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VALUE AT RISK FOR CONFIDENCE LEVEL
QUANTIFICATIONS IN ROBUST ENGINEERING

OPTIMIZATION
———–

BIJAN MOHAMMADI
———–

OPT. CONTR. APPLI. METH., 2013.

Abstract. We show how to introduce the Value at Risk (VaR) concept in opti-
mization algorithms with emphasis in calculation complexity issues. To do so we
assume known the PDF of the uncertainties. Our aim is to quantify our confidence
on the optimal solution at low complexity without a sampling of the control space.
The notion of over-solving appears naturally where it becomes useless to solve ac-
curately near an optimum when the variations in control parameters fall below the
uncertainties. Examples show the behavior of this VaR-based correction and link
the approach to momentum-based optimization where the mean and variance of
a functional are considered. The approach is then applied to an inverse problem
with fluids with uncertainties in the definition of the injection devices. It is shown
that an optimization problem with an admissible solution in the control space in
the deterministic case can lose its solution in the presence of uncertainties on the
control parameters which suggests that the control space itself should be redefined
in such a situation to recover an admissible problem. This permits to evaluate the
cost of making reliable a system which has been deterministically designed, but
which has uncertain parameters. A shape optimization problem closes the paper
showing the importance of including VaR information during the design iterations
and not only at the end.

1. INTRODUCTION

Taking strongly into account the computational complexity constraint deeply im-
pacts the way optimization problems are solved. In the past, we addressed global
optimization from this view point [2, 6] and showed how to use a controllability
result for a continuous second order dynamical system to improve the global search
feature of existing algorithms.

In this paper, we would like to extend the optimization solution to situations where
control parameters are uncertain but again with keeping the calculation complexity
low. This means that any approach implying a sampling of the parameter space and
calculation of probabilistic informations (momentums) is out of the table.

Taking into account manufacturing uncertainties is of utmost importance for a
design procedure to be efficient. Indeed, it is impossible to make sure that the final
product will exactly correspond to the design specifications. In shape optimization
for instance, this uncertainty is rarely accounted for and shape design is performed
for a given parameterization of the shape in a deterministic framework [8]. Recent
works, however, show ways to include these. In [3], authors, after making a priori hy-
pothesis on shape uncertainties, use proper orthogonal decomposition together with
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sparse grid sampling [4] to reduce the probability space and a polynomial chaos prop-
agation method [5] to evaluate the effect of the uncertainties on the functional in a
nonintrusive way. Minimization can then be performed involving different functional
momentums. This approach is suitable for industrial applications as manufacturing
uncertainties are usually known through probability density functions which often
comes as characteristics of the product manufacturing process. They can also be a
posteriori identified through data assimilation in probability density functions from
observations of manufactured devices [9, 11, 10]. However, in this work, we would
like to avoid the use of reduced order modelling and separation between random
and deterministic behaviors which is at the core of most uncertainty quantification
analysis in literature.

1.1. SIMULATION UNDER UNCERTAINTY. Consider the following sim-
ulation chain linking a control parameter, its random perturbation (known through
a probability density function), a state variable and a cost function:

x→ x̃ = x+ ε(x)→ u(x̃)→ J(u(x̃)).

This is an important situation: the place where randomness appears is well identified.
Indeed, if ε(x) = 0 the simulation is fully deterministic. It would then be interesting
if one can keep the simulation and design processes deterministic and, still, somehow
take into account these random perturbations during design. One classical approach
is to propagate the randomness into the whole chain and get a noisy functional. And
then assimilate this functional by a low-complexity model and design for this new
functional [3, 8, 12]. This approach demands for a priori regularity hypothesis for the
reduced-order model and trust regions definition. We will show however on a simple
example that despite this approach is widely used, it can produce unsuitable results.
Another possibility is to use Monte Carlo simulations and obtain the momentum of
our noisy functional which then permit for momentum-based optimization. This,
as we said, is not suitable in term of calculation complexity. We will compare our
approach to this alternative on an example.

