was 580 mm. This annual
rainfall agrees with the pluviometric regional altitudinal gradient
(Doerfliger and Ladouche, 2004), which leads to an average of
600 mm precipitation at the La Clape massif altitude (~200 m
asl). This estimated rainfall is also consistent with the average rain-
fall monitored over France between 1951 and 1980 (Daum et al.,
1996). The associated effective rainfall was calculated by using
the Penman approach, which provided an annual average of be-
tween 100 and 250 mm in the study area (Daum et al., 1996).
The recorded annual rainfall decreased from 800 to 350 mm in a
single decade, which has enhanced the risk of recent salinisation.

3. Sampling and analysis

Eleven groundwater samples were collected from springs,
water wells and karst conduits, on the La Clape massif (Fig. 1a) be-
tween 2009 and 2011 in the rainy and dry seasons. Springs were
ephemeral and were sampled directly at the spring orifices during
the rainy season. Domestic wells were flushed for at least 30 min
before sampling. To characterise the rainwater input, a rain gauge
was installed in the centre of the massif (Fig. 1a), 5 km from the
coast and 160 m asl. To prevent evaporation from the reservoir,
the rain collector was first connected to the rain gauge with a
1.5 m long insulated pipe. The reservoir was then buried in an
insulated 70 cm deep hole and covered with a 20 cm thick layer
of a mixture of soil and calcareous gravels. Limestone and marl
samples from the lower Cretaceous and upper Jurassic were col-
lected together with soil samples (Fig. 1a). For the limestones
and marls, representative samples of approximately 1 kg were col-
lected from exposed outcrops after removing the weathered layer.
Clay fractions were recovered (1) after filtering a karst conduit
groundwater, and (2) after carbonate dissolution of a limestone
sample. The carbonate and clay fractions of the limestones and
marls were analysed to determine their Sr contents and isotopic
compositions. The soil samples that were collected near site 3 were
leached with local rainwater. These leachates were analysed to
determine their Sr contents and isotopic compositions. Oyster
shells were collected along the coast to determine the current Sr
isotope ratio of Mediterranean seawater along the Gulf of Lion.

The physicochemical parameters (T, EC, pH, Eh, OD and Alk)
were measured in the field on raw water samples with a flow
through cell. This cell was used to prevent equilibration with the
atmosphere. The water samples were filtered through 0.45 pm cel-
lulose filters and were stored in 60 mL HDPE bottles pre-cleaned
with hot 10% HNOs and deionised water. To preserve samples for
cation and Sr analyses, the water samples were acidified with ul-
tra-pure 14 N HNOs after filtration and stored below 4 °C. For O
and H isotope analysis, water samples were collected in 10 mL
glass bottles, without headspace.

Major cation concentrations were determined at the laboratory
LyGeS (University of Strasbourg) using ICP-atomic emission spec-
troscopy with a precision of +£3%. Anion concentrations were
determined at the Laboratory LHA (University of Avignon) using
ion chromatography with a precision better than + 5% for major
elements and better than + 8% for Br. The computed ionic balances
were below 5%. The SLRS-5 external standard was used for the
analyses of elemental concentrations in water. Strontium concen-
trations were determined using ICP-mass spectrometry with a pre-
cision of + 2% based on an In internal standard of 20 pg/L. The
chemical separation of Sr was performed in a clean room, with a
specific ion exchange resin (5RS-BS-S), based on the method of
Pin et al. (2003). Strontium isotope values were determined at

the GIS laboratory (University of Nimes) using a TRITON Ti thermal
ionization mass spectrometer. The Sr data were normalized for iso-
tope fractionation to an 2Sr/%8Sr ratio of 0.1194. For the entire
chemical procedure, the Sr total blank was less than 1 ng. A typical
internal precision of + 0.000005 (2¢) was obtained on 87Sr/%Sr and
was always better than 0.000009. To test the reproducibility of
875r/88Sr ratio measurements, repeated analyses of the NBS987
standard were conducted over the course of the study and gave a
mean 87Sr/5Sr value of 0.710245 + 6 (20, n = 65). A Finnigan Delta
Plus mass spectrometer and a Los Gatos liquid—-vapour isotope ana-
lyser were used for 8'80 and 5°H measurements at the IDES labo-
ratory (University of Orsay). Internal water standards calibrated
with respect to V-SMOW and SLAPP were used as working stan-
dards. The uncertainties were + 0.2%. and + 1%o for §'%0 and 5H,
respectively.

For selected water samples, 3°Cl abundance was measured by
AMS at the French national ASTER facility (Arnold et al., 2013; Fin-
kel et al., 2013). For the 36Cl/Cl analysis, 500 mL of water were col-
lected and stored in HDPE bottle. Chemical separation of Cl was
conducted with samples of 20-200 mL based on the protocol of
Conard et al. (1986). To prevent S isobaric interferences, BaSO,
was precipitated by adding BaNO3; and was removed by filtration.
Next, AgCl was precipitated by adding AgNOs. The samples were
left to settle for 24 h before centrifuging. To improve SO4 removal,
the AgCl precipitate was dissolved in NH,4 before repeating the pro-
cedure from step 1. After checking for remaining SO4, AgCl was
precipitated again by adding NH4OH. A blank solution was pre-
pared with Merck Standard NaCl 99.91%. The measured blanks pro-
vided 35Cl/CI ratios that were less than 107! at/at. The with-run
20 uncertainty for the 3°Cl/Cl ratios ranged from 5 to
18 x 10715 at/at.

4. Results
4.1. Major elements

lon concentrations are reported in Table 1. The Cl concentra-
tions of the La Clape groundwater range from 0.8 to 22 mmol/L.
These concentrations are compared to the theoretical natural Cl in-
puts in groundwater that are estimated from the Cl concentrations
in the recharge water (evaporated precipitation). This Cl concen-
tration is referred to as the “Cl reference” (Clger) and is calculated
according to Négrel (1999) and Grosbois et al. (2000), based on
the concentration factor F (F = P/P - E), where P and E are precipita-
tion and evapotranspiration, respectively). In the study area, F
ranges from 2.4 to 5 for the annual average effective precipitation
of 100-250 mm. Due to the influence of marine aerosols, Cl con-
centrations in the coastal rainwater vary significantly with dis-
tance from the coast and altitude. Two cumulative rainfall
samples were collected from the rain gauge over 7 months. Chlo-
ride concentrations of these two samples are 0.04 and
0.13 mmol/L, respectively (Table 1). These results are comparable
to the Cl concentrations ranging from 0.04 to 0.57 mmol/L that
were measured by Ladouche et al. (2009) in local rainwater. These
rainwater samples were collected during 2 hydrological cycles
(1996-1998) from sites that were located along the Mediterranean
coast, near the study area. Based on these observations, the
weighted average Cl concentration is considered to be
0.14 + 0.06 mmol/L for precipitation. Thus, taking into account
the evaporation, for an average concentration factor of 3.7 (Daum
et al,, 1996), an average (Clger) value of 0.51 mmol/L is obtained
for the recharge waters. However, considering the greatest ob-
served Cl concentration of 0.57 mmol/L, which was recorded in
the coastal rainfall (Ladouche et al., 2009), the recharge water



