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Model Referen
e Control for Timed Event Graphs in Dioids
B. Cotten
eau�, L. Hardouin, J.L. Boimond, J.L. FerrierLaboratoire d'Ing�enierie des Syst�emes Automatis�es,62 av. Notre-Dame du La
, 49000 ANGERS, FRANCE.Tel: (33) 2 41 36 57 33Fax: (33) 2 41 36 57 35.Abstra
tThis paper deals with feedba
k 
ontroller synthesis for Timed Event Graphs in dioids. Wedis
uss here the existen
e and the 
omputation of a 
ontroller whi
h leads to a 
losed-loopsystem whose behavior is as 
lose as possible to the one of a given referen
e model and whi
hdelays as mu
h as possible the input of tokens inside the (
ontrolled) system. The synthesispresented here is mainly based on residuation theory results and some Kleene star properties.Keywords: Dis
rete Event Systems, Timed Event Graphs, Dioid, Residuation Theory,Feedba
k Synthesis.
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1 Introdu
tionTimed Event Graphs (TEG) 
onstitute a sub
lass of timed Petri nets of whi
h ea
h pla
e has exa
tlyone upstream and one downstream transition. It is well known that the timed/event behavior ofa TEG, under the earliest fun
tioning rule1, 
an be expressed by linear relations over some dioids(Ba

elli et al., 1992) (De S
hutter, 1996). Strong analogies then appear between the 
lassi
al linearsystem theory and the (max,+)-linear system theory. In parti
ular, the 
on
ept of 
ontrol is wellde�ned in the 
ontext of TEG study. It refers to the �ring-
ontrol of the TEG input transitions inorder to rea
h desired performan
e (see for instan
e (Cofer & Garg, 1996) (Takai, 1989)). In the(max,+) literature, an optimal 
ontrol for TEG exists and is proposed in (Cohen et al., 1989)(Menguyet al., 2000). For a given referen
e input, this open-loop stru
ture 
ontrol yields the latest input�ring date in order to obtain the output before the desired date.This paper aims to transpose some 
losed-loop 
ontrol stru
tures to TEG. More pre
isely, we fo
uson 
ontroller synthesis su
h as output feedba
k 
ontroller, state feedba
k 
ontroller or output feedba
kon state 
ontroller. The 
ontroller synthesis is done in order that the 
ontrolled system will behaveas 
lose as possible to a given referen
e model. Furthermore the proposed 
ontrollers allow delayingas mu
h as possible the token input inside the TEG.Appli
ations of these 
ontrollers are possible within the framework of produ
tion management.Indeed, TEG are well adapted to represent a 
lass of manufa
turing systems whi
h present onlydelays and syn
hronization phenomena (Ayhan & Wortman, 1999). Therefore, in the manufa
turing
ontext our 
ontrollers allow modifying the dynami
s of a system (produ
tion line or manufa
turingworkshop) a

ording to a given referen
e model and delaying as mu
h as possible the raw partsinput into the system. The latter property 
ontributes to de
reasing the work-in-pro
ess amountwhi
h is a permanent 
on
ern for the just-in-time produ
tion.In the next se
tion, we re
all some theoreti
al results from the (max,+) literature and introdu
ethe algebrai
 foundations. Se
tion 3 is devoted to re
all some elements of TEG representation overparti
ular dioids. The problem of 
ontroller synthesis is stated and solved in se
tion 4. Se
tion 5aims to present an illustrative example.2 Elements of Dioid and Residuation Theories2.1 Dioid TheoryWe �rst re
all in this se
tion some notions from the dioid theory. The reader is invited to 
onsult(Ba

elli et al., 1992) for a 
omplete presentation.De�nition 1 (Dioid) A dioid is a set D endowed with two inner operations denoted � and 
.The sum is asso
iative, 
ommutative, idempotent (8a 2 D; a� a = a) and admits a neutral elementdenoted ". The produ
t is asso
iative, distributes over the sum and admits a neutral element denotede. The element " is absorbing for the produ
t.1i.e. a transition is �red as soon as it is enabled. 2



