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Abstract: This paper deals with the minimax parameter estimation of nonlinear parametric

models from experimental data. Taking advantage of the special structure of the minimax

problem, a new e¢cient and reliable algorithm based on interval constraint propagation is

proposed. As an illustration, the ill-conditioned problem of estimating the parameters of a

two-exponential model is considered.

1 Introduction

This paper deals with estimating the unknown parameters of a model from given experimental

data y
 

; k 2 f1; : : : ; k
 !"

g collected on a given system [16]. The available parametric model

structure is denoted byM(:), ~p = (p
#

; p
$

; : : : ; p
!

) 2 R! is the parameter vector to be estimated

and ~y is the vector of all collected data. Each model M(~p) generates a vector output ~y
"

(~p)

homogeneous to the data vector ~y. The parameter vector ~p is assumed to belong to the prior

feasible box [~p]. De�ne the error between the model output and the data by ~f(~p) , ~y
"

(~p)¡ ~y.

A minimax approach for this problem aims at minimizing the criterion

j(~p) , max
  !##$$$# 

 !"

"

jf
 

(~p)j; (1)
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where f
 

(~p) denotes the kth coordinate function of ~f(~p). The minimum j of j(~p) is the real

number

j , min
!"! !"!

j(~p) = min
!"! !"!

max
 !""#$$$# 

 !"

#

jf
 

(~p)j; (2)

and the set of minimizers, which is often a singleton, is de�ned by

S , j$"(j ) = argmin
!"! !"!

j(~p): (3)

This problem is known as a discrete Chebyshev problem and can be regarded as a special case

of the general discrete minimax problem. Applications can be found for instance in sensor

fusion [12], [13] or in decision theory [4] where one should minimize the maximum probability

of unacceptable error or risk. Let us illustrate this problem by a simple example which will be

used later in the paper.

Example 1 The problem of �nding the smallest disk D which contains n points A
"

; : : : ; A
%

of R# is a minimax problem. It is trivial to show that the center of the solution disk is the

minimizer of the criterion

j (p
"

; p
#

) = max
 !""#$$$#%#

½

q

(p
"

¡ x
&

 

)# + (p
#

¡ y
&

 

)#

¾

(4)

and its radius is the minimum j . If, for instance, n = 3 and the three points are given by

A
"

(0; 4), A
#

(0;¡4), A
$

(4; 0) ; the minimizer is p = (0; 0) and the minimum is j = 4. Note

that j is not di¤erentiable in p . Figure 1 gives a representation of the isocriteria of j (p). }

Since j(~p) may be non di¤erentiable, because of the presence of the max operator in its expres-

sion, a traditional gradient type method cannot be applied e¢ciently. Other existing methods

are essentially local and based on successive linear programming or nonlinear programming

techniques (see e.g. [18]). In this paper, a global and guaranteed approach will be considered

to solve the discrete Chebyshev problem. To the best of my knowledge, such a reliable approach

has only been considered for monodimensional problems (dim p = 1) in [19]. The proposed

technique is based on interval constraint propagation and will be shown to solve e¢ciently

ill-conditioned minimax estimation problems in a reliable way.

The paper is organized as follows. Section 2 presents the notion of Cartesian domain for

representing sets. Section 3 introduces a special class of sets, namely the tree sets, for which

the smallest outer Cartesian domain can be computed easily. A new algorithm for characterizing

the solution set S is given in Section 4. This algorithm uses interval constraints propagation

and the notions presented in Sections 2 and 3. Section 5 illustrates the e¢ciency of the algorithm

on the minimax estimation of a two-exponential model and a comparison with some classical

local minimization methods is given. A notation table can be found at the end of the paper.
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Figure 1: Isocriteria of the criterion involved in Example 1

2 Cartesian domains

A domain of R is a union of intervals of R. Interval computation can easily be extended to

domains (see, e.g., [10], where domains are called tolerances).

When dealing with intervals, two di¤erent types of pessimisms may appear during the compu-

tation:

² The dependency pessimism [14]. It is introduced when a variable occurs more than once

in the expression to be evaluated. It can be reduced, for instance, by using the centered

form.

² The hull pessimism. It is due to the fact that non continuous or multiform functions

may be involved. The hull pessimism is illustrated by the two following examples and

can be eliminated by using domains instead of intervals.

