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Abstract This paper proposes a new method for bracketing a set S defined by
nonlinear inequalities between an inner set S~ and an outer set S*.
Contrary to existing approaches for which S~ and ST are unions of
boxes, these two sets are defined as unions of polytopes. This charac-
terization makes it possible to describe S and compute its volume in a
more accurate way than with classical methods. The resulting approach
is used to quantify the influence of a given interval datum in parameter
estimation, when the feasible set for the parameters is defined as the set
of all parameter vectors consistent with all interval data. In order to
detect potential outliers, we characterize the influence of any given da-
tum on this set by its safety defined as the ratio between the volumes of
the feasible sets computed with and without this datum. This problem
amounts to computing volumes of sets as accurately as possible.

1. BOUNDED ERROR ESTIMATION

The problem to be considered is the critical analysis of measurements
used to estimate parameters under the assumption of bounded errors.
The m-vector x to be estimated parametrizes a nonlinear mathematical
model structure f that has been chosen to describe the observed behavior
of some physical system. Its m components x; are assumed to be con-
stant for the sake of simplicity. A prior domain X C R™ for x is provided
by the hypotheses associated with the model. From measurements per-
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formed on the physical system we collect a vector of experimental noisy
data y#* € R”, that is only a realization of the actual system output y
to be compared to f(x). In the bounded-error context, it is assumed that
the experimental procedure supplies a bound on the amplitude of the
additive noise corrupting each datum yz# and thus defines the support
for the variable y; as an uncertainty interval [y;] = [y; ;y;']. From the
interval vector [y] = ([y1],--., [yn])T X is then estimated by characterizing

the set S of all feasible parameters, ¢.e.
S={xeX|3yeyly=fx)}=Xnf"'(Iy)), (L.1)

see Figure 1. Characterizing S is a set-inversion problem. The cor-
responding direct problem is a filtering problem defined, in the same
bounded-error context, as the characterization of Y* such that Y* =
Y N f(X) (see Figure 1). S defines the uncertainty region for x, and its
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Figure 1 Set inversion (computation of S = XN f~!([y])) and filtering (computation
of Y" = YN f(X)).

projection onto each axis i provides a feasible interval for ;. Its size is
thus a global indicator of the accuracy with which the parameters are
estimated. As S depends on the experiments through [y], it is possible to
evaluate the pertinence of the experimental measurements a posteriori
by characterizing S. Define y* as the n-data vector that would be ob-
tained if the measurements were noise-free. In practice, it may happen
that y does not belong to [y;], for instance in case of a sensor failure,
or if the model is not rich enough to describe the system properly. Such
a datum is called an outlier. The presence of outliers may dramatically
change the solution set S, to the point that S may even become empty.
Detecting outliers thus turns out to be a critical issue. In the following,
we propose to associate to each datum a value called safety based on its
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impact on the volume of the feasible set that will help us to characterize
the influence of each datum and detect outliers. Obviously, the quality of
the detection will depend on the accuracy of the description of S and of
the computation of its volume Vol(S). Classical subbdivision algorithms
such as SIVIA [7], [10] compute a guaranteed estimate of S. It is then
easy to obtain an estimate of Vol(S). We shall show that it is possible
to improve the accuracy of the description of S, and that of its volume,
without any significant computing burden, by computing on polytopes.
The new algorithm SIVIA1 evaluates with more accuracy the set S and
in the same time computes its volume more efficiently. Section 2 recalls
the classical algorithm SIVIA used to evaluate S and its limitations, and
focuses on the concept of reliable linearization of a system. SIVIA1, a
new algorithm implementing this concept in a SIVIA structure is de-
scribed in Section 3. The application to the evaluation of the safety of
a datum is then illustrated in Section 4.