De�nition 2 (Order Relation) An order relation 
an be asso
iated with a dioid D by the followingequivalen
e: 8a; b 2 D; a � b () a = a� b.De�nition 3 (Complete Dioid) A dioid D is 
omplete if it is 
losed for in�nite sums and if theprodu
t distributes over in�nite sums too.Example 1 (Zmax dioid) Set Z= Z[f�1;+1g endowed with the max operator as sum and the
lassi
al sum + as produ
t is a 
omplete dioid, usually denoted Zmax, of whi
h " = �1 and e = 0.The following theorem allows solving 
ertain impli
it equations de�ned over 
omplete dioids.Theorem 1 Over a 
omplete dioid D, the impli
it equation x = ax � b admits x = a�b as leastsolution, where a� =Li2N ai (Kleene star operator) with a0 = e.Notation 1 The Kleene star operator, over a 
omplete dioid D, will be sometimes represented bythe following mapping K : D ! Dx 7! Li2N xi:The following theorem re
alls some 
lassi
al formul� involving Kleene star mapping.Property 1 Let D a 
omplete dioid and a; b 2 D.(a�)� = a� (1)a�a� = a� (2)a(ba)� = (ab)�a: (3)2.2 Residuation TheoryThe residuation theory provides, under some assumptions, optimal solutions to inequalities su
h asf(x) � b, where f is an order-preserving mapping de�ned over ordered sets. Some theoreti
al resultsare re
alled below. Complete presentations are given in (Blyth & Janowitz, 1972) (Ba

elli et al.,1992).De�nition 4 (Isotone mapping) A mapping f de�ned over ordered sets is isotone if a � b )f(a) � f(b).De�nition 5 (Residual and residuated mapping) Let f : E ! F an isotone mapping, where(E ;�) and (F ;�) are ordered sets. Mapping f is said residuated if for all y 2 F , the least upperbound of subset fx 2 Ejf(x) � yg exists and lies in this subset. It is then denoted f ℄(y). Mappingf ℄ is 
alled the residual of f . When f is residuated, f ℄ is the unique isotone mapping su
h thatf Æ f ℄ � Id and f ℄ Æ f � Id; (4)where Id is the identity mapping respe
tively on F and E.Theorem 2 ((Ba

elli et al., 1992)) Let f : E ! F where E and F are 
omplete dioids ofwhi
h bottom elements are respe
tively denoted "E and "F . Then, f is residuated i� f("E) = "F and8A � E f(Lx2A x) =Lx2A f(x). 3



Corollary 1 Mappings x 7! ax and x 7! xa de�ned over a 
omplete dioid D are both residuated.Their residuals are usually denoted respe
tively x 7! a Ænx and x 7! xÆ=a in (max,+) literature.proof: a

ording to def.3, if D is a 
omplete dioid then the produ
t distributes over in�nite sumsand " is absorbing whi
h satis�es the requirement of th.2. �Some 
lassi
al results 
on
erning produ
t residual are given in the following theorem.Theorem 3 ((Ba

elli et al., 1992)) Mappings x 7! a Ænx and x 7! xÆ=a verify the following prop-erties: a Æn[ax℄ � x [xa℄Æ=a � x (5)a[a Ænax℄ = ax [xaÆ=a℄a = xa (6)[ab℄ Ænx = b Æn[a Ænx℄ xÆ=[ba℄ = [xÆ=a℄Æ=b (7)[a Ænx℄b � a Æn[xb℄ b[xÆ=a℄ � [bx℄Æ=a (8)a�x = a� Æn[a�x℄ xa� = [xa�℄Æ=a� (9)Theorem 4 Let D a 
omplete dioid and A 2 Dp�n. Then, A ÆnA 2 Dn�n andA ÆnA = (A ÆnA)�: (10)proof: see (Max Plus, 1991) for another proof. First, a

ording to (5), A ÆnA � e, where e 2 Dn�nis the neutral element for matrix produ
t. Moreover, a

ording to (6), A = A(A ÆnA). Therefore,we have A ÆnA = A Æn[A(A ÆnA)℄. Furthermore, thanks to (8), we 
an show that A Æn[A(A ÆnA)℄ �A ÆnA 
 A ÆnA. We thus obtain the following inequality e � (A ÆnA)2 � A ÆnA; and more generally8n 2 N, e � (A ÆnA)n � A ÆnA. Therefore, we verify e �Ln2N(A ÆnA)n � A ÆnA (i.e. (A ÆnA)� � A ÆnA)whi
h �nally leads to equality sin
e, a

