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Abstract: This paper deals with the estimation of the parameters of a model from

experimental data. The aim of the method presented is to characterize the set S of all

values of the parameter vector that are acceptable in the sense that all errors between the

experimental data and corresponding model outputs lie between known lower and upper

bounds. This corresponds to what is known as bounded error estimation, or membership

set estimation. Most of the methods available to give guaranteed estimates of S rely on

the hypothesis that the model output is linear in its parameters, contrary to the method

advocated here, which can deal with nonlinear model. This is made possible by the use of

the tools of interval analysis, combined with a branch-and-bound algorithm. The purpose

of the present paper is to show that the approach can be cast into the more general

framework of granular computing.

1 Introduction

In the exact sciences, in engineering, and increasingly in the human sciences too, math-

ematical models are used to describe, understand, predict or control the behavior of

systems. These mathematical models often involve unknown parameters that should be

identi�ed (or calibrated, or estimated) from experimental data and prior knowledge or hy-

potheses (see, e.g., [WP97]). Let y
!

; k 2 f1; : : : ; k
 !"

g; be the data collected on the system

to be modeled. They form the data vector y 2 R!

 !". Denote the vector of the unknown

parameters of the model by p = (p
#

; p
$

; : : : ; p
"

) 2 R", and the corresponding model by
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M(p). For any given p, M(p) generates a vector model output y
 

(p) homogeneous to

the data vector y. Estimating p from y is one of the basic tasks of statisticians. This is

usually done by minimizing some cost function j(p), for instance a norm of y¡ y
 

(p).

The Euclidean norm is most commonly used, leading to what is known as least-square

estimation. It corresponds to maximum-likelihood estimation of p under the hypothesis

that the data points y
!

; k 2 f1; : : : ; k
 !"

g; are independently corrupted by an additive

Gaussian measurement noise with zero mean and covariance independent of k. Many

other cost functions may be considered, depending on the information available on the

noise corrupting the data. The minimization of these cost functions usually lead to a point

estimate of p, i.e., a single numerical value for each parameter. Except in a few special

cases, the minimization of the cost function is di¢cult and one can seldom guarantee that

a global optimizer of the cost function has been found. Moreover, the characterization of

the uncertainty on the estimate of p is usually performed, if at all, by using asymptotic

properties of maximum-likelihood estimators, which is not appropriate when the number

k
 !"

of data points is very small, as is often the case in biology for example. An attractive

alternative is to resort to what is known as bounded-error estimation or set-membership

estimation. In this context (see, e.g., [Wal90], [Nor94], [Nor95], [MNPLW96] and the ref-

erences therein), a vector p is feasible if and only if all errors e
!

(p) between the data

points y
!

and the corresponding model outputs y
 "!

(p) lie between known lower bounds

e
!

and upper bounds ¹e
!

, which express the con�dence in the corresponding measurement.

Let S be the set of all values of p that are feasible, i.e.,

S = fp 2R# j for all k 2 f1; : : : ; k
 !"

g; y
!

¡ y
 "!

(p) 2 [e
!

; ¹e
!

]g (1)

Some methods only look for a value of p in S, but then the size and shape of S, which

provide useful information about the uncertainty on p that results from the uncertainty

in the data, remain unknown. This is why one should rather try to characterize S. When

y
 

(p) is linear, S is a convex polytope, which can be characterized exactly [WPL89]. In

the nonlinear case, the situation is far more complicated if one is looking for a guaran-

teed characterization of S. The algorithm sivia (for Set Inverter Via Interval Analysis)

[JW93a], [JW93c], [JW93b] nevertheless makes it possible to compute guaranteed esti-

mates of S in many situations of practical interest, by combining a branch-and-bound

algorithm with techniques of interval computation. The purpose of this chapter is to

present the resulting methodology in the framework of granular computing. The chapter
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is organized as follows. In Section 2, the very few notions of interval analysis required to

understand sivia are recalled. Section 3 presents this algorithm in the context of gran-

ular computing. Its application to nonlinear bounded-error estimation is illustrated on a

simple example in Section 4.

2 Interval computation

Interval computation was initially developed (see [Moo79]) to quantify the uncertainty

of results calculated with a computer using a �oating point number representation, by

bracketing any real number to be computed between two numbers that could be repre-

sented exactly. It has found many others applications, such as global optimization and

guaranteed solution of sets of nonlinear equations and/or inequalities [Han92], [HDM97].

