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Guaranteed nonlinear estimation
using constraint propagation on sets

L. Jaulin  !, M. Kie¤er , I. Braems and E. Walter 

Abstract: Bounded-error estimation is the estimation of the parameter or state vector of a

model from experimental data, under the assumption that some suitably de�ned errors should

belong to some prior feasible sets.

When the model outputs are linear in the vector to be estimated, a number of methods are

available to enclose all estimates that are consistent with the data into simple sets such as

ellipsoids, orthotopes or parallelotopes, thereby providing guaranteed set estimates.

In the nonlinear case, the situation is much less developed and there are very few methods

that produce such guaranteed estimates. In this paper, the discrete-time problem is cast into

the more general framework of constraint satisfaction problems. Algorithms rather classical in

the area of interval constraint propagation are extended by replacing intervals by more general

subsets of real vector spaces. This makes it possible to propose a new algorithm that contracts

the feasible domains for each uncertain variable optimally (i.e., no smaller domain could be

obtained) and e¢ciently.

The resulting methodology is illustrated on discrete-time nonlinear state estimation. The state

at time k is estimated either from past measurement only or from all measurements assumed

to be available from the start. Even in the causal case, prior information on the future value

of the state and output vectors, due for instance to physical constraints, is readily taken into

account.

Keywords: bounded-error estimation, constraint propagation, CSP, identi�cation, interval

analysis, nonlinear estimation, observation, set estimation.

1 Introduction

In a linear context, many tools are available to estimate the parameter or state vector of a model

from experimental data. They can be classi�ed according to how they deal with uncertainty.

Some of them do not take explicitly into account the fact that the model is an approximation
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of reality and that the measurements are corrupted by noise. This is the case, for instance,

of Luenberger state observers [14] and of many adaptive schemes [13]. Other estimators, such

as maximum-likelihood estimators [9] or the ubiquitous Kalman �lter [7] [20], are based on a

statistical description of uncertainty, and assume that the measurement noise and state per-

turbations are realizations of random variables, with known statistical properties. A last group

of methods, known under the generic names of set-membership estimation or guaranteed esti-

mation or bounded-error estimation, see, e.g., [21], [18], [19], [15] and the references therein, is

based on the assumption that the uncertain variables all belong to known compact sets, and

attempts to build simple sets, such as ellipsoids, orthotopes or parallelotopes, guaranteed to

contain the vectors to be estimated.

In a nonlinear context, the methodology is far less developed, and still the subject of active

research even in the deterministic case [8]. When uncertainty is explicitly taken into account,

this is usually by resorting to linearization.  or parameter estimation, one may exploit the

asymptotic properties of maximum-likelihood estimators, but the validity of the results ob-

tained from a short data base is then questionable.  or state estimation, an extended Kalman

�lter [4], based on a linearization of the model around its trajectory is usually employed. This

linearization is inherently local and may fail to produce reliable estimates. It makes any statis-

tical interpretation of the covariance matrices computed by the algorithm questionable, because

the propagation of the statistical properties of the perturbations through the nonlinear system

is largely unknown. As far as set membership estimation is concerned, very few guaranteed

methods are available, most of them developed for parameter estimation. They are based on

branch-and-bound techniques (see, e.g., [16] for a signomial programming approach and [6] for

an interval computation approach). Amethod based on interval analysis to compute guaranteed

state estimates was proposed in [11] and [12].

The purpose of this paper is to present a new approach for the guaranteed estimation of the

parameter and/or state vector of a nonlinear discrete-time model in a bounded-error context.

Consider a nonlinear discrete-time system described by
(

x
 

= f
 

(x
   

;p;w
   

;u
   

)

y
 

= g
 

(x
 

;p;w
 

;u
 

)
k = 1; : : : ; ¹k; (1)

where k is the time index, x
 

is the state vector, y
 

is the output vector, u
 

is the input vector,

w
 

is the perturbation vector, p is a constant parameter vector and f
 

and g
 

are known

functions. The set of all variables involved in this problem is

V = fp;x
!

;w
!

;u
!

;x
 

;w
 

;u
 

;y
 

; : : : ;x
"

 

;w
"

 

;u
"

 

;y
"

 

g: (2)

We shall assume that there exist some unknown actual values; denoted by x!
 

;w!

 

;u!
 

;y!
 

and

p!, for x
 

;w
 

;u
 

;y
 

and p, such that (1) is satis�ed. This assumption will allow us to interpret
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the estimation problem as that of �nding reliable estimates for these actual values, but note

that it is not required for the application of the method.

The set-membership approach to be followed in this paper characterizes the uncertainty about

the actual value v of any given variable v 2 V by associating with v a domain V that contains

v . The set of all such domains is

D = fP; X
 

; W
 

; U
 

; X
!

; W
!

; U
!

; Y
!

; : : : ; X
"

 

; W
"

 

; U
"

 

; Y
"

 

g: (3)

When the actual value of a variable v is known exactly, V is the singleton fv g. When nothing

is known about v , V = R#$% .