Example 2 : De�ne the sign function: sign(x) = 1 if x ¸ 0 and ¡1 otherwise. Consider the

continuous function f(x) =sqr(sign(x)), where sqr denotes the square function. Since x occurs

only once in the expression of f(x), no dependency pessimism exists. The image by f of the

interval [x] = [¡1; 1] is f([¡1; 1]) = 1. Nevertheless, an interval evaluation yields

[f
 

]([¡1; 1]) = sqr(sign([¡1; 1])) = sqr([¡1; 1]) = [0; 1] (5)

 

 ! "#"$"!%  &' (  !"#$%&' %!()#$&( ! $(' )(*" $+," %)(! +!" -$(."/ 0! %)-1 1"!1"2 !  ! 3(! &" 1""! (

1"%4*(#5"6 75!3%-+!/
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Figure 2: Cartesian hull of a disconnected set S

and is thus pessimistic. A domain evaluation yields

[f
 

]([¡1; 1]) = sqr(sign([¡1; 1])) = sqr(f¡1; 1g) = sqr(f¡1g) [ sqr(f1g) = f1g:

which is equal to the image f([¡1; 1]): }

Example 3 : The interval propagation approach (see [6],[8]), which will be used in this paper,

handle multiform functions such as sin  . Domains have to be used instead of intervals to avoid

the hull problem . For instance, sin
¡

sin  ([0:5; 2])¢ = [¡1; 1] if we use interval arithmetic and

[0:5; 1] if we use a domain arithmetic!. Note that from a domain point of view, sin  ([0:5; 1]) is
the union of an in�nite number of intervals and is usually combined with an intersection with

a bounded domain. }

A Cartesian domain of R is the Cartesian product of n domains of R: The Cartesian hull of

a set S of R is the Cartesian product [S] of the n canonical projections ¼
!

(S), i 2 f1; : : : ; ng
of S onto the n canonical axis. Cartesian domains will be written with bracketed calligraphic

capital letters. On Figure 2, a set S 2 R! with two connected components is represented in

grey. The associated Cartesian hull [S] is the union of the two boxes represented on the picture.

Note that when S is connected, its Cartesian hull is the smallest box that contains it.

Let A, B and C be three subsets of R . The Cartesian intersection of A and B is de�ned by

A u B , [A \ B] : (6)

 

 !"

  
#$ %& '( )"*(+ %&&* !" $  (% %#(&+(%!,  (" (- ." %#! /$/(+0  

  
  ! *("&%( %#(  (% !!""  !"! #  $#

!

1#(,2 %#$% %#(  (% /+&/(+%3  

 

 

  
  !

!

%  !  $%! 4(* 5 !",( "##$% &' % "##$% ('6 -
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Figure 3: Illustration of the properties of the Cartesian intersection

As we shall see latter, A u B is generally easier to get than A \ B. The following properties

hold:

(i) A ½ [A] ( [ ] is pessimistic)

(ii) A u B = B u A ( u is symmetric)

(iii) [A \ B \ C] ½ (A u B) u C ( u is pessimistic)

(iv) A ½ B and A ½ C ) A ½ (B u C) (narrowing property)

(7)

The proofs of all these properties are trivial. Remark also that u is not associative, i.e.,

9A 2 R ; 9B 2 R ; 9C 2 R such that (A u B) u C 6= A u (B u C) as illustrated by Figure

3. On this �gure, A u (B u C) has two disjoint components. One is the box [A \ B \ C]
and the other one is the cross-hatched box. Figure 3 illustrates also the property (iii), i.e.,

[A \ B \ C] ½ (A u B) u C. For simplicity of notation, a chain of Cartesian intersections, that

has to be evaluated from the left to the right, will be written without parenthesis. For instance,

A u B u C means (A u B) u C.

Remark 1 To �nd the Cartesian domain [S] of S = A \ B \ C; by using only the operator

u, a classical idea coming from constraint propagation [17] can be used: compute the following

sequence of Cartesian domains: [S] (1) = R u A, [S] (2) = [S] (1) u B, [S] (3) = [S] (2) u C,
[S] (4) = [S] (3)uA, : : : Because of the narrowing property (see (iv), formulae (7)), the sequence

[S] (k) is always an enclosure of S and converges (sometimes in a �nite numbers of steps) to

a Cartesian domain which contains (sometimes is equal to) [S] : In our example, [S] (5) =

A u B u C u A u B is equal to [S], but often, the loop converges to a Cartesian domain larger

than [S] : }

In the following section, we present a special class of sets for which the Cartesian hull can be

computed easily.
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3 Cartesian hull of tree sets

A function f is tree decomposable (or is a tree function for short) if (i) in the expression

of f each variable p
 

; : : : ; p
 

appears at most once and (ii) only the operators +; ¤;¡; =,

and elementary functions like exp, sin, cos, sqr, : : : are involved. For instance, the function

f(~p) , p
 

exp(p
!

