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HIERARCHICAL BAYESIAN LEARNING FOR ELECTRICAL TRANSIENT
CLASSIFICATION

Matthieu Sanquet? Florent Chatelairi Mabrouka El-Guedyi Nadine Martirf

* University of Grenoble, GIPSA-lab, 961 rue de la Houille iBthe,
BP 46, 38402, St Martin D’Heres, France
T Electricité de France — R&D, 4 Quai Watier, 78401 ChatoanEe

seminal works- [3] have shown that, when an appliance isetlirn
on, it generates an electrical transient which is charitieto the
kind of the appliance. Consequently, some methods havadire
been investigated to detect and classify these appliancéstihg
the transients that appear in the load curves accordingte steter-
ministic pattern [4]. However, these deterministic rukesd to some
specific and manual feature extraction methods which afewif
to be generalized to real-world applications.

The main contribution of the present work is to study a gen-
eral fully probabilistic approach to model and to classifg differ-
ent electrical appliance transients. Thus, it benefits floenmany
advantages such as flexibility, confidence values, robsstneof-
fered by probabilistic pattern recognition methods. Thestaered
work extends the smooth transition regression modelinggsed in
[5, 6] to the supervised classification problem. In [5, 6],iardr-
chical Bayesian model was introduced to fit an unique tramsvéh
a view of achieving a sparse representation. In a machimeiten
framework, it seems now quite natural to account for sawerhy-
potheseg7] on the feature variability. In our hierarchical Bayesia
framework, these overhypotheses reduces to some hyperpdm-

Index Terms— Hierarchical Bayesian model, MCMC methods, mon to all the signals of the same class. As a consequence, the
supervised classification, curve fitting, smooth transitiegression  feature extraction specific for each signal of a given class, the

ABSTRACT
This paper addresses the problem of the supervised sigmsgi<l
fication, by using a hierarchical Bayesian method. Eachasign
characterized by a set of parameters, the features, whiclkesi-
mated from a set of learning signals. Moreover, these pasmare
distributed according to a class-specific posterior digtion which
allows one to capture the variability of the features wittiia same
class. Within the hierarchical Bayesian framework, theueaex-
traction step and the learning step can be performed joibtihfor-
tunately, the estimation of the class-specific distribupp@arameters
requires the computation of intractable multi-dimensiantegrals.
Then a Markov-chain Monte Carlo (MCMC) algorithm is used to
sample the posterior distributions of the features ovehalkraining
signals of each class. An application to electrical tramsiassifi-
cation for non-intrusive load monitoring is introducedniiations
over real-world electrical transients signals are drived show the
capacity of the proposed methodology to discriminate tvasss of
transients.

model, non intrusive appliance load monitoring. learning over all different electrical transient classes @erformed
jointly.
1. INTRODUCTION This paper is outlined as follows. The hierarchical Bayesia

learning method based on the smooth transition regressicanp

Bayesian inference is an usual method in a learning framefigr ~ eters is given in the second section. The MCMC algorithmveeri
This allows classification algorithms to be derived, bagsethe pos-  to infer the signal features and to learn the class-speciiarpe-
terior distributions of some features that characteriziassc These ters is presented in section Ill. Some simulations conductereal-
posterior distributions are inferred on some learning align Fi-  world electrical transients are reported in section 1V.afin some
nally, the classification task is usually performed for agisignal ~ concluding remarks are exposed in the last section.
by choosing the class that maximizes the posterior probabiithe
features that have been extracted. 2. HIERARCHICAL BAYESIAN LEARNING