2. SET ESTIMATION USING TA

Since S is the reciprocal image of a box by a nonlinear function, it
usually cannot be computed exactly. Interval Analysis (IA) however
makes it possible to bracket it between two sets S~ and ST such that

ST cScSst. (1.2)

As will be shown, the choice of the structure of S~ and S™ determines
the accuracy of the description. The classical approach is to consider
S~ and ST as unions of non-overlapping boxes, as in SIVIA. SIVIA
partitions the prior domain X into non-overlapping boxes [x]| that are
tested and put into one of the following lists:

m the list Lr of the boxes that have been proved feasible,

m the list L of the boxes that have been proved unfeasible (op-
tional).

m the list £y of undetermined boxes that are bisected before under-
going test unless their width is less than e.

Eventually, SIVIA provides Lr and Ly such that Lr C S C (Lp U
Lyr). The value chosen for e determines the accuracy of the enclosure
of the boundary of S in L. Of course, Vol(S) € [Vol(S™); Vol(ST)] =
Vol(Lp); Vol(Lp) + Vol(Ly)]. The accuracy of the computation of
Vol(S) thus depends on the size of L7, and we shall quantify it by

1

n= VollZo)’ (1.3)
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As e decreases, n increases and the enclosure becomes more accurate, at
the cost, of course, of a potentially significant increase in the computing
burden. To avoid combinatorial problems, we propose hereafter a new
strategy to get a better enclosure of Vol(S), by reducing the volume of
AS, and changing the nature of the objects stored in the lists.

Example 1 Consider the following bidimensional system:

x € X=[0;5] x [0;5];

f @ RZSRS
o — 2.%’1
X — x9 — 6/11 with
xg — 0.5,/T1
vl = (~L1s[-22;[-22)"

The sets S~ and ST computed by SIVIA are depicted on Figure 2. De-
creasing € increases the number of bisections, and thus the computational
burden. In higher dimensions the situation is obviously worse. &

b
8]

Figure 2 S of Example 1 is bracketed between S~ (black) and St (light gray) com-
puted by SIVIA. Left: ¢ = 0.01, with 638 bissections, in 0.394 sec, Vol(Lv) =
3.4.107%. Right: ¢ = 0.005, with 1269 bissections, in 0.771 sec, Vol(Ly) = 1.2.1073.

2.1. RELIABLE LINEARIZATION

Since the computing time increases exponentially when SIVIA bi-
sects the boxes for higher dimensional problems, we aim at reducing the
size of the undetermined boxes [x] stored in £y without bisecting them
anymore. The problem to be considered can be defined as follows:

Assume that a set S has been enclosed between two unions of boxes

S~ and ST such that S C S C ST, with ST =S~ UAS. Can the size of
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AS be reduced without any bisection, under the condition that the boxes
in AS are small? Let [x] be a box of AS, and S,y = SN [x]. Reducing
the size of AS means finding a more accurate enclosure (X ;X1) of
S in [x], such that X~ C Sy € X" C [x]. When only X" is to be
found, under the constraint that X'T is a box, some algorithms already
exist. As they transform a pessimistic box enclosure [x] into a more
accurate one X" = [x*], they are called contractors in the literature.
See for instance interval constraint propagation algorithms (ICP [4], [6]).
Unfortunately, if the boundary 0S of S is far from parallel to axes of the
parameter space, accuracy increase will require many bisections, due to
the wrapping effect. Moreover, this approach only computes an external
approximation and can thus not improve the accuracy of S™. In order
to take the gradient of JS into account in the reduction procedure, we
propose to linearize the functions f;(x) on each box [x] of AS. The next
three paragraphs explain how to compute X+ and X'~ for the set S.

Reliable Linearization. The case under study is defined by (1.1).
Contrary to the objects treated by the interval Newton method [1] [9]
S does not have an empty volume and is a priori bounded by 2n con-
straints with 2n # m. We shall define an external enclosure for S, by
incorporating the nonlinearities discarded by the linearized system in
the uncertainties [y;]. We bracket each f; (x) on [x] between two parallel
hyperplanes, in order to write

Ax+b <f(x)<Ax+b".