Table 1
Physicochemical data and major element concentrations of the La Clape and Balaruc groundwaters and the local rainwater.
Water sample Sampling Occurrence  Altitude Depth Date Ec (us/cm) pH T Alk (HCO;) CI- S0 NO; Na* K Ca?* Mg?* Sr2*/Mg?*
site (m) (m) (°C) (mmol/L) (mmol/L (mmol/L) (mmol/L) (mmol/L) (mmol/L) (mmol/L) (mmol/L) (Molar ratio)
1 Spring 100 - 03/2009 694 7.00 145 6.0 1.2 0.2 0.02 0.8 0.02 33 0.2 0.009
Group A 2 Spring 150 - 09/2009 582 722 160 4.5 0.8 0.1 0.03 0.6 0.00 2.5 0.1 0.013
(UKU) 1 Spring 100 - 05/2010 652 7.10 149 53 0.9 0.1 0.01 0.7 0.01 2.7 0.1 0.011
2 Spring 150 - 05/2010 549 724 148 4.1 0.7 0.1 0.06 0.6 0.01 2.2 0.1 0.010
3 Well 130 184 07/2009 902 6.81 156 6.2 1.5 0.5 0.59 1.3 0.04 4.2 0.3 0.008
Group B 3 Well 130 184 08/2009 986 6.94 155 6.0 1.9 0.6 0.55 1.6 0.04 4.1 0.3 0.008
(LKU) 3 Well 130 184 09/2009 808 7.04 198 6.0 0.9 04 0.41 0.7 0.01 3.5 0.2 0.013
3 Well 130 184 02/2010 845 7.01 143 6.0 1.0 0.4 0.85 23 0.07 3.6 0.4 0.014
4 Well 20 50 07/2009 754 7.09 169 5.5 13 0.4 0.13 14 0.16 2.8 0.5 0.004
5 Well 25 65 08/2009 729 726 16.0 5.5 1.2 0.3 0.03 13 0.06 2.8 0.5 0.003
4 Well 20 50 05/2010 634 717 169 4.7 0.8 0.3 0.08 0.7 0.04 24 0.3 0.005
6 Karst conduit 125 120 08/2009 619 725 149 4.0 1.1 0.4 0.09 1.3 0.11 2.1 0.4 0.013
6 Karst conduit 125 120 04/2010 744 722 144 26 1.2 0.6 0.24 1.1 0.10 29 0.3 0.024
7 Well 22 10 08/2009 618 7.07 160 4.8 1.2 0.2 0.05 1.1 0.04 2.5 0.2 0.011
8 Well 120 155 02/2009 1069 730 100 6.2 49 0.5 0.09 4.1 0.10 3.5 0.5 0.005
Group C 8 Well 120 155 09/2009 2730 7.04 198 6.0 10.8 0.8 0.10 9.0 0.22 3.6 1.1 0.004
(LKU) 8 Well 120 155 06/2010 2610 699 189 6.1 11.8 0.9 0.11 10.0 0.21 3.9 1.2 0.005
8 Well 120 155 09/2011 2500 699 189 59 15.14 1.6 0.27 nm 0.21 3.6 1.44 0.004
9 Well 17 62 02/2009 1471 7.14 160 53 4.7 1.9 0.50 52 0.14 4.0 0.8 0.005
9 Well 17 62 09/2009 1526 6.93 212 5.9 5.1 1.8 0.35 5.5 0.18 3.6 0.8 0.005
9 Well 17 62 09/2011 1485 6.82 17.6 5.2 4.5 2.3 0.39 5.8 0.16 3.8 0.9 0.006
10 Well 1 70 07/2009 1262 710 171 53 5.8 04 0.00 3.5 0.14 29 14 0.007
10 Well 1 70 05/2010 1253 7.09 16.7 5.8 5.7 04 0.00 3.9 0.17 2.9 1.6 0.005
11 Well 10 95 04/2010 2730 7.71 158 4.9 20.5 14 0.02 19.2 0.32 33 1.5 0.006
11 Well 10 95 06/2010 3120 717 16.6 5.9 16.9 13 0.05 16.7 0.34 3.1 1.5 0.005
11 Well 10 95 09/2011 3230 7.58 174 6 20.41 1.5 0.10 nm 0.31 3 1.54 0.004
Rainwater 3 Rain gauge 160 - 10-2009-03-2010 40 550 nm 0.06 0.13 0.04 0.10 0.08 0.01 0.03 0.01 0.007
3 Rain gauge 160 - 03-2010-06-2010 34 580 nm 0.10 0.04 0.03 0.03 0.02 0.00 0.02 0.00 0.013
Balaruc F5 Well - 490 06/1996 - 6.6 333 6.93 70 3.68 0.04 59.8 1.1 7.2 6.5 0.003
Aquilina et al. (2002) F8 Well - 407 06/1996 - 65 362 8.62 199 10.42 nd 169 3 17.07 11.9 0.004
F9 Well - 119 06/1996 - 63 499 7.18 162 8.4 nd 135.59 2.8 14.6 11.9 0.004
S12 Well - 40 06/1996 - 6.5 346 8.51 101 6.06 0.138333 91.44 1.8 11.2 9.3 0.004

91¢C

222-Z1Z (£10T) L€ Ausiwayr0a9 payddy /o 39 DysDYY ‘W
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should not contain Cl concentrations greater than 2.85 mmol/L
(ClRef.Max)‘

Overall, the major ions and Sr concentrations in the rainfall that
was collected from the La Clape massif agreed with the general
rainfall geochemistry determined by Ladouche et al. (2009). The
Na/Cl and Mg/Cl molar ratios (0.5-1.0 and 0.08-0.1, respectively)
are within the seawater ratio values (0.85 and 0.1, respectively),
which suggests that these elements dominantly originated from
marine aerosols. In contrast, the observed Ca/Cl (0.23-0.5), SO4/CI
(0.3-0.75) and NOs/Cl (0.75-0.8) molar ratios are in excess relative
to the marine ratios (0.02, 0.05 and 10~°, respectively). This finding
suggests that continental aerosols (natural or anthropogenic) are
dominant for Ca, SO4 and NOs in the La Clape rainfall.

The La Clape groundwater has Cl concentrations ranging from
0.7 to 20.4 mmol/L (Table 1). The lowest groundwater Cl concen-
trations are of the same order of magnitude as the Clger value. In
contrast, the highest Cl concentrations were much greater than
the Clgermax Value (2.85 mmol/L). In fact, 42% of the analysed
groundwater has Cl concentrations of more than Clgefmax. This
groundwater is brackish with a TDS ranging from 855 to
1645 mg/L. The observed high salinity in the groundwater leads
to consideration of an additional source of Cl. Potential sources of
Cl include the following: (1) mixing with current seawater, (2)
mixing with saline groundwater, as in the nearby Balaruc geother-
mal system (Fig. 1) where Aquilina et al. (2002) identified deep fos-
sil saline waters, (3) halite dissolution by interaction with Triassic
evaporites from the oriental Corbiéres overthrust and (4) anthro-
pogenic inputs.