ording to the dioid order de�nition (def.2) and the Kleenestar de�nition (th.1), we also have (A ÆnA)� = e�A ÆnA� � � � � A ÆnA. �2.3 Mapping restri
tionIn this subse
tion, we address the problem of mapping restri
tion and its 
onne
tion with theresiduation theory. In parti
ular, we show that the Kleene star mapping, whi
h 
an be shown to benot residuated, be
omes residuated as soon as its 
odomain is restri
ted to its image.De�nition 6 (Restri
ted mapping) Let f : E ! F a mapping and A � E. We will denotefjA : A ! F the mapping de�ned by fjA = f Æ IdjA where IdjA : A ! E; x 7! x is the 
anoni
alinje
tion. Identi
ally, let B � F with Imf � B. Mapping Bjf : E ! B is de�ned by f = IdjB Æ Bjf ,where IdjB : B ! F; x 7! x is the 
anoni
al inje
tion.4



De�nition 7 (Closure mapping) An isotone mapping f : E ! E de�ned on an ordered set E isa 
losure mapping if f � Id and f Æ f = f .Remark 1 A

ording to (1), mapping K is a 
losure mapping sin
e a� � a and (a�)� = a�.Proposition 1 Let a 
losure mapping f : E ! E . Then, Imf jf is a residuated mapping whoseresidual is the 
anoni
al inje
tion IdjImf : Imf ! E; x 7! x.proof: a

ording to (4), Imf jf is residuated if there exists a mapping g su
h that Imf jf Æ g � Idand g Æ Imf jf � Id, where identity mappings are respe
tively identity on Imf and on E. By settingg = IdjImf , we both verify Imf jf Æ IdjImf = Imf jfjImf = Id (identity on Imf) sin
e f Æ f = f , andIdjImf Æ Imf jf = f � Id (by def.7). �Corollary 2 Mapping ImKjK is a residuated mapping whose residual is (ImKjK)℄ = IdjImK.proof: the proof is dire
t sin
e K is a 
losure mapping. �Remark 2 We 
an state from 
or.2 that x = a� is the greatest solution to inequality x� � a�.A
tually, this greatest solution a
hieves equality.3 TEG des
ription on dioids3.1 Transfer fun
tionWe re
all that TEG 
an be seen as linear dis
rete event dynami
al systems by using some dioidalgebras (Cohen et al., 1989) (Ba

elli et al., 1992). For instan
e, by asso
iating with ea
h transitionx a \dater" fun
tion fx(k)gk2Z, in whi
h x(k) is equal to the date when whi
h the �ring numberedk o

urs, it is possible to obtain a linear state representation in Zmax. As in 
onventional systemtheory, output fy(k)gk2Z of a SISO TEG is then expressed as a 
onvolution of its input fu(k)gk2Zby its impulse response2 fh(k)gk2Z.Analogous transforms to z-transform (used to represent dis
rete-time traje
tories in 
lassi
altheory) 
an be introdu
ed for TEG. Indeed, one 
an represent a dater fx(k)gk2Z by its 
-transformwhi
h is de�ned as the following formal power series: X(
) =Lk2Zx(k)
k. Variable 
 may also beregarded as the ba
kward shift operator in event domain (formally, 
x(k) = x(k�1)). Consequently,one 
an express TEG behavior over the dioid of formal power series in one variable 
 and 
oeÆ
ientsin Zmax. This dioid is usually denoted ZmaxJ
K in literature.For instan
e, 
onsidering the TEG drawn in solid bla
k lines in �g.2 (without taking a

ount ofthe grey ar
s), daters x1, x2 and x3 are related as follows over Zmax:x3(k) = 3
 x1(k � 1)� 8
 x2(k)� 2
 x3(k � 1):2whi
h is the ouput due to an in�nity of input �rings at date zero (Max Plus, 1991).
5



