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Abstract 
 
Spectral analysis along with the detection of harmonics and modulation sidebands are 
key elements in condition monitoring systems. Several spectral analysis tools are 
already able to detect spectral components present in a signal. The challenge is therefore 
to complete this spectral analysis with a method able to identify harmonic series and 
modulation sidebands. Compared to the state of the art, the method proposed takes the 
uncertainty of the frequency estimation into account. The identification is automatically 
done without any a priori, the search of harmonics is exhaustive and moreover the 
identification of all the modulation sidebands of each harmonic is done regardless of 
their energy level. The identified series are characterized by criteria which reflect their 
relevance and which allow the association of series in families, characteristic of a same 
physical process. This method is applied on real-world current and vibration data, more 
or less rich in their spectral content. The identification of sidebands is a strong indicator 
of failures in mechanical systems. The detection and tracking of these modulations from 
a very low energy level is an asset for earlier detection of the failure. The proposed 
method is validated by comparison with expert diagnosis in the concerned fields. 
 
1.  Introduction 
 
System monitoring is a key element in a predictive maintenance strategy (1). Vibration 
analysis is one of the oldest and most used techniques. It consists in computing the 
spectral density of vibration signals, recorded at sensitive points of the system (e.g., the 
bearings or gearboxes). The presence of harmonic or modulation series is then used as 
indicators of wear or damage of one or more mechanical parts of the system (2).  
Few studies have focused on the problem of identifying harmonics at the output of a 
spectral analysis: (3) presented a method based on correlation but does not take the 
uncertainty due to the estimation of the frequencies into account, while (4) proposed a 
method based on statistical tests with the a priori hypothesis that the power of an 
harmonic series is a decisive criterion. A method developed in (5) and applied to the 
diagnosis of helicopter engines associates the detected peaks to known peaks from an 
underlying model, thus inducing an a priori model. 
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The main idea of this paper is to automatically identify the harmonic series and 
sidebands taking the uncertainty in frequency estimation into account and without 
introducing any a priori on the signal. If the number of system parts to be monitored is 
large, the number of signals to be analysed becomes sizeable. Therefore, there is a need 
to automatically perform spectral analysis and after that the reading of the achieved 
spectra. Many spectral analysis tools are already able to detect all spectral components 
of an analysed signal. Each detected component is usually characterized by some 
parameters, depending on the tool used. In general, these parameters include at least the 
central frequency of the detected peak and the estimation error of the central frequency, 
estimation strongly related to the spectral resolution. Assuming the knowledge of these 
two parameters, we propose a method based on spectral interval intersections, in order 
to identify the harmonic and modulation series from a finite set of spectral components. 
 
2.  Context 
 
The context of our work takes place at the output of a spectral analysis tool which 
provides a set S of spectral components. Within this set, each component Ci is 
characterized by at least its central frequency νi, the uncertainty ∆νi directly linked to 
the spectral resolution and its amplitude Ai 
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where F is the total number of spectral components detected. 
 
In the present paper, we use the automatic spectrum analyser AStrion (6)(7). Thanks to its 
method of detection and automatic identification of noise, AStrion detects only the 
relevant components (sinusoids or narrowband). Moreover, a method implemented in 
AStrion allows the estimation of the central frequency of components with a better 
precision than the spectral resolution (8). 
 
The purpose of this study consists then in identifying the harmonic series and sidebands 
in the set S of detected spectral components. 
 
3.  Harmonic series and modulation sideband identification 
 
After the definitions of a harmonic series and a harmonic family, a method is proposed 
to identify the harmonic series. The same method is then extended around the detected 
harmonics to identify the modulation sidebands. 
 
3.1  Definition of a harmonic series and of a harmonic family 
 
Mathematically, a harmonic series is characterized by a fundamental frequency νi and 
defined as a set of spectral components of frequencies *

ir , rν× ∈ representing the 
harmonic order. 
 
