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Abstract

This paper deals with feedback controller synthesis for Timed Event Graphs in dioids. We
discuss here the existence and the computation of a controller which leads to a closed-loop
system whose behavior is as close as possible to the one of a given reference model and which
delays as much as possible the input of tokens inside the (controlled) system. The synthesis

presented here is mainly based on residuation theory results and some Kleene star properties.

Keywords: Discrete Event Systems, Timed Event Graphs, Dioid, Residuation Theory,
Feedback Synthesis.
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1 Introduction

Timed Event Graphs (TEG) constitute a subclass of timed Petri nets of which each place has exactly
one upstream and one downstream transition. It is well known that the timed/event behavior of
a TEG, under the earliest functioning rule!, can be expressed by linear relations over some dioids
(Baccelli et al., 1992) (De Schutter, 1996). Strong analogies then appear between the classical linear
system theory and the (max,+)-linear system theory. In particular, the concept of control is well
defined in the context of TEG study. It refers to the firing-control of the TEG input transitions in
order to reach desired performance (see for instance (Cofer & Garg, 1996) (Takai, 1989)). In the
(max,+) literature, an optimal control for TEG exists and is proposed in (Cohen et al., 1989)(Menguy
et al., 2000). For a given reference input, this open-loop structure control yields the latest input
firing date in order to obtain the output before the desired date.

This paper aims to transpose some closed-loop control structures to TEG. More precisely, we focus
on controller synthesis such as output feedback controller, state feedback controller or output feedback
on state controller. The controller synthesis is done in order that the controlled system will behave
as close as possible to a given reference model. Furthermore the proposed controllers allow delaying
as much as possible the token input inside the TEG.

Applications of these controllers are possible within the framework of production management.
Indeed, TEG are well adapted to represent a class of manufacturing systems which present only
delays and synchronization phenomena (Ayhan & Wortman, 1999). Therefore, in the manufacturing
context our controllers allow modifying the dynamics of a system (production line or manufacturing
workshop) according to a given reference model and delaying as much as possible the raw parts
input into the system. The latter property contributes to decreasing the work-in-process amount
which is a permanent concern for the just-in-time production.

In the next section, we recall some theoretical results from the (max,+) literature and introduce
the algebraic foundations. Section 3 is devoted to recall some elements of TEG representation over
particular dioids. The problem of controller synthesis is stated and solved in section 4. Section 5

aims to present an illustrative example.

2 Elements of Dioid and Residuation Theories

2.1 Dioid Theory

We first recall in this section some notions from the dioid theory. The reader is invited to consult

(Baccelli et al., 1992) for a complete presentation.

Definition 1 (Dioid) A dioid is a set D endowed with two inner operations denoted ® and ®.
The sum is associative, commutative, idempotent (VYa € D,a @ a = a) and admits a neutral element
denoted . The product is associative, distributes over the sum and admits a neutral element denoted

e. The element € is absorbing for the product.

Li.e. a transition is fired as soon as it is enabled.



Definition 2 (Order Relation) An order relation can be associated with a dioid D by the following
equivalence: Ya,b € D,a > b < a=a®b.

Definition 3 (Complete Dioid) A dioid D is complete if it is closed for infinite sums and if the

product distributes over infinite sums too.

Example 1 (Z,q, dioid) SetZ = 7 U{—o0, +00} endowed with the max operator as sum and the

classical sum + as product is a complete dioid, usually denoted Znay, of which e = —o0 and e = 0.

The following theorem allows solving certain implicit equations defined over complete dioids.

Theorem 1 Owver a complete dioid D, the implicit equation © = ax b admits © = a*b as least

solution, where a* = @,y a’ (Kleene star operator) with a® = e.

Notation 1 The Kleene star operator, over a complete dioid D, will be sometimes represented by
the following mapping
X: D —- D

r = Pyt

The following theorem recalls some classical formule involving Kleene star mapping.