So the question is how to introduce the a priori information on ε(x) into the
optimization algorithm. We propose to combine the concept of value at risk and the
knowledge of the sensitivity of the functional with respect to the control parameters.
Our aim is indeed to have the gradient of the functional defined and evaluated as in
the deterministic case where enough regularity is assumed available for this purpose.
Eventually, this permits to quantify our confidence on the optimal solution without
any sampling of the control space. Something which is important if one would like
to keep the complexity low.

To make the approach efficient, we need to use existing optimization algorithms.
We explain the procedure in the general framework of deterministic minimization
based on descent methods.

The paper ends with three examples. First we consider a simple situation featur-
ing what we mean by robust optimization. This example shows how the approach
compares with optimization after noise removal and also with momentum-based
multicriteria optimization. Then, we consider the application of the algorithm to
an inverse problem involving a distributed fluid mechanics model. In this case the
calculation complexity is a serious issue. This makes the use of a momentum-based
minimization, or any other statistical approach, to account for parameters uncer-
tainties after their propagation through the simulation chain, unrealistic. It is shown
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that an admissible optimization problem is no longer admissible in the presence of
the uncertainties on the control parameter suggesting a redefinition of the control
space. This final point naturally introduce the idea of the cost of making a given
uncertain system, but deterministically designed, reliable. The paper ends with a
large shape optimization problem for an aircraft. This example shows the impor-
tance of including VaR information all along the design iterations leading to final
shapes differences not necessarily correlated with the uncertainty distributions.

2. VALUE AT RISK

In financial engineering, the Value at Risk (VaR) is a widely used risk measure
of the risk of loss on a given asset [14]. It defines, for a given probability level
(0 < α < 1) and time horizon (typically one day), a threshold value for the loss X
on the asset:

VaRα = inf{l ∈ IR : P (X > l) 6 1− α}.
This is illustrated in figure 1 where the areas filled worth α. We would like to use
this concept during design knowing the PDF of the uncertainties on manufacturing
realizations. During optimization a given control parameter x represents, with a
confidence level of α, the interval [X + VaR−α , X + VaR+

α ] around X the ’determin-
istic’ value of that parameter and VaR−α 6 0 6 VaR+

α . One expresses then possible
deviations from X via two PDF and the corresponding values at risk. One can make
the hypothesis that the upper and lower bounds of the variations are symmetric, in
which case VaR−α = −VaR+

α . This is typically the case when uncertainties on a pa-
rameter follow a Gaussian distribution. We do not address any time issue here and
make the hypothesis that the VaR is stationary. If the manufacturing process im-
proves with time, the deviations due to manufacturing uncertainties decrease with
time. On the other hand, one could account for possible wears of mechanical parts
over time. These situations can be interpreted as the PDF tails getting thinner for
the former and thicker for the later cases with time.

Figure 1. Value at risk for a general PDF. The colored area worths α.

For the sake of simplicity we consider the context of Gaussian probability density
functions for which values at risk are explicitly known: VaR0.99 = 2.33 and VaR0.95 =
1.65 for N(0, 1) and VaRα(N(0, σ)) = σVaRα(N(0, 1)).

In the general case, the PDF of the uncertainties are known before optimization
and so are their VaR after a numerical integration. For situations where uncertainties
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are expressed through intervals of confidence or margins, in what follows the VaR
can be simply replaced by the extreme values.

3. CONTROLLABILITY AND GLOBAL OPTIMIZATION

Consider the minimization of a functional in finite dimension J(x) ∈ IR, x ∈ IRn.
We suppose the problem admissible (i.e. there exists at least one solution xm to the
problem: J(xm) = Jm, where Jm is the infimum of J(x)). In practice Jm is obviously
unknown. We assume it is known for the justification of our argument.

Consider the following system:

(1)
dx

dt
= −d(x(t)), x(0) = x0,

where d indicates a search direction vanishing at all critical points of J(x). Finding
a global minimizer for J solving (1) means finding x(T ) for finite T such that

(2)
dx

dt
= −d(x(t)), x(0) = x0, J(x(T )) = Jm.

This is an over-determined boundary value problem. To remove this over-determination
one shall consider the following second order system:

(3)
d2x

dt2
+
dx

dt
= −d(x(t)), x(0) = x0, J(x(T )) = Jm.