Two series of fundamental frequencies νi and νj belong to the same family if their ratio 
is a rational number, that is to say, 
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ν q

∃ ∈ ×  . (2) 

 
In this case, the family is defined by all the components of both series and is 
characterized by a fundamental frequency equal to ν0 = νj / p = νi / q, even if this 
frequency is not detected and may be not present in the spectrum. This definition 
implies that if two harmonic series of fundamental frequency νi and νj have a harmonic 
νk in common, then the two series are part of the same family. Otherwise, if νi and νj are 
incommensurable, each series belongs to a distinct harmonic family. It is worth noting 
that a signal containing more than one harmonic family cannot be periodic. 
 
From a system maintenance point of view, it is interesting to identify all the harmonic 
series since each one may be associated with a different part of the system. Grouping 
harmonic series in family is an additional indicator to identify interrelated components. 
 
3.2 Harmonic series detection 
 
Harmonic series identification from estimated components is a nontrivial problem 
because of estimation errors. In fact, estimation errors do not preserve the accuracy of 
the relation between an estimated frequency and its harmonics. So, in order to find the 
harmonic frequency of order r of an estimated frequency νi, looking for a detected 
component at a frequency exactly equal to r × νi will not be sufficient.  
 
In this paper, we propose to use the uncertainty ∆νi of each detected component to 
bypass the drawbacks of the non-exact frequency estimation. Each estimated frequency 
νi is thus represented by a confidence interval of width ∆νi centred on νi. The harmonic 
detection is then completed by intersection of these intervals, as detailed in what 
follows. 
 
A component Ci(νi, ∆νi, Ai) of S is the fundamental of a harmonic series, referred to as 
Hi, if Cj(νj, ∆νj , Aj) ∈ S exists such that 
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, (3) 

 
with (aj, bj) ∈ R², aj ≠ bj, and * 1r { }∈ − . The harmonic order r increases sequentially, 
starting at 2 and stopping when the end of the spectrum is reached. The search for 
harmonic components is then performed in a sequential manner (r=2,3,…) looking for 
the components Cj which are harmonics of Ci. 
 
However, this can raise a problem of harmonic identification when several detected 
peaks satisfy (3), for the same order r. Fig. 1 presents the case of two components of 
frequencies νj and νj+1 satisfying (3), the component νi being considered as a potential 
fundamental frequency. Therefore a criterion has to be added to (2) in order to identify 
the successive harmonics of a series. We propose to use a criterion of minimum distance 
to select νi

(r) the harmonic of order r of the fundamental frequency νi.  
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For a given order of harmonics, νi
(r) has to satisfy the following complete criterion 

 
 

( )
( )

2
/ min .

j

r
i j j isatisfying

r
ν

ν ν ν ν= − ×  (4) 

 

In the case of Fig. 1, based on this second criterion, the component with frequency νj is 

chosen as the harmonic of order r. 

 
Figure 1. Harmonic search based on interval intersection: νi is considered as a 

potential fundamental of a given series and νj and νj+1 are two candidates for the 
harmonic of order r. Based on the distance criterion, νj will finally be retained. 

 
This method raises a second problem: the search interval for harmonics grows linearly 
with the harmonic order r. Considering a fundamental νi with its estimation error ∆νi, 
the uncertainty of its r order harmonic frequency is equal to r.∆νi. As a consequence, for 
high order harmonics the probability of getting multiple candidates and selecting a 
wrong one increases.  
 
To prevent the search interval growing, each time a component is identified as a 
harmonic of Ci  (satisfying (2) and (3)), the parameters νi and ∆νi are updated as 
 

 ,
2

j j j j
i i

a +b b a
ν = ν =

r r
−

∆ . (5) 

 
This strategy is illustrated on Fig. 2. If r is the order of the last harmonic added in the 
series and no harmonics have been identified for the orders r+1, r+2, …, r+k, the search 
interval will not be updated and will continue to grow. To prevent the search interval to 
become large compare to spectral resolution, the search for harmonics in this series 
stops when no harmonics have been detected for k consecutive order. In our 
implementation, we choose k = 8.   
 