Property 1 Let D a complete dioid and a,b € D.
(a*)* — a* (1)
a*a* = a* (2)

a(ba)* = (ab)*a. (3)

2.2 Residuation Theory

The residuation theory provides, under some assumptions, optimal solutions to inequalities such as
f(z) 2 b, where f is an order-preserving mapping defined over ordered sets. Some theoretical results
are recalled below. Complete presentations are given in (Blyth & Janowitz, 1972) (Baccelli et al.,

1992).

Definition 4 (Isotone mapping) A mapping f defined over ordered sets is isotone if a < b =

fla) 2 (D).

Definition 5 (Residual and residuated mapping) Let f : £ — F an isotone mapping, where
(€,=X) and (F, =) are ordered sets. Mapping [ is said residuated if for all y € F, the least upper
bound of subset {x € E|f(x) <y} exists and lies in this subset. It is then denoted f*(y). Mapping
f% is called the residual of f. When f is residuated, f* is the unique isotone mapping such that

foff=<Idand ffof > Id, (4)
where Id is the identity mapping respectively on F and £.

Theorem 2 ((Baccelli et al., 1992)) Let f : E — F where E and F are complete dioids of

which bottom elements are respectively denoted e and er. Then, f is residuated iff f(er) = er and

VACE f(@reca®) = Barea f(2)



Corollary 1 Mappings x — ax and x — za defined over a complete dioid D are both residuated.

Their residuals are usually denoted respectively x — afz and & — zda in (maz,+) literature.

proof: according to def.3, if D is a complete dioid then the product distributes over infinite sums

and ¢ is absorbing which satisfies the requirement of th.2. O

Some classical results concerning product residual are given in the following theorem.

Theorem 3 ((Baccelli et al., 1992)) Mappings x — aXz and x — z¢a verify the following prop-

erties:

aflaz] = @ [zalfa = = (5)

alayaz] = ax [zadala = za (6)

[ab]ye = bX[ake]  wflba] = [zfalfb (7)

[akz]b

PN

a§[zb] blzdal

PN

[bz]fa (8)

a*r = a*§[a*z] za* [za*]fa* ©))

Theorem 4 Let D a complete dioid and A € DP*™. Then, AYA € D™*" and
AYA = (ARA)™. (10)

proof: see (Max Plus, 1991) for another proof. First, according to (5), A{A = e, where e € D"*"
is the neutral element for matrix product. Moreover, according to (6), A = A(A§A). Therefore,
we have AYA = A{[A(A}A)]. Furthermore, thanks to (8), we can show that A{[A(A{A)] =
A{A ® AYA. We thus obtain the following inequality e < (A§4)? < AXA, and more generally
Vn €N, e X (A§4)" < AYA. Therefore, we verify e < @, cn(A]A4)" <X ARA (i.e. (A§4)" <X ARA)
which finally leads to equality since, according to the dioid order definition (def.2) and the Kleene
star definition (th.1), we also have (AyA)* =e® ARA P - - = A}A. O

2.3 Mapping restriction

In this subsection, we address the problem of mapping restriction and its connection with the
residuation theory. In particular, we show that the Kleene star mapping, which can be shown to be

not residuated, becomes residuated as soon as its codomain is restricted to its image.

Definition 6 (Restricted mapping) Let f : E — F a mapping and A C E. We will denote
fia + A = F the mapping defined by fla = folda wherelds: A = E,x = x is the canonical
ingection. Identically, let B C F with Imf C B. Mapping p|f : E — B is defined by f =1dg o | f,

where |d|p : B — F,x — x is the canonical injection.



Definition 7 (Closure mapping) An isotone mapping f : E — E defined on an ordered set E is
a closure mapping if f = 1d and fo f = f.

Remark 1 According to (1), mapping X is a closure mapping since a* > a and (a*)* = a*.