In standard classification methods, feature extractionleah-
ing are performed separately. This approach is adequate thlee In a supervised classification context, the set of the tngisamples
feature extraction step is straightforward. However, imsa@ases, is denoted ast. In our application, each samplec X’ stands for
the feature extraction requires the use of computatiortahaion  the time series associated with a training signal. The d&dss of
methods as, for instance, Markov chain Monte Carlo (MCM®@)sa ¢(x) € C = [1,..., N¢] is known for each examplg, and N¢
pling methods in a hierarchical Bayesian approach. Under sit-  denotes the number of different classes. Forall C, the subset
cumstances, it is interesting to perform jointly the featextraction X, = {x € X\c¢(x) = ¢} contains all the samples belonging to
and the learning tasks [2]. Furthermore, such a strategythe class labeled as, whereas the number of samples in this class is
possibility to include some prior knowledge at differentdks of ab-  denoted asV. = card(X.). Finally, x; . stands for the** sample
straction in the hierarchical model. Then, feature valighivithin in the class..

a class is taken into account in order to support classificati The classification problem formulated in a Bayesian frantekwo
The detection and the classification of electrical trartsieme  reduces to the computation of the posterior distributiffigx, X.)
useful in the context of non intrusive load monitoring (NIl.MAa-  for eachc € C and for any given signal that does not belong to the
chine learning methods have received a great attentionckdeta training set :x ¢ X.. Assuming a zero-one loss function, the sig-
NILM [12, 11]. The so calledmicroscopicmethods focus on the nalx is classified according to the following maximum a postérior

analysis of the waveform of the electrical transients. kt,faome  decision rule:
c(x) = argmax f(c|x, Xe). 1)
ceC



This is the most useful equation in our hierarchical Bayesiethod
as the analytical integration over the parameter space)iis (8ot

@ @ tractable in the general case.
l 2.2. Smooth transition regression model for transient modéng

@ @ o @ For the processing of the electrical transients of our deteja spe-

] ) ) cific model has been introduced in [5, 6]. We briefly recalltiist
Fig. 1. Directed acyclic graph of the parameters and hyperparamesection the basics of this model. The signal is modeled as a se
ters of the hierarchical Bayesian modep are the hyperparameters quence ofK constant consumption level connected by a sequence

- 6; are the features/parameters of the signal of K — 1 transition functions centered around the time instamnts:
[’7’1’7;7 o 77—K71’i]T_ Then, for a”j = 1, R %
K
In the context of a model-based classification, a set of patens (or xi[j] = Z[m_l i(t5) — i ()] Br.i + €ild]s 7
features)d is extracted from an input signal, using a parametric Pt ’ ' '

model. This model is defined by its likelihood functigigx|@) for wheren; is the length of the time series, is an i.i.d centered Gaus-

all@ € ©, where® denotes the feature space. sian noise vector with a varianeg, 3, = [B1.:, ..., 8k isathe
) ) ) vector of the active power consumption levels, and, ..., Tk
2.1. Hierarchical Bayesian model is the set of the transition functions. These transitiorcfioms are
We will assume now that the signals belong to a given otag=or chosen among the family of stretched exponential functions
the sake of simplicity, the subscript is omitted in the following. 7.\ P(ek,s)
The tr.ainin.g signglxi of the classc is modeled according to the Tri(t) = 1 —exp {(T) } E> Th (8)
following hierarchical model: 0 t< Thi
xi o~ f(x]6:), @) Each transition function, ; is parameterized according to a location
6, ~ f(6l¢), 3) parameterr ;, a scale parametey, ; and a shape parametey, ;.
¢ ~ f(olo), 4 The number of component& is supposed to be known for each

class of signal.
where¢ is set of hyperparameters which define the distribution of 1,4 Iir?ear relation betweex; and 3, is captured by the matrix

the parameter@ within a class. These expressions show that, first,; 1 entries of which depend on the transition function petars
each training signak; is governed by a specific vector of features =