Based on the Cl values and on the hydrological setting, three dif-
ferent groups of water are identified as follows:

(1) Group A corresponds to spring waters that emerge from the
UKU at the UKU/MMU contact. The ClI- concentrations of
these waters range from 0.7 to 1.2 mmol/L with an average
of 0.9 mmol/L.

(2) Group B corresponds to waters that were collected from
wells in the LKU. The Cl concentrations of these waters
range from 0.8 to 1.9 mmol/L with an average of 1.2 mmol/L.

100

O Group A

® Group B

® Group C

Balaruc deep
saline water
Spring waters

(group A) Current seawater

100 Ca 0 o0

Fig. 2. On a Piper diagram, chemical composition of the La Clape groundwater
evolves from Ca-HCOs5 type waters to that of Na-Cl. Compositions of current
seawater and of the average of Balaruc deep saline waters (Aquilina et al., 2002) are
reported for comparison.

(3) Group C corresponds to waters that were collected from
wells in the LKU. In this case, the CI~ concentrations are
much greater than the Clgermax and range from 4.5 to
20.4 mmol/L with an average of 10.5 mmol/L.

Major ion concentrations are plotted on a Piper diagram (Fig. 2).
The karst spring waters (group A) are shown to be of classical Ca-
HCO; type. The waters of groups B and C evolve from Ca-HCOs to
Na-Cl type, which suggests a mixing with current seawater or with
deep saline water.

Chloride being considered as a conservative compound (Hill,
1984) major ions were plotted against Cl (Fig. 3). On the binary dia-
grams, mixing or dissolution lines are reported: (1) Current Sea
Water Mixing Line SWML (Wilson, 1975; Quinby-Hunt and Tureki-
an 1983), (2) Deep saline Water Mixing Line DWML (Aquilina et al.,
2002) and (3) Halite Dissolution Line HDL. In addition Br/Cl ratios
of seawater, deep saline water and halite are reported (Herrmann,
1972; Fontes and Matray, 1993; Davis et al., 1998; Custodio and
Herrera, 2000; Herczeg and Edmunds, 2000; Alcala and Custodio,
2008). In all of the binary diagrams as in the Piper diagram, karst
spring waters (group A) are considered to be a diluted pristine
end-member. For waters of groups B and C, the origin of minerali-
sation is discussed in Section 5.

4.2. Carbonate system

To confirm the origin of mineralisation, the groundwater geo-
chemistry was modelled. For La Clape groundwater in addition to
mixing with a saline water end-member, the main process that
likely affects the water chemistry is the dissolution of the carbon-
ate matrix. Saturation indices were calculated with Wateq4f (Ball
and Nordstrom, 1991). All of the studied waters are saturated with
respect to calcite (—0.1 < S, < + 0.1; Sacks, 1996). All of the waters
from groups A and B are undersaturated with respect to dolomite
(Slgor < —0.5). In contrast group C waters are nearly saturated with
respect to dolomite (—0.5 < Slgo < 0). Finally, all of the La Clape
waters are undersaturated with respect to gypsum (Slgy, < —0.8).

Calcium and HCOs3 concentrations are reported in a diagram of
HCO;3 vs. Ca (Fig. 4a). Two trends are observed in this figure. Most
of the waters from groups A and B fall along the Calcite Dissolution
Line CDL (slope 1:2). The HCO; and Ca concentrations increase
along this line due to increasing Pco,. The remaining water samples
show excess Ca with respect to the CDL line. For the group C
waters, this excess may be explained by mixing with the minera-
lised saline end-member and will be discussed further in Sec-
tion 5.2. However, a few water samples in group B (site 3) also
showed excess Ca and do not seem to be affected by noticeable
mixing with the saline end-member. Thus, another process must
be considered, such as anthropogenic input (see Section 5.5). Such
a process may also have an impact on some of the group C water
samples from sites 8 and 9.

4.3. Sr isotopes

For the UKU and LKU limestones, the 87Sr/%6Sr ratios of calcite
range from 0.707276 to 0.707353 and from 0.707418 to
0.707477, respectively (Table 3). These values agreed with the
875r/86Sr ratio of the seawater at the time of limestone deposition,
ranging from 0.707272 to 0.707464 (Jones et al., 1994). These re-
sults suggest that diagenesis of these limestones did not change
the 87Sr/®6Sr ratio of their carbonate phases. In contrast, the clay
fraction of the LKU limestone shows a greater radiogenic Sr isoto-
pic ratio of 0.71135 (Table 3).
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Fig. 3. (a-g) Binary plots between Cl and selected ions (expressed in mmol/L). The lines indicate the following dissolution or mixing processes: HDL for halite dissolution,
DWML for mixing of Balaruc type deep saline water with shallow karst water (group A), SWML mixing of current seawater and shallow karst water (group A). Black arrows:
trends related to potential water-rock interaction (WRI). White arrows: trends related to potential contamination (AC). (3 h) Evolution of Cl and Na concentrations of the

groundwater at sites 8 and 11 from the rainy season (RS) to the dry one (DS).

A few water samples correspond to shallow groundwater de-
rived from rapid recharge of the karst aquifer (spring waters and

water from a karst conduit). With regard to the Sr mixing diagram
(Fig. 5), these samples plot along a regression line (Water—Rock
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Fig. 4. (a) HCO3 as a function of Ca content. The lines indicate the following
processes. CDCL line: congruent dissolution of calcite. DWML lines: mixing of
shallow karst water with Balaruc type deep saline water. SWML line: mixing of
shallow karst water with current seawater. For the groundwater of sites 3 and 9
(highlighted in grey) anthropogenic input may also be the source of excess Ca. (b)
open-system (solid line) and closed-system (broken line) carbonate evolution
paths. For the La Clape groundwater, calcite dissolution mainly occurs in an open-
system with a HCO3/TDIC ratio close to 1.
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Fig. 5. On a Sr mixing diagram, most of the La Clape waters fall on a regression line
(dashed line DWML) with the spring waters (group A) as the low mineralised end-
member. Balaruc deep saline waters plot on the DWML. Two water samples (site 6)
plot below the DWML and correspond to a rapid recharge toward a karst conduit
connected to a sinkhole. They fall on another regression line WRIL, as well as the
spring waters (group A) and with the local recharge waters as the low mineralised
end-member (see text for further details).

