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Model Referene Control for Timed Event Graphs in Dioids
B. Cotteneau�, L. Hardouin, J.L. Boimond, J.L. FerrierLaboratoire d'Ing�enierie des Syst�emes Automatis�es,62 av. Notre-Dame du La, 49000 ANGERS, FRANCE.Tel: (33) 2 41 36 57 33Fax: (33) 2 41 36 57 35.AbstratThis paper deals with feedbak ontroller synthesis for Timed Event Graphs in dioids. Wedisuss here the existene and the omputation of a ontroller whih leads to a losed-loopsystem whose behavior is as lose as possible to the one of a given referene model and whihdelays as muh as possible the input of tokens inside the (ontrolled) system. The synthesispresented here is mainly based on residuation theory results and some Kleene star properties.Keywords: Disrete Event Systems, Timed Event Graphs, Dioid, Residuation Theory,Feedbak Synthesis.
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1 IntrodutionTimed Event Graphs (TEG) onstitute a sublass of timed Petri nets of whih eah plae has exatlyone upstream and one downstream transition. It is well known that the timed/event behavior ofa TEG, under the earliest funtioning rule1, an be expressed by linear relations over some dioids(Baelli et al., 1992) (De Shutter, 1996). Strong analogies then appear between the lassial linearsystem theory and the (max,+)-linear system theory. In partiular, the onept of ontrol is wellde�ned in the ontext of TEG study. It refers to the �ring-ontrol of the TEG input transitions inorder to reah desired performane (see for instane (Cofer & Garg, 1996) (Takai, 1989)). In the(max,+) literature, an optimal ontrol for TEG exists and is proposed in (Cohen et al., 1989)(Menguyet al., 2000). For a given referene input, this open-loop struture ontrol yields the latest input�ring date in order to obtain the output before the desired date.This paper aims to transpose some losed-loop ontrol strutures to TEG. More preisely, we fouson ontroller synthesis suh as output feedbak ontroller, state feedbak ontroller or output feedbakon state ontroller. The ontroller synthesis is done in order that the ontrolled system will behaveas lose as possible to a given referene model. Furthermore the proposed ontrollers allow delayingas muh as possible the token input inside the TEG.Appliations of these ontrollers are possible within the framework of prodution management.Indeed, TEG are well adapted to represent a lass of manufaturing systems whih present onlydelays and synhronization phenomena (Ayhan & Wortman, 1999). Therefore, in the manufaturingontext our ontrollers allow modifying the dynamis of a system (prodution line or manufaturingworkshop) aording to a given referene model and delaying as muh as possible the raw partsinput into the system. The latter property ontributes to dereasing the work-in-proess amountwhih is a permanent onern for the just-in-time prodution.In the next setion, we reall some theoretial results from the (max,+) literature and introduethe algebrai foundations. Setion 3 is devoted to reall some elements of TEG representation overpartiular dioids. The problem of ontroller synthesis is stated and solved in setion 4. Setion 5aims to present an illustrative example.2 Elements of Dioid and Residuation Theories2.1 Dioid TheoryWe �rst reall in this setion some notions from the dioid theory. The reader is invited to onsult(Baelli et al., 1992) for a omplete presentation.De�nition 1 (Dioid) A dioid is a set D endowed with two inner operations denoted � and 
.The sum is assoiative, ommutative, idempotent (8a 2 D; a� a = a) and admits a neutral elementdenoted ". The produt is assoiative, distributes over the sum and admits a neutral element denotede. The element " is absorbing for the produt.1i.e. a transition is �red as soon as it is enabled. 2



