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ABSTRACT
This paper addresses the problem of the supervised signal classi-
fication, by using a hierarchical Bayesian method. Each signal is
characterized by a set of parameters, the features, which are esti-
mated from a set of learning signals. Moreover, these parameters are
distributed according to a class-specific posterior distribution which
allows one to capture the variability of the features withinthe same
class. Within the hierarchical Bayesian framework, the feature ex-
traction step and the learning step can be performed jointly. Unfor-
tunately, the estimation of the class-specific distribution parameters
requires the computation of intractable multi-dimensional integrals.
Then a Markov-chain Monte Carlo (MCMC) algorithm is used to
sample the posterior distributions of the features over allthe training
signals of each class. An application to electrical transient classifi-
cation for non-intrusive load monitoring is introduced. Simulations
over real-world electrical transients signals are driven and show the
capacity of the proposed methodology to discriminate two classes of
transients.

Index Terms— Hierarchical Bayesian model, MCMC methods,
supervised classification, curve fitting, smooth transition regression
model, non intrusive appliance load monitoring.

1. INTRODUCTION

Bayesian inference is an usual method in a learning framework [1].
This allows classification algorithms to be derived, based on the pos-
terior distributions of some features that characterize a class. These
posterior distributions are inferred on some learning signals. Fi-
nally, the classification task is usually performed for a given signal
by choosing the class that maximizes the posterior probability of the
features that have been extracted.

In standard classification methods, feature extraction andlearn-
ing are performed separately. This approach is adequate when the
feature extraction step is straightforward. However, in some cases,
the feature extraction requires the use of computational estimation
methods as, for instance, Markov chain Monte Carlo (MCMC) sam-
pling methods in a hierarchical Bayesian approach. Under such cir-
cumstances, it is interesting to perform jointly the feature extraction
and the learning tasks [2]. Furthermore, such a strategy offers the
possibility to include some prior knowledge at different levels of ab-
straction in the hierarchical model. Then, feature variability within
a class is taken into account in order to support classification.

The detection and the classification of electrical transients are
useful in the context of non intrusive load monitoring (NILM). Ma-
chine learning methods have received a great attention to tackle
NILM [12, 11]. The so calledmicroscopicmethods focus on the
analysis of the waveform of the electrical transients. In fact, some

seminal works- [3] have shown that, when an appliance is turned
on, it generates an electrical transient which is characteristic to the
kind of the appliance. Consequently, some methods have already
been investigated to detect and classify these appliances by fitting
the transients that appear in the load curves according to some deter-
ministic pattern [4]. However, these deterministic rules lead to some
specific and manual feature extraction methods which are difficult
to be generalized to real-world applications.

The main contribution of the present work is to study a gen-
eral fully probabilistic approach to model and to classify the differ-
ent electrical appliance transients. Thus, it benefits fromthe many
advantages such as flexibility, confidence values, robustness... of-
fered by probabilistic pattern recognition methods. The considered
work extends the smooth transition regression modeling proposed in
[5, 6] to the supervised classification problem. In [5, 6], a hierar-
chical Bayesian model was introduced to fit an unique transient with
a view of achieving a sparse representation. In a machine learning
framework, it seems now quite natural to account for someoverhy-
potheses[7] on the feature variability. In our hierarchical Bayesian
framework, these overhypotheses reduces to some hyperpriors com-
mon to all the signals of the same class. As a consequence, the
feature extraction specific for each signal of a given class,and, the
learning over all different electrical transient classes are performed
jointly.

This paper is outlined as follows. The hierarchical Bayesian
learning method based on the smooth transition regression param-
eters is given in the second section. The MCMC algorithm derived
to infer the signal features and to learn the class-specific parame-
ters is presented in section III. Some simulations conducted on real-
world electrical transients are reported in section IV. Finally, some
concluding remarks are exposed in the last section.

