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Nonlinear state estimation using
forward-backward propagation
of intervals in an algorithm

L. Jaulin ! 2, I. Braems' , M. Kieffer! and E. Walter!

Abstract: The paper deals with the estimation of the state vector of a discrete-time model from
interval output data. When the model outputs are affine in the initial state vector, a number of
methods are available to enclose all estimates that are consistent with the data by simple sets
such as ellipsoids, orthotopes or parallelotopes, thereby providing guaranteed set estimates. In
the nonlinear case, the situation is much less developed and there are very few methods that
produce such guaranteed estimates. In this paper, the state estimation of a discrete-time model
is performed by combining a set-inversion algorithm with a forward-backward propagation of

intervals through the model. The resulting methodology is illustrated on an example.

Keywords: bounded-error estimation, constraint propagation, CSP, identification, interval

analysis, nonlinear state estimation, set estimation.

1 Introduction

This paper presents a new approach for the guaranteed estimation of the state vector of a
nonlinear discrete-time model in a bounded-error context. Consider a nonlinear discrete-time

system described by

((2(k) = filei(k—=1),... 20 (k—1),k)

Tn (k) = fo(x1(k—=1),...,2n (k—1),k) g
yl(k) = gl(xl(k>""7xnx(k)vk)

L Uny (k) = Yn, (1‘1(k3>, sy Ty (k)v k)

where £ is the time index, z;(k), ..., 2, (k) are the state variables, y;(k), ..., yn, (k) the outputs

and the f;’s and the g;’s are known function given by the model. In a vector form, (1) can also
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be written by:

x(k) = f(x(k—1),k) _ i
{y(k) I k=1,...,k (2)

The set of all variables involved in this problem is

{z1(0),..., 2, (0),
(1), .. zn (1), (1), .. Yn, (1)

(k). .. xn (k), yi(k),. .. yn, (F)}.

In a bounded-error context, it is generally assumed that the following variables,

21(0), ..., 20, (0),00(1), oo Y, (1), yn(K)s oy Y, (R), (4)

belong to known prior intervals, denoted by

[21] (0),-- - [, ] (0), [ (1), - [, ] (1), T3] (R), - [, ] (R, ()

respectively. The interval [z;] (0) represents the prior knowledge on the initial state variable
z;(0) and may be arbitrarily large. The interval [y;] (k) represents the ith interval measurement
at time k. [y;] (k) is taken as | — oo, oo if, for any reason, the ith measurement at time k could
not be collected. The problem of interest is to find intervals (if possible the smallest) enclosing
all variables that are consistent with the equations (1) and the domains (5). If f and g are
linear in x, many methods have been proposed for this purpose [14], [12], [13], [10]. Recently,
interval analysis has been introduced to deal with this problem in a guaranteed way when f
and g are nonlinear in x [4], [8], [9] and [6]. In this paper, the efficiency of the interval methods
is improved by combining them with constraint propagation for the first time in the context of
nonlinear state estimation. Note that the combination of constraint propagation with interval
analysis have been independently proposed by [3] and [2].

2 Contractors

First, let us remark that the variables x1(0), ..., z, (0) have a special status: if they are known,
all other variables of the problem can be deduced by simulating (1). This section deals with

the following much more general problem:

Problem 1: Given a function f with n, input variables p = (p1,po,...,pn, )T and n, out-
put variables y = (y1,92,...,Yn, )", given the box domains [p] = [p1] X -+ X [py,,] and [y] =

2



[y1] X ... X[yn,], contract the [p;]’s and the [y;]’s by removing values in the domains that are

inconsistent with the other domains. [ |

The problem will be denoted in a short form by

H: y=f(p),pelplyclyl (6)

Recall that a value for a given variable is consistent with H, if it is possible to instantiate the
other variables in their domains such that the relation y = f(p) is satisfied. If all inconsistent
values for the variables have been removed, the contraction will be called optimal. The function
f is assumed to be given by an algorithm and will be called the simulator. In our state-estimation

problem, p plays the role of the initial state vector and y of the set of all measurements:

p < 21(0),...,2,(0) . .
y < (D), Yn, (1), yi (K)o, (R)

(7)

The simulator f represents the algorithm which computes all outputs from the initial state

vector. It is given by

Algorithm: f (8)
input: x1(0),..., 2, (0);
1 for k:=1to k
2 for i :=1 to ny
3 xi(k) = filx1(k—=1),..., 2, (k—1),k);
4 endfor
5 for j:=1tony ®)
6 yi(k) = gi(as (k). ... 2 (R), )
7 endfor
8 endfor

output: yi(1),...,yn, (1),... (k). s Yn, (K)