)+5 sin(p
"

) is a tree function. A tree function can be represented by a syntactic

tree where the nodes are operators or elementary functions and the leaves are either one of the

p
 

�s or a constant number. Tree functions are also known in the literature as functions with a

totally decomposable tree structure decomposition (or TDTSD function [1], [2]). A tree set is

a set which can be written as

S = [P] \ f  (Y); (8)

where (i) f : R! ! R; ~p ! f(~p) is a tree function, (ii) [P] is a Cartesian domain and

(iii) Y is a domain of R.

Interval techniques make it possible to obtain the Cartesian hull of a tree set in a very e¢cient

way. Consider, for instance, the set S given by (8) where f(~p) , p
 

exp(p
!

) + 5 sin(p
"

). To

obtain the projections of S on the coordinate axis (see, e.g., [3]), it su¢ces to decompose the

relation between y and the p
 

�s into primitive constraints as follows

y = p
 

exp(p
!

) + 5 sin(p
"

) ,

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

y = x
 

+ x
!

x
 

= p
 

x
"

x
"

= exp (p
!

)

x
!

= 5x
#

x
#

= sin (p
"

)

(9)

where the x
 

�s are intermediate variables. Note that each x
 

appears exactly once on the left

and once on the right. Each p
 

appears exactly once on the right and y appears exactly once on

the left. To compute, for example, the third component S
"

of [S], transform the set of primitive

constraints in order to have y on the right and p
"

on the left:
8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

x
!

= y ¡ x
 

x
 

= p
 

x
"

x
"

= exp (p
!

)

x
#

= x
!

=5

p
"

= sin  (x
#

)

, p
"

= sin  µy ¡ p
 

exp (p
!

)

5

¶

: (10)

Then

S
"

= ¼
"

¡

[P] \ f  (Y)
¢

= P
"

\ sin  µY ¡ P
 

¤ exp (P
!

)

5

¶

; (11)
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where ¼
 

is the projection operator onto the third axis. Using domains instead of intervals for

representing the possible values for the variables handled makes it possible to obtain the exact

projections of the tree set and not only an enclosure, i.e., the domain arithmetic is not hull

pessimistic. The following example illustrates this point.

Example 4 Consider the tree set

S = fp 2 P = [¡¼; ¼]j sqr(sin(p)) 2 [1=2; 2]g; (12)

where sqr is the square function. The decomposition into primitive constraints is

y = sqr(sin(p)) ,
(

y = sqr(x
!

)

x
!

= sin (p)
,

(

x
!

= sqr !(y)
p = sin ! (x

!

)

Let us stress once more that sqr !(y) and sin ! (x
!

) have to be interpreted in a set theoretic

sense and should not be confused with
p
y and arcsin (x

!

). For instance,
p
4 = 2 whereas

sqr !(4) = f¡2; 2g. We get

X
!

= sqr !(Y) = sqr !([1=2; 2]) = h

¡
p
2;¡1=

p
2
i

[
h

1=
p
2;
p
2
i

; (13)

S = sin ! (X
!

) \ [¡¼; ¼] (14)

= sin !(³h¡p
2;¡1=

p
2
i

[
h

1=
p
2;
p
2
i´

\ [¡¼; ¼] (15)

= [¡3¼=4;¡¼=4] [ [¼=4; 3¼=4]: (16)

Using intervals instead of domains gives

X
!

= sqr !(Y) = sqr !([1=2; 2]) = h

¡
p
2;
p
2
i

; (17)

P = sin ! (X
!