To compute such hyperplanes, we use the mean value theorem extended
to interval functions:

vx € [x],f(x) € f(xg) + {%} ([x])(x —x¢), with xg = center ([x]),

where [4] ([x]) is an inclusion function for the Jacobian matrix [4£ (x)].

dx
We thus have f(x) € A.x + [b] with

A= () (1.4

b] = £6x0) ~ o)+ (| ] (6 = o)) (=0 (19

Note that
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so w ([b]) /w ([x]) — 0 when w ([x]) — 0 if [%] converges, which will be
assumed. The accuracy of the enclosure thus grows as [x]| converges to
a point x.

External Linearization. We start by computing the element X'*.
As we want to bracket the element Sy of the solution set, we can write

f(x)ely] = dbebl,Iyclyl]]Ax+b=y
& Axecly]-[bl=[y" —b",y" -b7],

Ax € [c]
X € [x] ‘
As (xT) is a finite intersection of closed half-spaces, it is a compact con-
vex polyhedron, i.e. a polytope (see Figure 3, left), which contains each
[x] belonging to Si.

Let [ce] =y —b',y" —b ] and (x") be the set solution of {

Remark 1 Note that the smallest box [X,,| containing the solutions of
the linear system can be computed using linear programming techniques,
in order to get the reduced box [q] =[X]N[Xy] (see Figure 3, left). The

algorithm providing [q] is then a contractor. &
z, A [Xm Ty A
L/ /
S S
X +

X' > L x> -

f; (%)=y; R £ (x)=y] _

T > ‘/L' >

Figure 8 Left: objects obtained after applying two reduction techniques on the box
[x]: [Xm] is the reduced box obtained by interval constraint propagation; in dark grey,
the set <x+> enclosed by the hyperplanes computed by external linearization. Right:
Calculus of the internal linearization (x~) of S on the box [x].

Internal Linearization. The computation of an internal enclosure
X~ for S on the box [x] follows the same process. Consider any x € [x]
such that A.x € [¢;] where

le] =y~ —bTy" —b7]. (1.6)
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Then

Ax > y —b and Ax<y"—b"

& [Ax+b Ax+btCly iy’

= f(x) elyl,

where A and [b] are defined by (1.4) and (1.5). We have then proven

x |
€ [ci is in Spx. The set defined by (3) is

once again a polytope, noted (x ), included in (x™) (see Figure 3, right).

that any x satisfying { i;ex

Remark 2 It may happen that (x~) is empty, wheny™ —b™ >y T —bT.
To avoid useless calculus, an existence test is included in the algorithm
SIVIA1. Moreover, we now have an enclosure for the constraints defined
on [x], which is more accurate than the initial box [x|, if [x] is small
enough for the constraints to be approximately linear on it.

Eventually, from the box [x], the internal and external linearizations
provide two polytopes included in [x], called (x ) and (x') such that

(x7) C Scxr),

where (x7) is defined by (A, [c;]) and (x*) is defined by (A, [c.]). The
computation of the volumes of polytopes such as (x~) and (x*) is an im-
portant issue in mathematical programming [3]. Several free and down-
loadable softwares already exist. As an example, we propose here the
Irs algorithm [2]. In SIVIA1 the exact computation of (x~) and (xT)
is performed on all the undetermined boxes [x] of L.