A measurement v of a variable v 2 V provides an approximation of v . Let P
¡
R

#$% 

¢
be

the set of all subsets of R#$% . We shall call interpretation function associated with v, a set-

valued function Á
 

: R#$% ! P
¡
R

#$% 

¢
that satis�es v 2 Á

 

(v ). The set Á
 

(v ) is the

measurement uncertainty set. As soon as v is made available, the domain V for v can be

replaced by V \ Á
 

(v ). In (1), only the variables u
 

and y
 

are assumed to be measured.

Two situations will be distinguished:

² A causal context : at time k; the measurements are available up to time k only, i.e., the

available data are {u 
 

;u 
!

;y 
!

; : : : ;u 
 

;y 
 

}.

² A noncausal context : all measurements {u 
 

;u 
!

;y 
!

; : : : ;u 
 

;y 
 

; : : : ;u 
"

 

;u 
"

 

} are avail-

able from the start.

This distinction is similar to that between estimating and smoothing Kalman �lters. Even in a

causal context, some prior information may be available on variables before any measurement

is collected.  or instance, physical constraints may provide upper and lower bounds on some

components of vector variables, which can then be taken into account in the de�nition of

the corresponding domains. The measurements and the constraints associated with the 2¹k

equations given by (1) will be used to reduce the domains and thus the uncertainty on the

variables, which can be formulated as a generalized set estimation problem.

The basic step of this generalized set estimation problem is to �nd the smallest domains bP; bX
 

;

cW
 

; bU
 

; bX
!

; cW
!

; bU
!

; bY
!

; : : : ; bX
"

 

; cW
"

 

; bU
"

 

and bY
"

 

such that the following implication is satis�ed
8
>>>>>>>><
>>>>>>>>:

(1) hold true and

p 2 P

x
 

2 X
 

; : : : ;x
"

 

2 X
"

 

w
 

2 W
 

; : : : ;w
"

 

2 W
"

 

u
 

2 U
 

; : : : ;u
"

 

2 U
"

 

y
!

2 Y
!

; : : : ;y
"

 

2 Y
"

 

)

8
>>>>>><
>>>>>>:

p 2 bP
x
 

2 bX
 

; : : : ;x
"

 

2 bX
"

 

w
 

2 cW
 

; : : : ;w
"

 

2 cW
"

 

u
 

2 bU
 

; : : : ;u
"

 

2 bU
"

 

y
!

2 bY
!

; : : : ;y
"

 

2 bY
"

 

(4)
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Since bV ½ V, bV can now replace V as a more accurate domain for v. The operation thus

performed can be written concisely as the instruction

D := E(D); (5)

The generalized set estimator based on (5) can then be sketched as follows:

Initialization set D as speci�ed by available information;

1 reduce all domains by D := E(D);

2 wait for a new measurement v ;

3 in D, replace V by V \ Á
 

(v ) ;

4 go to Step 1;

Note that in a noncausal context, all measurements are given at the initialization. Therefore,

the estimation process stops after the �rst execution of Step 1.

Set parameter estimation, parameter tracking, state estimation and joint state and parameter

estimation can all be seen as special cases of generalized set estimation. Moreover, the problem

to be solved at Step 1 is itself a special case of a Set Constraint Satisfaction Problem (SCSP),

to be presented in Section 2 in a more general context. In Section 3, constraint propagation

techniques will be used to derive new set algorithms able to solve a large class of SCSPs, which

includes the problem of Step 1. This general approach will be applied in Section 4 to causal

and noncausal state estimation, and Section 5 will present an illustrative example.

2 Set Constraint Satisfaction Problems

This section presents some basic de�nitions and algorithms that are rather classical in the area

of constraint propagation [3], [2], [5], but here these de�nitions and algorithms are extended to

the case where intervals are replaced by more general subsets of real vector spaces.

Let V = fv
 

; : : : ;v
 

g be a �nite set of vector variables with dimensions d
 

2 N; : : : ; d
 

2 N

and domains V
 

½ R
!

 ; : : : ;V
 

½ R
!

 . The global space is the set R! = R
!

 £ ¢ ¢ ¢ £R
!

 , where

d = d
 

+ ¢ ¢ ¢ + d
 

: The global domain is the set V = V
 

£ ¢ ¢ ¢ £ V
 

: Of course, V ½ R
!. The

subscript i of a variable v
"

and its domain V
"

will be called their index.

Let v
"

and v
#

be two elements of V. A binary constraint C
"$#

over v
"

and v
#

is a subset of

R!

! £ R!

" : Often this constraint can be put in the form

C
"$#

=
©
(~v

"

; ~v
#

) 2 R
!

! £ R
!

" j ~v
#

= f
#

(~v
"

)
ª
: (6)
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We shall then refer to it as C
 !"