Their respe
tive 
-transforms, expressed over ZmaxJ
K, are then related as:x3(
) = 3
x1(
)� 8x2(
)� 2
x3(
):Consequently, for this TEG, we 
an obtain the following representation over ZmaxJ
K:8<: X = AX � BUY = CX (11)with A = 0BBB�2
 " "" 3
 "3
 8 2
1CCCA ; B = 0BBB�e "" e" "1CCCA ; X = 0BBB�x1x2x31CCCA ;C = �" " 2� ; U = 0�u1u21A and Y = y:By solving the state equation of (11) a

ording to th.1, i.e. Y = CA�BU , we obtain the followingtransfer relation in ZmaxJ
K: Y = �5
(2
)� 10(3
)��U: (12)Remark 3 Algorithms and software tools are now available in order to establish su
h a transferrelation starting from the state representation (Gaubert, 1992) (Cotten
eau, 1999).3.2 Periodi
ity, 
ausality and realizabilityThe transfer relation of a TEG is 
hara
terized by some periodi
 and 
ausal properties that we re
allhereafter. Let us 
onsider a series s =Lk2Zs(k)
k in ZmaxJ
K. The support of s is then de�nedby Supp(s) = fk 2 Zjs(k) 6= "g, and its valuation 
orresponds to the lower bound of Supp(s),i.e. val(s) = minfk 2 Zjs(k) 6= "g. A series s 2 ZmaxJ
K su
h that Supp(s) is �nite is said to bepolynomial.De�nition 8 (Causality) A series s 2 ZmaxJ
K is 
ausal if s = " or if fval(s) � 0 and s �
val(s)g. The set of 
ausal elements of ZmaxJ
K has a 
omplete dioid stru
ture denoted Z+maxJ
K.De�nition 9 (Periodi
ity) A series s 2 ZmaxJ
K is said to be periodi
 if it 
an be written ass = p� q(�
�)� with p and q two polynomials and �; � 2 N. A matrix is said to be periodi
 if all itsentries are periodi
.De�nition 10 (Realizability) A series s 2 ZmaxJ
K is said to be realizable if it exists three ma-tri
es A, B and C with entries in N [ f�1;+1g su
h that s = C(
A)�B. A matrix is said to berealizable if all its entries are realizable.In other words, a series s is realizable if it 
orresponds to a transfer relation of a TEG.Theorem 5 ((Cohen et al., 1989)) The following statements are equivalent:� A series s is realizable. 6



� A series s is periodi
 and 
ausal.The set of periodi
 series of ZmaxJ
K has a dioid stru
ture whi
h is not 
omplete. Nevertheless,we have the following property.Theorem 6 Let s1 and s2 two periodi
 series of ZmaxJ
K. Then, s1 Æns2 is also a periodi
 series.proof: see (Max Plus, 1991). �Theorem 7 The 
anoni
al inje
tion Idj+ : Z+maxJ
K ! ZmaxJ
K is residuated. We denote Pr+ :ZmaxJ
K ! Z+maxJ
K its residual, i.e. Pr+(s) is the greatest 
ausal series less than or equal to s.proof: see (Cotten
eau et al., 1999). �From a pra
ti
al point of view, for all s 2 ZmaxJ
K, the 
omputation of Pr+(s) is obtained by:Pr+(Lk2Zs(k)
k) =Lk2Zs+(k)
k where s+(k) = 8<: s(k) if (k; s(k)) � (0; 0)" otherwise :Theorem 8 Let s a periodi
 (not ne
essary 
ausal) series of ZmaxJ
K. Then, Pr+(s) is the greatestrealizable series less than or equal to s.proof: (sket
h of proof) the Pr+ mapping simply amounts to zeroing terms of a series whi
h arenot with positive 
oeÆ
ient or exponent. Then, if s is periodi
, Pr+(s) remains periodi
. Finally,Pr+(s) is both periodi
 and 
ausal, i.e. realizable (
f. th.5). �4 Feedba
k 
ontroller synthesis4.1 Problem statementAs presented previously, in dioid ZmaxJ
K, the behavior of an m-inputs p-outputs TEG 
an bedes
ribed by a state representation su
h as (11) where U 2 ZmaxJ
Km and Y 2 ZmaxJ
Kp. A