3. SIVIA1

The main idea of the new algorithm is to obtain a greater accuracy
in the description of § and of its volume while keeping the structure
of SIVIA without increasing the number of bisections, with the reli-
able linearization tool of Section 2. Like STVIA, STVIAT is a recursive
algorithm designed to estimate a set S, and especially its volume. The
computed sets S~ and ST are now hybrid: they are made of boxes [x] and
polytopes (x) whose computation is only performed in AS. Contrary to
SIVIA, STVIAT1 does not furnish a regular paving of the bracketing sets.
The tuning parameter e still directly controls the number of bisections.
The smaller e is, the higher the number of bisections and the computa-
tional burden will be. This is partly compensated by the fact that the
boxes of Ly will then be small, which diminishes the number of con-
straints to be linearized on the box and the smaller the boxes of Ly are
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too. This means that generally only one constraint f; is to be linearized
on the box, which facilitates the computation of the polytopes (x ™) and
(xT). To focus on the performance of the reliable linearization itself, all
the following results have been obtained on simple two-dimensional es-
timation problems. To compare the quality of the enclosures computed
by SIVIA1 and SIVIA, we first study the bidimensional problem of
Example 1. Figure 4 depicts the sets S~ and ST defining the enclosure
of S. Let ny be the accuracy of S as estimated by computing the volume

|

N
J

Figure / Left: SIVIA provides for ¢ = 0.05, in 166 bisections in 0.05 sec, Vol(S) =
[0.099;0.238]. Right: SIVIA1 provides for ¢ = 0.05, in 166 bisections in 0.395 sec,
Vol(S) = [0.163; 0.165].

of Ly generated by SIVIA, and 7, be the accuracy of S computed by
SIVIA1. Figure 5 confirms the gain obtained by using STVIA1 instead
of SIVIA. On Example 1, 7, is a quadratic function of the computing
time t. while 7, is only linear as a function of t.. We can now apply
SIVIAT1 to outlier detection.

Remark 3 We illustrated the utility of reliable linearization on an ex-
ample where other methods would fail. For instance, interval constraint
propagation would stop before reliable linearization. However on large
boxes, ICP is more useful as it is faster and more accurate. A good idea
is to combine these two techniques. For larger boxes, we use 1CP, for
small boxes the RL transform s sufficient, since on a small box the f;’s
are nearly linear. &

4. SAFETY AND ROBUSTNESS

As already explained, outliers may ruin estimation. An important
task is then to design an efficient methodology to detect potential out-
liers. As we shall see, studying the influence of any particular datum on
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Figure 5 n, (4+) and 1y(0) as functions of ¢..

the volume of S provides a way to check its coherence with the other
data. Once a datum is identified as a potential outlier, it should be ex-
amined with particular care and may be discarded from [y], leading thus
to an improvement of the robustness of the estimation, at the cost of an
increase of the size of the feasible set. The concept of safety of datum
will now be introduced for this purpose. To quantify the influence of the
datum [y;] on the size of S, we define its safety v, [5] by the ratio

"2 e (1.7

where S' is the feasible parameter set obtained from [y] deprived of the
i-th datum, i.e.

S'={xeX| fix) €y VEc{l,.,i—1,i+1,..n} (1.8)

The smaller v, is, the less redundant is the ¢-th datum and the more
careful we have to be with it. Note that

S= mie{l,...,n}gi7

so Vol(S) < Vol(SY) Vi € {1,...,n}. The values taken by v, can then
be packed in three categories:
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m if v, = 0, then S = () but S # {): taking into account the i-th
datum reduces the nonempty set S’ into the empty set. While all
the other data do not contradict each other, the ¢-th datum is very
informative and likely to be an outlier.

m if 0 <, <1thenS # ) and Vol(S) < Vol(S"): taking the i-th
datum into account reduces the solution set: the closer the safety
is to 1, the safer it is to use it, as its information is consistent with
that provided by other measurements.

= if 9, is not a number (NaN), then S* = ), and there are more than
one outlier. Specific techniques such as GOMNE [8] may then be
employed.

The safety of data will thus allow us to determine which data points
must be checked with particular attention. As S is bracketed between
S~ and S, we obtain an interval estimate [7,] of the safety of the i-th
datum.

