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GUARANTEED SET COMPUTATIONWITH SUBPAVINGSMihel Kie�er1Lu Jaulin2Isabelle Braems1and �Eri Walter11 Laboratoire des Signaux et Syst�emes, CNRS | Sup�ele | Universit�e Paris-SudPlateau de Moulon, 91192 Gif-sur-Yvette, Frane{kie�er, braems, walter}�lss.supele.fr2Laboratoire d'Ing�enierie des Syst�emes Automatis�es, Universit�e d'Angers, Franejaulin�sienes.univ-angers.frKeywords: Binary trees, bounded errors, image evaluation, reursive algorithms,set inversion, subpavings, treesAbstrat This paper is about the approximate representation of ompat sets us-ing subpavings, i.e. unions of non-overlapping boxes, and about ompu-tation on these sets, with partiular attention to implementation issues.Some basi operations suh as evaluating the intersetion or union oftwo subpavings, or testing whether a box belongs to a subpaving are �rstpresented. The binary tree struture used to desribe subpavings thenallows a simple implementation of these tasks by reursive algorithms.Algorithms are presented to evaluate the inverse and diret images ofa set desribed by a subpaving. In both ases, a subpaving is obtainedthat is guaranteed to ontain the atual inverse or diret image of theinitial subpaving. The e�etiveness of these algorithms in haraterizingpossibly nononvex on even nononneted sets is �nally illustrated bysimple examples.1. INTRODUCTIONIn the interval ommunity, boxes (or interval vetors) are often usedto ontain the solutions of global optimization problems or of systemsof equations. These solution boxes usually have a small volume. Onthe other hand, problems suh as haraterizing the stability domain ofontrollers or estimating parameters in the bounded-error ontext may1



2have large ompat sets as solutions, for whih enlosure in a single boxwould not be detailed enough.This paper presents results on the desription of ompat sets byunion of nonoverlapping boxes or subpavings. After a brief desriptionof an example motivating the approah in Setion 2, subpavings areintrodued in Setion 3. Partiular attention is paid to implementation.Priniples and properties of inverse and diret image evaluation of setsare presented in Setions 4 and 5. An example illustrating some featuresof these algorithms is desribed in Setion 6, before some �nal remarksand perspetives.2. WHY DEAL WITH SETS?The aim of this setion is to illustrate the interest of set harateri-zation by an example of problem of pratial interest in the ontext ofbounded-error estimation. Assume that the measured output y (t) ofa physial system is desribed by a parametri model M (p) ;p 2 Rp ;with output ym (t;p) ; where p is a vetor of unknown parameters. Themodel output should resemble the system output as muh as possible.The model may be tuned by adjusting p. To ahieve this task, n mea-surements of the system output are olleted at time ti, i = 1; : : : ; n.Bounded-error parameter estimation onsists of �nding all values of psuh that the error between the system and model outputs e (ti;p) =y (ti) � ym (ti;p) remains within some prespei�ed bounds [ei; ei℄ fori = 1; : : : ; n: A value of p satisfying e (ti;p) 2 [ei; ei℄ for i = 1; : : : ; n, orequivalently ym (ti;p) 2 [y (ti)� ei; y (ti)� ei℄ for i = 1; : : : ; n, is saidto be aeptable: The interval [yi℄ = [y (ti)� ei; y (ti)� ei℄ thus ontainsall aeptable model outputs at time ti. Bounded-error parameter esti-mation aims at haraterizing the set of all aeptable parameter vetorsX = fp jym (p) 2 [y℄g ; where ym (p) is the vetor of all model outputs(ym (t1;p) ; : : : ; ym (tn;p))T and where [y℄ is the box ([y1℄ ; : : : ; [yn℄)T.This problem may be interpreted as a set-inversion problem, as X mayalso be written as X = y�1m ([y℄) :Bounded-error parameter estimation may thus be seen as the hara-terization of a possibly nononvex or even non-onneted set. Manyother problems in ontrol also require the haraterization of sets, forinstane bounded-error state estimation or the determination of valuesets in robust ontrol.3. HOW TO DEAL WITH SETS?Even if an exat desription of X is sometimes possible, see, e.g., [16℄,this is far from being always the ase. When X is a onvex polytope,