This section proposes a methodology, based on interval constraint propagation, to build an
algorithm, namely the contractor, which performs the contractions of the domains [py],. .., [pn, ]

and [11],...,[yn,]. The contractor alternates two types of interval propagations:

e The forward propagation: Using interval analysis [11], run the simulator with the interval
inputs [p1], ..., [pn,]. All intermediate variables z; involved in f will thus be bounded, i.e.,
an interval [z] for z; will be obtained and used to bound or to contract the available

domain for z;. The new intervals obtained for the y;’s will then be used to refine the [y;]’s.



o The backward propagation: From the output intervals [y1],. .., [yn, |, sweep f backwardly
to refine all intermediate variables. After completion of the backward propagation, the

[p:]’s have generally been contracted.

The methodology to be now given will make it possible to generate by hand from the simulator
f (referred as the algorithm AO), the contractor (algorithm A7) which performs the backward
and forward propagations. The methodology can be decomposed into seven steps. These steps
will be illustrated on an academic example where the simulator f is given by the following
algorithm AO.

algorithm: AO
input:  p1, pa;

1 21 1= P23 (10)
2 y1 = z1. (p2 — exp(p1)) ;
output: Yy

Step 1: Decomposition of the simulator: Decompose AOQ in order to get only elementary oper-
ations, i.e., only one operator or function should be involved at each statement. Intermediate

variables may be added. For our example, one gets

Algorithm: A1l
input:  p1, po;

1 21 = exp(p1);

2 29 = P2 — 215 (11)
3 21 1= P;

4 Y1 = 21.29;

output: 1y

The intermediate variable used at statement 2 of A1 is named z;, which seems rather dangerous
since z; it is also used at statement 3 of A1. This choice has voluntarily been made to illustrate

some complications that generally occur for more complicated simulators.

Step 2: Rename multi-occurring variables: Rename some variables to avoid that a variable
occurs more than once in the left hand side of A1l. For our example, z; is affected at Steps 1
and 3 of A1. Thus at statement 3 and after statement 3, z; is renamed with a new name (here
z3). We get

Algorithm: A2
1z =exp(p);

2 2z =pr— 21
3 23 1= po;
4y = z3.29;

(12)
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Step 3: Generation of the backward simulator: Read A2 from the end to the beginning. At
each iteration, isolate each variables of the right hand side. Write the corresponding statement
in A3. We get

Algorithm: A3
4 2= y1/2’2; 29 = 91/2’3;

3 pr =23 (13)
2 pri=mtzy 2= Do — 2
1 p1:=In(z);

Note that if a For loop exists in A2, the same loop should be rewritten in A3, but in the

reverse order.

Step 4: Intervalize the forward simulator: Rewrite A2 into A4 by replacing each variable and
each operator or function by their interval counterpart. At each iteration, the interval domain

computed has to be intersected with its previous value. For our example, we get:

Algorithm: A4
1 [z1] == [a1] Nexp([p1]);

2 [z] = [20] N ([p2] = [21]);
3 [aa) = [2s] 0 [pa] 14
4 [y] =[] N ([28] * [22]) 5

Step 5: Intervalize the backward simulator: From A3, we get the following interval algorithm
Ab5:

Algorithm: A5

4[] = [z N ([y1] / [22]); [22] = [22] N ([11] / [23]);

3 [pa] = [pa] N [23]; (15)
2 [p2] = [p2] N ([22) + [21]) 5 [21] := [ea] O ([p2] — [22]) 5

L [pi] = [pi] NIn([24]);

Step 6: Merge the intervalized forward and backward simulators. Merge algorithms A4 and



A5. For our example, we get:

Algorithm: A6

1 [z1] == exp([p1]) N [21];

2 [za] o= (Ipa) — [=2]) 1 23]

3 [zs] i= [po] N (23]

4 ] i= (] % [2a) O ]

4 [o = (] /[z2]) O sl [22] = () / [zal) O el (16)
3 [P2] = [Z%] N [pQ] )

2 [pa] = ([za] + [ N el [on] o= ([pa] — [ea]) 1 [

L [p1] :=In([z1]) N [pa];

Step 7: Repeat several times the merged algorithm: To generate the contractor for AO, ini-
tialize the domains for the intermediate variables to | — oo, oo[. Then, we repeat A6 while the
contraction takes place significantly. Note that the contractor has for inputs and outputs the

domains associated with the inputs and outputs of AO.