Proposition 1 Let a closure mapping f : E — E . Then, \yf is a residuated mapping whose

residual is the canonical injection ld|jmy : Imf — B,z — .

proof: according to (4), ims|f is residuated if there exists a mapping g such that |my fog < Id
and g oy f = Id, where identity mappings are respectively identity on Imf and on E. By setting
g = ldjims, we both verify s f o ldjims = ims|fiimg = Id (identity on Imf) since fo f = f, and
Idjimf © imgf = f > Id (by def.7). O

Corollary 2 Mapping \mx|X is a residuated mapping whose residual is (|mg<‘j<)ﬁ = Idjimx-

proof: the proof is direct since X is a closure mapping. O

*

Remark 2 We can state from cor.2 that © = a* is the greatest solution to inequality * < a*.

Actually, this greatest solution achieves equality.

3 TEG description on dioids

3.1 Transfer function

We recall that TEG can be seen as linear discrete event dynamical systems by using some dioid
algebras (Cohen et al., 1989) (Baccelli et al., 1992). For instance, by associating with each transition
x a “dater” function {x(k)}rez, in which z(k) is equal to the date when which the firing numbered
k occurs, it is possible to obtain a linear state representation in Z,,.,. As in conventional system
theory, output {y(k)}rez of a SISO TEG is then expressed as a convolution of its input {u(k)}rez
by its impulse response? {h(k)}jez.

Analogous transforms to z-transform (used to represent discrete-time trajectories in classical
theory) can be introduced for TEG. Indeed, one can represent a dater {z(k)}rez by its y-transform
which is defined as the following formal power series: X (v) = @, z(k)y"*. Variable v may also be
regarded as the backward shift operator in event domain (formally, yz(k) = z(k—1)). Consequently,
one can express TEG behavior over the dioid of formal power series in one variable v and coefficients
in Zyaz. This dioid is usually denoted Z,,q.[Y] in literature.

For instance, considering the TEG drawn in solid black lines in fig.2 (without taking account of

the grey arcs), daters z1, z2 and z3 are related as follows over Dornaw:

z3(k) =3 z1(k—1) D8R z2(k) B2 x3(k — 1).

2which is the ouput due to an infinity of input firings at date zero (Max Plus, 1991).




Their respective y-transforms, expressed over Z,,,.[7], are then related as:

z3(7) = 3yz1(y) @ 8z2(y) B 2y3(7)-
Consequently, for this TEG, we can obtain the following representation over Zq.[7]:

X = AX @ BU
(11)

with

3y 8 2y € € 3

AR () wid ¥ =y

By solving the state equation of (11) according to th.1, i.e. Y = C A* BU, we obtain the following

transfer relation in Zy,q. [7]:

Y = (59(2)" 10(3)7) U. (12)

Remark 3 Algorithms and software tools are mow available in order to establish such a transfer

relation starting from the state representation (Gaubert, 1992) (Cottenceau, 1999).

3.2 Periodicity, causality and realizability

The transfer relation of a TEG is characterized by some periodic and causal properties that we recall
hereafter. Let us consider a series s = @,z $(k)¥* in Zmao[v]- The support of s is then defined
by Supp(s) = {k € Z|s(k) # €}, and its valuation corresponds to the lower bound of Supp(s),
i.e. val(s) = min{k € Z|s(k) # €}. A series § € Zpaz[7] such that Supp(s) is finite is said to be

polynomial.

Definition 8 (Causality) A series s € Zpmaz[y] is causal if s = € or if {val(s) > 0 and s >

V()Y The set of causal elements of Zmas[Y] has a complete dioid structure denoted Z:wz -

Definition 9 (Periodicity) A series s € Zpaz[y] is said to be periodic if it can be written as
s =p®q(ty”)* with p and q two polynomials and v, 7 € N. A matriz is said to be periodic if all its

entries are periodic.

Definition 10 (Realizability) A series s € Zpaz[y] is said to be realizable if it exists three ma-
trices A, B and C with entries in NU {—o0,+00} such that s = C(vA)*B. A matriz is said to be

realizable if all its entries are realizable.

In other words, a series s is realizable if it corresponds to a transfer relation of a TEG.
Theorem 5 ((Cohen et al., 1989)) The following statements are equivalent:

o A series s is realizable.



o A series s is periodic and causal.