ordingto th.1, by solving the state equation in X , the input-output transfer relation is then expressed byY = HU; (13)where H = CA�B belongs to ZmaxJ
Kp�m.We fo
us here on 
ontroller synthesis su
h as:� output feedba
k 
ontroller : a 
ontroller, denoted F , is added between output Y and input U ofthe nominal system (see �g.1-a-). Therefore, the pro
ess input veri�es U = V � FY , and theoutput is des
ribed by Y = H(V � FY ). A

ording to th.1, the 
losed-loop transfer is thenequal to Y = (HF )�HV: (14)� state feedba
k 
ontroller : a 
ontroller, denoted L, is added between internal state3 X and3su
h a 
ontrol stru
ture implies that the internal state used for the 
ontrol is measurable.7



input U of the system (see �g.1-b-). The input is then des
ribed by U = V � LX . First, bysolving the state equation of (11) a

ording to th.1, we have X = A�BU = A�B(V � LX) =A�BLX�A�BV . Therefore, by solving this new impli
it equation a

ording to th.1, we obtainX = (A�BL)�A�BV . Finally, by repla
ing X in the output equation of (11) and by using(3) we have Y = C(A�BL)�A�BV = CA�B(LA�B)�V , whi
h 
orresponds to the followingtransfer relation: Y = H(LA�B)�V: (15)� output feedba
k on state 
ontroller : a 
ontroller, denoted S, is added between output andinternal state (see �g.1-
-). The state evolution is then des
ribed by X = AX �BU � SY . Itis the reader's 
on
ern to 
he
k that the input-output transfer is given byY = (CA�S)�HU: (16)The 
ontroller S, lo
ated between output and internal state, behaves like inhibiting4 ar
s. Forinstan
e, these ar
s are depi
ted in grey lines in �g.2. Therefore, su
h a stru
ture of 
ontrolpreserves a suitable meaning provided that one 
an e�e
tively 
ontrol the internal transitions,i.e. one 
an delay their �rings when ne
essary.The obje
tive of the model referen
e 
ontrol is to impose a desired behavior (Gref ) to a givensystem (H) while �nding the best 
ontroller 
arrying out this obje
tive. More pre
isely, by denotingGC the transfer of the 
ontrolled system with 
ontroller C, we try to determine C su
h thatGC � Gref : (17)Constraint (17) may be literally expressed as: the 
losed-loop system is at least as fast as thereferen
e model.In addition, by assuming that it may exist several 
ontrollers Ci; i 2 f1; : : : ; ng, leading to thesame 
ontrolled transfer, i.e. GC0 = � � � = GCn , we fo
us on the greatest one (when su
h an optimalexists): the greatest is the one whi
h delays as mu
h as possible the input in the system. Therefore,in the TEG 
ontext, this supremal 
ontroller minimizes the amount of tokens in the 
ontrolled TEG.In short, for a given referen
e model, the problem ta
kled here 
onsists in �nding the greatest
ontroller C (when it exists) 
he
king GC � Gref . Therefore, within the framework of feedba
ksynthesis and a

ording to (14)-(16), we have to �nd, for a given Gref , a greatest solution in F(resp. L and S) for inequality (18) (resp. (19) and (20))(HF )�H � Gref (18)H(LA�B)� � Gref (19)(CA�S)�H � Gref : (20)In other words, this amounts to being interested in the properties of mappings x 7! (Hx)�H ,x 7! H(xA�B)� and x 7! (CA�x)�H with respe
t to the residuation theory.4the supplementary ar
s due to the 
ontroller authorize or prohibit the �ring of the 
ontrolled transitions.8