De�nition 2 (Order Relation) An order relation an be assoiated with a dioid D by the followingequivalene: 8a; b 2 D; a � b () a = a� b.De�nition 3 (Complete Dioid) A dioid D is omplete if it is losed for in�nite sums and if theprodut distributes over in�nite sums too.Example 1 (Zmax dioid) Set Z= Z[f�1;+1g endowed with the max operator as sum and thelassial sum + as produt is a omplete dioid, usually denoted Zmax, of whih " = �1 and e = 0.The following theorem allows solving ertain impliit equations de�ned over omplete dioids.Theorem 1 Over a omplete dioid D, the impliit equation x = ax � b admits x = a�b as leastsolution, where a� =Li2N ai (Kleene star operator) with a0 = e.Notation 1 The Kleene star operator, over a omplete dioid D, will be sometimes represented bythe following mapping K : D ! Dx 7! Li2N xi:The following theorem realls some lassial formul� involving Kleene star mapping.Property 1 Let D a omplete dioid and a; b 2 D.(a�)� = a� (1)a�a� = a� (2)a(ba)� = (ab)�a: (3)2.2 Residuation TheoryThe residuation theory provides, under some assumptions, optimal solutions to inequalities suh asf(x) � b, where f is an order-preserving mapping de�ned over ordered sets. Some theoretial resultsare realled below. Complete presentations are given in (Blyth & Janowitz, 1972) (Baelli et al.,1992).De�nition 4 (Isotone mapping) A mapping f de�ned over ordered sets is isotone if a � b )f(a) � f(b).De�nition 5 (Residual and residuated mapping) Let f : E ! F an isotone mapping, where(E ;�) and (F ;�) are ordered sets. Mapping f is said residuated if for all y 2 F , the least upperbound of subset fx 2 Ejf(x) � yg exists and lies in this subset. It is then denoted f ℄(y). Mappingf ℄ is alled the residual of f . When f is residuated, f ℄ is the unique isotone mapping suh thatf Æ f ℄ � Id and f ℄ Æ f � Id; (4)where Id is the identity mapping respetively on F and E.Theorem 2 ((Baelli et al., 1992)) Let f : E ! F where E and F are omplete dioids ofwhih bottom elements are respetively denoted "E and "F . Then, f is residuated i� f("E) = "F and8A � E f(Lx2A x) =Lx2A f(x). 3



Corollary 1 Mappings x 7! ax and x 7! xa de�ned over a omplete dioid D are both residuated.Their residuals are usually denoted respetively x 7! a Ænx and x 7! xÆ=a in (max,+) literature.proof: aording to def.3, if D is a omplete dioid then the produt distributes over in�nite sumsand " is absorbing whih satis�es the requirement of th.2. �Some lassial results onerning produt residual are given in the following theorem.Theorem 3 ((Baelli et al., 1992)) Mappings x 7! a Ænx and x 7! xÆ=a verify the following prop-erties: a Æn[ax℄ � x [xa℄Æ=a � x (5)a[a Ænax℄ = ax [xaÆ=a℄a = xa (6)[ab℄ Ænx = b Æn[a Ænx℄ xÆ=[ba℄ = [xÆ=a℄Æ=b (7)[a Ænx℄b � a Æn[xb℄ b[xÆ=a℄ � [bx℄Æ=a (8)a�x = a� Æn[a�x℄ xa� = [xa�℄Æ=a� (9)Theorem 4 Let D a omplete dioid and A 2 Dp�n. Then, A ÆnA 2 Dn�n andA ÆnA = (A ÆnA)�: (10)proof: see (Max Plus, 1991) for another proof. First, aording to (5), A ÆnA � e, where e 2 Dn�nis the neutral element for matrix produt. Moreover, aording to (6), A = A(A ÆnA). Therefore,we have A ÆnA = A Æn[A(A ÆnA)℄. Furthermore, thanks to (8), we an show that A Æn[A(A ÆnA)℄ �A ÆnA 
 A ÆnA. We thus obtain the following inequality e � (A ÆnA)2 � A ÆnA; and more generally8n 2 N, e � (A ÆnA)n � A ÆnA. Therefore, we verify e �Ln2N(A ÆnA)n � A ÆnA (i.e. (A ÆnA)� � A ÆnA)whih �nally leads to equality sine, aording to the dioid order de�nition (def.2) and the Kleenestar de�nition (th.1), we also have (A ÆnA)� = e�A ÆnA� � � � � A ÆnA. �2.3 Mapping restritionIn this subsetion, we address the problem of mapping restrition and its onnetion with theresiduation theory. In partiular, we show that the Kleene star mapping, whih an be shown to benot residuated, beomes residuated as soon as its odomain is restrited to its image.De�nition 6 (Restrited mapping) Let f : E ! F a mapping and A � E. We will denotefjA : A ! F the mapping de�ned by fjA = f Æ IdjA where IdjA : A ! E; x 7! x is the anonialinjetion. Identially, let B � F with Imf � B. Mapping Bjf : E ! B is de�ned by f = IdjB Æ Bjf ,where IdjB : B ! F; x 7! x is the anonial injetion.4