Here, we shall only use interval computation to test whether a given box in parameter

space is inside or outside S:

An interval [x] = [x; x] is a bounded compact subset of R. The set of all intervals of R

will be denoted by IR. A vector interval (or box) [x] of R is the Cartesian product of

n intervals. The set of all boxes of R will be denoted by IR
 . The basic operations on

intervals are de�ned as follows

[x] + [y] = [x+ y; x+ y];

[x]¡ [y] = [x¡ y; x¡ y];

[x] ¤ [y] = [minfxy; xy; xy; xyg;maxfxy; xy; xy; xyg];

1=[y] = [1=y; 1=y] (provided that 0 =2 [y]);

[x]=[y] = [x] ¤ (1=[y]) (0 =2 [y]):

All continuous basic functions such as sin, cos, exp, sqr... extend easily to intervals

by de�ning f([x]) as ff(x)jx 2 [x]g: As an example, sin ([0; ¼=2]) ¤ [¡1; 3] + [¡1; 3] =

[0; 1] ¤ [¡1; 3] + [¡1; 3] = [¡1; 3] + [¡1; 3] = [¡2; 6] : Note that some properties true in R

are no longer true in IR. For instance, the property x¡x = 0 translates into [x]¡ [x] 3 0,

and the property x = x ¤ x translates into [x] ½ [x] ¤ [x] :

Example 1 If [x] = [¡1; 3] ; [x]¡ [x] = [¡4; 4], [x] = [0; 9] and [x] ¤ [x] = [¡3; 9].

Moore has shown [Moo66] that if a sequence of basic operations on real numbers is replaced
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by the same sequence on intervals containing these real numbers, then the interval result

contains the corresponding real result. ¥

Example 2 Since [0; 2]+([2; 3] ¤ [4; 5])¡ [2; 3] = [0; 2]+[8; 15]¡ [2; 3] = [8; 17]+[¡3; 2] =

[5; 19], the result obtained by performing the same computation on real numbers belonging

to these intervals is guaranteed to belong to [5; 19]. For instance 1 + (2 ¤ 5) ¡ 2 = 9

2 [5; 19]. ¥

For any function f from R
 to R which can be evaluated by a succession of elementary

operations, it is thus possible to compute an interval that contains the range of f over

a box of IR . Depending on the formal expression of the function the interval obtained

may di¤er, but it is always guaranteed to contain the actual range. This is illustrated by

the following example for n = 1.

Example 3 The function de�ned by f(x) = x ¡ x can equivalently be de�ned by f(x) =

(x¡ 1=2) ¡1=4. The range of f over [x] = [¡1; 3] can thus be evaluated in the two

following ways.

[x] ¡ [x] = [¡1; 3] ¡ [¡1; 3] = [0; 9] + [¡3; 1] = [¡3; 10];
¡

[x]¡ !

 

¢

 

¡!

"

=
£

¡ #

 

; $
 

¤

 

¡ !

"

=
£

0;  $
"

¤

¡ !

"

=
£

¡!

"

; 6
¤

:
(2)

The �rst result is a pessimistic approximation of the range, whereas the second one gives

the actual range. This is due to the fact that in the �rst expression [x] appears twice, and

that the actual value of x in the two occurrences are assumed to vary independently within

[x] : It is thus advisable to write the functions in such a way as to minimize the number

of occurrences of each variable. ¥

Let f be a function from R to R and [a; b] an interval. Interval computation will provide

su¢cient conditions to guarantee either that

8x 2 [x] 2 IR
 ; f(x) 2 [a; b]; (3)

or that

8x 2 [x] 2 IR
 ; f(x) =2 [a; b]: (4)
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Of course, when part of f([x]) belongs to [a; b] and part does not, no conclusion can be

reached using these conditions. Although the number of x in [x] is not even countable,

these conditions will be tested in a �nite number of steps. For this purpose, an enclosure

[f ] of the range f([x]) will be computed using interval computation.

² if [f ] ½ [a; b] then all x in [x] satisfy (3),

² if [f ]\ [a; b] = ;, then no x in [x] satis�es (3), or equivalently all of them satisfy (4).

Note that if these two tests take the value false, then no conclusion can be drawn.

These basic principles will be used to test whether a given box in parameter space [p] is

either inside or outside S, where S is given by (1). It su¢ces to compute an enclosure [e
 

]

of y
 

¡ y
!" 

([p]) for all k 2 f1; : : : ; k
 !"

g, using interval computation.