) \ [¡¼; ¼] = [¡¼; ¼]; (18)

which contains S but [¡¼; ¼] is not the smallest interval containing S (which is [¡3¼=4; 3¼=4]).}

Remark 2 This section has presented a method to compute e¢ciently the Cartesian hull of a

tree set. In general, the Cartesian intersection of two tree sets is not easy to obtain. Never-

theless, computing the Cartesian intersection between a Cartesian domain [Q] and a tree set

S = [P ] \ f !(Y) amounts to �nding the Cartesian hull of the tree set ([Q] \ [P]) \ f !(Y).
The reason is that

[Q] u
¡

[P] \ f !(Y)
¢

=
£

[Q] \ [P ] \ f !(Y)¤ = £

([Q] \ [P]) \ f !(Y)¤ : (19)

Therefore, in the procedures, presented in the next section, only Cartesian intersections between

Cartesian domains and tree sets will be allowed. }
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4 Minimax algorithm

This section presents the new algorithm MiniMax. This algorithm, presented on Table 1,

generates a list of boxes S that contains the set of all global minimizers S given by (3) and

computes the optimum j given by (2). All f
 

�s are assumed to be tree functions. [~p
!

] is the

initial search box, assumed large enough to contain S : Q is a First-In-First-Out list of boxes.

MiniMax �rst calls a local minimization procedure Cross at Step 3 to decrease the upper

bound j for j . j is a global variable of all procedures. The procedure Narrow, called

at Step 4, attemps to reduce the current box [~p] without losing any global minimizer, i.e.,

the resulting box [~q] satis�es [~q] \ S = [~p] \ S . The algorithm Cross and two versions of

Narrow, based on the notions of Cartesian intersections and interval constraint propagation,

are given in the following subsections.

MiniMax([~p
!

])

1 Q := f[~p
!

]g; S := ;; j := 1;

2 if Q 6= ;, put the �rst element of Q into [~p] else go to 8;

3 j := Cross(Center([~p]); j );

4 [~q] := Narrow([~p] ; j );

5 If [~q] = ;, go to 2;

6 If width([~q]) · "; fS := S [ f[~q]g; Go to 2;g
7 Bisect [~q] and store the two resulting boxes at the end of Q. Go to 2;

8 Remove all boxes [~q] of S that are such that j ([~q]) > j .

Table 1: Algorithm that minimizes the criterion (1) inside the box [~p
!

]

Remark 3 In this paper, local may have two di¤erent meanings. We distinguish the locality

with respect to the constraints ( c-locality) and the locality with respect to the parameter space ( s-

locality). For instance, we shall say that p is a s-local minimizer if there exists a neighborhood

N of p such that 8~p 2 N , j(~p) ¸ j(p ). When dealing with a constraint satisfaction problem

(CSP, see, e.g., [3]), we shall speak about a c-local approach when the constraints are considered

one by one and a c-global approach when all constraints are considered together. For instance,

Remark 1 in Section 2 presented a c-local procedure to get an outer approximation of the

Cartesian hull of the intersection of three sets. }

4.1 The s-local research algorithm CROSS

An iterative algorithm to minimize the criterion (1) (s-locally), as required by Step 3 of Min-

iMax, is now given. This algorithm has been presented for the �rst time in [11]. Let ~p be

8



Figure 4: Local research from ~p along the �rst direction

a parameter vector, i a given direction in the parameter space and j a real number which

satis�es j · j · j(~p) (if such a j is not available, take j = j(~p)). In order to perform one

s-local minimization iteration from ~p along the direction i, de�ne the following sets:

L
 

(~p) , f~q 2 R!j9q
 

2 R; ~q = (p
!

; : : : ; p
  !

; q
 

; p
  !

; : : : ; p
!

)g; (20)

S
"

(j ) , f~pj jf
"

(~p)j · j g = f !
"

¡

[¡j ; j ]
¢

; (21)

S(j ) ,
"

 !"

\

""!

S
"

(j ) = f~p 2 R!j8k; jf
"

(~p)j · j g = f~p 2 R!jj(~p) · j g; (22)

Q
 

(~p; j ) , L
 

(~p) \ S(j ) = L
 

(~p) \ S
!

(j ) \ : : : \ S
"

 !"

(j ): (23)

A representation of the sets L
 

(~p), S(j ), Q
 

(~p; j ) is given in Figure 4, in a 2 dimensional

context and for i = 1. Since L
 

(~p) is a line parallel to the ith axis, it is trivial to prove that

Q
 

(~p; j ) , L
 

(~p) \ S
!

(j ) \ : : : \ S
"

 !"

(j ) = L
 

(~p) u S
!

(j ) u : : : u S
"

 !"