4.2 Ouput feedba
k synthesisLet us de�ne MH : ZmaxJ
Km�p ! ZmaxJ
Kp�mX 7! (HX)�H:This mapping 
learly represents how an output feedba
k X in
uen
es the 
losed-loop transfer dy-nami
s. Clearly, inequality (18) admits a greatest solution for all referen
e models Gref only ifMH is residuated. However, a

ording to th.2, one easily 
he
ks that MH is not residuated sin
eMH(") = H 6= ". Nevertheless, the following result shows that there are restri
tions of mappingMHwhi
h are residuated. That amounts to saying that the inequality (18) admits an optimal solutiononly for spe
i�
 right-hand sides.Proposition 2 Let G 2 ZmaxJ
Kp�m and D 2 ZmaxJ
Kp�p. Let us 
onsider the following sets:G1 = fGj9D periodi
 and 
ausal s.t. G = D�HgG2 = fGj9D periodi
 and 
ausal s.t. G = HD�g:Mappings G1jMH and G2jMH are both residuated. Their residuals are su
h that (G1jMH)℄(x) =(G2jMH)℄(x) = H ÆnxÆ=H.proof: a

ording to def.5, we remark that the two following assertions are equivalent:� G1jMH is residuated� 8D periodi
 and 
ausal; (HX)H� � D�H admits a greatest solution.So, we 
an 
on
entrate on the se
ond point. Sin
e mapping x 7! Hx is residuated (
f. 
or.1) anda

ording to (3), we have:(HX)�H = H(XH)� � D�H () (XH)� � H Æn(D�H):A

ording to (9) and (7), we 
an rewriteH Æn(D�H) = H Æn[D� Æn(D�H)℄ = (D�H) Æn(D�H):A

ording to (10), this last expression shows thatH Æn(D�H) belongs to the image ofK : ZmaxJ
Km�m !ZmaxJ
Km�m. Sin
e ImKjK is residuated (
f 
or.2), there is also the following equivalen
e:(XH)� � H Æn(D�H) () XH � H Æn(D�H):Finally, sin
e mapping x 7! xH is residuated too (
f. 
or.1), we verify that X = H Æn(D�H)Æ=H isthe greatest solution of H(XH)� � D�H , 8D 2 ZmaxJ
Kp�p. That amounts to saying that G1jMHis residuated. We would show that G2jMH is residuated with analog steps. �As re
alled in se
tion 3, working on TEG 
omes down to 
onsidering only the subset of periodi
and 
ausal series of ZmaxJ
K (
f. th.5). Then, the results obtained in prop.2 must be restri
ted tothat 
ase in order to be applied to TEG 
ontrol. 9



Proposition 3 If Gref 2 G1 [ G2, there exists a greatest realizable output feedba
k Fr su
h that(HFr)�H � Gref . This greatest 
ontroller is given byFr = Pr+(H ÆnGref Æ=H):proof: a

ording to prop.2, H ÆnGref Æ=H is the greatest solution to (HX)�H � Gref . Sin
e Gref 2G1 [ G2, Gref is periodi
 and 
ausal. Therefore, a

ording to th.6, H ÆnGref Æ=H is periodi
. Eventu-ally, a

ording to th.8, Pr+(H ÆnGref Æ=H) is the greatest realizable solution. �4.3 State feedba
k, feedba
k between output and state.For these two feedba
k synthesis problems, it is still a question of 
he
king whether mappingsx 7! H(xA�B)� and x 7! (CA�x)�H are residuated or not. A

ording to th.2, it is 
lear thatthey are not residuated. Nevertheless, the problem of referen
e model 
ontrol may have an optimalrealizable solution, in ea
h 
ase, if Gref is 
onstrained to belong to parti
ular subsets of ZmaxJ
Kp�m.Proposition 4 Let H = CA�B be a TEG transfer matrix. For all referen
e model Gref 2 G1, thereexists a greatest realizable state feedba
k Lr su
h that H(LrA�B)� � Gref . This optimal solution isthen 
omputed by Lr = Pr+ (H ÆnGref Æ=(A�B)) :proof: as in the prop.2 proof, we �rst have to show that for all D 2 ZmaxJ
Kp�p, equationH(LA�B)� � D�H admits a greatest solution. Sin
e mapping x 7! Hx is residuated, we have:H(LA�B)� � D�H () (LA�B)� � H Æn(D�H):Moreover, we have shown in the prop.2 proof that element H Æn(D�H) belongs to the image ofK : ZmaxJ
Km�m ! ZmaxJ
Km�m. Then, sin
e ImKjK is residuated,(LA�B)� � H Æn(D�H) () LA�B � H Æn(D�H):Sin
e x 7! xH is residuated too, we then obtain that H Æn(D�H)Æ=(A�B) is the greatest solution toH(LA�B)� � D�H . Finally, if Gref belongs to G1, H ÆnGref Æ=(A�B) is a periodi
 matrix (by applyingth.6), and Pr+ (H ÆnGref Æ=(A�B)) is then the greatest realizable solution (by applying th.8). �Proposition 5 Let H = CA�B be a TEG transfer matrix. For all referen
e model Gref 2 G2, thereexists a greatest realizable output feedba
k on state Sr su
h that (CA�Sr)�H � Gref . This optimalsolution is then 
omputed by Sr = Pr+ ((CA�) ÆnGref Æ=H) :proof: similar to the previous proof. �
10