Algorithm: A7
inputs  [p1], [p2], [11];

init [21] := [22] := [23] =] — 00, 00];
repeat
1 [21] =[] Nexp([p1]);
2 [22] == [z2] N ([p2] = [21]) 5
3 [23] == [23] N [pa] ;
4 1] == [ya] N ([z8] * [22]); (17)
4 (23] == [zs] N [1] / [22] 5 [22] == [22] N 3] / [23] 5
3 [pa] = [p2] N [23];
2 [p2] := [p2] N ([22] + [21]) 5 [21] =[] N ([p2] = [22]) 5
1 [p1] == [pa] NIn([z1]);

while the contraction is significant

output [p1] ) [pQ] ) [?h] ;

Remark 1 To improve the precision, one can use the centered-form interval arithmetic or the

slope interval arithmetic. |

Remark 2 Other contractors could be used. Even if the contractor we have proposed is efficient

for a large class of nonlinear problems, but can be totally inefficient for simple linear simulators.



For instance, if f is given by

mputs  pi,...,Pa;

1 Y1 = p1 + P2 + p3 + Pa; (18)
2 Y2 = p1 + P2 + P3 + Pa;
outputs Y1, Y2;

and for [p1] = [po] = [ps] = [pa] = [-1,1], [y1] = [0,0] and [y=] = [0.1,0.1], the contractor,

presented in this section, is unable to contract the domains. Nevertheless contractors based
on linear techniques can find immediately that the domains can be contracted to the emptyset.

Generally, a collaboration of different contractors can lead to a much more efficient contractor.l

3 Bisecting

Using a branch-and-prune algorithm, it is possible to control the precision for the contractions
of the domains. As an example, let us now present the following algorithm SIVIA (for Set
Inversion Via Interval Analysis [7]). £ is list of pairs of the form ([p], [y]) which is initialized as
the empty list. The procedure CONTRACT ([p],ly],¥ = £(p)), is the contractor A7 implemented

as explained in the previous section. ¢ is the required accuracy.

Algorithm: StviA([pl,[y])

CONTRACT([pL,lyl, y = f(p));

if ([p] = 0), then return;

if (w([p]) < =) then {£ = £U {([pL, [y] }; return};
bisect ([p]) into [p1] and [pal;

SIVIA ([pa],[y]); STvIA([pa),[y));

(19)

After completion of SIViA, £ contains a list of pairs of the form

L= MWD, (p@)] [y, (PG yB)), .-} (20)

The union S of all [p(i)]’s provides an outer estimation for the set

Sy =1 (ly)) N [p], (21)

and the union S of all [y(4)]’s provides an outer estimation for the set

Sy = f([p]) N [y]. (22)

From the list £ it is also possible to get an accurate outer approximation of the smallest
domains for the p;’s and the y;’s that are consistent with the prior domains [p],[y] and the
equation y = f(p).



4 Test case

As an illustration of SIVIA combined with forward backward interval propagation, consider the

state estimation of the autonomous discrete-time system:

z1 (k) _ 0.1z (k—1)+z2(k—1).exp(zy (k—1))
7y (k—1)+0.1.23 (k — 1) + sin(k)
y (k) =z (k) /x1(K)
with & € {1,...,15}.

(23)

The interval data have been generated as follows. (i) For the unknown true value of the
initial state vector x* (0) = (—1 0)', we have computed by simulation the values for x*(k)
and y* (k),k € {1,...,15}. (ii) We have added to each y* (k) a random error with a uniform
distribution in the interval [—e, €] to generate the data ¢(k), where e is assumed to be known.
(111) Then, we set [y(k)] = [g(k) — e, y(k) + ¢]. We are thus certain that the interval data [y(k)]

contain the unknown true data y* (k). The problem to be solved is:

Problem 2: Given the equations of the system (23), given the interval data [y(k)], given some
bounded intervals [z1] (0), [z2] (0) containing the initial state variables z1(0),z2(0), compute

accurate interval enclosure for the unknown true values for the zi(k)’s, 25(k)’s and y* (k)’s. B