: v
"

= f
"

(v
 

). In this paper, we shall only consider binary

constraints. Note that n-ary constraints with n > 2 can always be decomposed into a set of

binary constraints, so this is not limitative.

A Set Constraint Satisfaction Problem (SCSP) is a 3-upleH = (V;D; C), where V = fv
 

; : : : ;v
#

g

is a �nite set of variables, D = fV
 

; : : : ;V
#

g is the set of their domains and C is a �nite set of

binary constraints relating variables of V.

Example 1 Consider three real numbers x; y and z related by the constraint z = x + y .

Assume that z is known to belong to the interval [¡3; 1]. This situation can be represented by

an SCSP H = (V ;D; C), with V = fv
!

; v
 

g ;D = fV
!

;V
 

g ;C = fC
!! 

g ; v
!

= (x y) ; v
 

=

z;V
!

= R ;V
 

= [¡3; 1] and C
!! 

: z = x + y : }

A point solution of H is a n-uple (~v
!

; : : : ; ~v
#

) 2 V ½ R$ such that for all constraints C
 !"

2 C;

the pair (~v
 

; ~v
"

) 2 C
 !"

. The set of all point solutions of H is denoted by S (H). This set will be

called the global solution set. In Example 1, S = f(x; y; z) jz = x + y and z 2 [¡3; 1]g ; which

is a cylinder with radius 1.

The variable v
 

is consistent in H (or H-consistent) if

8~v
 

2 V
 

;9(~v
!

2 V
!

; : : : ; ~v
  !

2 V
  !

; ~v
 "!

2 V
 "!

; : : : ; ~v
#

2 V
#

) j (~v
!

; : : : ; ~v
#

) 2 S (H) : (7)

In Example 1, neither v
!

nor v
 

is H-consistent. If the domain V
!

is replaced by the disk

centered at 0 and with a radius equal to 0:5, denoted by Disk(0; 0:5), then v
!

becomes H-

consistent. If V
 

is replaced by the interval [0; 0:25], then v
 

becomes H-consistent. Note that

if v
 

is H-consistent and if V
 

is replaced by any subset of V
 

, then v
 

is still consistent in the

new SCSP.

If I = fi
!

; : : : ; i
%

g is a subset of the set of indices f1; : : : ; ng ; H! = (V !;D!; C !), where V ! ,©
v

 

 

; : : : ;v
 

 

ª
, D! ,

©
V

 

 

; : : : ;V
 

 

ª
and C ! , fC

 !"

2 C such that i 2 I and j 2 Ig, is called a

subSCSP of H. It is trivial to show that if v
 

2 V ! is H-consistent, it is also H!-consistent:

The ith projected domain S
 

= ¼
 

(H) onto the variable v
 

is the largest domain S
 

½ V
 

such

that if we replace V
 

by S
 

in H; v
 

becomes H-consistent. It can also be de�ned by the

orthogonal projection of the global solution set S (H) onto R
$

! ; i.e.,

~v
 

2 ¼
 

(H)

, 9 (~v
!

2 V
!

; : : : ; ~v
  !

2 V
  !

; ~v
 "!

2 V
 "!

; : : : ; ~v
#

2 V
#

) j (~v
!

; : : : ; ~v
#

) 2 S (H) .
(8)

Note that if v
 

is H-consistent, V
 

= ¼
 

(H). In Example 1, ¼
!

(H) = Disk(0; 1) and ¼
 

(H) =

[0; 1].
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H is an elementary SCSP if V is a singleton fv
 

g. Therefore, C = ; and V
 

is necessarily

H-consistent.

Two SCSPs H = (V;D; C) and H = (V  ;D ;C  ) are equivalent, denoted by H ´ H , if V =

V  ;C = C  and S(H) = S(H ). We shall say that H is a contraction of H if H ´ H and V
 

½ V 

 

for any index i. To contract an SCSP is to replace it by one of its contractions. H is minimal

if it admits no contraction of itself but itself.

H is the optimal contraction of H if H ´ H and H is minimal. We shall write H = E(H)

or sometimes D = E(D) as in (5), since H and H can only di¤er by their domains. The n

domains V 

 

of the optimal contraction satisfy V
 

 

= ¼
 

(H) ; i 2 f1; : : : ; ng:

Consider two variables v
 

and v
!

related by a constraint C
 "!

: The local contraction operator of

the domain V
 

with respect to the variable v
!

is de�ned as

½
!

(V
 

) = f~v
 

2 V
 

j9~v
!

2 V
!

; (~v
 

; ~v
!

) 2 C
 "!

g : (9)

Note that ½
!

(V
 

) ½ V
 

. The new SCSP obtained by replacing V
 

by V
 

 

= ½
!

(V
 

) is thus a

contraction of the former SCSP.  igure 1 illustrates this de�nition. If the constraint C
 "!

is

given by C
 "!

: v
!

= f
!

(v
 

), then

½
!

(V
 

) = V
 

\ f! 

!

(V
!