 
Figure 2. Parameter updates: νi and ∆νi are updated to avoid the search interval 

growing. In grey, the previous values of νi and ∆νi. Each time a harmonic is 
detected, updated values (in blue) are considered.  
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In the proposed algorithm, the search of harmonic series is exhaustive. One by one, each 
detected spectral component is considered as a potential fundamental of a harmonic 
series. Further processing described in Section 3.5 has to be done to determine the final 
list of identified harmonic series.  
 
Moreover, the fundamental frequency can be missing from a signal or it could have not 
been detected by the previous spectral analysis. To avoid the non-detection of the 
harmonic series because of the non-presence of the fundamental, we create an artificial 
component Ĉi for each real component Ci in S with frequency ˆ / 2i iν ν=  and uncertainty 

ˆ / 2i iν ν∆ = ∆ . If the series detected from Ĉi and Ci are identical, we merge them and 
consider only the component Ci as a fundamental of a harmonic series.  
 
3.4 Modulation sideband detection 
 
Sidebands are usually the result of an amplitude or frequency modulation process. In the 
spectrum, they take the form of spectral components equally spaced on both sides of the 
carrier frequency, symmetrically.  
 
For computational time reason, each component of the spectrum is not considered as a 
potential carrier frequency. The search for sidebands is only made around the 
components belonging to the harmonic series Hi previously identified.  
 
Assuming that νi is the fundamental frequency of the harmonic series Hi, for each 
component Cj of order r in Hi, the search for modulation series is made in 3 steps, 
illustrated in Fig. 3: 
 
A - First, we look for sidebands above Cj, in the search interval [νj ; νj + νi] = [r νi ; (r+1) 
νi]. To proceed, we identify all the harmonic series Mk

Cj+ present in this interval, 
considering Cj as the new frequency reference, k representing the series index. In the 
example of Fig. 3, two series are identified, in orange (with fundamental ν0) and purple 
(with fundamental ν1). 
 
B - Then, the same process is applied below Cj, in the search interval [νj - νi ; νj] = [(r – 
1) νi ; r νi] to identify the harmonic series Mk

Cj-. In the example of Fig. 3, two series are 
extracted from the set of detected frequencies, in red (same fundamental ν0) and in 
green (with fundamental ν2). 
 
C - Finally, we compare the fundamental frequencies from the Mk

Cj+ series to the 
fundamental frequencies from Mk

Cj-. If two series have the same fundamental frequency 
(with a possible error of maximum ∆νi), both series are merged and are now considered 
as a modulation series. Thus, in the example of Fig. 3, the modulation series of 
fundamental ν0 is selected as a symmetrical series around frequency νj = r νj and two 
non-symmetrical series are kept on both sides of νj, of fundamentals ν1 and ν2. 
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Figure 3. Modulation sidebands detection: (A) Two harmonic series (in orange and 
in purple) identified above the carrier frequency rνi. (B) Two harmonic series (in 

red and in green) identified below the carrier frequency. (C) Search for symmetry 
and fusion: one modulation series (in orange) finally detected. 

 
A modulation series is not always symmetric. There can be more components above the 
carrier frequency than below, and vice versa. The proposed method allows the 
identification of such non-exactly symmetric sidebands. An example is given in Fig. 4.C 
with 3 sidebands below the carrier frequency, and only 2 sidebands above. 
 
3.5 Characterisation criteria 
 
The proposed method is exhaustive and identifies every harmonic and modulation series 
present in the spectrum. As a consequence, the number of series detected is large and 
some of them are not always relevant. Nevertheless, in the literature, there is no precise 
definition of a harmonic series (apart from a mathematical point of view). Moreover, the 
relevancy of a series depends on the application and the physical context of the studied 
signals. That is the reason why keeping all the series detected is necessary. Rather than 
eliminating the “false” series, the proposed method classifies the detected series thanks 
to the following three characterisation criteria. 
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These criteria have been chosen as a comparison of each detected series to the 
corresponding “perfect” one. A “perfect” series is defined as a spectral comb going till 
the end of the spectrum with no harmonic missing.  
 