The set of periodic series of Zmaz [v] has a dioid structure which is not complete. Nevertheless,

we have the following property.
Theorem 6 Let s; and sy two periodic series of Doz [v]- Then, s1ss is also a periodic series.

proof: see (Max Plus, 1991). O

Theorem 7 The canonical injection Id| : Z;M[['y]] = Zmaz[[Y] is residuated. We denote Pr, :

Tomaz[7] = Z;M [v] its residual, i.e. Pry(s) is the greatest causal series less than or equal to s.

proof: see (Cottenceau et al., 1999). O

From a practical point of view, for all s € Z,,4.[7], the computation of Pr, (s) is obtained by:

s(k) if (k,s(k)) > (0,0)

Pri(@rez s(k)v*) = @pez 5+ (k)7" where s, (k) = ,
€ otherwise

Theorem 8 Let s a periodic (not necessary causal) series of Zmaz[y]. Then, Pri(s) is the greatest

realizable series less than or equal to s.

proof: (sketch of proof) the Pri mapping simply amounts to zeroing terms of a series which are
not with positive coefficient or exponent. Then, if s is periodic, Pry (s) remains periodic. Finally,

Pry(s) is both periodic and causal, i.e. realizable (cf. th.5). O

4 Feedback controller synthesis

4.1 Problem statement

As presented previously, in dioid Zpq[7], the behavior of an m-inputs p-outputs TEG can be
described by a state representation such as (11) where U € Zinaz[y]™ and Y € Zpaz[Y]P. According

to th.1, by solving the state equation in X, the input-output transfer relation is then expressed by
Y = HU, (13)

where H = CA*B belongs to Z,q.[Y]P*™.

We focus here on controller synthesis such as:

e output feedback controller: a controller, denoted F', is added between output Y and input U of
the nominal system (see fig.1-a-). Therefore, the process input verifies U =V @ FY, and the
output is described by Y = H(V & FY'). According to th.1, the closed-loop transfer is then

equal to
Y =(HF)*HV. (14)

e state feedback controller: a controller, denoted L, is added between internal state® X and

3such a control structure implies that the internal state used for the control is measurable.



input U of the system (see fig.1-b-). The input is then described by U = V @ LX. First, by
solving the state equation of (11) according to th.1, we have X = A*BU = A*B(V & LX) =
A*BLX @ A* BV . Therefore, by solving this new implicit equation according to th.1, we obtain
X = (A*BL)*A*BV. Finally, by replacing X in the output equation of (11) and by using
(3) we have Y = C(A*BL)*A*BV = CA*B(LA*B)*V, which corresponds to the following

transfer relation:

Y = H(LA*B)*V. (15)

e output feedback on state controller: a controller, denoted S, is added between output and
internal state (see fig.1-c-). The state evolution is then described by X = AX @ BU ¢ SY. It

is the reader’s concern to check that the input-output transfer is given by
Y = (CA*S)*HU. (16)

The controller S, located between output and internal state, behaves like inhibiting® arcs. For
instance, these arcs are depicted in grey lines in fig.2. Therefore, such a structure of control
preserves a suitable meaning provided that one can effectively control the internal transitions,

i.e. one can delay their firings when necessary.

The objective of the model reference control is to impose a desired behavior (Grer) to a given
system (H) while finding the best controller carrying out this objective. More precisely, by denoting

G ¢ the transfer of the controlled system with controller C', we try to determine C' such that
Go 2 Greg- (17)

Constraint (17) may be literally expressed as: the closed-loop system is at least as fast as the
reference model.

In addition, by assuming that it may exist several controllers C;,i € {1,...,n}, leading to the
same controlled transfer, i.e. G¢, = --- = G¢,, we focus on the greatest one (when such an optimal
exists): the greatest is the one which delays as much as possible the input in the system. Therefore,
in the TEG context, this supremal controller minimizes the amount of tokens in the controlled TEG.