2. HIERARCHICAL BAYESIAN LEARNING

In a supervised classification context, the set of the training samples
is denoted asX . In our application, each samplex ∈ X stands for
the time series associated with a training signal. The class-label of
c(x) ∈ C = [1, . . . , NC ] is known for each examplex, andNC

denotes the number of different classes. For allc ∈ C, the subset
Xc = {x ∈ X\c(x) = c} contains all the samples belonging to
class labeled asc, whereas the number of samples in this class is
denoted asNc = card(Xc). Finally, xi,c stands for theith sample
in the classc.

The classification problem formulated in a Bayesian framework
reduces to the computation of the posterior distributionsf(c|x,Xc)
for eachc ∈ C and for any given signal that does not belong to the
training set :x /∈ Xc. Assuming a zero-one loss function, the sig-
nalx is classified according to the following maximum a posteriori
decision rule:

c(x) = argmax
c∈C

f(c|x,Xc). (1)
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Fig. 1: Directed acyclic graph of the parameters and hyperparame-
ters of the hierarchical Bayesian model -φ are the hyperparameters
- θi are the features/parameters of the signalxi

In the context of a model-based classification, a set of parameters (or
features)θ is extracted from an input signalx, using a parametric
model. This model is defined by its likelihood functionf(x|θ) for
all θ ∈ Θ, whereΘ denotes the feature space.

2.1. Hierarchical Bayesian model

We will assume now that the signals belong to a given classc. For
the sake of simplicity, thec subscript is omitted in the following.
The training signalxi of the classc is modeled according to the
following hierarchical model:

xi ∼ f(x|θi), (2)

θi ∼ f(θ|φ), (3)

φ ∼ f(φ|c), (4)

whereφ is set of hyperparameters which define the distribution of
the parametersθ within a class. These expressions show that, first,
each training signalxi is governed by a specific vector of features
θi. This favors the ability of the model to account for the variabil-
ity between the features of the same class. Secondly, all thefeature
vectorsθi associated with all the training signals are governed by
the same class-specific distribution. The hyperparametersφ of this
distribution depends only on the considered classc. This ensures
the ability of the model to categorize the different features in the
same class. Last, the distributionf(φ|c) corresponds to the prior
on these class-specific parameters. These hypotheses introduced in
the hierarchical Bayesian model are set up at different levels of ab-
straction. This is in agreement with the notion of overhypothesis,
as introduced, for instance, in [7]. These relations are depicted on
the directed acyclic graph of the parameters and hyperparameters in
Figure 1. Each stage of the underlying hierarchical Bayesian method
is related to one of the standard steps of supervised learning:

1. Estimateθi from xi is the feature extraction stage,
2. Estimateφ from {θ1, . . . ,θN} is the learning stage.

It is of note that these two steps are performed jointly within the hi-
erarchical Bayesian framework. This is an appealing characteristic,
these two steps being performed successively in a standard classi-
fication framework. Indeed, the estimation of the features of each
training signal is improved if the feature distribution of the signals
of the same class is taken into account.

In order to derive the classification rule, one needs to learnthe
parametersφ from the training examplesX . The following expres-
sion off(φ|X ) is derived, assuming that the training examples are
independent conditionally toφ

f(φ|X ) ∝ f(φ)
∏N

i=1

∫

f(xi|θi)f(θi|φ)dθi. (5)

Finally, the joint posterior of the class-specific parametersφ and
the signal-specific parametersθi is deduced from (5)

f(φ,θ1, . . . ,θN |X ) ∝ f(φ)
N
∏

i=1

f(xi|θi)f(θi|φ). (6)

This is the most useful equation in our hierarchical Bayesian method
as the analytical integration over the parameter space in (5) is not
tractable in the general case.