Guaranteed Set Computation with Subpavings 3tehniques are available to enlose it in ellipsoids, boxes, simpler poly-topes, et. See the referenes in [12℄, [13℄, [14℄, [17℄ for more details.This paper fouses on the enlosure of ompat sets that are not ne-essarily polytopes in unions of non-ovelapping boxes, with speial atten-tion to nonlinear problems. Suh a desription an, at least in priniple,approximate ompat sets as aurately as desired in the sense, e.g., ofthe standard Hausdor� distane [1℄. Boxes presents the advantage ofbeing very easily manipulated by omputers, as they form the heart ofinterval analysis.3.1. REPRESENTING UNIONS OF BOXESIt is important to organize the storage of these boxes in memory inorder to failitate further proessing (suh as taking the intersetion orunion of solution sets, evaluating their image by a funtion, et.). The�rst idea would be to store the boxes in a list. However, this struturewould not be very eÆient for tasks suh as heking whether a box isinluded in the set formed by the union of the boxes belonging to a givenlist.To allow a more eÆient organization, we shall require that all theboxes to be onsidered result from suessive bisetions of a root box[x℄0 � Rn , aording to some anonial bisetion rule. Suh bise-tion rule may, for instane, be that eah box [x℄ is ut aross its mainomponent j, de�ned as j = min fi jw ([xi℄) = w ([x℄)g ; where w (:) de-notes the width of an interval or a box. The boxes resulting from thebisetion of [x℄ are L [x℄ = �[x1℄ ; : : : ; �xj; �xj + xj� =2� ; : : : [xn℄� andR [x℄ = �[x1℄ ; : : : ; ��xj + xj� =2; xj� ; : : : [xn℄�. A union of boxes obtainedin this manner will be alled a regular subpaving [3℄, [8℄, [9℄. The set ofregular subpavings whose root box is [x℄ will be denoted by RSP ([x℄).Many interval algorithms naturally provides solutions that are regularsubpavings.3.2. BINARY TREESAND REGULAR SUBPAVINGSRegular subpavings extend quadtrees and ottrees of omputer geom-etry (see, e.g., [15℄) to higher dimensions, and the same type of tehniquebased on binary trees an be used. The binary tree will be used to de-sribe the boxes of the regular subpaving and how they were biseted andseleted from the root box. A binary tree T is a �nite olletion of nodes.T may be empty, or may onsist of a single node or of two subtrees: theleft and right subtrees, respetively denoted by LT and RT . Here, eahnode represents a box [x℄, whih may be the root box of the subpaving or
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Figure 1 A subpaving and its binary tree representation. The branh in boldrepresent the suessive bisetions and seletions of [x℄0 = [0; 4℄ � [0; 4℄ to getLLR [x℄0 = [2; 3℄� [0; 2℄a box obtained from the root box by bisetions. The shape of the tree isdetermined by the bisetions and seletions whih have lead to the boxesof the regular subpaving, see Figure 3.2. The root node A of the tree Trepresented on the right orresponds to the root box [x℄0 = [0; 4℄� [0; 4℄of the subpaving represented on the left. The fork stemming from Aindiates a bisetion of [x℄0. A has two subtrees, the roots of whih arethe nodes B and C. These sibling nodes (they stem from the same node)respetively represent L [x℄0 = [0; 2℄ � [0; 4℄ and R [x℄0 = [2; 4℄ � [0; 4℄.The node C has only one subtree, as the box [2; 4℄� [2; 4℄ orrespondingto D does not belong to the subpaving. The node E has no hildren,it is a leaf, whih orresponds to LLR [x℄0 = [2; 3℄ � [0; 2℄. Eah leafrepresents a box belonging to the subpaving. A regular subpaving isminimal if it has no sibling nodes that are leaves.Regular subpavings and their binary tree representations will be on-sidered indi�erently, and the voabulary used for binary trees will alsobe used for subpavings. This type of representation allows omplex tasksto be performed by very simple reursive algorithms, as we shall see.3.3. BASIC OPERATIONSThe four basi operations on regular subpavings to be onsidered arereuniting sibling subpavings, taking the union or intersetion of sub-pavings, and testing whether a box is inluded in a subpaving.Reuniting sibling subpavings: this operation is intended to sim-plify the desription of subpavings by making them minimal. Con-sider a box [x℄ and two regular subpavings X 2 RSP (L[x℄) and Y 2RSP (R[x℄). These subpavings are siblings as they have the same par-