;. This favors the ability of the model to account for the vhilia xi = ZiP3; + €. 9)
ity between the features of the same class. Secondly, aletitare  The likelihood function for this model reads

vectors@; associated with all the training signals are governed by 1

the same class-specific distribution. The hyperparameteskthis f(xi]0:) 7 €Xp <2 5 (Xi — ZiB)" (xi — Z,ﬂi)) ,
distribution depends only on the considered classThis ensures ;)2 i

the ability of the model to categorize the different feasuie the (10

same class. Last, the distributigiicp|c) corresponds to the prior Where the parameter vectorls = {07, B;,,}, with n; being the

on these class-specific parameters. These hypothesesuiein ~ S€t of the transition function parameters= (7x,i, Ak,i, k,iJk=1,..., k1
the hierarchical Bayesian model are set up at differenidevieab-

straction. This is in agreement with the notion of overhyyesis, 2.3. Prior distribution

as introduced, for instance, in [7]. These relations arectiegh on
the directed acyclic graph of the parameters and hyperpeasin
Figure 1. Each stage of the underlying hierarchical Bayesiathod
is related to one of the standard steps of supervised learnin

1. Estimated; from x; is the feature extraction stage,

K—-1

2. Estimatep from {6+, ...,0x} is the learning stage. 7(6i]¢) = f(aflpo)f(ﬁi) H f()\k,i|p>\k)f(ak,i|uotk7Uik)7
It is of note that these two steps are performed jointly witthie hi- b1
erarchical Bayesian framework. This is an appealing cheriatic,
these two steps being performed successively in a stantkssi-c
fication framework. Indeed, the estimation of the featuresazh
training signal is improved if the feature distribution bktsignals
of the same class is taken into account.

In order to derive the classification rule, one needs to |daen

In this work, we assume the classical hypothesis which leatise
naive Bayes classifier [1] (i.e conditional independenc¢heffea-
tures given the class), which yields the following expressif the
class-specific distribution over the parameter space

where ¢ = {po,pxr, e, o2} is the hyperparameter vector,
whereaspx = (pxp)k=1,..K-1, Ba = (fla)k=1,..,x-1, and
02 = (62,)k=1..... k1 are the parameters of the hyperpriors.
Conjugate inverse-gamma prior and g-prior are chosen for th
variance of the observation noisé and the coefficient8, respec-

parametersgp from the training exampleg’. The following expres- tively
sion of f(¢|X) is derived, assuming that the training examples are gf|p0 ~ZG(1,ps), (11)
independent conditionally t¢ B8 ~ N(0.0%8(27 20 w2
N i ) 7 i 5
f@lx) o (@) ey f 1 (x:16:) f(8:[)d6:. ®) with ZG being the inverse-gamma distributiokl; being the normal

Finally, the joint posterior of the class-specific paramegieand  distribution andb? being fixed tos? = 50.
the signal-specific parametddsis deduced from (5)

N
F(¢.01,...,0x5|X) f(¢)Hf(xz'I9¢)f(9i|¢)~ (6)



As the dependence of the likelihood with respect to the shap&he reader might read [6] for a full description of the prdfios

and scale parameters of the transitions functions is namatd,
conjugate priors cannot be selected. Since no prior infoomas
available on these parameters, vague priors defined on asupp
agreement with the parameter spaces are considered. &l te
the following gamma and normal priors for the scale and sipape
rameters respectively

(13)
(14)

Akﬂ'|(l/>\k’7p/\k*) ~ g(V/\ImPAk):
ak,i|(ﬂakyaik) ~ N(Hakvﬂik)

with G being the gamma distribution with thg ;. being fixed to the
deterministic value/y,, = 1 forallk = 1,..., K — 1. The set

of hyperparametep represents the distribution of parameters within

a class. The prior distributions of these hyperparametersaled
hyperpriors.