Interaction Line WRIL) consistent with a two-component mixing of
the local recharge water with an easily leachable Sr. In the local
rainwater, Sr concentrations are very low (5-7 x 10~ mmol/L)
relative to the Sr concentrations (1.2-1.7 x 10~ mmol/L) found
in the shallow karst waters (Table 2) suggesting that the Sr isotopic
signature of the recharge water is strongly impacted by water-rock
interaction in the upper part of the aquifer. The easily leachable Sr
exhibits a 87Sr/%Sr ratio of 0.707840+8 (Fig. 5), slightly more
radiogenic than the 87Sr/%Sr ratio of calcite from the host lime-
stones. This result suggests a contribution of radiogenic Sr ex-
tracted from clay minerals (Table 3) that are present in either the
host limestones or the soils of the La Clape massif (Musgrove
et al., 2010). A batch experiment was performed to simulate the
evolution of the 87Sr/86Sr ratio and concentration of the recharge
water in the upper part of the karst aquifer with increased resi-
dence time (Table 4; Frost and Toner, 2004). After approximately

100 h of contact with a LKU bulk limestone, the Sr concentration
in recharge water increased (Table 4) and the 87Sr/86Sr ratio ap-
proached a value of 0.707813 (Fig. 6a and b). Both results of
batch experiments and observed data for groundwater with ra-
pid recharge are reported for comparison on a Sr mixing dia-
gram (Fig. 6¢) for comparison. Both mixing between rainwater
and easily leached Sr (such as in the batch experiment) and be-
tween evaporated rainwater and easily leached Sr (such as in
the aquifer) provide quite similar values of 0.707813 and
0.70784, respectively, for the leachable Sr end-member (Figs. 5
and 6¢). This Sr isotopic signature potentially results from radio-
genic Sr in the clay minerals that are present in the host lime-
stone matrix. While clay minerals in the scarce soils of the La
Clape massif may also contribute. Finally, another process that
may be considered is a “skin effect” because the surface of the
calcite crystals exposed to dissolution /precipitation may display
a signature that is different from the bulk rock. This process was
studied using C isotopes by Gonfiantini and Zuppi (2003) and Le
Gal La Salle et al. (2004) and with Sr isotopes by Zuddas et al.
(1995).

To demonstrate a possible Sr contribution from clay minerals in
the soils, additional leaching experiments were performed with lo-
cal rainwater on soil samples from the La Clape massif. 8”Sr/5Sr ra-
tios of the soil leachates vary from 0.709260 to 0.710000 (Table 3;
see also Section 5.5), which provides another potential explanation
for the origin of the easily leachable radiogenic Sr end-member.
Nevertheless, the scarcity and poor thickness of soils on the La Cla-
pe massif contrasts significantly with the widespread limestone
outcrops that have numerous conduit connections between the
surface and karst aquifer. This finding leads to favouring the
hypothesis that the radiogenic leachable Sr is mainly provided by
water-rock interaction between the recharge water and the matrix
of the host limestones (Fig. 6¢).

On the 37Sr/®5Sr — 1/[Sr] diagram (Fig. 5), most of the La Clape
waters plot above the WRIL line. Therefore, processes other than
water-rock interaction must be investigated and are discussed in
Section 5.

4.4. O and H isotopes

The values obtained for ?H and §'%0 in La Clape groundwater
are given in Table 2. In the 5°H vs. 5'80 diagram (Fig. 7), all of
the waters plot in a tight cluster near the Local Meteoric Water
Line LMWL (Ladouche et al., 2009).

Small variations are noticed which exceed the error bars.
Waters of groups A and B are close to the LMWL and spring waters
of group A vary seasonally from depleted values in winter to en-
riched values in summer. Group C waters plot slightly below the
LMWL. On the 52H vs. 580 diagram, mixing with a saline end-
member, such as seawater or Balaruc type deep saline waters, is
not distinguishable due to the low mixing ratios of saline water
and to the experimental errors.

4.5.35Cl data

The 3Cl/Cl ratios reported in Table 2 were measured on a selec-
tion of group C groundwater samples to constrain the nature of
the saline end-member. Chloride data are plotted on a (3®Cl/Cl)
vs. (1/Cl) diagram and display evidence of a mixing process
(Fig. 8). Based on previous observations, the potential end-mem-
bers include recharge water, current seawater (Argento et al.,
2010) and Balaruc type deep saline water (Aquilina et al., 2002).
The 36C1 /CI ratio in meteoric water depends on 36Cl fallout and
Cl concentrations in the rainfall. The *°Cl fallout is calculated based
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Table 2
Trace element concentrations (Br~, Sr?*) and isotope ratios (87Sr/%55r, §'20, 82H, 36C1/Cl) of La Clape karst groundwater and Aude alluvial groundwater, La Robine and La Madeleine
spring waters, local rainwater, recharge water and Balaruc groundwater.

Water sample Sampling  Sr** Br- Br/Cl x 10>  &%H (%o vs. 880  ®7Sr/86sr 26 36¢1/Cl x 10710
site mmol/L mmol/L  (molar) SMOW) (at/at)
Group A 1 0.0014 0.0018 1.55 -38.9 -6.2 0.708171 2E-06 nm
(UKU) 2 0.0017 0.0014 1.62 -394 -6.3 0.708323 4E—-06 nm
1 0.0015 0.0014 1.58 -45.1 -6.9 0.708191 9E-06 nm
2 0.0012 0.0011 1.61 -43.9 -7.0 0.708348 5E-06 nm
Group B 3 0.0022 0.0028 1.82 -39.5 -6.7 0.708363 2E-06 nm
(LKU) 3 0.0022 0.0034 1.80 -38.5 —-6.4 0.708378 6E—06 nm
3 0.0024 0.0020 2.06 -38.4 —-6.6 0.708332 3E-06 nm
3 0.0058 0.0021 2.18 -40.1 -6.3 0.708374 5E-06 nm
4 0.0019 0.0023 1.68 -36.4 -6.4 0.709084 1E-06 nm
5 0.0016 0.0021 1.61 -36.2 -6.3 0.708978 3E-06 nm
4 0.0016 0.0010 1.39 -39.3 -6.2 0.709033 6E—-06 nm
6 0.0045 0.0023 2.00 —44.2 -7.2 0.708011 8E-06 nm
6 0.0078 0.0022 1.77 —46.7 -7.3 0.707853 4E—-06 nm
7 0.0026 0.0022 1.91 -41.3 -6.7 0.708363 6E—-06 nm
Group C 8 0.003 0.008 1.67 -39.8 -6.5 0.708559 3E-06 17 £6.1
(LKU) 8 0.004 0.020 1.66 -39.3 -6.5 0.708485 6E—06 109+5.2
8 0.007 0.016 1.34 —40.0 -6.3 0.708459 2E-06 10.8+5.3
8 0.006 0.026 1.72 nm nm 0.708471 5E-06 nm
9 0.004 0.010 2.15 -41.4 -6.4 0.708445 8E-06 69+18
9 0.005 0.009 1.78 -41.6 -6.4 0.708456  4E-06 nm
9 0.005 0.009 1.92 -41.8 -6.1 0.708461 4E-06 nm
10 0.009 0.012 1.99 -37.0 -5.8 0.708890 6E—-06 11+5.3
10 0.008 0.009 1.58 -36.6 -5.7 0.708875 7E-06 nm
11 0.009 0.033 1.61 —40.6 -6.4 0.708399 3E-06 nm
11 0.007 0.028 1.68 -39.5 -6.4 0.708462 4E—-06 9.5+54
11 0.006 0.032 1.57 nm nm 0.708409 3E-06 nm
Alluvial aquifer (Aude River) 12 0.004 0.708938 6E—06 nm
La Gardiole karst springs 0.70852 4E—-06
0.708391 5E-06
Rainwater 3 0.00007 nm nm nm nm 0.709225 4E—-06 nm
3 0.00005 nm nm nm nm 0.708993 5E—-06 nm
Recharge water (calculated Sr concentration) 0.0004 0.709225 4E—-06
0.0003 0.708993 5E-06
F5 0.021 0.099 1.41 -32.2 -5.7 0.708721 123 £4.18
Balaruc F8 0.053 0.280 1.41 -22.6 -3.8 0.708577 2146
Aquilina et al. (2002) F9 0.053 0.273 1.68 -24.1 -4.9 0.708496 3.3+5.23
S12 0.034 0.153 1.50 -30.2 -5.1 0.708513 nm
Table 3