(j ): (24)

Therefore, when the f
"

�s are tree functions, Q
 

(~p; j ) is easily obtained by computing k
#$%

Cartesian hulls of k
#$%

tree sets (see Remark 2 of Section 3). Moreover, any point ~q inside

Q
 

(~p; j ) satis�es j(~q) · j and can thus be used to decrease the upper bound j along the

direction i.

The algorithm presented on Table 2 takes advantage of this idea to decrease the upper bound

j for j!. · > 0 is a small real number used to stop the procedure when the improvement is

not signi�cant enough.

9



Cross(~p; j )

1 |̂ := j ;

2 For all i 2 f1; : : : ; ng
3 Q

 

(~p; j ) := L
 

(~p) \ S(j );
4 If Q

 

(~p; j ) = ;, next i;
5 Select a point ~q inside Q

 

(~p; j );

6 If j(~q) · |̂, q̂ := ~q; |̂ := j(~q);

7 EndFor

8 if j ¡ |̂ > ·; {j := |̂; ~p := q̂; Go to 2;}

9 return j :

Table 2: A s-local algorithm to decrease the upper bound j of j 

Comments: Except for atypical situations, the set Q
 

(~p; j ), computed at Step 3, is a segment

or a �nite union of aligned segments. The center of the largest segment of Q
 

(~p; j ) is generally

chosen at Step 5. The situation Q
 

(~p; j ) = ; (Step 4) can only happen when j(~p) > j , i.e.,

when the loop is run for the �rst time. If the improvement on the upper bound is su¢cient

(j ¡ |̂ > ·), the loop is run again from q̂. }

Example 5 Run Cross on Example 1 with ~p = (2; 8) and j = 6: The three sets S
!

(j ),

S
"

(j ), S
#

(j ) are the lightgrey disks represented on Figure 5. The darkgrey set is S (j ) : The

loop is �rst run for i = 1; and at Step 3, Cross computes Q
!

(~p; j ) as follows:

Q
!

(~p; j ) = L
!

(~p) \ S (j )

= L
!

(~p) \ S
!

(j ) \ S
"

(j ) \ S
#

(j )
 !"#

= f(L
!

(~p) u S
!

(j )) u S
"

(j )g u S
#

(j ) :

(25)

Now, L
!

(~p) u S
!

(j ) can be computed by using the method proposed on Section 3:
p

(p
!

¡ x
!

 

)" + (p
"

¡ y
!

 

)" 2 [0; 6]

,
p

p"
!

+ (p
"

¡ 4)" 2 [0; 6] , p"
!

+ (8¡ 4)" 2 [0; 36]

, p"
!

+ 16 2 [0; 36] , p"
!

2 [0; 20] , p
!

2 [¡
p
20;

p
20]:

(26)

Therefore, L
!

(~p) u S
!

(j ) = [¡
p
20;

p
20] £ [8; 8] : The same reasoning, applied to compute

(L
!

(~p) u S
!

(j )) u S
"

(j ) ; leads to the empty set. Therefore,Q
!

(~p; j ) = ;: The horizontal

direction i = 1 is thus eliminated and the loop is now run for the vertical direction i = 2: We

get

Q
"

¡

~p; j 
¢

= L
"

(~p) \ S
¡

j 
¢

= [2; 2]£ [¡1:657; 1:657] : (27)

When the loop is left and if the center of Q
"

(~p; j ) is chosen, we get q̂ = (2 0)$ and j =
p
20.

Cross is then run again from ~p = q̂. }
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Figure 5: An iteration of the cross algorithm

4.2 A c-local narrowing procedure

Given a box [~p] ; the procedure, to be presented now, computes a subbox [~z] of [~p] as small as

possible such that [~z] ¾ [~p]\S(j ), as required by Step 4 of MiniMax. An idealized algorithm

would be to compute the Cartesian domain of the set

[~p] \ S(j ) = [~p] \ S
!

(j ) \ S
"

(j ) \ ¢ ¢ ¢ \ S
 

 !"

(j ): (28)

Unfortunately, this operation is generally impossible to perform directly. The idea of a c-local

narrowing algorithm, given in Table 3, is to take the constraints one by one. We compute

[P ] (1) = [~p] u S
!

(j ), [P ] (2) = [P] (1) u S
"

(j ), : : : ; [P ] (k
#$%

) = [P ] (k
#$%

¡ 1) u S
 

 !"