2.2. Smooth transition regression model for transient modeling

For the processing of the electrical transients of our database, a spe-
cific model has been introduced in [5, 6]. We briefly recall in this
section the basics of this model. The signal is modeled as a se-
quence ofK constant consumption level connected by a sequence
of K−1 transition functions centered around the time instantsτ i =
[τ1,i, . . . , τK−1,i]

T . Then, for allj = 1, . . . , ni

xi[j] =
K
∑

k=1

[πk−1,i(tj)− πk,i(tj)]βk,i + ǫi[j], (7)

whereni is the length of the time series,ǫi is an i.i.d centered Gaus-
sian noise vector with a varianceσ2

i , βi = [β1,i, . . . , βK,i]
T is a the

vector of the active power consumption levels, andπ0,i, . . . , πK,i

is the set of the transition functions. These transition functions are
chosen among the family of stretched exponential functions

πk,i(t) =







1− exp

[

(

t−τk,i

λk,i

)ln(αk,i)
]

t > τk,i

0 t < τk,i

. (8)

Each transition functionπk,i is parameterized according to a location
parameterτk,i, a scale parameterλk,i and a shape parameterαk,i.
The number of componentsK is supposed to be known for each
class of signal.

The linear relation betweenxi andβi is captured by the matrix
Zi, the entries of which depend on the transition function parameters

xi = Ziβi + ǫi. (9)

The likelihood function for this model reads

f(xi|θi) ∝
1

(σ2
i )

ni
2

exp

(

1

2σ2
i

(xi − Ziβi)
T (xi − Ziβi)

)

,

(10)
where the parameter vector isθi = {σ2

i ,βi,ηi}, with ηi being the
set of the transition function parametersηi = (τk,i, λk,i, αk,i)k=1,...,K−1

2.3. Prior distribution

In this work, we assume the classical hypothesis which leadsto the
naive Bayes classifier [1] (i.e conditional independence ofthe fea-
tures given the class), which yields the following expression of the
class-specific distribution over the parameter space

f(θi|φ) = f(σ2
i |ρσ)f(βi)

K−1
∏

k=1

f(λk,i|ρλk)f(αk,i|µαk, σ
2
αk),

where φ = {ρσ,ρλ,µα,σ
2

α} is the hyperparameter vector,
whereasρλ = (ρλk)k=1,...,K−1, µα = (µαk)k=1,...,K−1, and
σ2

α = (σ2
αk)k=1,...,K−1 are the parameters of the hyperpriors.

Conjugate inverse-gamma prior and g-prior are chosen for the
variance of the observation noiseσ2

i and the coefficientsβi respec-
tively

σ2
i |ρσ ∼ IG(1, ρσ), (11)

βi|δ
2 ∼ N (0, σ2δ2(Zi

TZi)
−1), (12)

with IG being the inverse-gamma distribution,N being the normal
distribution andδ2 being fixed toδ2 = 50.



As the dependence of the likelihood with respect to the shape
and scale parameters of the transitions functions is non standard,
conjugate priors cannot be selected. Since no prior information is
available on these parameters, vague priors defined on a support in
agreement with the parameter spaces are considered. This leads to
the following gamma and normal priors for the scale and shapepa-
rameters respectively

λk,i|(νλk, ρλk) ∼ G(νλk, ρλk), (13)

αk,i|(µαk, σ
2
αk) ∼ N (µαk, σ

2
αk). (14)

with G being the gamma distribution with theνλk being fixed to the
deterministic valueνλk = 1 for all k = 1, . . . ,K − 1. The set
of hyperparameterφ represents the distribution of parameters within
a class. The prior distributions of these hyperparameters are called
hyperpriors.

2.4. Hyperprior distribution

Since no information on these hyperparameters is availablea priori,
non informative, or sufficiently vague, priors are chosen

f(µαk, σ
2
αk, ρλk) ∝

1

σ2
αk

1

ρλk

IR×R+×R+(µαk, σ
2
αk, ρλk) (15)

f(ρσ) ∝
1

ρσ
IR+(ρσ), (16)

with IA being the indicator function for the setA.

2.5. Marginalized posterior

The full joint posterior of class-specific parametersφ and parameters
of each signalθi is deduced from the likelihood, the prior distribu-
tions and the hyperprior distribution using eq. (6). Then, the param-
etersβi, σ

2
i and hyperparametersρλk, µαk, σ

2
αk are integrated out.