Mg?*, Ca*, Sr?* concentrations and 87Sr/®6Sr ratios of calcite and clayey phases from rocks of the La Clape massif. 8’Sr/®Sr ratios of the western Mediterranean seawater measured
by acid leaching of oyster shells. 37Sr/36Sr ratios of 3 soils leached with local rainwaters and of an anti-mildew fungicide currently used in some vineyards of the La Clape massif.

Sample Sampling  Reagent Phase Mg?* Ca?* Sr2* Sr/Ca Mg/Ca  Sr/Mg 87sr/86sr 20
site attacked (mmol/kg) (mmol/kg) (mmol/kg) (Molar) (Molar) (Molar)
UKU Limestone 3 Acetic 1N Carbonate 0.707276  5E-06
3 Acetic 1N Carbonate 0.707287 5E-06
9 Acetic 1N Carbonate 0.707288  5E—06
MMU Marl 4 HNOs; +HF  Clay 14 17 0.1 0.0043  0.82 0.005 0.718873  6E-06
LKU Limestone 3 Acetic 1N Carbonate 0.707418 4E-06
6 Acetic 1N Carbonate 127 5310 33 0.0006  0.02 0.024 0.707443  6E-06
8 Acetic 1N Carbonate 0.707434 8E-06
5 Acetic 1N Carbonate 0.707477  4E-06
5 Acetic 1N Carbonate 0.707431 3E-06
4 Acetic 1N Carbonate 0.707466  4E-06
11 Acetic 1N Carbonate 0.707353  3E-06
11 HNOs +HF  Clay 0.711350 4E-06
Upper Jurassic limestone - Acetic 1N Carbonate 135 7040 2.6 0.0004 0.02 0.022 0.707253  2E-06
- Acetic 1N Aragonite 7 6516 21.0 0.0031 0.001 3 0.709160 4E-06
Oyster shells (Current - Acetic 1N Aragonite 0.709163 6E-06
Mediterranean seawater)
- Acetic 1N Aragonite 0.709162 8E-06
- Acetic 1N Aragonite 0.709162 8E-06
Clayey soil (vineyard) Rainwater 0.710062 6E-06
Calcareous soil (vineyard) Rainwater 0.709685 5E-06
Clayey soil (uncultivated) Rainwater 0.709260 5E-06

Anti-mildew fungicide HNO;3 0.709160 4E-06
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Table 4
Results of stepwise leaching by local rainwater applied to a powdered sample of the
UKU limestone.

Time (h) Sr?* (ug/L) 875r/86sr 26
1 11 0.708426 8E-06
20 22 0.708125 1E-05
44 43 0.707962 5E-06
68 43 0.707928 8E-06
92 38 0.707844 7E—-06
720 43 0.707808 6E—06
1080 57 0.707814 8E-06
Initial components
Local rainwater 5 0.709225 4E-06
Calcite (LKU Limestone) 0.707288 5E-06
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Fig. 6. (a and b) Batch experiment of a powdered LKU limestone sample in the local
rainwater (RW). Variations in Srisotopic ratio of the water with time (a) and with the inverse
of Sr contents (b) are consistent with a simple two-component mixing between rainwater
and an easily leachable Sr removed from the LKU limestone which is more radiogenic than
that of the calcite. (c) Plots in the Sr mixing diagram of the WRIL line of Fig. 5 with the
evaporated rainwater (EWR) as an end-member and of Sr data from the batch experiment
with the rainwater (RW)as an end-member. Water-rock interaction of recharge water with
the host limestones in the upper part of the karst aquifer provides a somewhat similar Sr
isotopic signature of 0.707840 (y-intercept of WRIL) and 0.707813 (batch experiment).
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Fig. 8. Relationship between 3¢Cl/Cl and 1/Cl for selected waters of group C. Deep
water mixing domain DWMD is defined by the mixing of Balaruc type deep saline
waters and local rainwater or thermonuclear pulse rainwater after evaporation.
Seawater mixing domain, SWMD, is defined by the mixing of current seawater and
local rainwater.

on the approach described by Philips (2000). With an average pre-
cipitation of 580 mmy/a at latitude of 43°N, the calculated 3¢Cl fall-
out is 31 at/m?/s. The corresponding 36Cl/Cl ratios range from
9 x 1071 to 65 x 10~ ' at/at for precipitation on the coastal plain
(Cl concentration of 0.31 mmol/L), and further inland at higher alti-
tudes (Cl concentration of 0.09 mmol/L) according to Ladouche et al.
(2009). Furthermore, for a rainwater sample that was collected in
Perpignan (southern France) by Johnston and McDermott (2008),
the measured 6Cl/Cl ratio was 138.5 # 25 x 10~ (for a Cl concen-
tration of 0.028 mmol/L), which is slightly greater than the theo-
retical estimates. For recent rainwater formed during and
following the nuclear bomb test pulse, the 36Cl fallout was 10—
1000 times greater than the natural current fallout (Philips,
2000). Thus, a modified rainwater end-member is also considered,
and is obtained by multiplying the current theoretical natural
36C1/Cl ratio by a factor of 20-100 taking into account mixing pro-
cesses during recharge. In addition, the potential mixing domains
between current rainwater and Balaruc type deep saline water
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(DWMD), and between current rainwater and seawater (SWMD)
are identified (Fig. 8).

5. Discussion
5.1. Mixing processes

Globally, in the binary diagrams (Fig. 3), most of the La Clape
groundwaters fall along the mixing lines with seawater SWML
and/or deep saline water DSWML (Aquilina et al., 2002). The Cl
and Na concentrations are positively correlated (Fig. 3a), leading
to a Na/Cl ratio of 0.85, close to the seawater ratio (Wilson,
1975; Quinby-Hunt and Turekian, 1983) and that of Balaruc deep
water (Aquilina et al., 2002). In the Na vs. Cl diagram, some points
seem to fall along the halite dissolution line HDL. However, the Br/
Climotar ratios (Table 2; Fig. 3b) range from 1.34 to 2.18 x 1073, Dis-
solution of halite or halite-rich gypsum decreases the Br/Cl ratio in
groundwater to less than 0.025 x 1073 (Alcala and Custodio, 2008).
Such a trend is not observed in La Clape groundwater. Considering
the analytical uncertainty (8-10%) of the Br/Cl measurements,
most La Clape waters show Br/Cly,oar Values that are close to the
seawater ratio of 1.53 +0.01 x 1073 (Davis et al., 1998; Herczeg
and Edmunds, 2000; Custodio and Herrera, 2000). Therefore, halite
dissolution from the Triassic evaporites is not considered a source
of the La Clape groundwater salinity. The Br/Cl seawater signature
is well expressed in spring waters, which exhibit Br/Cle1, Values
ranging from 1.55 to 1.62 x 10~3. However, Br/Clyoiar ratios of a
few groundwater samples vary from 1.8 to 2.18 x 1073, which is
clearly greater than that of seawater. This deviation may result
from pollution with Br~ bearing compounds (MeBr as a soil fumi-
gant, pesticide) although currently forbidden for use in agriculture.
However, other sources of Br release to the atmosphere, including
forest fires, automobile fuel combustion during the summer,
ploughing and soil biological activity may also contribute to the
observed deviation (Bello et al., 2001; Alcala and Custodio, 2008).