) ; (10)

½
 

(V
!

) = V
!

\ f
!

(V
 

) : (11)

In Example 1, if f (x; y) = x + y ; then

½
!

(V
 

) = [¡3; 1] \ f
¡
R
 

¢
= [¡3; 1] \ [0;1[= [0; 1];

½
 

(V
!

) = R
 \ f ! ([¡3; 1]) = Disk (0; 1) :

 igure 1: Local contraction operator
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The Waltz algorithm [22], [3] is one of the basic algorithms that can be used to perform

contractions of SCSPs. Its principle is to choose any constraint in C and to contract the domains

of the two associated variables v
 

and v
!

using the local contraction operators ½
 

and ½
!

. This is

continued until no constraint in C is able to contract any domain. Unfortunately, the resulting

SCSP may be non-minimal, because the algorithm may come to a deadlock, as illustrated by

the following example.

Example 2 Consider the SCSP H = (V;D;C), where

V = fv
 

; v
 

; v
!

g ;

D = fV
"

= [¡1; 1] ;V
 

= [¡1; 1] ;V
!

= [¡1; 1]g ;

C = fC
"" 

: v
 

= ¡v
"

;C
 "!

: v
!

= ¡v
 

;C
!""

: v
"

= ¡v
!

g:

(12)

Although the only solution is v
"

= v
 

= v
!

= 0, the Waltz algorithm is unable to contract the

domains V
 

. }

The graph of any given SCSPH can be constructed as follows. To each variable v
 

; is associated

a node and to each binary constraint C
 "!

is associated an arc between the nodes v
 

et v
!

. The

graph associated with Example 2 is depicted on  igure 2. The failure of the Waltz algorithm

to contract this SCSP is due to the fact that its graph contains a cycle.

 igure 2: Graph of a SCSP with a cycle

When the graph is a tree, i.e., a connected graph without cycles, the Waltz algorithm converges

to the optimal contraction of H. This result is a direct consequence of Theorem 6 in Section 3,

which corresponds to a more e¢cient contraction algorithm.

3 Contraction algorithms

When the graph of the SCSP is a tree, the Waltz algorithm produces an optimal contraction,

but not very e¢ciently because the constraints are taken into account in arbitrary order. In
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this section, we propose a new algorithm to contract an SCSP whose graph is a tree, which also

produces an optimal contraction, but in a much more e¢cient way. It extends to more general

domains the propagation-retropropagation algorithm proposed in [1], and is based on the next

two theorems.

3.1 Propagation and retropropagation theorems

Theorem 1 (propagation theorem): Let H
 

= (V
 

;D
 

; C
 

) and H
!

= (V
!

;D
!

; C
!

) be two SCSPs

with all their variables distinct. Let v
  

2 V
 

and v
! 

2 V
!

be two variables related by the

constraint C
  "! 

. The new SCSP H = (V;D;C) ; where

V = V
 

[ V
!

; D = D
 

[ D
!

; C = C
 

[ C
!

[ fC
  "! 

g;

is such that if v
  

is H
 

-consistent and v
! 

is H
!

-consistent, then ¼
  

(V;D;C) = ½
! 

(V
  

) and

¼
! 

(V;D;C) = ½
  

(V
! 

) : }

Proof : Because of the symmetry of the problem, it su¢ces to prove that ¼
  

(H) = ½
! 

(V
  

).

Let v
  

; : : : ;v
 #

be the p¡1 variables of V
 

distinct from v
 !

and v
! 

; : : : ;v
!$

be the q¡1 variables

of V
!

distinct from v
!!

. Since v
 !

is H
 

-consistent and v
!!

is H
!

-consistent; ¼
 !

(H
 

) = V
 !

and

¼
!!

(H
!

) = V
!!

: Now, ~v
 !

2 ¼
 !

(H) , ~v
 !

2 V
 !

and 9~v
  

2 V
  

; : : : ; 9~v
 #

2 V
 #

; 9~v
!!

2 V
!!

;

: : : ; 9~v
!%

2 V
!%

such that all constraints of C are satis�ed, i.e.,

~v
 !

2 ¼
 !

(H)

,

8
><
>:

(i) 9~v
  

2 V
  

; : : : ;9~v
 #

2 V
 #

j (~v
 !

; : : : ; ~v
 #

) 2 S (H
 

)

(ii) 9~v
!!

2 V
!!

; : : : ;9~v
!%

2 V
!%

j

(
(~v

 !

; ~v
!!

) 2 C
 !"!!

(~v
!!

; : : : ; ~v
!$

) 2 S (H
!

)

(13)

Since V
 !

= ¼
 !

(H
 

), (i) is equivalent to ~v
 !

2 V
 !

: Since V
!!

= ¼
!!

(H
!

), (ii) is equivalent to

9~v
!!

2 V
!!

j (~v
 !

; ~v
!!

) 2 C
 !"!!

: The equivalence (13) becomes

~v
 !

2 ¼
 !