2.4. Hyperprior distribution

Since no information on these hyperparameters is avaitaplori,
non informative, or sufficiently vague, priors are chosen

1 1
f(MoszikyPAk) & T_HRXR+XR+(M0¢k70’?xk7pAk) (15)
Oak Prk

F(po) o piﬂ (po): (16)

with T4 being the indicator function for the sdt

2.5. Marginalized posterior

The full joint posterior of class-specific parametgm@nd parameters
of each signab; is deduced from the likelihood, the prior distribu-
tions and the hyperprior distribution using eq. (6). Thée, param-
eters@;, o7 and hyperparameteys,  , i, 02, are integrated out.
Then the marginalize posterior distribution is :

f(‘l',)\,(l,ﬁg')(‘) X (17)
F(oo) Ty F(Ak)i=1,on) f ((hi)iz1,...v) v
I, (Pv +3 (%T“fi - 146:52 xz’TZiT(ZiTZi)_IZm)) K

with

F((Aki)i=1,..,N) X <Z )\ki>

1 & ’
(s i 550)
p

However analytical estimation of the remaining parameaeis
hyperparameters is not tractable. In this case, we samglpdsie-
rior distribution (6) by using an MCMC algorithm [8].

—Nvyg N

H )‘I:i(u)\kil)7 (18)
=1

N
N 2

fl(ari)i=1,.. .N) Z

=1

(19)

3. MCMC ALGORITHM

The standard Metropolis-Hastings algorithm is used to $arie
parameters of the transitions A, a for each training signal from
marginal posterior distribution (17). That is, at the iteva ¢, one
of the transitionsk € [1, K — 1] from the ith signal is selected
and a proposalri, e, al) is drawn from a proposition distribution
q(1, A\, ). The proposal is accepted with the probability

X\ & @) B 4@
P = min (17 f(T7 )\7 a|X)q(T 7)‘ , & ))

= 20
FEr® A a®|X)q(F, A, &) 20

distributiong(, A, ).

An acceptation-rejection move of the transitions configareis
attempted iteratively for each training signal. A sketclhaf overall
MCMC algorithm is

e for each training signal i = 1,..., N
— select one of the transitiorise [1, K — 1]

— draw a sample of, Ak, dx according to the proposi-
tion distributiong (7, A, ).

— accept the proposal with the probabiliy defined in
(20)

— samples? according to his marginal posterior distribu-
tiono? ;. po ~ TG (% + Lo + 5 (2 oi — 55

7))

e samplep, according to his marginal posterior distribution
-1
poNg<N7 [Zil 0_12} )

This algorithm generates a Markov chain of parameters\, )
asymptotically distributed according to their marginatizoosterior
f(r, A, alX) (6). Itis of note that, even if the hyperparametérs
have been integrated out, it is straightforward to derigrtbondi-
tional posterior from the full joint posterior (6) thanksttee choice
of conjugate hyperpriors. Then, the hyperparameperan be sam-
pled from their conditional distribution in an additionaliBs move
within the MCMC algorithm.

3.1. Bayes factor computation

To evaluate the capacity of our method to discriminate effitty
two classes of transient, we estimate the Bayes fagtd9] of class
c1 against class, which is defined for a signal as

flalz) [ [ f(x]0)f(01¢)f(¢lc1)dbde
flealz) [ [ (x]0)f(6|)f(P|c2)dOdep”

Since the integrals over the paramet@m@nd¢ are not tractable, we
use Monte-Carlo integration to compute the Bayes factdy [Hore
precisely, we sample the posterior distribution of the nh¢éeover

a joint space created by a class indicatat C, the parameters and
the hyperparameters of the hierarchical Bayesian modeén The
MCMC estimate of the Bayes factby: is obtained as the ratio of the
number of occurences of= ¢; against the number of occurences of
¢ = co Within the samples of the class indicatorThe description of
the MCMC algorithm used for the sampling ofs out of the scope
of this communication (see [10] for more details).

b2 =

(1)

4. RESULTS

The hierarchical Bayesian learning framework introducedhiis
work has been used in the context of nonintrusive load mdngo
[3, 11, 12], more precisely for the identification of elec#li tran-
sient produced by one appliance being turned on [4]. Thiseiss
is quite challenging and, to our knowledge, their is no saadd
method or public dataset of such transient signals so thatame
give comparative results to assess the performance of ttreothim-
troduced in this work. Moreover, using the smooth regressiodel
to extract some features from the signal yields a trans-dseal
space: each class is not described with the same numbenofdea
Unfortunately, standard supervised learning methods ¢a8] not
deal directly with such kind of a feature space.