Group C waters from sites 11 and 8 show increasing Cl and Na
concentrations for the rainy and dry seasons of the same year
(Fig. 3h). At site 11, where this process is most pronounced, Cl con-
centrations vary from 15.4 mmol/L during the rainy season to
20.4 mmol/L during the dry season and the Na concentrations from
16.6 to 19 mmol/L. These results suggest that the saline end-mem-
ber increasingly contributes to groundwater during summer when
the demand for water is high and recharge is negligible.

The hypotheses of mixing of shallow karst water with current
seawater or with deep saline water are confirmed based on the
Na, Mg and SO4 vs. Cl diagrams for most of the group C waters.
However, these binary diagrams generally do not permit differen-
tiation between these two mixing hypotheses. Only the Sr-Cl dia-
gram (Fig. 3g), where waters seem to trend toward a Sr-rich saline
end-member suggests that mixing with deep saline water has oc-
curred rather than mixing with current seawater. In addition, CI
concentrations in the La Clape groundwater are not correlated with
distance from the coastline which may be another argument
against current seawater intrusion.

The Sr/Mg molar ratio of group C water ranges from 0.004 to
0.007 (Table 1). This is similar to the ratio of saline water in Balaruc
(0.004) and very distinct from that of the limestone (0.022)
confirming that the Sr increase is related to mixing with deep sal-
ine water rather than to water-rock interaction.

Excesses of Ca®* (Fig. 3c), Mg?* (Fig. 3d), SO~ (Fig. 3f), NO;
(Fig. 3e) and Sr?* (Fig. 3g) are observed in a few water samples rel-
ative to the DWML and SWML mixing lines. The SO; /Cl™ ratios of
group B water samples are within the precipitation ratio range,
which may, itself, be influenced by anthropogenic inputs (Ladou-
che et al,, 2009). Other excesses of Ca?*, Mg?*, Sr** and SO2~ were

not correlated with increasing Cl”~ concentrations. They may be ex-
plained by water-rock interaction with the carbonate matrix of the
host dolomitic limestones (Smalley et al., 1994; Moral et al., 2008),
or by anthropogenic inputs (Section 5.5).

5.2. PHREEQC modelling

Previous data suggest the following model: (1) equilibration of
recharge water with the carbonate matrix of the host limestone,
and (2) mixing of the shallow karst water with a saline component
that would be either current seawater or deep saline water. To con-
firm the proposed model quantitatively (equilibrium with the car-
bonate matrix followed by mixing with deep saline water) and to
investigate processes that would likely influence groundwater geo-
chemistry, PHREEQC modelling was run (Parkhurst and Appelo,
1999). Modelling first considered equilibrium with calcite. Next,
a mixing process with Balaruc type saline water or seawater was
considered.

Calcite dissolution mainly occurs in an open system (Fig. 4b), in
which the HCOs/Total Dissolved Inorganic C ratio is close to 1
(Appelo and Postma, 2005). Therefore, the PHREEQC model was
run for an open system at the observed Pco, and temperature,
and for different mixing ratios with the Balaruc type saline end-
member, computed from the Cl concentration of each water sam-
ple (Section 5.4).

The theoretical relationship between Ca?* and Pco, is derived
for comparison with the observed data. From the carbonate
dissolution Eqgs. (1)-(3), Eq. (6) can be derived (Appelo and Postma,
2005):

COyg + Ha0 + CaCO; <= 2Ca** + HCO; (1)
(HCO;)*(Ca*") = K(Pcoz) and (2)
2(Ca®*] = [HCO;] (3)

where [X] is the concentration, (X) the activity of the X ion and K
the equilibrium constant for calcite dissolution in a open system.
To account for high salinities, Ca and HCOj3 activities are written
as the concentrations corrected from the activity coefficient:

(Ca*") = y¢,[Ca*"] and (HCO;) = yc03[HCO;] (4)

where 7y is the activity coefficient.
Combining equations (3) and (4), one obtains:

(HCO;) = /H—S” x 2 x (Ca*h) 5)
a

By replacing Eq. (5) into Eq. (2), one obtains:

\ 23 -6
[Ca”] % </f{co3) _ Pco2 x 10 (6)
/Ca 4

Hence, in the [Ca®'] (Yucos_[Ycaz+)?> Vs. Pcop diagram, the
observed Ca concentrations are reported with the theoretical
relationships between [Ca®*] (Pucos_[Vcaz+)?”> and Pcoy (Eq. (6)),
and with the modelled PHREEQC activities (Fig. 9a and b).
For waters of groups A and B (Fig. 9a), only the carbonate equilib-
rium is considered. The theoretical relationship between [Ca?']
(Yhcos—[7caz+)?® and Pcgy, which therefore only considers the
carbonate equilibrium process (dashed lines), is shown for temper-
atures of between 10 and 15 °C.

Most of the waters in groups A and B had Ca?" activities that
agreed with the modelled Ca®* concentrations and plot on the the-
oretical calcite dissolution curves for the considered temperatures
(Fig. 9a). Nevertheless, four water samples at site 3 have excess Ca
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Fig. 9. (a) Ca content as a function of Pco,. (5a), Dotted lines: curves for Ca content
at equilibrium with calcite at 10 and 15 °C. Ca contents measured and theoretically
modelled with PHREEQC are shown for each water sample of groups A and B. (b)
Dashed lines: curves for an initial equilibrium with calcite followed by mixing with
deep saline water for mixing ratios varying between 3% and 15%. Solid line: curve
for an initial equilibrium with calcite followed by a mixing with current seawater
for a mixing ratio of 4%. The degassing paths are outlined by arrows, joining the
measured and the modelled values. Sites 3 and 9 showing Ca excess due to
anthropogenic input are highlighted in grey.

that potentially results from anthropogenic inputs and are dis-
cussed in Section 5.5.

With regarding to group C groundwater, mixing with a saline
end-member was added to the previous modelling (Fig. 9b). Both
seawater and Balaruc type saline water were considered as poten-
tial saline end-members. The modelled curves represent mixing
with the Balaruc type water at mixing ratios of 4%, 8% and 15% at
15 °C (Section 5.4). Mixing with seawater was calculated for a mix-
ing ratio of 4% to represent the maximum possible seawater contri-
bution. Most of the group C water samples fall on the theoretical
curves of mixing with Balaruc type saline water. Because seawater
shows lower Ca concentrations than Balaruc type water, mixing
curves with seawater cannot account for the observed Ca concen-
trations of group C waters (Fig. 9b). All these observations tend to
confirm mixing with deep saline water rather than with modern
seawater.