De�nition 7 (Closure mapping) An isotone mapping f : E ! E de�ned on an ordered set E isa losure mapping if f � Id and f Æ f = f .Remark 1 Aording to (1), mapping K is a losure mapping sine a� � a and (a�)� = a�.Proposition 1 Let a losure mapping f : E ! E . Then, Imf jf is a residuated mapping whoseresidual is the anonial injetion IdjImf : Imf ! E; x 7! x.proof: aording to (4), Imf jf is residuated if there exists a mapping g suh that Imf jf Æ g � Idand g Æ Imf jf � Id, where identity mappings are respetively identity on Imf and on E. By settingg = IdjImf , we both verify Imf jf Æ IdjImf = Imf jfjImf = Id (identity on Imf) sine f Æ f = f , andIdjImf Æ Imf jf = f � Id (by def.7). �Corollary 2 Mapping ImKjK is a residuated mapping whose residual is (ImKjK)℄ = IdjImK.proof: the proof is diret sine K is a losure mapping. �Remark 2 We an state from or.2 that x = a� is the greatest solution to inequality x� � a�.Atually, this greatest solution ahieves equality.3 TEG desription on dioids3.1 Transfer funtionWe reall that TEG an be seen as linear disrete event dynamial systems by using some dioidalgebras (Cohen et al., 1989) (Baelli et al., 1992). For instane, by assoiating with eah transitionx a \dater" funtion fx(k)gk2Z, in whih x(k) is equal to the date when whih the �ring numberedk ours, it is possible to obtain a linear state representation in Zmax. As in onventional systemtheory, output fy(k)gk2Z of a SISO TEG is then expressed as a onvolution of its input fu(k)gk2Zby its impulse response2 fh(k)gk2Z.Analogous transforms to z-transform (used to represent disrete-time trajetories in lassialtheory) an be introdued for TEG. Indeed, one an represent a dater fx(k)gk2Z by its -transformwhih is de�ned as the following formal power series: X() =Lk2Zx(k)k. Variable  may also beregarded as the bakward shift operator in event domain (formally, x(k) = x(k�1)). Consequently,one an express TEG behavior over the dioid of formal power series in one variable  and oeÆientsin Zmax. This dioid is usually denoted ZmaxJK in literature.For instane, onsidering the TEG drawn in solid blak lines in �g.2 (without taking aount ofthe grey ars), daters x1, x2 and x3 are related as follows over Zmax:x3(k) = 3
 x1(k � 1)� 8
 x2(k)� 2
 x3(k � 1):2whih is the ouput due to an in�nity of input �rings at date zero (Max Plus, 1991).
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Their respetive -transforms, expressed over ZmaxJK, are then related as:x3() = 3x1()� 8x2()� 2x3():Consequently, for this TEG, we an obtain the following representation over ZmaxJK:8<: X = AX � BUY = CX (11)with A = 0BBB�2 " "" 3 "3 8 21CCCA ; B = 0BBB�e "" e" "1CCCA ; X = 0BBB�x1x2x31CCCA ;C = �" " 2� ; U = 0�u1u21A and Y = y:By solving the state equation of (11) aording to th.1, i.e. Y = CA�BU , we obtain the followingtransfer relation in ZmaxJK: Y = �5(2)� 10(3)��U: (12)Remark 3 Algorithms and software tools are now available in order to establish suh a transferrelation starting from the state representation (Gaubert, 1992) (Cotteneau, 1999).3.2 Periodiity, ausality and realizabilityThe transfer relation of a TEG is haraterized by some periodi and ausal properties that we reallhereafter. Let us onsider a series s =Lk2Zs(k)k in ZmaxJK. The support of s is then de�nedby Supp(s) = fk 2 Zjs(k) 6= "g, and its valuation orresponds to the lower bound of Supp(s),i.e. val(s) = minfk 2 Zjs(k) 6= "g. A series s 2 ZmaxJK suh that Supp(s) is �nite is said to bepolynomial.De�nition 8 (Causality) A series s 2 ZmaxJK is ausal if s = " or if fval(s) � 0 and s �val(s)g. The set of ausal elements of ZmaxJK has a omplete dioid struture denoted Z+maxJK.De�nition 9 (Periodiity) A series s 2 ZmaxJK is said to be periodi if it an be written ass = p� q(��)� with p and q two polynomials and �; � 2 N. A matrix is said to be periodi if all itsentries are periodi.De�nition 10 (Realizability) A series s 2 ZmaxJK is said to be realizable if it exists three ma-tries A, B and C with entries in N [ f�1;+1g suh that s = C(A)�B. A matrix is said to berealizable if all its entries are realizable.In other words, a series s is realizable if it orresponds to a transfer relation of a TEG.Theorem 5 ((Cohen et al., 1989)) The following statements are equivalent:� A series s is realizable. 6