(j ):

Then, we loop until we are unable to narrow the enclosure signi�cantly. In Table 3, h
 

([Q] ; [P ])

is the Hausdor¤ distance between sets [Q] and [P ] associated with the L
 

-norm and quanti�es

the reduction. If the reduction is smaller than a given real number ´ > 0; we do not try to

narrow the current Cartesian domain [P] once more. Because u is pessimistic (see formula (7)),

the current [P] is only a superset of [~p] u S (j ).

11



c-LocalNarrow([~p] ; j )

1 [P ] := [~p] ;

2 [Q] := [P ];

3 For all k 2 f1; : : : ; k
 !"

g; [P ] := [P ] u S
 

(j );

4 If h
 

([Q] ; [P ]) ¸ ´, go to 2;

5 Return the smallest box which contains [P];
Table 3: A c-local interval-constraint-propagation algorithm

Example 6 Let us run c-LocalNarrow on Example 1 with [~p] = [0; 11] £ [¡8; 8]. Step

3 generates three boxes [P] (k) ; k 2 f1; 2; 3g such that [P ] (3) ½ [P ] (2) ½ [P ] (1) ½ [P ] as

illustrated by Figure 6. Boxes are shown by two of their extreme vertices. Note that in general,

the [P] (k)�s are not boxes but Cartesian domains. }

Figure 6: Illustration of the c-local narrowing procedure

4.3 A c-global narrowing procedure

This subsection presents a c-global approach to narrow the current box at Step 4 of the algo-

rithm MiniMax. Thus, all constraints are now considered together and not one by one. The

main motivation is that when dealing with a system of n equations of n unknown variables,

the interval Newton method ([14], [9]) can narrow [~p] in a very e¢cient way. Unfortunately, it

12



cannot be used when the number of equations is higher than the number of unknown variables

(generally the case when dealing with estimation problems).

The approach considered here consists of linearizing the system of nonlinear equations into a

system of linear interval equations, the solution set of which encloses the solution set of the

initial nonlinear system. The principle of the interval linearization considered here is to bracket

the function ~f (~p) ; inside [~p] , by two parallel a¢ne functions

A:~p+~b · ~f (~p) · A:~p+~b : (29)

To �nd such an a¢ne enclosure of ~f over [~p], one can use the mean-value theorem:

8~p2 [~p] ; ~f(~p) 2 ~f(~p
 

) +

"

d~f

d~p

#

([~p])(~p¡ ~p
 

) with ~p
 

= center ([~p]) : (30)

Then, it can easily be shown that ~f(~p) 2 A:~p+
h

~b
i

where

A =

Ã

d~f

d~p
(~p

 

)

!

; (31)

h

~b
i

= ~f(~p
 

)¡ d~f

d~p
(~p

 

):~p
 

+

Ã"

d~f

d~p

#

([~p])¡ d~f

d~p
(~p

 

)

!

([~p]¡ ~p
 

): (32)

Figure 7 shows an a¢ne enclosure a:p+ [b] = !

"

p+ [!
#

; 1] of a real function f over [p] = [0; 2]:

1

1

Figure 7: A¢ne enclosure of a real function

Denote by ~j$ the vector whose components are all equal to j$. Since

~p 2 S
¡

j$
¢

, ~f (~p) 2 [¡~j$;~j$] , 9¹j 2 [¡~j$;~j$]j~f (~p) = ¹j (33)

) 9¹b 2
h

~b
i

; 9¹j 2 [¡~j$;~j$]jA:~p+¹b = ¹j (34)

, 9¹b 2
h

~b
i

; 9¹j 2 [¡~j$;~j$]jA:~p = ¹j ¡ ¹b (35)

, A:~p 2 [¡~j$;~j$]¡
h

~b
i

=
h

¡~j$ ¡~b$;~j$ ¡~b i ; (36)
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a vector ~p of S (j ) ; is necessarily a solution of the system of interval linear equations:

A:~p =
h

¡~j ¡~b ;~j ¡~b i (37)

which is in general overdetermined. The smallest cube [~z] containing the solution of (37) can be

computed by linear programming (see also [15]). The box [~p] \ [~z] encloses the set [~p] \ S (j )

as required by Step 4 of MiniMax.