(H) ,

(
~v
 !

2 V
 !

9~v
!!

2 V
!!

j (~v
 !

; ~v
!!

) 2 C
 !"!!

)
, ~v

 !

2 ½
!!

(V
 !

) : (14)

}

 igure 3 illustrates how the two former SCSPs H
 

and H
!

related by the constraint C
 !"!!

form

the new SCSP H.

Corollary 2 Let H
!

= (V
!

;D
!

; C
!

) be an SCSP and v
 

be a new variable with domain V
 

related to a variable v
!!

2 V
!

by the constraint C
 "!!

. In the SCSP H = (V;D; C) ; where

V = V
!

[ fv
 

g ; D = D
!

[ fV
 

g ; C = C
!

[ fC
 "!!

g; (15)

if v
!!

is H
!

-consistent then ¼
 

(H) = ½
!!

(V
 

) :

8



 igure 3: The three SCSPs involved in the propagation theorem

Proof : Consider the elementary SCSP H
 

= (V
 

;D
 

;C
 

) where V
 

= fv
 

g;D
 

= fV
 

g and

C
 

= ;: Theorem 1 implies that ¼
 

(H) = ½
! 

(V
 

) : }

Theorem 3 (retropropagation theorem): Let H
 

= (V
 

;D
 

; C
 

) and H
!

= (V
!

;D
!

;C
!

) be two

SCSPs with all their variables distinct. Let v
  

2 V
 

and v
! 

2 V
!

be two variables related by

the constraint C
  "! 

. Consider the SCSP H = (V;D; C) :

V = V
 

[ V
!

; D = D
 

[ D
!

; C = C
 

[ C
!

[ fC
  "! 

g: (16)

If v
  

is H-consistent and v
! 

is H
!

-consistent, then

¼
! 

(H) = ½
  

(V
! 

) : (17)

}

Proof : Since H
 

is a subSCSP of H and since v
  

is H-consistent; v
  

is also H
 

-consistent:

 rom Theorem 1, ¼
! 

(V;D;C) = ½
  

(V
! 

) : }

3.2 Algorithms  ALL and CLIMB

This section describes two e¢cient contraction algorithms that can be used to contract optimally

an SCSP H, when its graph is a tree.  all, based on the propagation theorem, scans the tree

from its leaves down to its root and Climb, based on the retropropagation theorem, scans it

from its root up to its leaves. It will be shown that a single execution of  all followed by a

single execution of Climb leads to the optimal contraction of H.

Remark 1 Any SCSP containing cycles can be transformed into an equivalent SCSP whose

graph is a tree. It su¢ces for that to group all variables responsible for the existence of a cycle

into a single vector variable. }
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To present these two algorithms, some notations concerning trees will be needed.

3.2.1 Trees

The trees to be considered are not directed. A rooted tree is obtained after selecting any node

of a given tree T as its root. By analogy, with the forest variety, we shall say that the root is

the lowest node of the tree. A node v
 

is over a node v
!

(or equivalently v
!

is below v
 

) if the

subtree T
 

of T with root v
 

contains v
!

. Consider a tree T ; with root v
 

. By removing v
 

, one

obtains q subtrees T
"

 

; : : : ; T
"

 

of T . These q subtrees are the sons of T . A tree with no son is

a leaf. If T is a leaf, we shall write T = v
 

. Otherwise, we shall write T = v
 

!
¡
T
"

 

j : : : jT
"

 

¢
.

Each son of T will be rooted in a natural way by choosing its node that is connected to v
 

as

its root.

 igure 4: Example of a tree with eight nodes

Example 3 When v
 

is chosen as its root, the tree T of  igure 4 will be denoted by

T = v
 

! (v
 

! (v
!

jv
"

jv
#

) jv
$

! (v
%

jv
&

)) : (18)

Its two sons are T
 

= v
 

! (v
!

jv
"

jv
#

) and T
$

= v
$

! (v
%

jv
&

) : T has seven subtrees, �ve of

which are leaves. }

A tree SCSP (or TSCSP) H is an SCSP, the graph of which is a tree. A TSCSP can be rooted

by selecting one of its node v
"

as its root. Only rooted TSCSPs will be considered from now

on, and we shall write H =(V ;D; C;v
"

) to denote a TSCSP with root v
"

.. All notions (root,

leaves, sons: : : ) existing for trees extend to TSCSPs in a natural way.

Let H = (V ;D; C;v
"

) be a TSCSP and v
#

be an element of V. Let H
#

= SubTree(H;v
#

) be

the subTSCSP of H with root v
#

associated with all nodes that are over v
#

. A variable v
#

is

up-consistent in H if it is consistent in H
#

= Subtree(H;v
#

). H is up-consistent if all of its

nodes are up-consistent in H.

10



3.2.2 Algorithm  ALL

An up-consistent contraction of any TSCSPH = (V;D; C;v
 

) can be computed by the following

recursive algorithm.

 all(inout: H)

1 if H is a leaf return;

2 i := index(root(H)); q := number of sons of H;

3 for all sons H
!