² if for all k in f1; : : : ; k
 !"

g; [e
 

] ½ [e
 

; ¹e
 

], then [p] ½ S.

² if there exists k in f1; : : : ; k
 !"

g, such that [e
 

] \ [e
 

; ¹e
 

] = ;, then, [p] \ S = ;:

Again, the fact that boxes are considered instead of vectors will allow the exploration of

the whole space of interest in a guaranteed way in a �nite number of steps, as opposed

to Monte-Carlo methods that only sample a �nite number of points and can thus not

guarantee their results. When no conclusion can be reached for the box [p], it may be

split into subboxes on which the tests will be reiterated, as in the next section.

3 SIVIA

The principle of the Set Inverter Via Interval Analysis algorithm is to split the initial

problem of characterizing S into a sequence of more manageable tasks, each of which

is solved using interval computation. sivia thus pertains to the framework of granular

computing.

The parameter vector p is assumed to belong to some (possibly very large) search domain

[p
#

]. Let " be a positive number to be chosen by the user; " will be called the level of
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information granularity. A layer associated with S at level " is a list G(") of nonoverlaping

colored boxes [p] that cover [p
 

], where ,

1. [p] is black if it is known that [p] ½ S,

2. [p] is grey if it is known that [p] \ S = ;,

3. [p] is white in all other cases.

Note that some white boxes may actually satisfy either [p] ½ S or [p] \ S = ;, because

of the pessimism of interval computation. Each box of G(") is called a granule. The

knowledge required to color it may have been obtained by using the techniques explained

in Section 2. Moreover, all white boxes in G(") are such that their widths are smaller than

or equal to ".

The principle of a procedure to build a layer G("
 

) associated with the set S is described

by the following algorithm. As most granular algorithms, it generates a sequence of layers

G(") indexed by the level of information granularity " for decreasing values of ". Starting

from a very coarse representation associated with a large " corresponding to the width of

the initial search domain, it stops when " becomes smaller than or equal to "
 

. In what

follows, w([p]) is the width of [p] ; i.e., the length of its largest side, and splitting a box

means cutting it into two subboxes, perpendicularly to its largest side.

 

 !"#" $%&%'# ('") %* $%+'#") (',-.'('/0  !"/ !(1" ,""2 $!%#"2 .% *($-&-.(." .!" 1-#+(&-3(.-%2 %* .!"

,%+24('/ %*  0
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Sivia(in: [p
 

]; "
 

; out: G));

1 " := w([p
 

]); Paint [p
 

] white; G := f[p
 

]g;

2 while " ¸ "
 

; do

3 " := "=2;

4 while there exists a white [p] of G such that w([p]) > ";

5 split [p] into [p
!

] and [p
"

];

6 if attempt to prove that [p
!

] ½ S is a success, then paint [p
!

] black;

7 if attempt to prove that [p
!

] \ S = ; is a success, then paint [p
!

] grey;

8 otherwise, paint [p
!

] white;

9 if attempt to prove that [p
"

] ½ S is a success, then paint [p
"

] black;

10 if attempt to prove that [p
"

] \ S = ; is a success, then paint [p
"

] grey;

11 otherwise, paint [p
"

] white;

12 endwhile;

13 endwhile;

14 return G.

Denote the union of all black boxes by S and the union of all black and white boxes by

S#. At each iteration of the external while loop, one then has

S
 ½ S ½ S

#: (5)

Example 4 Consider the set S described by

S = fp 2R"jp"
!

+ p"
"

2 [1; 2]g:

For [p
 

] = [¡3; 3]£ [¡3; 3] and "
 

= 0:04, sivia generates the sequence of layers described

by Figure 1. Each of these layers corresponds to the state of G at Step 13. The hierarchical

properties of these layers are schematically portrayed by the information pyramid of Figure

2.

4 Application to bounded-error estimation

Consider a model where the relation between the parameter vector p and the model

output is given by

y
 

(p; t) = sin(p
!

¤ (t+ p
"

)): (6)
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We choose a two-parameter model to facilitate illustration, but note that the method

applies to higher dimensions without modi�cation. This speci�c example was chosen to

show that the methodology advocated in this paper was able to handle unidenti�able

models without requiring an identi�ability analysis. We shall therefore �rst present the

results obtained with sivia on simulated data, before interpreting them in the light of

the notion of identi�ability.