In practice the final condition is not aimed at being exactly realized. This is even
more obvious in presence of uncertainties. Rather, one would like, for a given pre-
cision δ in the functional, to build at least one trajectory (x(t), 0 6 t 6 Tδ) passing
for finite Tδ in the ball Bδ(xm). This formulation permits to naturally accounts for
uncertainties in the definition of δ using the following controllability theorem (given
in [6] for (3) with d = ∇J) as theoretical background.

Theorem: Let J : IRn → IR be a C2-function such that minIRn J exists and
is reached at xm ∈ IRn. Then for every (x0, δ) ∈ IRn × IR+, there exists (σ, Tδ) ∈
IRn × IR+ such that the solution of the following system:

(4)
d2x

dt2
+
dx

dt
= −∇J(x(t)), t > 0, x(0) = x0,

dx

dt
(0) = σ,

passes at time t = Tδ into the ball Bδ(xm).
In the presence of uncertainties, the target ball Bδ(xm) is replaced by a ’given-

risk’ area as sketched in figure 2. This area, denoted xm + V aR, obviously contains
Bδ(xm) and is the union of all the risk ellipsoids for all the points in Bδ(xm):

xm + VaR = ∪x∈Bδ(xm){x+ VaR(x)}.

When the uncertainty PDF is uniform over the admissible domain, it is enough to
consider the ellipsoids for the points on the boundary of Bδ(xm):

xm + VaR = ∪x∈∂Bδ(xm){x+ VaR(x)},

where x+ VaR(x) is a local domain around a point x:

x+ VaR(x) = {y : x(i) + VaR−α (x(i)) 6 y(i) 6 x(i) + VaR+
α (x(i)), i = 1, .., n}.
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Over-solving: This is a natural introduction of the concept of over-solving as
two control points in the area described above cannot be discriminated due to un-
certainties: once in this area, it is useless to look for a better optimum, even if the
required accuracy δ is not achieved. We discuss this issue in section 4.

Figure 2. Examples of trajectories passing in Bδ(xm) in the absence
of uncertainties and the same in their presence. The admissible solu-
tion area in the latter case is a confidence subdomain defined from the
knowledge of the ’local’ value at risk on the parameters. Of course, the
trajectories are not necessarily the same in the presence of uncertain-
ties.

Algorithmic considerations This theorem is insightful for the derivation of
global minimization algorithms as discrete forms of our second order system. How-
ever, most minimization algorithms are discrete forms of first order systems such as
(1). Still shooting technics can be used to redefine the initial condition for them and
improve their global search features as described in [2, 13].

4. OPTIMIZING WITH THE VaR

Now, let us introduce uncertainty information into minimization iterations through
the VaR concept. For the sake of simplicity, we consider an explicit discrete form
of (1) where one takes optimal descent steps along −d (d can be sophisticated or
simply ∇J):

(5)



x0 = given,

for n 6 N

Evaluate d and break if ‖d‖ 6 TOL,

ρopt = Argminρ∈IR+
∗
{J(xn − ρd)},

xn+1 = xn − ρoptd.
Uncertainties on control parameters can be introduced in this algorithm mimicking
a collaborative work in industry when iterating on the design. Knowing the PDF
of these uncertainties, a muti-dimensional design point is only known with some
confidence level on each of its components xn+1(i). We denote this confidence interval
[xn+1(i)+VaR−α (xn+1(i)), xn+1(i)+VaR+

α (xn+1(i))]. It would make sense to consider
a worst-case scenario defining a correction W to xn+1 where each component worths
VaR−α (xn+1(i)) or VaR+

α (xn+1(i)) and defined in order to maximize < d,W >, the
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Figure 3. Sketch of a ’worst-case’ correction given in iteration (6)
and based on the knowledge of ’local’ value at risk defining a ’risk’
subdomain.

scalar product between d and W . This modification should also take place in the
definition of ρopt. This quantitative ’risk’ subdomain is sketched in figure 3 (denoted
below by x + VaR(x) for a given point x). One makes the hypothesis that the
VaR is a priori known but, may be, not necessarily uniform over the parameter
space. However, the uncertainty on a given parameter is kept unchanged during
optimization. Also, the control parameters are supposed independent from each
other (i.e. no correlation between control parameters components).