However, a few groundwater samples do not follow the mod-
elled mixing curves for deep saline water as an end-member. At
site 11, the well is deep (95 m) and the water samples show low
Pco2. They fall above the theoretical curves (Fig. 9b). Thus, it is pos-
sible that incomplete flushing lead to sampling of a partially de-
gassed groundwater and then, to low Pco; and low Ca
concentrations due to calcite precipitation. PHREEQC modelling
for such a process leads to results consistent with the observed
data. Finally, two water samples (from sites 8 and 9) show Ca con-

centrations that exceed the modelled values. These samples also
show high NOs; concentrations, which suggest that these Ca ex-
cesses may result from the addition of Ca(NO3),-H,0 as fertiliser
in some vineyards (see Section 5.5). The Ca deficits and excesses
can be seen in the Ca vs. Cl diagram (Fig. 3c).

5.3. Isotopic characterisation (8°Sr/%°Sr, 36Cl) of the mixing process

In the Sr mixing diagram (Fig. 5), deep saline waters from the
nearby Balaruc site (Aquilina et al., 2002) and La Clape groundwa-
ter of groups B and C fall on a regression line (R?=0.80) that
corresponds to the Deep Water Mixing Line DWML (Fig. 5). The
end-members of this mixing are the spring waters (group A) and
the Balaruc deep saline waters. Group B and C waters lie between
these two end-members, which suggest that they result from a
binary mixing process between shallow karst water and deep
saline waters similar to Balaruc ones. This mixing hypothesis is
consistent with the gradual increase of Cl concentration from
group A to groups B and C. On the DWML line, group B waters fall
between groups A and C and may be affected by slight mixing with
deep saline water while the mixing process is clearly more pro-
nounced in the group C waters. With a more radiogenic 8’Sr/86Sr
ratio (0.709163 £ 0.00001, Table 3), the current Mediterranean sea-
water could not explain the origin of the La Clape water salinity.

In addition, for some group C waters sampled at sites 8, 9 and
11, salinity increases between the rainy and dry seasons in the
same year were observed (Fig. 3h). In contrast to the noticeable
Cl and Na concentration increases in these water samples, the
87Sr/88Sr ratios vary only slightly toward the Sr isotopic composi-
tion of Balaruc deep saline waters. In contrast, the Cl and Na con-
centration variations are not correlated with increasing 8’Sr/%°Sr
ratios toward that of the current seawater. This finding supports
the hypothesis that evolved deep saline water mixing occur in
the La Clape karst aquifer rather than intrusion of current Mediter-
ranean seawater.

Finally, only the water samples from sites 4, 5 and 10 plot well
above the DWML line (Fig. 5). These sites are located at the NE
margin of the La Clape massif, along the Aude River (Fig. 1a). Based
on preliminary geochemical data, these waters could be influenced
by groundwater from the Aude alluvial aquifer or, possibly, by soils
contaminated by anti-mildew fungicides (Table 3) commonly used
in some vineyards (Smalley et al., 1994; Bohlke and Horan, 2000;
Vitoria et al.,, 2004). However, a more detailed hydrochemical
study of the NE part of the La Clape massif and the Aude alluvial
plain is required to confirm the origin of this anomaly.

Measured 6Cl /Cl ratios of five waters from group C vary from
9.5+6 x 10719 t0 17.7 £ 7 x 10~ ! except the water sampled at site
9 which shows a significantly greater 3°Cl /Cl ratio of
69 +18 x 10, In the 35Cl /Cl vs. 1/Cl diagram (Fig. 8), a Deep
Water Mixing domain DWM is defined by the binary mixing of Bal-
aruc type deep saline water (Aquilina et al., 2002) and current local
recharge water. The studied waters fall within the DWM domain
rather than the Sea Water Mixing domain SWM defined by the
mixing of current seawater and local recharge waters. This finding
supports a mixing with Balaruc type saline deep water without di-
rect current seawater influence. Groundwater from site 9, which
shows the highest 3®Cl concentration, is likely influenced by 3°Cl
derived from thermonuclear bomb tests and reveals the contribu-
tion of a rainwater component from or just after the period of nu-
clear bomb tests in the atmosphere (i.e. between 1950 and 1980).

5.4. Mixing ratio calculations
Based on the ionic and isotopic abundances of Cl and Sr, the

mixing ratios of the saline deep water with the shallow karst
water (group A) were calculated using the normal binary mixing
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Table 5

Mixing ratios of saline deep water for the La Clape groundwater (B and C groups). Calculations are based on 4 tracers (Cl and Sr ionic and isotopic abundances).

End-members (E-M) Computation with

Computation with

Computation with 87Sr/%6sr Computation with

Cl concentrations Sr concentrations 35¢1/cl
E-M1: Shallow karst water (group A) 1.2 0.0022 0.708357 1.38E—-13
E-M 2: Deep saline water 70 0.0047 0.708536 1.23E-14
Karst groundwater % DSW % DSW % DSW % DSW
Group C 3-13 6-16 5-15 5.1-20
Group B 0.5-1.5 0.1-2 2-3 nm

equations (Faure, 1986). These calculations were performed for
waters of groups B and C that fall on the DWML line (Fig. 5). The
mixing ratios computed with different geochemical tracers are
coherent (Table 5). These ratios range from 0% to 3% of the Balaruc
type evolved saline deep water in group B waters and from 3% to
16% in group C waters (Table 5).

5.5. Anthropogenic influence and implications for water quality

Wine production is the main agricultural activity on the La Cla-
pe massif and accounts for 20% of its area. Some of these vineyards
now favour organic farming methods that use limited amounts of
fertilisers and chemical products. However, previous fertiliser, fun-
gicide and herbicide applications have potentially long-lasting ef-
fects on groundwater. In addition, the thin and patchy soils and
the numerous conduit flows at the surface of the La Clape massif
do not favour the retention of contaminants through plant uptake,
microbial reduction, or by adsorption and complexation with or-
ganic matter or argillaceous compounds. Thus, these features
enhance the vulnerability of the water resources in this area (Wun-
der and Johnson, 1995; Coxon, 2011).

Nitrogen-fertilisers are applied to vines in various forms,
including NOs, NH,4, urea (CO (NH;),), and must of grapes or com-
post (with addition of industrial wastes of vegetable or animal ori-
gin such as chicken manure). The NO5; concentrations in the La
Clape waters vary from 0 to 53 mg/L (Table 1, Fig. 3e). The greatest
NOs concentrations are observed in eight waters sampled at sites 3,
8 and 9. The PHREEQC modelling indicates excess Ca in these
waters. Finally, on the NO3 vs. Ca diagram, (Fig. 10), these waters
fall on a line (slope 1:2). This finding suggests the addition of N-fer-
tiliser in the form of Ca (NOs),H,0. Excess Ca often results from the
addition of CaO. However, the addition of CaO is unlikely in calcar-
eous environments. Nevertheless, with a NO3 concentration of
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Fig. 10. Plot of Ca vs. NO3 concentrations of La Clape groundwaters. Highlighted in
grey, dots of waters showing NO; excess (See Fig. 3c, 3e, 9a and 9b) fall on a
line corresponding to a NO3/Ca molar ratio of 1:2. This suggests an anthropogenic
input related to the overuse of Ca(NO)-HO fertiliser by vineyards.