 

of H, k 2 f1; : : : ; qg

4  all(H
!

 

);

5 j
"

:= index(root(H
!

 

));

6 V
 

:= ½
!

 

(V
 

) ;

7 endfor.

Theorem 4 :  all generates an up-consistent contraction of any TSCSP.

Proof : The proof is in two parts. We shall �rst prove, by induction on k, that if  all(H
 

 

)

makes H
 

 

up-consistent at Step 4, then H is up-consistent after completion of  all. Denote

by H
!

(k) be the subtree of H, with the same root v
!

and with k sons H
 

 

, H
 

 

; : : : ;H
 

 

; in

common with H, k 2 f1; : : : ; qg:  or k = 1; from Corollary 2, H
!

(1) is up-consistent after

Step 6 (take a = i and b = j
 

). Assume now that H
!

(k) is up-consistent.  rom Theorem 1

(take H
"

for the SCSP associated with H
!

(k) and b = j
# !

), H
!

(k + 1) is up-consistent after

the (k + 1)th execution of Step 6. Therefore H = H
!

(q) is up-consistent at Step 7. We shall

now complete the proof by induction. If H is a leaf, it is already up-consistent and the theorem

holds true. Assume that all sons H
 

!

; : : : ;H
 

!

of H have been made up-consistent by  all.

 rom the �rst part of the proof,  all(H) then makes H up-consistent. }

Example 4 Consider the TSCSP H = (V;D; C;v
!

) associated with the tree (18).  all exe-

cutes the following sequence of set operations

V
"

: = V
"

\ ½
#

(V
"

) \ ½
$

(V
"

) \ ½
%

(V
"

) ;

V
&

: = V
&

\ ½
'

(V
&

) \ ½
(

(V
&

) ;

V
!

: = V
!

\ ½
"

(V
!

) \ ½
&

(V
!

) ;

which makes H up-consistent. The variable v
!

is then also H-consistent, i.e., V
!

= ¼
!

(H). }

11



3.2.3 Algorithm CLIMB

Let H = (V;D; C;v
 

) be an up-consistent TSCSP. This consistency may result from an execu-

tion of  all(H). We shall now give an algorithm to compute E (H) ; the minimal contraction

of H. The principle of Climb is to propagate the H-consistency of v
 

, from the root up to the

leaves. One step of Climb is now described. Consider an H-consistent variable v
 

and one of

its sons v
!

. Cut the arc between the nodes v
 

and v
!

(see  igure 5). Two TSCSPs are thus

generated. One of them is H
!

= (V
!

;D
!

; C
!

;v
!

) = SubTree(H;v
!

). Since H is up-consistent,

v
!

is H
!

-consistent.  rom Theorem 3 (where a1 = i; b1 = j), ¼
!

(H) = ½
 

(V
!

) : This reasoning

can be applied to all nodes of H, from its root to its leaves. The following recursive algorithm

is thus obtained.

 igure 5: Illustration of the retropropagation step

Climb(inout: H)

1 i := index(root(H));

2 for all sons H
!

of H

3 j := index(root(H
!

));

4 V
!

:= ½
 

(V
!

);

5 Climb(H
!

);

6 endfor.

Theorem 5 Climb computes the optimal contraction of any up-consistent TSCSP. }

Proof : The proof is by induction. Since H = (V ;D; C;v
 

) is up-consistent, v
 

is H-consistent.

Assume now that the root v
 

of the current subtreeH
 

; is H-consistent. Consider a son v
!

of v
 

.

After Step 4, from Theorem 3 (where a1 = i and b1 = j), v
!

is H-consistent. After completion

of the algorithm, all variables are thus H-consistent: }

12



Example 5 Consider again the TSCSP H associated with the tree given by (18). Assume

that H has been made up-consistent by  all as in Example 4. Climb generates the following

sequence of set operations: V
 

:= V
 

\ ½
!

(V
 

) ; V
"

:= V
"

\ ½
 

(V
"

) ; V
#

:= V
#

\ ½
 

(V
#

) ;

V
$

:= V
$

\ ½
 

(V
$

) ; V
%

:= V
%

\ ½
!

(V
%

) ; V
&

:= V
&

\ ½
%

(V
&

) ; V
'

:= V
'

\ ½
%

(V
'

).  rom

Theorem 5, H is now minimal. }

3.2.4 Algorithm  ALL-CLIMB

 all and Climb can be combined to compute the minimal contraction of a given TSCSP H.