Remark 4 (Parti
ular 
ase Gref = H.) Sin
e the identity matrix e is su
h that e� = e, we 
aneasily 
he
k that H 2 G1 and H 2 G2. Therefore, for any TEG, it is possible to preserve its owntransfer with either a greatest realizable output feedba
k, a greatest realizable state feedba
k or agreatest realizable output feedba
k on state. In (Cotten
eau et al., 1999), that parti
ular 
ase hasalready been studied for output feedba
k 
ontrol.5 ExampleIn order to illustrate results presented previously, we des
ribe a 
omplete synthesis of an outputfeedba
k on state for the TEG depi
ted with solid bla
k lines in �g.2. We assume that this modelrepresents a workshop with 3 ma
hines (M1, M2, M3) of whi
h inputs are des
ribed by transitionsx1, x2 and x3. Therefore, this example 
orresponds to a short appli
ation of our results in thedomain of manufa
turing management.We propose to 
ompute a greatest output feedba
k on state so that the system has a transferrelation 
lose to a given referen
e transfer Gref . For this TEG, a

ording to se
tion 3, we haveH = �5
(2
)� 10(3
)�� :This transfer shows the di�eren
e that exists between the produ
tion rate of path u1 ! y, namely1/2 token/time unit, and those of path u2 ! y, namely 1/3 token/time unit.A

ording to the stru
ture of the workshop, an unstability5 problem arises as soon as too manyparts are admitted at the same time at inputs u1 and u2 be
ause of the di�eren
e of produ
tion ratesof ma
hinesM1 andM2. Indeed, in su
h a 
ase, the marking of the pla
e lo
ated between x1 and x3will grow without bound. So, a realisti
 obje
tive would be here to impose, thanks to the 
ontroller,the produ
tion rate of the slowest ma
hine (M2) to the whole system (i.e. 1 part per 3 time units).A

ording to prop.5, the model referen
e 
ontrol has an optimal solution if Gref both belongs to G2and re
e
ts the desired produ
tion rate. For instan
e, if we 
hoose here Gref = H(3
)�, we obtainGref = �5
(3
)� 10(3
)�� ;whi
h satis�es both 
onstraints.Then, a

ording to prop.5, the greatest realizable feedba
k Sr is given by 
omputing Pr+((CA�) ÆnGref Æ=H).A

ording to state representation (11), we haveCA� = �5
(2
)� 10(3
)� 2(2
)�� :Therefore, we 
an 
ompute the 
ontroller. First, we obtain(CA�) ÆnGref Æ=H = 0BBB��5
�1(3
)��10(3
)��2(3
)� 1CCCA5a TEG is said stable if the marking of all its internal pla
es remains bounded for all input sequen
e (Max Plus,1991). The problem of TEG stabilization has re
ently been re
onsidered in (Commault, 1998).11



whi
h is 
learly not 
ausal (but periodi
) and thenSr = Pr+((CA�) ÆnGref Æ=H) = 0BBB� 1
(3
)�2
4(3
)�1
(3
)�1CCCAA realization of that optimal 
ontroller is drawn in grey lines in �g.2.Remark 5 Some other examples are developed in (Cotten
eau et al., 1999) (output feedba
k), (Co-hen et al., 1998) (output feedba
k) and (Cotten
eau, 1999) (all these stru
tures are illustrated). Letus note that su
h a synthesis is indi�erently obtained in either dioid ZmaxJ
K or dioids ZminJÆK andMaxin J
; ÆK.
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