The variables involved are x1(0), £2(0), z1(1), zo(1), y(1), ..., z1(k), z2(k), y(k). The inputs of
the simulator algorithm are p = (21(0), 22(0))". The prior domains for the initial state vector

are given by
[21] (0) = [-1.2, =0.8]; [2] (0) = [-0.2,0.2]; (24)
The simulator f is given by

Algorithm: AO

input: z1(0), z2(0);

for k :=1 to k,
x1(k) =012y (k—1)+z2 (k= 1).exp(zy (k — 1));
2o (k) =21 (k—1)+0.1.23 (k — 1) + sin(k);
y (k) = 22 (k) J21(F);

endfor

output: y(1),...,y(k);

N O O e W N



After performing the transformations described at Steps 1 and 2 of Section 2, we get

Algorithm: A2

1 input: z1(0), 22(0);
2 for k:=1tok,

3 21 (k) :=exp(z; (k — 1));

4 2o (k) = xo (kK —1) .21 (k);

5 zy (k) :== 0120 (b — 1) 422 (k) ;
6 z3 (k) := 0.1.sqr(za (k — 1));

7 24 (k) := z3 (k) + sin(k);

8 2y (k) = 21 (k= 1) +z (k);

) y (k) =2 () /21 (k);

10 endfor
11 output: y(1),... 79(127)9

After the transformations described at Steps 3 to 7 of Section 2, we get the contractor A7 given



Algorithm: CONTRACT([21](0), [22](0), [y](1), ..., [y](k),y = f(x));
input:  [21](0), [£2](0), [y)(1), .., [y](k)
init: for k:=1tok
[21](k) :=] — 00, 00[; [22](k) :=] — 00, 00];
[21] (k) :=] — 00, 00; [22]
[23] (k) :=] — 00, 00[; [24](K) :
endfor
repeat

for k : —1tol;:

Zl]

\_/

29

8
=
A/\AAA/\

[
[
[
[23]
[
[
[

\_/
1l
=
N
&~ —

yl (k

endfor
for k := k downto 1,

LI?Q]

(25)

N
— o W

xz

[
[
[
[
[
[x
[
[22] (k) Z[z](k ﬂ[fﬂl](k?)—()l[fﬂl] k— 1)
[

[

(71

endfor;

while the contraction is significant

output: [z](0),..., [1] (E) ; [22](0), ..., [22] (];:) (), .. [y](];:)a
Note that the intermediate domains [z4](1), ..., [21] (k) , [22](1), ..., [x2] (k) have been put as

outputs of the contractor, because they are of interest in our context of state estimation.

In the case where there is no noise (i.e., e = 0), The contractor is able find all true values for

the variables with an accuracy of 8 digits in 0.1 seconds. No bisections have been generated
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by StviA. The boxes drawn on the left subfigure of Figure 1 are the boxes obtained after one

forward-backward propagation.

r

Figure 1: Left: contractions generated in a noise-free context; Right: Contractions and bisec-

tions generated in a noisy context. The two frame boxes are [—1.2, —0.8] x [—0.2,0.2].

For e = 0.5, the volume of the set Sy of all x(0)’s that are consistent is not equal to zero
anymore, and thus, even if the contractor works perfectly, a large number of bisections have
to be performed (see the right subfigure of Figure 1). The computing time is about 3 seconds
for ¢ = 0.001. The prior data intervals are on the right part of Figure 2 and the corresponding
contracted intervals obtained by S1vIA are in the left part of 2. The domains obtained for the

state variable z1(k) and z5(k) are given in Figure 3.

5 Conclusion

Contractors based on forward and backward propagation of intervals in an algorithm (see [1])
have been used here, for the first time in the context of state estimation, to contract the feasible
domains to the time variables involved in the model. A branch-and-prune algorithm has also
been proposed to control the accuracy of the contractions. Contrarily to other interval based
methods such as the one presented in [8], [9] and [6], the bisections have to be done only is the
space of x(0) and not with respect to all state variables. An illustrative example has shown
the efficiency of the approach. On this example, it has been shown that when the volume of

the set Sy(g) of all feasible initial state vectors is not equal zero, the boxes generated tend to

11



Figure 2: Left: contracted intervals containing the noise-free data; Right: initial domains for
the data. The two frame boxes are [—1,16] x [—2,2].

accumulate and the whole feasible set. Such an expensive accumulation could be avoided by

using the algorithm HULL presented in [5].

The source code in C++ Builder 4, and an executable program for IBM-compatible PCs cor-

responding to the example are available on request.
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