The resulting algorithm is:

 all-Climb(inout: H)

1  all(H);

2 Climb(H).

Theorem 6  all-Climb returns the optimal contraction of any TSCSP. }

Proof : Denote by H(0) the initial TSCSP, by H(1) the TSCSP after Step 1 and by H(2) the

TSCSP after Step 2.  rom Theorem 4, H(1) is up-consistent and equivalent to H(0).  rom

Theorem 5, H(2) is minimal and equivalent to H(0). }

4 Application to state estimation

To facilitate understanding, we shall consider the autonomous discrete-time system:

(
x
 

= f
 

(x
  !)

y
 

= g
 

(x
 

)
k = 1; : : : ; ¹k; (19)

where x
 

2 R is the state vector and y
!

2 R" is the output vector. It is a special case of the

problem de�ned by (1), which could be treated in its general form along the same lines. The

functions f
!

and g
!

may be nonlinear. At time k, the state estimator can use the measurement

y 
!

; : : : ;y 
!

in the causal case, and y 
!

; : : : ;y 
!

; y 
!(!

; : : : ;y 
)

!

in the noncausal case. The sets X
!

and Y
!

are deduced from prior information, or from the measurements y 
!

via the interpretation

function Á
 

. In absence of speci�c prior information, the prior sets X
*

; : : : ;X
)

!

are all taken as

R and the prior sets Y
!

; : : : ;Y
)

!

are all taken as R+,- .

13



The SCSP H = (V ;D; C) associated with the state estimator is de�ned by

V = fx
 

; : : : ;x
!

 

;y
"

; : : : ;y
!

 

g ;

D = fX
 

; : : : ;X
!

 

;Y
"

; : : : ;Y
!

 

g ;

C =
©
x

 

= f
 

(x
  "); ` = 1; : : : ; ¹k

ª
[
©
y

 

= g
 

(x
 

); ` = 1; : : : ; ¹k
ª
:

(20)

Its graph is represented on  igure 6. Despite the presence of arrows, this graph is not ori-

ented. The arrows are only meant to indicate the direction along which the associated function

operates.

 igure 6: Graph associated with the autonomous system.

In the causal case, the generalized set estimator presented in Section 1 specializes into the

following algorithm, where CSE stands for Causal State Estimator.

CSE

Input: X
 

; : : : ;X
!

!

;Y
"

; : : : ;Y
!

!

;

Initialization:

1 for ` := 1 to ¹k; {X
 

:= X
 

\ f
 

(X
  ") \ g "

 

(Y
 

); g;

2 for ` := ¹k down to 1; {Y
 

:= g
 

(X
 

); X
  " := X

  " \ f "
 

(X
 

) ; g;

3 k := 1;

Iteration k

4 wait for y 
!

;

5 Y
!

:= Y
!

\ Á
 

(y 
!

) ;

6 X
!

:= X
!

\ g "
!

(Y
!

);

7 for ` := k + 1 to ¹k; {X
 

:= X
 

\ f
 

(X
  "); Y 

:= g
 

(X
 

); g;

8 for ` := k down to 1; fY
 

:= g
 

(X
 

); X
  " := X

  " \ f "
 

(X
 

) ; g;

9 if
¡
k < ¹k

¢
fk := k + 1; go to Step 4g:

CSE is a specialization of the generalized set estimator presented in Section 1. It performs an

optimal contraction during the initialization and after each measurement collection as stated

by the following theorem.

Theorem 7 After Step 2 and after each execution of Step 8 of CSE, H is minimal. }

14



Proof : Step 1 corresponds to  all(H), where H = (V;D;C;x
 

 

) and Step 2 corresponds to

Climb(H).  rom Theorem 6, these two steps produce the optimal contraction of H. At Step 5,

an external contraction of H takes place. After Step 5, H is thus no longer minimal, but it

is still up-consistent, if we consider y
 

as the new root of H. Steps 6, 7 and 8 correspond to

Climb(H). After Step 8, H is minimal from Theorem 5. }

In many practical situations, we are not interested in all variables but only in a few of them.

In the context of state estimation, at time k, we may only want to estimate x
 

and y
 

. De�ne

the RCSE algorithm, for Recursive CSE, by replacing Steps 6, 7 and 8 in CSE by

6 X
 

:= X
 

\ f
 

(X
  !) \ g !

 

(Y
 

);

7 Y
 

:= Y
 

\ g
 

(X
 

);

Note that Step 8 does not exist anymore inRCSE. The following theorem shows that, although

much simpler and much more e¢cient, RCSE provides the same accuracy on x
 

and y
 

as CSE.

Theorem 8 After Step 2 and after Step 7 of RCSE, x
 

and y
 

are H-consistent. }

Proof : The consistency of x
 

and y
 

after Step 2 is a direct consequence of the minimality of

H (see Theorem 7). Assume that Theorem 8 is true for k¡1. Consider x
 

as the root of H. (i)

Because H
 

   

= SubTree(H;x
   ) is up-consistent before Step 4, it remains so after Step 5.

(ii) Because H
 

  !

= SubTree(H;x
 ! 

) is up-consistent after Step 2, it is also up-consistent

after Step 5. (iii) Because H
!