The method has been tested over a database of real-world

electrical transient, provided by EDF R&D. The transiemnts gen-
erated by two classes of appliances, = “vacuum cleaner” and



cz ="refrigerator”, the number of signals beiri@ and36 for each
class respectively. The database has been split in halfrto &
learning set and a test set of signals. The number of compdkien
is fixed for each class, using prior work [5, 6§ = 3 for the class

c1 and K> = 4 for the classco. The MCMC algorithm has been
applied to generate samples from the joint posterior tistion

of parameters and hyperparameters in order to perform ttarte
extraction and the learning of each class. The first10® iterations
which corresponds to the burn-in period have been throwryawa
The next3 x 10? iterations are used to estimate the posterior distri-
bution of parameters and hyperparameters over the tragigmals.
Those posteriors are depicted in Figure 2 for the clasand in
Figure 4 for the class.. It is of note that the feature parameters
0 can take quite different values from one signal to anothéhiwi

a class. This emphasizes the variability within the classwéter
the posterior distribution of the hyperparameterare quite regular
although they summarize all the training set of signals.
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Fig. 4: Hyperparameters distribution for the class
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Fig. 3: Two examples of the active power (kW) versus time (s) for
vacuum cleaner transient (blue) with their smooth tramsitegres-
sion fit (red) and the position of the transitions (black)

signal{ 1 |2 |3 |4 |5 |6 7 8
c1 30(58|14|13|37|16|50]| 14
Cc2 0O [0 |O |O ]|O |O 0 5.5

Table 1: MCMC estimates of the Bayes factbr, for each test sig-
nal (columns) of the two classes andc. (rows). The bold values
correspond to the test signals shown in Figures 3 and 5.

Finally, to assess the ability of this method to discrimintite
two classes of transients, the MCMC estimate of the Bayasifac
b1 has been computed for each test signal. Table 1 reports the
estimates for th& test signals of the class, numbered froml to
8, and for thes first test signals of the class. The valuebs, for
the test signals of the class which are not shown in table 1 s It

0.2
03 0.15
0.2 0.1
0.1 0.05
0 2 4 6 2 4 6
G 15t test signal of classs (b) 8th test signal of classs
bia =0 bio = 5.5

Fig. 5: Two examples of the active power (kW) versus time (s) for
refrigerator transient (blue) with their smooth trangitiegression
fit (red) and the position of the transitions (black)

means that, the convergence of the MCMC sampler being rdache
the label parameter takes only the value,. Within each class,
the signal with the greater and the lesser value of the Baasrf
estimates are depicted in Figures 3 and 5 with their cuniaditts-
timate derived from the smooth transition model. The Bagesof
estimate of each signal is indicated on the correspondingefigrhe
8" signal of class:, shown in figure 5(b) is classified in the wrong
class,bi2 being greater than one. Ti6&" signal of class:, shown
in figure 3(b) is well classified thoudh. is barely greater than one.
Nevertheless, the results suggest that the proposed nsadistiim-
inant with respect to this two classes. Indeed, except ferttvo
signals mentioned, every test signals are classified witlbstantial
evidence in favor of the correct modé® (> 3.2 according to Kass'’s
interpretation of the Bayes factor [9]).

5. CONCLUSION

A hierarchical Bayesian method has been introduced to perfo
jointly the feature extraction and the class learning ovdatabase
of electrical transients. With this methodology, the vaility of
the signal features within a class is summarized by the poste
distribution thanks to a few number of hyperparameters. rékalts
obtained over a few number of test signals suggest that teikad
is able to separate efficiently some appliance classes wtither-
learning the training set of signals. However, to be fullpwiacing,
the evaluation of the classification performance has nowetodnm-
ducted over larger data sets, and over other classes ofeingsnsThe
gxtension of the method to detect and classify multiplesierts in
a single signal is also under investigation.
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