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At the core of many engineering problems is the solution of sets of equations and inequalities, and the optimization of cost functions. Unfortunately, except in special cases, such as when a set of equations is linear in its unknowns or when a convex cost function has to be minimized under convex constraints, the results obtained by conventional numerical methods are only local and cannot be guaranteed. This means, for example, that the actual global minimum of a cost function may not be reached, or that some global minimizers of this cost function may escape detection. By contrast, interval analysis makes it possible to obtain guaranteed approximations of the set of all the actual solutions of the problem being considered. This, together with the lack of books presenting interval techniques in such a way that they could become part of any engineering numerical tool kit, motivated the writing of this book.

The adventure started in 1991 with the preparation by Luc Jaulin of his PhD thesis, under Eric Walter's supervision. It continued with their joint supervision of Olivier Didrit's and Michel Kieffer's PhD theses. More than two years ago, when we presented our book project to Springer, we naively thought that redaction would be a simple matter, given what had already been achieved... Actually, this book is the result of fierce negotiations between its authors about what should be said, and how! At times, we feared that we might never end up with an actual book, but we feel that the result was worth the struggle.

There were at least two ideas on which we easily agreed, though. First, the book should be as simple and understandable as possible, which is why there are so many illustrations and examples. Secondly, readers willing to experiment with interval analysis on their own applications should be given the power to do so.

Many people contributed to our conversion to interval analysis, and it is impossible to quote all of them, but we would like at least to thank Vladik Kreinovich for all the energy that he puts into the Interval Computations WEB site and for all that we learned there.

Special thanks are due to Michel Petitot for his help in exploring the mysteries of ADA and the Stewart-Gough platform, to Dominique Meizel for introducing us to robot localization and tracking, to Olaf Knüppel and Siegfried vi

Notation

The following tables describe the main typographic conventions and symbols to be used.

Punctual quantities

x : punctual scalar

x * : actual value of an uncertain variable x

x : prior value of an uncertain variable x x : posterior value of an uncertain variable x x : punctual column vector

x T : punctual row vector 0 : vector of zeros 

Intervals [x] = [x, x] : interval scalar [x] = [x, x]
: interval vector (or box)

[X] = X, X : interval matrix If f (.) is a once-differentiable function from R nx to R ny , then its Jacobian matrix at x is

[x i ] = ([x]) i : ith entry of [x] [x ij ] = ([X]) ij :
J f (x)        ∂f 1 ∂x 1 (x) • • • ∂f 1 ∂x nx (x) 
. . . . . . . . .

∂f ny ∂x 1 (x) • • • ∂f ny ∂x nx (x)        . If f (.
) is a once-differentiable function from R nx to R, then its gradient at x is

g f (x)       ∂f ∂x 1 (x) 
. . .

∂f ∂x nx (x)       . If f (.
) is twice differentiable, then its Hessian matrix at x is the (symmetric) Jacobian matrix associated with its gradient, i.e.,

xvi Notation

H f (x)        ∂ 2 f ∂x 2 1 (x) • • • ∂ 2 f ∂x nx ∂x 1 (x) . . . . . . . . . ∂ 2 f ∂x 1 ∂x nx (x) • • • ∂ 2 f ∂x 2 nx (x)       
.

Algorithms

Algorithms are described in a pseudo-code allowing the usual mathematical notation. The most important arguments are listed after the Name of the algorithm as input arguments (in:), output arguments (out:) or input-output arguments (inout:). To facilitate reading, we take the liberty to omit some of them, such as inclusion functions, gradients, Hessian matrices. . . Blocks of statements are indicated by indentation. Any return statement causes an immediate return from the current algorithm. Return statements at the end of the algorithms are implicit.

For details about the implementation of these algorithms, see Chapter 11, where C++ code is set in Typewriter.

A

  entry of [X] at ith row and jth column lb([x]) : lower bound of [x] ub([x]) : upper bound of [x] w ([x]) : width of [x] mid([x]) : centre of [x] × B : Cartesian product of A and B A\B : {x | (x ∈ A) ∧ (x / ∈ B)} A ⊔ B : interval union of A and B, equal to [A ∪ B] Functions Functions are denoted with the same typographical convention as the elements of their image spaces, thus [f ] (•) is a scalar interval function and [f ] (•) a vector interval function.

We would also like to express our gratitude to Guy Demoment, head of the Laboratoire des Signaux et Systèmes and to Jean-Louis Ferrier, head of the for their support and the way they managed to shield us from the perturbations of the outside world. us with ideal working conditions, and partial support by INTAS is also gratefully acknowledged.