 

= SubTree(H;y
   ) is a leaf, it is up-consistent.  rom (i), (ii)

and (iii) and from Theorem 1, after Step 6 of RCSE, H is up-consistent and thus its root x
 

is H-consistent.  rom Theorem 3, y
 

is H-consistent after Step 7. }

Remark 2 RCSE is similar to the algorithm proposed in [11], [12]. The main di¤erence is that

in RCSE the initialization steps make it possible to take into account some prior information

on the future state or output vectors. Moreover, the use of the CSP theory made it possible to

derive Theorem 8 in a very simple way. }

Consider now the noncausal case. Assume that the ¹k domains Y
 

; k 2 f1; : : : ; ¹kg are available.

The minimal contraction of H is computed using  all-Climb, where the root is chosen as

x
"

 

. It can be translated, for this special problem, into the following NCSE algorithm, for Non

Causal State Estimator

15



NCSE

Input: X
 

; : : : ;X
!

 

;Y
"

; : : : ;Y
!

 

;

Initialisation:

1  or k := 1 to ¹k; Y
 

:= Y
 

\ Á
 

(y 
 

) ;

2  or k := 1 to ¹k; {X
 

:= X
 

\ f
 

(X
  ") \ g "

 

(Y
 

); g;

3  or k := ¹k down to 1; {Y
 

:= g
 

(X
 

); X
  " := X

  " \ f "
 

(X
 

) ; g;

Step 2 corresponds to  all and Step 3 corresponds to Climb. Note that the contracted domain

Y
 

contains the actual output vector y 

 

with a better accuracy than the former domain.

5 Test-case

Consider the nonlinear system

8
><
>:

Ã
x
"

(k)

x
#

(k)

!
= 3

Ã
sin (x

"

(k ¡ 1)+x
#

(k ¡ 1))

cos (x
"

(k ¡ 1)+x
#

(k ¡ 1))

!

y (k) = jx
"

(k) j

with k 2 f1; : : : ; 10g: (21)

 or x (0) = (0 0) , the values x (k) and y (k) ; k 2 f1; : : : ; 10g; have been generated by

simulation of this system. The measurements y! (k) have then been obtained by adding a

bounded noise to the actual output y (k):

y! (k) = y (k) + n(k);

where n(k) is a random variable with a uniform distribution in the interval [¡0:1; 0:1]. The

measurement uncertainty sets are taken as

Y(k) = Á
 $ %

(y! (k)) = y! (k) + [¡0:1; 0:1]: (22)

Note that the condition

y (k) 2 Y(k) (23)

is satis�ed for all k: The domains obtained for x(k) by RCSE and NCSE are depicted in  igure

7. The total computing time for RCSE and NCSE is less than one minute on a Pentium 133

MHz personnal computer. The frames of all sub�gures are [¡4; 4]£ [¡4; 4]. The initial domains

given to the estimators are X(0) = ¢ ¢ ¢ = X(10) = R# and Y(1) = ¢ ¢ ¢ = Y(10) = R. The �rst

sub�gure is entirely grey, which means that RCSE is unable to provide any information about

x(0) (X(0) = R#), contrary to the non causal estimator. The last two sub�gures, for k = 10,

are identical because both estimators have now processed the same information.
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 igure 7: Causal and noncausal set observations

Remark 3 The computer implementation of  all and Climb requires a representation for

sets and an implementation of the local contraction operator ½
 

(). A domain V is represented by

a subpaving (union of boxes) that encloses it. In our context, the local contraction operator ½
 

()

corresponds either to the image f(V) of a set V by a vector function f or to the reciprocal image

f  (W) of a set W by a vector function f . The computation of a guaranteed enclosure of f(V)

can be performed by the algorithm ImageSP [11] and a guaranteed enclosure of f  (W) can be

performed by the algorithm Sivia [6]. These two algorithms are based on interval analysis [17].

6 Conclusions and perpectives

Nonlinear parameter and state estimation has been cast into the general framework of SCSPs.

The notion of SCSP is itself a generalization to the vector case of that of ICSP (Interval

17



Constraint Satisfaction Problem) rather classical in the area of arti�cial intelligence [5]. The

main di¤erence between SCSPs and ICSPs is that ICSPs handle intervals whereas SCSPs handle

subsets of R : This made it possible to obtain two powerful theorems (the propagation and the

retropropagation theorems) that are not true in an ICSP context. Existing algorithms [1],

have been generalized to SCSPs whose graphs are trees, under the names of  all and Climb.

Contrary to what happens for ICSPs, we have shown that a single execution of  all followed

by a single execution of Climb was su¢cient to produce an optimal contraction.

In the special case of causal state estimation, the algorithms proposed in [11] and [12], can be

interpreted in the framework of the more general  all-Climb algorithm.

We have chosen in this paper not to put emphasis on computer implementation, but this is

of course a critical issue, addressed in detail in [10]. The source code in C++ Builder 4, and

an executable program for IBM-compatible PCs corresponding to the example are available on

request.
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