4.1 Bounded error estimation

Ten simulated measurements were generated as follows. First ten noise-free measurements

y 
 

were computed for k = 1; 2; : : : ; 10, at a �true� value of the parameter vector p
 =

(1; 2) . Of course, this true value is not communicated to the estimation procedure. Noisy

data y
 

were then obtained by adding to y 
 

realizations of a random noise uniformly

distributed in [¡1; 1]. The resulting data are presented in Figure 3, where the vertical

bars indicate all possible values of the noise-free data when the e
 

�s are taken equal to ¡1

and the ¹e
 

�s to 1. The feasible parameter set S is thus the set of all p�s that satisfy
8

>

>

>

>

>

<

>

>

>

>

>

:

sin(p
 

¤ (1 + p
!

)) 2 [y
 

¡ 1; y
 

+ 1];

sin(p
 

¤ (2 + p
!

)) 2 [y
!

¡ 1; y
!

+ 1];
...

...
...

sin(p
 

¤ (10 + p
!

)) 2 [y
 "

¡ 1; y
 "

+ 1]:

(7)

Sivia was used to characterize the part of S located in three search domains [p
"

] of

increasing size, namely [0; 2]£ [¡¼; ¼]; [0; 4]£ [¡2¼; 2¼] and [0; 8]£ [¡4¼; 4¼]. In all cases,

the accuracy parameter "
"

was taken equal to 0:008. The results, obtained in less than 10

seconds on a Pentium 133 MHz computer, are summarized by Figure 4, where the sizes

of the frames are those of the search domains.

4.2 Identi�ability analysis

As is readily apparent from Figure 4, S consists of many disconnected components. Part

of this fact may be explained by an identi�ability analysis [Wal82]. Roughly speaking,

a model is said to be uniquely (or globally) identi�able if there is a single value of the

parameter vector associated to any given behavior of the model output. From the equation
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of the model (6), it is clear that any two vectors p and q of R such that p
!

(t + p
 

) =

q
!

(t+ q
 

)+2`¼; ` 2 Z, will lead to exactly the same behavior for all t�s. Then any q such

that q
!

= p
!

and q
 

=  

 

  !"

 

!

will lead to the same behavior as p. The model considered

is therefore not uniquely identi�able, and if p 2 S, then all vectors q of the form

q(`) = (p
!

;
p
 

¡ 2`¼

p
!

); ` 2 Z; (8)

are also in S. This is why all the components of S are piled up with a pseudo periodicity

given by 2¼=p
!

. Note that this identi�ability analysis was not required for the estimation

of the parameters by the method described in this chapter. Moreover, this estimation

method allow us to obtain all models with similarly acceptable behaviors, and not just

those that have exactly the same behavior.

5 Conclusions

Bounded-error estimation is an attractive alternative to more conventional approaches to

parameter estimation based on a probabilistic description of uncertainty. When bounds

are available on the maximum acceptable error between the experimental data and the

corresponding model output, it is possible to characterize the set of all acceptable pa-

rameter vectors by bracketing it between inner and outer approximations. Most of the

results available in the literature require the model output to be linear in the unknown

parameters to be estimated and only compute an outer approximation. The method de-

scribed in this chapter is one of the very few that can be used in the nonlinear case. It

provides both inner and outer approximations, which is important because the distance

between these approximations is a precious indication about the quality of the description

that they provide. We hope to have shown that the resulting methodology falls naturally

into the framework of granular computing. The quality of the approximation obtained

depends of the level of granularity, and a compromise must of course be struck between

accuracy of description and complexity of representation.

Many important points could not be covered in this introductory material and still form

the subject of ongoing research. They include the extension of the methodology to the

estimation of the state vector of a dynamical system (or to the tracking of time-varying pa-

rameters) [KJW98], and the robusti�cation of the estimator against outliers, i.e., against
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data points for which the error should be much larger than originally thought, because,

e.g., of sensor failure [JWD96], [KJWM99].
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Figure 1: Sequence of layers generated by sivia in Example 4;

the black granules are inside S, the grey granules are outside S,

nothing is known about the white granules.
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Figure 2: Information pyramid associated with Example 4
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3

0

Figure 3: Data bars for the parameter estimation example;

each p in S is such that the corresponding model output crosses all these bars
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Figure 4: Characterizations of the part of S in [p
 

]

obtained by sivia for increasing sizes of [p
 

];

dotted lines in the bottom two sub�gures indicate

the correspondence between the frames of the sub�gures
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