Then the marginalize posterior distribution is :

f(τ ,λ,α, ρσ|X ) ∝ (17)

f(ρσ)
∏K−1

k=1 f((λki)i=1,...,N )f((αki)i=1,...,N )

∏N

i=1

(

ρσ + 1
2

(

xT
i xi −

δ2

1+δ2
xT
i Zi

T (Zi
TZi)−1Zixi

))

ni
2

+1

with

f((λki)i=1,...,N ) ∝

(

N
∑

i=1

λki

)−Nνλk N
∏

i=1

λ
−(νλk−1)

ki , (18)

f((αki)i=1,...,N ) ∝





N
∑

i=1

(

αki −
1

N

N
∑

j=1

αkj

)2




−N
2

. (19)

However analytical estimation of the remaining parametersand
hyperparameters is not tractable. In this case, we sample the poste-
rior distribution (6) by using an MCMC algorithm [8].

3. MCMC ALGORITHM

The standard Metropolis-Hastings algorithm is used to sample the
parameters of the transitionsτ ,λ,α for each training signal from
marginal posterior distribution (17). That is, at the iteration t, one
of the transitionsk ∈ [1, K − 1] from the ith signal is selected
and a proposal(τ̃k, λ̃k, α̃k) is drawn from a proposition distribution
q(τ, λ, α). The proposal is accepted with the probability

P = min

(

1,
f(τ̃ , λ̃, α̃|X )q(τ (t), λ(t), α(t))

f(τ (t),λ(t),α(t)|X )q(τ̃ , λ̃, α̃)

)

(20)

The reader might read [6] for a full description of the proposition
distributionq(τ, λ, α).

An acceptation-rejection move of the transitions configuration is
attempted iteratively for each training signal. A sketch ofthe overall
MCMC algorithm is

• for each training signal :i = 1, . . . , N

– select one of the transitionsk ∈ [1, K − 1]

– draw a sample of̃τk, λ̃k, α̃k according to the proposi-
tion distributionq(τ, λ, α).

– accept the proposal with the probabilityP defined in
(20)

– sampleσ2
i according to his marginal posterior distribu-

tionσ2
i |ηi, ρσ ∼ IG

(

ni

2
+ 1, ρσ + 1

2

(

xT
i xi −

δ2

1+δ2

))

• sampleρσ according to his marginal posterior distribution

ρσ ∼ G

(

N,
[

∑N

i=1
1
σ2
i

]−1
)

This algorithm generates a Markov chain of parameters(τ ,λ,α)
asymptotically distributed according to their marginalized posterior
f(τ ,λ,α|X ) (6). It is of note that, even if the hyperparametersφ
have been integrated out, it is straightforward to derive their condi-
tional posterior from the full joint posterior (6) thanks tothe choice
of conjugate hyperpriors. Then, the hyperparametersφ can be sam-
pled from their conditional distribution in an additional Gibbs move
within the MCMC algorithm.

3.1. Bayes factor computation

To evaluate the capacity of our method to discriminate efficiently
two classes of transient, we estimate the Bayes factorb12 [9] of class
c1 against classc2 which is defined for a signalx as

b12 =
f(c1|x)

f(c2|x)
=

∫ ∫

f(x|θ)f(θ|φ)f(φ|c1)dθdφ
∫ ∫

f(x|θ)f(θ|φ)f(φ|c2)dθdφ
. (21)

Since the integrals over the parametersθ andφ are not tractable, we
use Monte-Carlo integration to compute the Bayes factor [10]. More
precisely, we sample the posterior distribution of the model (7) over
a joint space created by a class indicatorc ∈ C, the parameters and
the hyperparameters of the hierarchical Bayesian model. Then the
MCMC estimate of the Bayes factorb̂12 is obtained as the ratio of the
number of occurences ofc = c1 against the number of occurences of
c = c2 within the samples of the class indicatorc. The description of
the MCMC algorithm used for the sampling ofc is out of the scope
of this communication (see [10] for more details).