The minimization iterations (5) becomes:

(6)



x0 = given,

for n 6 N

Evaluate d and break if ‖d‖ 6 TOL,

ρopt = Argminρ∈IR+
∗
{J(xn − ρd+ V )},

where V = Argmaxv∈VaR(xn−ρd){< d, v >},
xn+1/2 = xn − ρoptd,
W = Argmaxv∈VaR(xn+1/2)

{< d, v >},
xn+1 = xn+1/2 +W,

break if (‖xn+1/2 − xn‖ 6 ‖W‖).
It is important to notice that the maximization sub-problems do not involve any
evaluation of the functional and are purely geometric. The algorithm may stop
before in the deterministic situation as one has an extra stopping criterion which
is to avoid over-solving as we will see in the numerical examples. It suggests
that continuing minimization iterations is useless when the variations fall below the
uncertainty level. Therefore, there is no guarantee that the first order optimality
condition is achieved for the VaR-based design. Also, in the presence of several local
minima the outcome of the deterministic and the VaR-based designs can be totally
different because of the deviation introduced by the VaR corrections and the fact
that these have been introduced during the optimization iterations.

5. ENLARGING THE CONTROL SPACE

A natural desire is to remove or limit the impact of the uncertainties of the design
parameter on the design. We would like to proceed increasing the size of the control
space introducing new uncertain design parameters in order for the outcome of
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this enlarged uncertain design to recover the behavior of the deterministic one. In
other words, we make the assumption that an uncertain system will require more
monitoring in order to perform as a deterministic one. Of course, one needs to
minimize this extra control effort. Introducing new control variables vector y, let us
rewrite our functional J(x) as Ĵ(x, y) ∈ IR, (x, y) ∈ IRn+m. One would like to keep
m as small as possible. As previously, both x and y are uncertain with known PDF.

We proceed with deterministic optimization using algorithm (5) and optimization
including the VaR informations using (6). Let us denote the corresponding results
by x∗ and x̃∗ written in short as:

x∗ = ArgminxJ(x) and x̃∗ = ArgminxJ(x+ VaR).
x∗ and x̃∗ can be quite different as we will see in our examples.
We assume the deterministic design is the best solution one could expect. We

called the corresponding functional value Jm in section 3 and if the deterministic
optimization problem is admissible and fully solved, one should have J(x∗) = Jm.
Also, because the uncertainties only degrade the performance of a system (because
otherwise x∗ would not be an optimum) one has J(x̃∗) > Jm. Now, to remove the
impact of the uncertainties on the design the idea is to solve alternatively:

x̂∗ = ArgminxĴ(x, ŷ∗), ŷ∗ = ArgminyĴ(x̂∗, y).

Eventually, one would like to have Ĵ(x̂∗, ŷ∗) = Jm. In practice, we take sequential
steps for the solution of the two optimization problems looking for a Nash equilibrium
[18]:
(7)

(x̂0, ŷ0) = given,

for n 6 N

Evaluate d = d(Ĵ(x̂n, ŷn)) and break if ‖d‖ 6 TOL,

ρopt = Argminρ∈IR+
∗
{Ĵ(x̂n − ρd+ V, ŷn)},

where V = Argmaxv∈VaR(x̂n−ρd){< d, v >},
x̂n+1/2 = x̂n − ρoptd,
W = Argmaxv∈VaR(x̂n+1/2)

{< d, v >},
x̂n+1 = x̂n+1/2 +W,

break if (‖x̂n+1/2 − x̂n‖ 6 ‖W‖),

Evaluate d = d(Ĵ(x̂n+1, ŷn)) and go to the next iteration if ‖d‖ 6 TOL,

ρopt = Argminρ∈IR+
∗
{Ĵ(x̂n+1, ŷn − ρd+ V )},

where V = Argmaxv∈VaR(ŷn−ρd){< d, v >},
ŷn+1/2 = ŷn − ρoptd,
W = Argmaxv∈VaR(ŷn+1/2)