5 Application

This section illustrates on a two-exponential estimation problem the superiority of our approach

over classical methods. All computations have been performed on a Pentium 133MHz. Consider

a model where the relation between the parameter vector ~p and the model output is given by

y
 

(~p; t) = p
 

exp(p
!

t) + p
"

exp(p
#

t): (38)

Note that, since a permutation of p
 

with p
"

and of p
!

with p
#

does not a¤ect the model output,

the model is not globally identi�able (see [16]). Therefore, any reliable identi�cation method

should lead to symmetrical solutions. Assume that 10 data points y(1); : : : ; y(10) have been

generated as follows

y(k) = 20 exp(¡0:8 t
!

)¡ 10 exp(¡0:2 t
!

) + n(k);

n(k) = 0:1 sin(k); (unknown noise) (39)

t
!

=
1

4
k!; k 2 f1; : : : ; 10g. (known)

These data are displayed on Figure 8.

When the initial vector and the options are well chosen, the function leastsq of the toolbox

optim of Matlab �nds in 1.2 seconds a local solution vector of the least square criterion and

the local procedure minimax of the toolbox optim [5], �nds in about 5 seconds a solution equal

to 0:0657: These two Matlab procedures are local, diverge for some bad initial vectors, are

sensitive with respect to the initial vector, do not provide any guaranty on their results (even

s-locally), often stop because of some ill-conditioning and never detect that the problem has two

solutions. By contrast, the approach advocated here is able to solve s-globally and e¢ciently

the minimax problem. For " = 0:05 (in MiniMax), · = 0:001 (in Cross), ´ = 0:001 (in

c-LocalNarrow) and [p
$

] = [¡60; 60]£ [¡1; 0]£ [¡60; 60]£ [¡1; 0]; MiniMax �nds in 1:7

seconds and after 109 bisections the guaranteed enclosure of j 2 [0:0653; 0:0657]: The set S%

(which encloses S ) consists of 44 boxes and has two symmetrical disconnected components.

If now MiniMax calls both the c-local narrowing and the c-global narrowing procedures, the
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Figure 8: Data associated with the two-exponential test-case

enclosure j 2 [0:0654; 0:06567] is found in 1:9 seconds and after 101 bisections. For this test-

case, the improvement produced by the c-global narrowing procedure is marginal. Nevertheless,

since this procedure makes it possible to avoid some bisections, we can hope that it may decrease

the computing time when dealing with problems of higher dimensions or when the nonlinearity

is not as important as for our test-case.

6 Conclusion

A new algorithmMiniMax for solving nonlinear discrete minimax problems has been presented.

MiniMax has been shown to be very e¢cient and leads to guaranteed results. It combines

a new local research procedure to decrease the upper bound on the solution with a pruning

procedure based on interval constraint propagation. On a two-exponential estimation problem,

it has been shown that our reliable algorithm was able to compete (even from a computing-time

viewpoint) with optimized Matlab procedures.

In further researches, the MiniMax algorithm could be improved by using more sophisticated

local research algorithm (see [5], [7]) and extended to deal with nontree functions (by decompo-

sition of each constraint into primitive tree constraints). Moreover, the e¢ciency of the c-global

narrowing procedure remains to be studied.

The reason why engineers rely on least-square criteria almost systematically is that for linear

models, least-square estimation is equivalent to solving a linear system of equations and by

extension, they use least-square criteria even when they deal with nonlinear models. Now, for

some class of nonlinear problems, minimax estimation has been shown to be easier to solve in an

e¢cient and reliable way than least-square estimation. As a result, when dealing with nonlinear

�tting data problems, without any ideas on the noise distribution, the minimax criterion should

15



sometime be preferred over classical least-square criteria, because it allows a fast and reliable

global optimization.

Software: The algorithm Minimax has been implemented with Borland-C++ Builder 3.0 to

solve the test-case. The source programs and the associated libraries are available on request.
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Notation table

[S] Cartesian hull of the set S: See Section 2.

A u B Cartesian intersection of two sets. See (6).

j(~p) criterion to be minimized. See (1).

j minimum value for j(~p): See (2).

j current upper bound for j .

f
 

(~p) kth error function.

~p parameter vector to be estimated.

S set of all global minimizers. See (3).

S (j ) set of all ~p such that for all k 2 f1; : : : ; k
 !"

g; jf
 

(~p) j · j#:

S# set of boxes which encloses S :

~y data vector.

~y
 

(~p) vector of model outputs.
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