Example 2 We shall illustrate these principles assuming that f is from
R? to RS, and such that £(x) = x1sin(2nwat), where t is the vector of
measurement time, the prior domain for x is X = [1;10] x [0; 1] and the
uncertainty on each datum y; = 7 sin(2wadt;) is assumed to be [y;] =
[yi — 0.559; + 0.5].

To compare the performances of SIVIA and SIVIA1, we first simulate
the system with x* = (5;0.4)T, without noise, for t = (0;2;4;6;8)7.
Table 1 gives the results of the computation of [y,] for each datum y;, for
e = 5.1073 after 2093/ bisections. Note that [7;] = [0;+00] means that
0 € [Vol(S)], so S may be empty or not described with enough accuracy.
Thus some y; with j # i may be an outlier, but the problem remains
undetermined. We can at least determine that yy is the most informative
datum, as its safety is much smaller than the others. Consider now
the same problem but with y4 = 0 (i.e. sensor failure at t = ty, see
Table 2). As all [y;]1 are equal to [0;+00] except [ys)1 and [y4]1 that
are exactly 0, ys and yq exclude each other, so at least one of them is
an outlier. Assume now that there is a bounded additive noise b such
that [b(t;)| < 0.5, for eight t; reqularly spaced between 0.3 sec and 2.4 sec.
Fiqure 6 depicts the data with their uncertainty interval, for the two cases
considered (with or without an outlier at t5), with their corresponding
estimated safeties. When only one outlier occurs at t = ts, [ys]1 is low
(0): the potential outlier has been detected, which cannot be achieved by
other outlier detection techniques, such as GOMNE as S is non empty
(the uncertainty intervals [ys] for the two cases intersect each other) .{



Set Estimation, Computationof Volumes and Data Safety 11

Table 1 Estimated safeties for each datum with SIVIA([v;]o) and SIVIA1([;]1)

i 1 2 3 4 5
[vilo 05 +o0] [0; 4-00] [0; +oc] [0;8.087] [0; +o0]
vl [0.64;0.87]  [0.62;0.86] [0.63;0.86] [0.38;0.47] [0.60;0.72]

Table 2 Estimated safeties for each datum with SIVIA([v,]o) and SIVIA1([y,]1)
with an outlier at t = {4

i 1 2 3 4 5
[vilo [0; +o0] [0; +o00] [0; +00] [0;1.03] [0; +00]
[vil1 [0; +00] [0; +o0] [0; 0] [0; 0] [0; +00]
5 T
| 1 : :
I i 1 09 . . 3
1 08 °
0.7
y o
0.6
1 i
04
- 0.3 °
i 0.2
: T | 1
1 2 3 4 5 6 J7- 8 i 1 2 3 4 5 6 7 8

Figure 6 We consider two cases: no outlier occurred (+), a sensor failure puts ys
to zero (0). Left: the simulated model with the uncertainties. Right: the estimated
safeties computed with SIVIA1 with a great acuracy : as the value of [y5]1 is low, ys
has to be checked carefully.

5. CONCLUSIONS

Parameter identification in a bounded-error context can be defined
as a set-inversion problem. SIVTIA is a branch-and-bound algorithm for
solving this problem that estimates the set of all parameters consistent
with the data given the bounds on the error by bracketing it between two
unions of non-overlapping boxes. Unfortunately, an accurate computa-
tion of the volume of this set requires a very accurate estimation of the
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enclosure, only performed by SIVIA through many bisections. In order
to limit the computational burden we have proposed a new tool based
on the computation of internal and external polytopes in the uncertainty
layer. These polytopes are computed via a reliable linearization. The
performances of the resulting algorithm SIVIA1 show that, even if the
problem remains NP-hard, it becomes possible to limit the violence of
the numerical explosion of complexity. The importance of an accurate
computation of volumes is illustrated by the use of the safety criterion to
characterize measurements. This quantitative criterion based on volume
computations aims at qualifying the less redundant data, i.e. the ones
that are the most dangerous if they turn out to be outliers.
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