{< d, v >},
ŷn+1 = ŷn+1/2 +W,

The stopping criterion in (7) is the same as in (6) and only involves x̂ and not
the control variable ŷ which has only been introduced to reduce the effect of the
uncertainties on the design and improve the reliability of the system [15]. We think
that it is important to keep this hierarchy between the design parameters in order
to be able to downgrade a system in term of manufacturing cost. For instance, when
a customer finds excessive the extra cost of having y active. We show in section 7
the effect of this enlargement of the design space on an inverse problem.
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Where over-solving is useless

Gradient method
without VaR correction

Gradient method with VaR correction

Initial guess

Savitzky-Golay filtering

Ns=10 Ns=100

Ns=1000

Ns=10000

J(x)

x

Mean-Variance fronts for 
samplings of increasing
size Ns

Figure 4. A deterministic situation can appear extremely noisy only
due to uncertainties in one parameter (example in section 6) for
J(x) = 30+10x2−30 exp(−105(x−0.6)4) on −1 6 x 6 1. Here uncer-
tainties in the position x makes that larger deviations in the functional
appear near the global minimum which is therefore non-robust. One
shows optimization paths without and with the VaR-based correction
starting from the same initial value. The correction discriminates be-
tween the two minima in term of robustness. The approach can be
linked to multicriteria ’momentum-based’ optimization. Lower pic-
tures show Pareto fronts for the mean and variance obtained with
uniform samplings of increasing size Ns. Optimization of a filtered
functional gives here non-robust solutions.

6. AN EXAMPLE OF ROBUST vs. GLOBAL OPTIMIZATION

Let us first illustrate our approach for a steepest descent algorithm where d = ∇J .
Consider the minimization of J(x) = 30 + 10x2 − 30 exp(−105(x − 0.6)4) on −1 6
x 6 1. The value of the control parameter is given up to an uncertainty following
ε = N(0, 0.4). The functional has two minima. The global minimum is non-robust.
One can see that a same perturbation in the control parameter creates much larger
deviations around this optimum (figure 4-top). This is clearly not suitable from an
industrial point of view. The second minimum (at the origin) appears, on the other
hand, being robust. Our approach permits to discriminate between these minima.
Also, even if this configuration is more robust, one sees that one should not over-solve
near this minimum because of the uncertainties. Figure 4 indicates such a region
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where, due to uncertainties, it is impossible to discriminate between the different
configurations.

6.1. Link with a multicriteria momentum-based interpretation of robust
optimization. Even if this is something we would like to avoid because of its com-
putational complexity, suppose one can propagate the uncertainty through the sim-
ulation chain and obtain a set of realizations. Then, an interesting interpretation of
our approach comes when linked to multicriteria ’momentum-based’ minimization
which is one classical way to robust optimization involving the different momentum
of the functional (e.g. mean and variance):

min
x∈[−1,1]

IE(J(x̃)), such that IE(J2(x̃))− IE2(J(x̃)) 6 TOL,

where, as we said, x̃ = x+ ε(x) with the PDF of ε(x) known. We previously showed
how to use a controllability result for a second order dynamic system such as (3)
to reach points on general Pareto fronts, not necessary convex [1, 6]. Solving this
multicriteria problem is therefore possible but complexity will remain an issue.

The present approach avoids the sensitivity of the minimization to the conver-
gence of the different momentum. Working with these quantities permits however
another qualification of a robust optimum. Figure 4 shows four different Pareto
fronts for the mean and variance of realizations based on uniform samplings of size
Ns = 10, 100, 1000 and 10000. As expected, one sees that convergence to a fully
established front needs much larger effort in regions of large variance. On the other
hand, the region of low variance is well identified, even with the poorest sampling. It
corresponds to the optimum found after the introduction of our robustness concept
through the VaR. This suggests a way to discriminate between minima in term of ro-
bustness using different samplings in a Monte Carlo method: the robust optimum
is the one corresponding to the first stable region in the mean-variance
front.

Another widely used approach in engineering involves reduced order models to
make affordable optimization under uncertainty. The reduced order model can be,
for instance, based on the assimilation (e.g. by least square projections) by a poly-
nomial functional of high fidelity simulations. This has as a consequence to filter the
noisy functional and obtain a smooth one J(x) to minimize. Figure 4 also shows such
an outcome using the same descent method for a functional built using a Savitzky-
Golay filter [16, 17] based on a local least-square assimilation of the noisy functional
by a piecewise cubic spline model. One sees that new local minima appear and
also the plausible optimum found by the minimization procedure (corresponding to
24 6 J(x) 6 26) belongs to regions of high variance which cannot be considered as
robust. In other words, one should take great care when permuting filtering or model
reduction and minimization operations. Today, for minimization under uncertainty,
industry mostly relies on reduced order models. This simple example shows that
this is not necessarily reliable.