The first criterion denoted Di, highlights the density of the series, in order to 
differentiate series with several harmonics missing from series with almost all 
harmonics present 
 

 ( )card i
i max

i

H
D =

r
, (6) 

 
with ri

max the rank of the last harmonic in the series Hi. 
A series in which lots of harmonics are missing will have a small density whereas a 
“full” series including all harmonic orders will have a density equal to one. 
 
The second criterion is based on Ni

max which is the maximum size of the series based on 
the frequency of its fundamental νi and of the highest frequency νF in the set S. This has 
to be compared to ri

max to define the second criterion, the richness Ri of the series 
 

 
max

maxi F
i imax

i i

r νR = with N =
N ν

 
 
 

,  (7) 

 
with    providing the integer part. This will help to consider in a different way two 
series with the same cardinal and the same harmonics orders. For example a series of 
fundamental frequency νi = 510 Hz including only harmonics of orders 2 and 3 for a 
signal in which the maximum detected frequency is νF = 2000 Hz carries more weight 
than a series including also the same harmonic orders but with a fundamental frequency 
νj = 23 Hz. The first series will have a criterion equal to 1, which is the maximum 
possible whereas the second series will only get a 0.035, which is a very low value. 
 
Classically used, the third criterion is the Total Harmonic Distortion THDi (9) 

 

                                                   
2 2

1 2

2
0

2... 1Ni
i

A + A + A
THD =

A
−

  



.  ...................................... (7) 

 
This criterion will be helpful in applications where amplitude behaviour in harmonic 
series is known a priori and awaited.  
For modulation sidebands, these criteria are computed on the series below and above the 
carrier frequency. 
 
The combination of the following criteria allows classifying the harmonic series and 
modulation sidebands by relevancy. In addition, the series are grouped in family as 
defined. 
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4.  Results 
 
The method has been tested on synthetic and real-world signals. The results for a 
current signal of a fan are shown in Fig. 4, below the spectral analysis result, as a 
schematic representation of the detected series. The method identifies a series of 28 
consecutive harmonics at the fundamental frequency 50.015 Hz and two modulation 
sidebands series around this carrier frequency with cardinal 3 and 7 and their respective 
frequencies 0.535 Hz and 6.456 Hz. All the detected series have high density, that is to 
say D = 1. Harmonic series near the fundamental 50 Hz was expected. Its THD is very 
low (1.19 %) and is under the maximum 2 % guaranteed by the energy supplier.  
 

 
Figure 4. Series identification on the spectral component set from the current 

signal of a fan: (A) The 50 Hz harmonic series (B) A zoom on the two modulation 
series around the 50 Hz. (C) A second zoom on the 0.535 Hz modulation series.  
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The presence of two series of sidebands is characteristic of two defects on the fan, 
identified by an expert in maintenance. The series of fundamental frequency 0.535 Hz is 
generated by a misalignment of the belt. Its richness is very low (R = 0.03), but its 
density is maximal (D = 1) and the THD is high (8.74 %). The second modulation series 
with fundamental frequency 6.456 Hz, is due to a broken shaft. Its criteria are very high: 
maximal density D = 1, maximal richness R = 1 and a very high TDH = 146 %. These 
two series of modulation are also present around the harmonics of 50 Hz, i.e. around 
100 Hz, 150 Hz, 200 Hz, etc.  
 
5.  Conclusions 

 
The method proposed in this article identifies harmonic series and modulation sidebands 
in a finite set of spectral components, and without any a priori on these series. On 
vibration signals, rich in spectral components, even the low-energy harmonic series are 
identified. The identification of modulation sidebands around these harmonics is an 
excellent indicator for the early detection of faults in condition monitoring systems. 
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