� A series s is periodi and ausal.The set of periodi series of ZmaxJK has a dioid struture whih is not omplete. Nevertheless,we have the following property.Theorem 6 Let s1 and s2 two periodi series of ZmaxJK. Then, s1 Æns2 is also a periodi series.proof: see (Max Plus, 1991). �Theorem 7 The anonial injetion Idj+ : Z+maxJK ! ZmaxJK is residuated. We denote Pr+ :ZmaxJK ! Z+maxJK its residual, i.e. Pr+(s) is the greatest ausal series less than or equal to s.proof: see (Cotteneau et al., 1999). �From a pratial point of view, for all s 2 ZmaxJK, the omputation of Pr+(s) is obtained by:Pr+(Lk2Zs(k)k) =Lk2Zs+(k)k where s+(k) = 8<: s(k) if (k; s(k)) � (0; 0)" otherwise :Theorem 8 Let s a periodi (not neessary ausal) series of ZmaxJK. Then, Pr+(s) is the greatestrealizable series less than or equal to s.proof: (sketh of proof) the Pr+ mapping simply amounts to zeroing terms of a series whih arenot with positive oeÆient or exponent. Then, if s is periodi, Pr+(s) remains periodi. Finally,Pr+(s) is both periodi and ausal, i.e. realizable (f. th.5). �4 Feedbak ontroller synthesis4.1 Problem statementAs presented previously, in dioid ZmaxJK, the behavior of an m-inputs p-outputs TEG an bedesribed by a state representation suh as (11) where U 2 ZmaxJKm and Y 2 ZmaxJKp. Aordingto th.1, by solving the state equation in X , the input-output transfer relation is then expressed byY = HU; (13)where H = CA�B belongs to ZmaxJKp�m.We fous here on ontroller synthesis suh as:� output feedbak ontroller : a ontroller, denoted F , is added between output Y and input U ofthe nominal system (see �g.1-a-). Therefore, the proess input veri�es U = V � FY , and theoutput is desribed by Y = H(V � FY ). Aording to th.1, the losed-loop transfer is thenequal to Y = (HF )�HV: (14)� state feedbak ontroller : a ontroller, denoted L, is added between internal state3 X and3suh a ontrol struture implies that the internal state used for the ontrol is measurable.7



input U of the system (see �g.1-b-). The input is then desribed by U = V � LX . First, bysolving the state equation of (11) aording to th.1, we have X = A�BU = A�B(V � LX) =A�BLX�A�BV . Therefore, by solving this new impliit equation aording to th.1, we obtainX = (A�BL)�A�BV . Finally, by replaing X in the output equation of (11) and by using(3) we have Y = C(A�BL)�A�BV = CA�B(LA�B)�V , whih orresponds to the followingtransfer relation: Y = H(LA�B)�V: (15)� output feedbak on state ontroller : a ontroller, denoted S, is added between output andinternal state (see �g.1--). The state evolution is then desribed by X = AX �BU � SY . Itis the reader's onern to hek that the input-output transfer is given byY = (CA�S)�HU: (16)The ontroller S, loated between output and internal state, behaves like inhibiting4 ars. Forinstane, these ars are depited in grey lines in �g.2. Therefore, suh a struture of ontrolpreserves a suitable meaning provided that one an e�etively ontrol the internal transitions,i.e. one an delay their �rings when neessary.The objetive of the model referene ontrol is to impose a desired behavior (Gref ) to a givensystem (H) while �nding the best ontroller arrying out this objetive. More preisely, by denotingGC the transfer of the ontrolled system with ontroller C, we try to determine C suh thatGC � Gref : (17)Constraint (17) may be literally expressed as: the losed-loop system is at least as fast as thereferene model.In addition, by assuming that it may exist several ontrollers Ci; i 2 f1; : : : ; ng, leading to thesame ontrolled transfer, i.e. GC0 = � � � = GCn , we fous on