In short, for a given reference model, the problem tackled here consists in finding the greatest
controller C' (when it exists) checking Go < Grep. Therefore, within the framework of feedback
synthesis and according to (14)-(16), we have to find, for a given G,.s, a greatest solution in F

(resp. L and S) for inequality (18) (resp. (19) and (20))

(HF)*H j Gref (18)
H(LA*B)* < Gres (19)
(CA*S)*H =< Gley. (20)

In other words, this amounts to being interested in the properties of mappings = + (Hz)*H,

z+— H(xA*B)* and x — (CA*x)*H with respect to the residuation theory.

4the supplementary arcs due to the controller authorize or prohibit the firing of the controlled transitions.



4.2 Owuput feedback synthesis

Let us define
MH . Zmn,m [[,.y]]mxp — Zmaz [[7]]p><m

X — (HX)*H.
This mapping clearly represents how an output feedback X influences the closed-loop transfer dy-
namics. Clearly, inequality (18) admits a greatest solution for all reference models Ger only if
My is residuated. However, according to th.2, one easily checks that My is not residuated since
My (e) = H # . Nevertheless, the following result shows that there are restrictions of mapping My
which are residuated. That amounts to saying that the inequality (18) admits an optimal solution

only for specific right-hand sides.
Proposition 2 Let G € Zpar[Y]P*™ and D € Lo [Y]P*P. Let us consider the following sets:

G1 = {G|3D periodic and causal s.t. G = D*H}
Go = {G|3D periodic and causal s.t. G = HD*}.

Mappings g, /Mg and g, Mg are both residuated. Their residuals are such that (g, Mp)*(z) =
(6o Mu)¥(x) = H ¥afH.

proof: according to def.5, we remark that the two following assertions are equivalent:
® g, | My is residuated
e VD periodic and causal, (HX)H* < D*H admits a greatest solution.

So, we can concentrate on the second point. Since mapping x — Hz is residuated (cf. cor.1) and

according to (3), we have:
(HX)*H = H(XH)* < D*H <= (XH)* = H\(D*H).
According to (9) and (7), we can rewrite
HX(D"H) = HX[D"X(D"H)] = (D"H){(D"H).

According to (10), this last expression shows that H §(D* H) belongs to the image of X : Zya. [y]™*™ —

Lomaz[y]™*™. Since imx| X is residuated (cf cor.2), there is also the following equivalence:
(XH)* K HY(D*H) < XH X HX(D*H).

Finally, since mapping = + xH is residuated too (cf. cor.l), we verify that X = H{(D*H)¢H is
the greatest solution of H(XH)* < D*H, VYD € Zmas[y]?*?. That amounts to saying that g,| Mg

is residuated. We would show that g, Mg is residuated with analog steps. O

As recalled in section 3, working on TEG comes down to considering only the subset of periodic
and causal series of Zy,q.[y] (cf. th.5). Then, the results obtained in prop.2 must be restricted to
that case in order to be applied to TEG control.



Proposition 3 If G,y € Gi U Gs, there exists a greatest realizable output feedback F, such that
(HF,)*H =< Gyrey. This greatest controller is given by

F, = Pry (HA\GyosH).

proof: according to prop.2, H §G,.r¢H is the greatest solution to (HX)*H < G, cy. Since Grep €
G1 U Ga, Grey is periodic and causal. Therefore, according to th.6, H §G,.s¢H is periodic. Eventu-
ally, according to th.8, Pro(H §G,.s¢H) is the greatest realizable solution. O

4.3 State feedback, feedback between output and state.

For these two feedback synthesis problems, it is still a question of checking whether mappings
x +— H(xA*B)* and ¢ — (CA*z)*H are residuated or not. According to th.2, it is clear that
they are not residuated. Nevertheless, the problem of reference model control may have an optimal

realizable solution, in each case, if G..f is constrained to belong to particular subsets of Loma [y]P>m.

Proposition 4 Let H = CA*B be a TEG transfer matriz. For all reference model G,.y € G1, there
exists a greatest realizable state feedback L, such that H(L,A*B)* < Grep. This optimal solution is

then computed by
L, =Pry (HXG,cf¢(A™B)).

proof: as in the prop.2 proof, we first have to show that for all D € Zy..[v]P*?, equation

H(LA*B)* < D*H admits a greatest solution. Since mapping x — Hz is residuated, we have:
H(LA*B)* < D*H <= (LA*B)" < HY(D*H).