7. AN INVERSE PROBLEM WITH FLUIDS

The problem consists of defining injection velocities and directions (the indepen-
dent parameters and denoted x below) in several points in the domain in order to
recover a given pollutant target distribution as shown in figure 5. We need to mini-
mize J(x) = ‖c(~u(x))− ctarget‖, where ‖.‖ is a discrete L2 norm over the calculation
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domain. The pollutant c is solution of an advection-diffusion problem by a flow
field ~u(x). The field is solution of a reduced order flow model [19] which assimi-
lates prescribed injection velocities solution of the optimization problem. ~u(x) can
also be solution of a PDE based flow model (e.g. Navier-Stokes equations) forced
through these injections. The physical model is not central to the paper, so it is not
described here. What is important is that this assimilation cannot be exact as there
is no guarantee that the injections scenarios proposed by the optimization procedure
are solution of the chosen flow model. Therefore, to reduce this source of error the
injection points are located distant from each other.

Here, our optimization procedure is used for the definition of five different injection
devices over the domain (see figure 5). Each injection is defined by its angle and
flow rate. This is therefore an optimization problem in dimension ten. Also, as in
any industrial processes, another source of uncertainty is due to practical realization
and possible errors on the injection angles for instance. To introduce our VaR
correction, we suppose we know a Gaussian PDF model for the uncertainties on
each of the injection devices. Of course, there is no limitation in considering other
probability density functions as long as these are a priori known with their VaR
computed by a numerical integration.

The complexity of the problem makes that a ’momentum-based’ minimization
would be quite expensive.

Figure 5 shows that without uncertainty the minimization problem is admissible in
the sense that one can find a given control distribution which permits to recover the
target distribution ctarget. In the presence of uncertainties, our worst-case analysis
leads to a different injection distribution, and therefore flow pattern. In other words,
the optimization problem is not anymore admissible. This indicates that in such
cases one should modify the control space in purpose. But, the solution appears
being more robust in the sense that it has been reached earlier in the optimization
procedure and kept unchanged. It should be seen as a configuration which is not
optimal but, because of the uncertainties in the control devices, one might not be
able to get much better. The interesting point is that both optimizations required
the same calculation effort and this was our main motivation in this work.

Now, to reduce the effect of the uncertainties of the design parameters, one pro-
ceeds to an enlargement of the design space as described in section (5) and uses
algorithm (7) after adding one and then two injection devices (those are in variable
y). Both injectors are supposed having the same level of uncertainty than the pre-
vious five. The dimension of the control space becomes 12 then 14. The positions
of the injection devices is arbitrary and far from those defined through variable x.
Obviously, the positions of the new injectors could have been optimized as part of
the variable y. Figure 5 also compares the two previous convergence histories in
dimension 10 to those of Ĵ(x, y) in dimension 12 and 14. One can see that one
extra injector permits to recover the deterministic design even in the presence of
uncertainties. With two injectors the recovery is faster. This kind of information is
interesting in industrial design as it gives an indication on the extra cost for mak-
ing a given design reliable: in the sense of having a behavior compliant with what
defined for the deterministic system.
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g/m3

Initial

2 KM

Target is realized with either deterministic 
optimization in dimension 10 or including 

VaR information but in dimensions 12 or 14

Optimization including VaR information in 
dimension 10

Cost function vs. optim iterations

Dim 14 with VaR

Dim 10 deterministic

Dim 12 with VaR

Figure 5. The aim is to recover the flow which permits a target
passive scalar c(~u(x)) distribution. A pure deterministic optimization
recovers the target quite well but not when including uncertainties
on the injection devices. Introducing new control devices permit to
recover the target distribution. Hence, one can control/remove the im-
pact of the uncertainties on the design increasing the size of the control
parameter space. Here, one extra injection device was sufficient but
with two the target design is reached earlier in the optimization pro-
cess.