4. RESULTS

The hierarchical Bayesian learning framework introduced in this
work has been used in the context of nonintrusive load monitoring
[3, 11, 12], more precisely for the identification of electrical tran-
sient produced by one appliance being turned on [4]. This issue
is quite challenging and, to our knowledge, their is no standard
method or public dataset of such transient signals so that wecan
give comparative results to assess the performance of the method in-
troduced in this work. Moreover, using the smooth regression model
to extract some features from the signal yields a trans-dimensional
space: each class is not described with the same number of features.
Unfortunately, standard supervised learning methods [13]can not
deal directly with such kind of a feature space.

The method has been tested over a database of real-world
electrical transient, provided by EDF R&D. The transients are gen-
erated by two classes of appliances,c1 = “vacuum cleaner” and



c2 =“refrigerator”, the number of signals being18 and36 for each
class respectively. The database has been split in half to form a
learning set and a test set of signals. The number of component K
is fixed for each class, using prior work [5, 6]:K1 = 3 for the class
c1 andK2 = 4 for the classc2. The MCMC algorithm has been
applied to generate samples from the joint posterior distribution
of parameters and hyperparameters in order to perform the feature
extraction and the learning of each class. The first2× 103 iterations
which corresponds to the burn-in period have been thrown away.
The next3× 103 iterations are used to estimate the posterior distri-
bution of parameters and hyperparameters over the trainingsignals.
Those posteriors are depicted in Figure 2 for the classc1 and in
Figure 4 for the classc2. It is of note that the feature parameters
θ can take quite different values from one signal to another within
a class. This emphasizes the variability within the class. However
the posterior distribution of the hyperparametersφ are quite regular
although they summarize all the training set of signals.
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Fig. 2: Hyperparameters distribution for the classc1
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Fig. 3: Two examples of the active power (kW) versus time (s) for
vacuum cleaner transient (blue) with their smooth transition regres-
sion fit (red) and the position of the transitions (black)

signal 1 2 3 4 5 6 7 8
c1 30 58 14 13 37 1.6 5.0 14
c2 0 0 0 0 0 0 0 5.5

Table 1: MCMC estimates of the Bayes factorb̂12 for each test sig-
nal (columns) of the two classesc1 andc2 (rows). The bold values
correspond to the test signals shown in Figures 3 and 5.

Finally, to assess the ability of this method to discriminate the
two classes of transients, the MCMC estimate of the Bayes factor
b̂12 has been computed for each test signal. Table 1 reports these
estimates for the8 test signals of the classc1, numbered from1 to
8, and for the8 first test signals of the classc2. The valuêb12 for
the test signals of the classc2 which are not shown in table 1 is0. It
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Fig. 4: Hyperparameters distribution for the classc2
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Fig. 5: Two examples of the active power (kW) versus time (s) for
refrigerator transient (blue) with their smooth transition regression
fit (red) and the position of the transitions (black)

means that, the convergence of the MCMC sampler being reached,
the label parameterc takes only the valuec2. Within each class,
the signal with the greater and the lesser value of the Bayes factor
estimates are depicted in Figures 3 and 5 with their curve fitting es-
timate derived from the smooth transition model. The Bayes factor
estimate of each signal is indicated on the corresponding figure. The
8th signal of classc2, shown in figure 5(b) is classified in the wrong
class,̂b12 being greater than one. The6th signal of classc1, shown
in figure 3(b) is well classified thougĥb12 is barely greater than one.
Nevertheless, the results suggest that the proposed model is discrim-
inant with respect to this two classes. Indeed, except for the two
signals mentioned, every test signals are classified with a substantial
evidence in favor of the correct model (B > 3.2 according to Kass’s
interpretation of the Bayes factor [9]).

5. CONCLUSION

A hierarchical Bayesian method has been introduced to perform
jointly the feature extraction and the class learning over adatabase
of electrical transients. With this methodology, the variability of
the signal features within a class is summarized by the posterior
distribution thanks to a few number of hyperparameters. Theresults
obtained over a few number of test signals suggest that this method
is able to separate efficiently some appliance classes without over-
learning the training set of signals. However, to be fully convincing,
the evaluation of the classification performance has now to be con-
ducted over larger data sets, and over other classes of transients. The
extension of the method to detect and classify multiple transients in
a single signal is also under investigation.
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