55.79 mg/L, only one water sample exceeds the French guideline
(50 mg/L of NOs) for drinking waters. The S compounds that are
widely used in vine growing as fungicides (S and SO4) could ex-
plain some excess SO4 observed in three water samples from site
9 (Table 1, Fig. 3f). The greatest SO, concentration (221 mg/L)
found in the La Clape groundwater does not exceed the French
drinking water guideline (250 mg/L of SO,4). The highest NO5; and
SO, concentrations in the la Clape groundwaters are observed at
sites 3 and 9. These groundwater samples also show the highest
Br/Clmolar ratios, in agreement with an anthropogenic origin of
the positive Br/Clyoar anomaly as previously assumed in
Section 5.1.

The TDS of brackish groundwater in the La Clape massif ranges
from 855 to 1645 mg/L, which exceeds the French water guidelines
for irrigation (TDS > 800 mg/L) and for drinking (Cl > 200 mg/L and
Na > 150 mg/L). According to the Wilcox SAR classification method
(Wilcox, 1955; Younger and Casey, 2003), these waters pose a sig-
nificant risk of soil sealing if they are used for irrigation.

5.6. Occurrence of deep saline waters in coastal karst aquifers at a
regional scale

At a regional scale, the 37Sr/%Sr ratios of groundwater from
three coastal karst aquifers within upper Jurassic and lower Creta-
ceous limestones varied only slightly despite their different hydro-
geological environments. Near Balaruc, in the La Gardiole massif,
two karst spring waters show average Cl concentrations of
54mmol/L and 87Sr/%6Sr ratios ranging from 0.708490 to
0.708520 (Hébrard et al., 2006; this study, Table 2). At Balaruc,
the identified deep fossil thermal waters had Cl concentrations
ranging from 22 to 198 mmol/L with ®’Sr/®Sr ratios from
0.708496 to 0.708721, Aquilina et al., 2002). Finally, two karst
springs (Font Estramar and Fontdame) are located in the east-
ern Corbiéres massif SW of the study area, There, the spring
waters have high average Cl concentrations of 39 mmol/L and
34 mmol/L, respectively (Doerfliger et al.,, 2004; Hébrard et al.,
2006) and 87Sr/®6Sr ratios ranging from 0.70816 to 0.70865 (Ladou-
che and Doerfliger, 2004). In comparison, the La Clape massif
groundwater (groups B and C) shows Cl concentrations ranging
from 0.9 to 20.4 mmol/L and 37Sr/3®Sr ratios from 0.708300 to
0.708559. On the Sr mixing diagram (Fig. 11a), waters of all these
coastal karst aquifers fall on a RMT (Regional Mixing Trend). The
875r/86Sr ratio at the intercept (0.708472) is clearly lower than that
of current Mediterranean seawater. As the Fontdame spring
emerges in a littoral lagoon connected to the sea, superficial mix-
ing with lagoon water may affect the Fontdame groundwater.
Therefore, omitting the Fontdame data, the average Sr data of
groundwater from each karst massif plotted on a Sr mixing dia-
gram (Fig. 11b) fall on a regression line RML (R? = 0.99) with a y-
intercept of 0.708557. This finding suggests that the 8”Sr/26Sr value
of 0.708557 represents the mean Sr isotopic composition of deep
saline waters at a regional scale. These deep waters would result
from fossil seawater, which was introduced into the highly karsti-
fied massifs of the Gulf of Lion during and/or following the Flandri-
an transgression. Subsequently, the fossil seawater has evolved in
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Fig. 11. (a) Plotted on the Sr mixing diagram, saline groundwater and spring waters
of 3 karst aquifers located along the Gulf of Lion seashore, fall on a trend RMT (y-
intercept of 0.708472): (O) Balaruc, (+) Font Estramar, (+) Fontdame, (4) La
Gardiole karst springs, (¢) La Clape group C, (e) La Clape group B. Current seawater
(SW) and calcites of upper Jurassic and lower Cretaceous limestones (CL) are
reported for comparison. (b) On a Sr mixing diagram, the averages of Sr data for
Balaruc, La Clape (group B and C), and Font Estramar groundwater plot on a
regression line RML (y-intercept = 0.708557; R? = 0.99) (see text for further details).

the deep parts of the karst aquifers, due to water-rock interaction
with lower Cretaceous and upper Jurassic host limestones.

6. Conclusions

Three groups of groundwater were identified on the La Clape
karst massif, including poorly mineralised spring water (group
A), moderately mineralised groundwater (group B) and brackish
groundwater (group C). Spring waters of Ca-HCOs5 type evolved
to Na-Cl type for groundwater of groups B and C. The major ion
geochemistry of the group C waters reveals a mixing process be-
tween fresh karst water (group A) and a saline end-member such
as deep saline groundwater or current seawater. The Br/Cly,oar ra-
tios are close to the seawater value and do not support the hypoth-
esis of halite dissolution by interaction with Triassic evaporites.
Water-rock interaction with aquifer host dolomitic limestones
and/or limited contamination caused some dispersion regarding
the observed mixing trends in the binary diagrams of major ions
vs. CL

The O and H isotopic compositions indicate a meteoric origin of
the La Clape groundwater. However, the low mixing ratios of the
saline end-member with the shallow karst water prevented char-
acterisation of this end-member with these stable isotope tracers.
The Sr and Cl isotope data agreed with the assumption that the
salinity in the La Clape water results from the binary mixing of
shallow karst water and deep saline groundwater rather than cur-
rent seawater. The lack of correlation between the Cl concentra-
tions of groundwater and the distance from the coastline,
supports this assumption. PHREEQC modelling, based on calcite
dissolution at equilibrium in an open system followed by mixing
with Balaruc type deep saline water leads to a good agreement be-
tween observed Ca activities and modelled ones. Furthermore, con-
tamination leads to Ca (and NOs3) excesses.

The greater analytical capability of 3°Cl measurements has
greatly improved the potential of this isotopic tracer to identify
mixing processes. The Sr and Cl data (ionic and isotopic abun-
dances) allow calculating the mixing ratios of deep saline water
by considering binary mixing of shallow karst water and Balaruc

type deep saline groundwater. Calculated mixing ratios are coher-
ent for all the tracers that were used, and range from 3% and 16%
for the group C waters and from 0% and 3% for the group B waters.
For Sr isotope data, the assumption of mixing of fresh shallow karst
water with evolved deep saline water (as identified first in the Bal-
aruc region and now in the La Clape massif) can be extended to
other coastal karst outcrops along the Gulf of Lion.
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