Guaranteed Set Computation with Subpavings 5ent box [x℄. The reunited subpaving Z , (XjY) 2 RSP([x℄) is de�nedand omputed as follows:Algorithm Reunite(in: X;Y; [x℄, out: Z, (XjY))if X = L[x℄ and Y = R[x℄, then Z := [x℄;else if X = ; and Y = ;, then Z := ;;else, LZ := X and RZ := Y.Eah of these instrutions is trivial to implement with a binary treerepresentation. For instane, the instrutions LZ := X and RZ := Yamount to grafting the trees X and Y to a node to form the tree Z.Interseting subpavings: If X 2 RSP ([x℄) and Y 2 RSP ([x℄) ;then Z = X \ Y is also a subpaving of RSP ([x℄). It only ontainsthe nodes shared by the binary trees representing X and Y, and an beomputed by the following reursive algorithm:Algorithm Interset(in: X;Y; [x℄, out: Z= X \ Y)if X = ; or Y = ; then return ;;if X = [x℄ then return Y;if Y = [x℄ then return X;return (Interset(LX; LY; L[x℄)jInterset(RX; RY; R[x℄));Taking the union of subpavings: If X 2 RSP ([x℄) and Y 2RSP ([x℄), then Z = X [ Y also belongs to RSP ([x℄). Z is omputedby putting together all nodes of the two binary trees representing X andY. Again, this an be done reursively:Algorithm Union(in: X;Y; [x℄, out: Z= X [ Y)if X = ; or if Y = [x℄ then return Y;if Y = ; or if X = [x℄ then return X;return (Union(LX; LY; L[x℄)jUnion(RX; RY; R[x℄));Testing whether a box [z℄ is inluded in a subpaving: X 2RSP ([x℄) : This test is straightforward in four ases. It holds true if [z℄is empty, or if X is redued to a single box [x℄ and [z℄ � [x℄ : It holdsfalse if X is empty and [z℄ is not, or if [z℄ is not in the root box of X:These basi tests will �rst be applied to the root of the tree representingthe subpaving. If none of the four simple ases is satis�ed, these basitests are reursively applied on the left and right subtrees. The followingalgorithm summarizes the proess:Algorithm Inside(in: [z℄ ;X, out: t)if [z℄ = ; or if X is a box [x℄ and [z℄ � [x℄ then return 1;if X = ; or if [z℄\ root(X) = ; then return 0;return (Inside([z℄ \ L [x℄ ; LX) ^ Inside([z℄ \R [x℄ ; RX)) ;



6 Note that ^ orresponds to an interval version of the logial operatorAND. When [z℄ � X 1 is returned, when [z℄ \ X = ; 0 is returned andwhen [z℄ overlaps the boundary of X [0; 1℄ is returned.Remark 1 Binary trees are a well-known data struture and many li-braries provide this data type. However, in most ases, these librariesare intended to implement sorting algorithms, and thus not suited to theimplementation of operations on sets. This is why we hoose to imple-ment subpavings from srath using the Profil/Bias library [11℄. TheC++ soure ode is freely available on request. }4. INVERSE IMAGE EVALUATIONLet f be a possibly nonlinear funtion from Rn to Rm and let Y bea regular subpaving inluded in Rm . Inverse image evaluation is theharaterization of X = fx 2 Rn j f(x) 2 Yg = f�1(Y): Set inversion ofSetion 2 is a speial ase of this problem.For any subpaving Y � Rm and for any funtion f admitting aninlusion funtion [f ℄ (:), a subpaving X ontaining the set X an beobtained with the algorithm Sivia (Set Inverter Via Interval Analysis,[6℄, [7℄) that will now be desribed in the ontext of regular subpavings.To ompute X, Sivia requires a (possibly very large) searh subpavingS to whih X is guaranteed to belong. To failitate presentation, Figure 4desribes the basi steps of Sivia, in the ase of a searh subpavingredued to a box [x0℄. The general proedure is easily derived from thissimpli�ed example.To obtain X, the same proedure will be applied to eah node of S. Forany given node N of the binary tree desribing S, the image of the box[xN℄ orresponding to this node is evaluated by the inlusion funtion[f ℄ (:). Four ases may be enountered.1. If [f ℄ ([xN℄) has a nonempty intersetion with Y, but is not entirelyin Y, then [xN℄ may ontain a part of the solution set (Figure 4a); [xN℄and the assoiated node N are said to be undetermined. The same testshould be reursively applied on the nodes stemming from N, if theyexist. If N is a leaf, and if the width of [xN℄ is greater than a prespei�edpreision parameter ", [xN℄ should be biseted (this implies to the growthof two o�springs from N) and the test should be reursively applied onthese newly generated nodes.2. If [f ℄ ([xN ℄) has an empty intersetion with Y, [xN ℄ does not belongto the solution subpaving, and N an be ut o� from the solution tree(Figure 4b).3. If [f ℄ ([xN ℄) is entirely in Y, [xN ℄ belongs to the solution subpavingX, and N is in the solution tree (Figure 4).