Moreover, we have shown in the prop.2 proof that element H §(D*H) belongs to the image of

K : ZLomaz[V]™*™ = Zimaz[7y]™*™. Then, since ms X is residuated,
(LA*B)* < H\(D*H) < LA*B < H\(D"H).

Since x — zH is residuated too, we then obtain that H §(D*H)¢(A*B) is the greatest solution to
H(LA*B)* < D*H. Finally, if G,y belongs to Gi, H §Gr ¢ (A*B) is a periodic matrix (by applying
th.6), and Pry (H{G,es¢(A*B)) is then the greatest realizable solution (by applying th.8). O

Proposition 5 Let H = CA*B be a TEG transfer matriz. For all reference model G,.y € Ga, there
exists a greatest realizable output feedback on state S, such that (CA*S\)*H < G,.y. This optimal

solution is then computed by

S, = Pry ((CA")\GhrepfH).

proof: similar to the previous proof. O

10



Remark 4 (Particular case G,.; = H.) Since the identity matriz e is such that e* = e, we can
easily check that H € G, and H € Gs. Therefore, for any TEG, it is possible to preserve its own
transfer with either a greatest realizable output feedback, a greatest realizable state feedback or a
greatest realizable output feedback on state. In (Cottenceau et al., 1999), that particular case has

already been studied for output feedback control.

5 Example

In order to illustrate results presented previously, we describe a complete synthesis of an output
feedback on state for the TEG depicted with solid black lines in fig.2. We assume that this model
represents a workshop with 3 machines (M7, Ms, M3) of which inputs are described by transitions
1, o and x3. Therefore, this example corresponds to a short application of our results in the
domain of manufacturing management.

We propose to compute a greatest output feedback on state so that the system has a transfer

relation close to a given reference transfer G..r. For this TEG, according to section 3, we have

H = (5720 1069)°).

This transfer shows the difference that exists between the production rate of path u; — y, namely
1/2 token/time unit, and those of path us — y, namely 1/3 token/time unit.

According to the structure of the workshop, an unstability® problem arises as soon as too many
parts are admitted at the same time at inputs u; and us because of the difference of production rates
of machines M; and M. Indeed, in such a case, the marking of the place located between x; and z3
will grow without bound. So, a realistic objective would be here to impose, thanks to the controller,
the production rate of the slowest machine (M3) to the whole system (i.e. 1 part per 3 time units).
According to prop.5, the model reference control has an optimal solution if G,y both belongs to G-

and reflects the desired production rate. For instance, if we choose here G,.; = H(37v)*, we obtain

Grep = (57(37)* 10(37)*) )

which satisfies both constraints.
Then, according to prop.5, the greatest realizable feedback S, is given by computing Pry ((CA*) XG,er¢ H).

According to state representation (11), we have

ca* = (59(29)* 1087 2(27)°)-
Therefore, we can compute the controller. First, we obtain
=577 (37)*
(CA*)XGrepdH = —10(37)*
—2(37)"

5a TEG is said stable if the marking of all its internal places remains bounded for all input sequence (Max Plus,

1991). The problem of TEG stabilization has recently been reconsidered in (Commault, 1998).

11



which is clearly not causal (but periodic) and then

1y(37)
S, =Pri((CA*)XGrepdH) = 274(37)*

1y(37)"
A realization of that optimal controller is drawn in grey lines in fig.2.
Remark 5 Some other ezamples are developed in (Cottenceau et al., 1999) (output feedback), (Co-

hen et al., 1998) (output feedback) and (Cottenceau, 1999) (all these structures are illustrated). Let

us note that such a synthesis is indifferently obtained in either dioid Zpmay[y] or dioids Zin[6] and
MGy, 0]

12
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Figure 1: System H = C'A*B with an output feedback F' (-a-), a state feedback L (-b-) and an
output feedback on state S (-c-).

Figure 2: A TEG endowed with a controller (grey lines).
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