the greatest one (when suh an optimalexists): the greatest is the one whih delays as muh as possible the input in the system. Therefore,in the TEG ontext, this supremal ontroller minimizes the amount of tokens in the ontrolled TEG.In short, for a given referene model, the problem takled here onsists in �nding the greatestontroller C (when it exists) heking GC � Gref . Therefore, within the framework of feedbaksynthesis and aording to (14)-(16), we have to �nd, for a given Gref , a greatest solution in F(resp. L and S) for inequality (18) (resp. (19) and (20))(HF )�H � Gref (18)H(LA�B)� � Gref (19)(CA�S)�H � Gref : (20)In other words, this amounts to being interested in the properties of mappings x 7! (Hx)�H ,x 7! H(xA�B)� and x 7! (CA�x)�H with respet to the residuation theory.4the supplementary ars due to the ontroller authorize or prohibit the �ring of the ontrolled transitions.8



4.2 Ouput feedbak synthesisLet us de�ne MH : ZmaxJKm�p ! ZmaxJKp�mX 7! (HX)�H:This mapping learly represents how an output feedbak X inuenes the losed-loop transfer dy-namis. Clearly, inequality (18) admits a greatest solution for all referene models Gref only ifMH is residuated. However, aording to th.2, one easily heks that MH is not residuated sineMH(") = H 6= ". Nevertheless, the following result shows that there are restritions of mappingMHwhih are residuated. That amounts to saying that the inequality (18) admits an optimal solutiononly for spei� right-hand sides.Proposition 2 Let G 2 ZmaxJKp�m and D 2 ZmaxJKp�p. Let us onsider the following sets:G1 = fGj9D periodi and ausal s.t. G = D�HgG2 = fGj9D periodi and ausal s.t. G = HD�g:Mappings G1jMH and G2jMH are both residuated. Their residuals are suh that (G1jMH)℄(x) =(G2jMH)℄(x) = H ÆnxÆ=H.proof: aording to def.5, we remark that the two following assertions are equivalent:� G1jMH is residuated� 8D periodi and ausal; (HX)H� � D�H admits a greatest solution.So, we an onentrate on the seond point. Sine mapping x 7! Hx is residuated (f. or.1) andaording to (3), we have:(HX)�H = H(XH)� � D�H () (XH)� � H Æn(D�H):Aording to (9) and (7), we an rewriteH Æn(D�H) = H Æn[D� Æn(D�H)℄ = (D�H) Æn(D�H):Aording to (10), this last expression shows thatH Æn(D�H) belongs to the image ofK : ZmaxJKm�m !ZmaxJKm�m. Sine ImKjK is residuated (f or.2), there is also the following equivalene:(XH)� � H Æn(D�H) () XH � H Æn(D�H):Finally, sine mapping x 7! xH is residuated too (f. or.1), we verify that X = H Æn(D�H)Æ=H isthe greatest solution of H(XH)� � D�H , 8D 2 ZmaxJKp�p. That amounts to saying that G1jMHis residuated. We would show that G2jMH is residuated with analog steps. �As realled in setion 3, working on TEG omes down to onsidering only the subset of periodiand ausal series of ZmaxJK (f. th.5). Then, the results obtained in prop.2 must be restrited tothat ase in order to be applied to TEG ontrol. 9



Proposition 3 If Gref 2 G1 [ G2, there exists a greatest realizable output feedbak Fr suh that(HFr)�H � Gref . This greatest ontroller is given byFr = Pr+(H ÆnGref Æ=H):proof: aording to prop.2, H ÆnGref Æ=H is the greatest solution to (HX)�H � Gref . Sine Gref 2G1 [ G2, Gref is periodi and ausal. Therefore, aording to th.6, H ÆnGref Æ=H is periodi. Eventu-ally, aording to th.8, Pr+(H ÆnGref Æ=H) is the greatest realizable solution. �4.3 State feedbak, feedbak between output and state.For these two feedbak synthesis problems, it is still a question of heking whether mappingsx 7! H(xA�B)� and x 7! (CA�x)�H are residuated or not. Aording to th.2, it is lear thatthey are not residuated. Nevertheless, the problem of referene model ontrol may have an optimalrealizable solution, in eah ase, if Gref is onstrained to belong to partiular subsets of ZmaxJKp�m.Proposition 4 Let H = CA�B be a TEG transfer matrix. For all referene model Gref 2 G1, thereexists a greatest realizable state feedbak Lr suh that H(LrA�B)� � Gref . This optimal solution isthen omputed by Lr = Pr+ (H ÆnGref Æ=(A�B)) :proof: as in the prop.2 proof, we �rst have to show that for all D 2 ZmaxJKp�p, equationH(LA�B)� � D�H admits a greatest solution. Sine mapping x 7! Hx is residuated, we have:H(LA�B)� � D�H () (LA�B)� � H Æn(D�H):Moreover, we have shown in the prop.2 proof that element H Æn(D�H) belongs to the image ofK : ZmaxJKm�m ! ZmaxJKm�m. Then, sine ImKjK is residuated,(LA�B)� � H Æn(D�H) () LA�B � H Æn(D�H):Sine x 7! xH is residuated too, we then obtain that H Æn(D�H)Æ=(A�B) is the greatest solution toH(LA�B)� � D�H . Finally, if Gref belongs to G1, H ÆnGref Æ=(A�B) is a periodi matrix (by applyingth.6), and Pr+ (H ÆnGref Æ=(A�B)) is then the greatest realizable solution (by applying th.8). �Proposition 5 Let H = CA�B be a TEG transfer matrix. For all referene model Gref 2 G2, thereexists a greatest realizable output feedbak on state Sr suh that (CA�Sr)�H � Gref . This optimalsolution is then omputed by Sr = Pr+ ((CA�) ÆnGref Æ=H) :proof: similar to the previous proof. �
10



Remark 4 (Partiular ase Gref = H.) Sine the identity matrix e is suh that e� = e, we aneasily hek that H 2 G1 and H 2 G2. Therefore, for any TEG, it is possible to preserve its owntransfer with either a greatest realizable output feedbak, a greatest realizable state feedbak or agreatest realizable output feedbak on state. In (Cotteneau et al., 1999), that partiular ase hasalready been studied for output feedbak ontrol.5 ExampleIn order to illustrate results presented previously, we desribe a omplete synthesis of an outputfeedbak on state for the TEG depited with solid blak lines in �g.2. We assume that this modelrepresents a workshop with 3 mahines (M1, M2, M3) of whih inputs are desribed by transitionsx1, x2 and x3. Therefore, this example orresponds to a short appliation of our results in thedomain of manufaturing management.We propose to ompute a greatest output feedbak on state so that the system has a transferrelation lose to a given referene transfer Gref . For this TEG, aording to setion 3, we haveH = �5(2)� 10(3)�� :This transfer shows the di�erene that exists between the prodution rate of path u1 ! y, namely1/2 token/time unit, and those of path u2 ! y, namely 1/3 token/time unit.Aording to the struture of the workshop, an unstability5 problem arises as soon as too manyparts are admitted at the same time at inputs u1 and u2 beause of the di�erene of prodution ratesof mahinesM1 andM2. Indeed, in suh a ase, the marking of the plae loated between x1 and x3will grow without bound. So, a realisti objetive would be here to impose, thanks to the ontroller,the prodution rate of the slowest mahine (M2) to the whole system (i.e. 1 part per 3 time units).Aording to prop.5, the model referene ontrol has an optimal solution if Gref both belongs to G2and reets the desired prodution rate. For instane, if we hoose here Gref = H(3)�, we obtainGref = �5(3)� 10(3)�� ;whih satis�es both onstraints.Then, aording to prop.5, the greatest realizable feedbak Sr is given by omputing Pr+((CA�) ÆnGref Æ=H).Aording to state representation (11), we haveCA� = �5(2)� 10(3)� 2(2)�� :Therefore, we an ompute the ontroller. First, we obtain(CA�) ÆnGref Æ=H = 0BBB��5�1(3)��10(3)��2(3)� 1CCCA5a TEG is said stable if the marking of all its internal plaes remains bounded for all input sequene (Max Plus,1991). The problem of TEG stabilization has reently been reonsidered in (Commault, 1998).11



whih is learly not ausal (but periodi) and thenSr = Pr+((CA�) ÆnGref Æ=H) = 0BBB� 1(3)�24(3)�1(3)�1CCCAA realization of that optimal ontroller is drawn in grey lines in �g.2.Remark 5 Some other examples are developed in (Cotteneau et al., 1999) (output feedbak), (Co-hen et al., 1998) (output feedbak) and (Cotteneau, 1999) (all these strutures are illustrated). Letus note that suh a synthesis is indi�erently obtained in either dioid ZmaxJK or dioids ZminJÆK andMaxin J; ÆK.
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