8. FULL AIRCRAFT SHAPE OPTIMIZATION

The third example concerns a shape optimization problem for a full aircraft in
transonic cruise condition. We would like to include a priori known VaR informations
on the shape.

Let us briefly describe the shape optimization procedure [2, 20]. A full description
would be obviously too long. The discussion concentrates then on the introduction of
the VaR concept in the design loop. Our design uses the linearization by an adjoint
approach of a direct calculation loop linking the vector of control parameters x (here
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of dimension 5000) to a functional J :

(8) J(x) : x→ q(x)→ U(q(x))→ J(x, q(x), U(q(x))).

x is a CAD-free parameterization of the shape (CAD: Computer Aided Design) [20]
which does not require a priori local regularity assumptions on the shape as it is
implicitely the case in CAD-based shape definitions. q(x) denotes auxiliary unstruc-
tured mesh related geometrical quantities and U(q(x)) flow variables, solution here
of the Reynolds averaged Navier-Stokes equations and a two equations turbulence
model [22]. The derivative ∇xJ is computed by automatic differentiation in reverse
mode using tapenade [21] and we have optimized by hand the produced reverse
mode code for steady flow adjoint solutions in order to minimize memory require-
ments in reverse loops [2]. The optimization procedure requires an initial shape
parameterization and a priori Value at Risk information for this three dimensional
shape as a local vector in IR3 (i.e. of size 5000 × 3) representing the variability on
each of the coordinate of the shape at each point of the CAD-free parameterization.
The initial shape and ‖V aR‖ contours are shown in figure 6. We assume larger
uncertainties along the wings and increasing spanwise.

The optimization aims at maximizing Cl the lift and minimizing Cd the drag
coefficient:

J(x, q(x), U(x)) = −Cl
C0
l

+
Cd
C0
d

,

where superscript 0 indicates the initial shape. Figure 6 shows the shapes obtained
by algorithms (5) and (6). The lift to drag ratio is higher for the deterministic design.
Convergence histories in figure 6 are for the aerodynamic coefficients normalized by
the values on the initial shape. Because informations on the VaR were accounted
for during the design iterations and not only at the end of the procedure, shapes
differences are not necessarily where uncertainties are larger. This indicates probable
presence of local minima for this problem. This can be seen when one switches off
the VaR correction after 40 iterations of optimization in (6). Figure 7 shows shape
deformations with respect to the initial shape with the deterministic and the VaR-
based then deterministic optimizations. The two shapes have the same performance
in term of drag but differ on the lift coefficient.

9. CONCLUDING REMARKS

In order to be easily integrated in engineering environments, robust optimization
has been addressed in the framework of deterministic algorithms by the introduction
of the Value at Risk concept. This permits to quantify our confidence on the opti-
mal solution without any sampling of the control space. We deliberately work in a
global optimization framework because these considerations permit to discriminate
between minima and only consider robust solutions. Also, one clear advantage of
this approach is that one remains in the deterministic framework with supposed suf-
ficient regularity where the gradient of the functional can be defined and computed
using classical approaches such as finite differences or via an adjoint. The approach
also naturally features the need to avoid over-solving introducing a stopping cri-
teria based on the ratio of variations during optimization and local uncertainties.
It has been shown through numerical examples that this VaR-based correction can
be linked to momentum-based optimization. The solution by the approach appears
being the robust optimum in the mean-variance front generated through Monte



13

Carlo simulations with increasing sample sizes. Introduction of new control devices
monitoring the impact of the uncertainties has been discussed in order to give an in-
dication on the cost of making an uncertain system reliable. Finally, the importance
of including the VaR information during the design iterations has been discussed
through shape optimization of a full aircraft.
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Figure 6. Deterministic and VaR-based shape optimizations for a
full aircraft. The difference between the two shapes are not neces-
sarily where larger uncertainties are present. Deterministic design
produces higher lift to drag ration, but surprisingly, the design under
uncertainty performs best in term of drag.
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Figure 7. Iso-contours of deformations with respect to the initial
shape with deterministic and VaR-based optimizations with the VaR
correction switched off after 40 iterations of (6).