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Figure 2 Four situations enountered by the Sivia algorithm (a) the box [x0℄ to beheked is undetermined and will be biseted; (b) the box [x1℄ does not interset Yand is rejeted; () the box [x2℄ is entirely in Y and is stored in the solution subpaving;(d) the box [x3℄ is undetermined but deemed to small to be biseted, it is also storedin the solution subpaving to set an outer approximation X of X upon ompletion ofthe algorithm4. The last ase is depited on Figure 4d. If the box onsidered is un-determined, but its width is lower than ", then it is deemed small enoughto be stored in the outer approximation X of the solution subpaving.



8 The following algorithm summarizes this proedure.Algorithm Sivia(in: [f ℄ ;Y;S; ", out: X)[x℄ :=root(S);[test℄ := Inside([f ℄ ([x℄) ;Y);if [test℄ = 0 then return ;; // Figure 4(b)if [test℄ = 1 then return S; // Figure 4()if w ([x℄) < " then return S; // Figure 4(d)return (Sivia([f ℄ ;Y; LS; ")jSivia([f ℄ ;Y; RS; ")); // Figure 4(a)The real positive number " is an auray parameter, whih determinesthe maximum width of the boxes that ompose X. Reall that the re-uni�ation operator ( j ) performs the union of two sibling subpavings.This allows Sivia to return X as a minimal subpaving.The onvergene of the initial version of this algorithm, allowing onlyinversion of boxes, has been studied in [6℄. The proofs given there easilyextend to the inversion of subpavings.5. DIRECT IMAGE EVALUATIONComputing the diret image of a subpaving by a funtion is slightlymore ompliated than omputing a reiproal image, beause intervalanalysis does not provide any inlusion test for the point test t(y) =(y 2 f (X)) diretly. Note that even this point test is very diÆult toevaluate in general, ontrary to the point test t(x) = �x 2 f�1 (Y)�involved in set inversion. Indeed, to test whether x 2 f�1 (Y), it suÆesto ompute f (x) and to hek whether it is in Y. On the other hand,to test whether y 2 f (X), one must study whether the set of equationsf (x) = y admits at least one solution under the onstraint x 2 X, whihis usually far from simple.Assume that f is ontinuous and that an inlusion funtion [f ℄ for f isavailable. The algorithm presented below generates a regular subpavingY that ontains the image Y of a regular subpaving X by f (see also[8℄, [9℄). Thus Y is an outer approximation of Y. The set Y is inludedinto the box [f ℄ ([X℄) and also into the image by the inlusion funtion ofthe smallest box ontaining X. The algorithm proeeds in three steps,namely mining, evaluation, and regularization (see Figure 5). As withSivia, the preision of the outer approximation will be governed by thereal " > 0 to be hosen by the user. During mining, a non-minimalregular subpaving X" is built, suh that the width of eah of its boxes isless than ". During evaluation, a box [f ℄ ([x℄) is omputed for eah box[x℄ of X", and all the resulting boxes are stored into a list Y ("). Duringregularization, a regular subpaving Y (") is omputed that ontains theunion of all boxes of Y ("). This regularization an be viewed as a
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Figure 3 The three steps of ImageSp. (a) ! (b): mining; (b) ! (): evaluation;()! (d): regularizationall of Sivia to invert Y (") by the identity funtion. Indeed, sinef (X) � Y ("), whih is equivalent to f (X) � Id�1 (Y (")), one has f (X) �Sivia([t℄ ; [f ℄ ([X℄); "), where [t℄ is an inlusion funtion for t (y) = (y 2Y (")), denoted by [t℄ ([y℄) = ([y℄ [2℄Y (")). The resulting algorithm isas follows:Algorithm ImageSp(in: [f ℄ ;X; ", out: Y)X" :=mine(X; ") ;Y (") = ;;For eah [x℄ 2 X"; Y (") := Y (") [ f[f ℄ ([x℄)g ;return Sivia([t℄ ; [f ℄ ([X℄); ");Sine Y (") is not a subpaving, implementation is not trivial, see [8℄ fordetails. The omplexity and onvergene properties of ImageSp havebeen desribed in [4℄ and [8℄.6. EXAMPLESThe �rst example is the haraterization of the setX1 = �(x1; x2) 2 R2 ��x41 � x21 + 4x22 2 [�0:1; 0:1℄	This set-inversion-problem is solved by Sivia for S = [�3; 3℄ � [�3; 3℄and " = 0:1: The resulting subpaving X1 is represented on Figure 6(a).
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Figure 4 Illustration of the inverse and diret image evaluation algorithmsThe seond example is the evaluation of an outer approximation ofthe image X2 of X1 by the funtionf (x1; x2) = � (x1 � 1)2 � 1 + x2�x21 + (x2 � 1)2 � :With " = 0:1; ImageSp yields the subpaving X2 depited on Fig-ure 6(b).



Guaranteed Set Computation with Subpavings 11The last example is the haraterization of the image of X2 by theinverse of f (:), i.e., X3 = �f�1 �X2�	 : The funtion f (:) is not invertible(in the ommon sense) in R2 : Thus, an expliit form of f�1 (:) is notavailable for the whole searh domain and the problem will be treatedas a set inversion problem. Again, Sivia is used with S= [�5; 5℄�[�5; 5℄and " = 0:1: The solution subpaving X3 is represented on Figure 6().We have X1 � f�1 �f �X1�� : The initial set X1 is learly present. Theresult is slightly fatter, due to error aumulation during inverse anddiret image evaluation. Additional parts have appeared beause f (:) isonly invertible in a set-theoreti sense.7. CONCLUSIONSRegular subpavings form an attrative lass of basi objets for therepresentation of ompat sets and for omputation on suh sets. Simpletasks suh as evaluating the union or intersetion of two subpavingsare very easily performed when these subpavings are represented bybinary trees. More sophistiated operations suh as inverse or diretimage evaluation are also failitated. Even if they are restrited to low-dimensional problems, ImageSp and Sivia have found appliation innonlinear state estimation problems [9℄, [10℄ or in measurement problemssuh as grooves dimensioning using remote �eld eddy urrent inspetion[2℄. ImageSp is still a very preliminary algorithm that ould easily beimproved. Work is under way to take advantage of interval onstraintpropagation to improve state estimation algorithms, among others [5℄.Referenes[1℄ M. Berger. Geometry I and II. Springer-Verlag, Berlin, 1987.[2℄ S. Brahim-Belhouari, M. Kie�er, G. Fleury, L. Jaulin, and E. Wal-ter. Model seletion via worst-ase riterion for nonlinear bounded-error estimation. IEEE Trans. on Instrumentation and Measure-ment, 49(3):653{658, 2000.[3℄ L. Jaulin. Solution globale et garantie de probl�emes ensemblistes ;appliation �a l'estimation non lin�eaire et �a la ommande robuste.PhD dissertation, Universit�e Paris-Sud, Orsay, 1994. Available at:http://istia/ jaulin/thesejaulin.zip.[4℄ L. Jaulin. Le Calul Ensembliste Par Analyse Par Intervalles. Ha-bilitation �a diriger des reherhes, Universit�e d'Orsay, 2000. Avail-able at: http://istia/ jaulin/hdrjaulin.zip.[5℄ L. Jaulin, M. Kie�er, I. Braems, and E. Walter. Guaranteed nonlin-ear estimation using onstraint propagation on sets. International
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