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eAbstra
tOne of the 
hallenges of interval analysis is to explore and bridge the gap betweentrivial illustrative examples for whi
h it is not really needed and a
tual 
ompli
atedappli
ations for whi
h it is still powerless. Two examples of appli
ations pertainingto this gap are presented in this paper. The �rst one 
orresponds to the forwardkinemati
 problem for a Stewart-Gough platform, a ben
hmark for numeri
al andsymboli
al 
omputations. All real solutions are isolated in a guaranteed manner.The se
ond example is relative to the lo
alization and tra
king of a vehi
le in apartially known environment from distan
e measurements provided by sonars. Theunavoidable presen
e of outliers is taken into a

ount, whi
h makes the methoda
tually appli
able. None of these problems 
an be solved satisfa
torily by the usuallo
al numeri
al methods based on iterative re�nements, and the advantages providedby an approa
h based on interval analysis are eviden
ed.Key words: interval analysis, outliers, roboti
s, robust estimation, stateestimation, Stewart-Gough platform
1 Introdu
tionInterval analysis (IA) makes it possible to obtain numeri
al solutions on 
om-puters to su
h basi
 problems as solving sets of nonlinear equations or inequal-ities or minimizing non
onvex 
ost fun
tions. These numeri
al solutions areprovided under the form of sets guaranteed to 
ontain all a
tual solutions ofthe initial mathemati
al problem. This is a 
onsiderable advantage over theusual numeri
al methods that deliver a point estimate obtained by iterativere�nement of some initial guess, without any guarantee of exhaustivity.Preprint submitted to Elsevier Preprint 17 November 2000



Unfortunately, IA su�ers from the 
urse of dimensionality, and many prob-lems of pra
ti
al interest turn out to be too 
omplex to be handled. One ofthe 
hallenges of IA is thus to explore and bridge the gap between trivial il-lustrative examples for whi
h it is not really needed and a
tual 
ompli
atedappli
ations for whi
h it is still powerless.The purpose of this paper is to present two nontrivial but workable examplestaken from the �eld of roboti
s. Neither of them 
an be solved satisfa
torily bythe usual lo
al numeri
al methods based on iterative re�nements. Given thespa
e available, their presentation will be sket
hy, but referen
es are providedfor more information. The �rst appli
ation, 
onsidered in Se
tion 2, is a 
lassi-
al problem of parallel roboti
s, whi
h has be
ome a ben
hmark for numeri
aland symboli
al 
omputations. The se
ond appli
ation, des
ribed in Se
tion 3,is the lo
alization and tra
king of a mobile robot from distan
e measurementsprovided by sonars.2 Forward kinemati
 problem for a Stewart-Gough platform

Fig. 1. Stewart-Gough platformA Stewart-Gough platform (SGP) 
onsists of a base and a mobile plate, 
on-ne
ted by six limbs with variable lengths (Figure 1). By a
ting on the lengthsof these limbs, one 
an modify the position of the mobile plate relative to thebase. This devi
e is an example of a parallel robot, as opposed to an arti
u-lated arm where the e�e
tors atta
hed to the arti
ulations a
t in series. SGPsare used in 
ight simulators, as well as in many other appli
ations where for
eand pre
ision are required. What is known as the forward (or dire
t) kinemati
2



problem for an SGP is the 
omputation of all the possible 
on�gurations ofthe mobile plate relative to the base given� the positions a(i) (i = 1; : : : ; 6) of the 
onne
tions between the limbs andbase, de�ned in a frame R0 atta
hed to the base by the numbers a01(i), a02(i)and a03(i);� the positions b(i) (i = 1; : : : ; 6) of the 
onne
tions between the limbs andmobile plate, de�ned in a frame R1 atta
hed to the mobile plate by thenumbers b11(i), b12(i) and b13(i);� and the lengths yi of the limbs.The 
on�guration of the platform is spe
i�ed by the ve
torx = (
01; 
02; 
03;  ; �; �)T; (1)where 
01, 
02 and 
03 are the 
oordinates of the origin of the frame of the mobileplate in R0, and where  , � and � are the Euler angles of the transformationfrom R1 to R0. The model 
omputing the ve
tor ym of the lengths of thelimbs as a fun
tion of the 
on�guration x 
an be written as in Table 1.The forward kinemati
 problem 
an now be formulated as that of 
omputingall x's su
h that ym(x) = y, where the numeri
al value of y is known. Thisproblem has generated a lot of heat among mathemati
ians, me
hani
ians and
omputer algebraists. It is known that there are at most 40 
omplex solutionsin the most general 
ase, but of 
ourse only the real solutions are of interest.Hansen's algorithm for sets of nonlinear equations [1℄ 
an be used to solve it[2℄ and [3℄. This involves a guaranteed numeri
al sear
h in a six-dimensionalbox of 
on�guration spa
e, whi
h is 
hosen large enough to en
lose all so-lutions. Among the advantages of the IA approa
h, one may note that theproblem is easily treated on a personal 
omputer even in the most general
ase where the base and mobile plate are nonplanar, that all the real solutionsare obtained (and only them), that the trigonometri
 fun
tions are handled assu
h without having to perform an overparametrization to make the equationspolynomial and that the numeri
al results are provided with a reliable eval-uation of their a

ura
y (ea
h 
on�guration ve
tor 
onsistent with the datais isolated in a very small box guaranteed to 
ontain it). Last and not least,IA allows un
ertainty in measurements and geometri
 parameters to be takeninto a

ount.This problem eviden
es the 
apability of IA to solve 
ompli
ated sets of nonlin-ear equations in an exhaustive and guaranteed manner. IA is already 
ompeti-tive with methods based on 
omputed algebra, over whi
h it has the advantageof providing a guaranteed evaluation of the numeri
al a

ura
y of the solutionsthat it delivers. Mu
h remains to be done, however, to speed up 
omputations3



Table 1Model 
omputing the lengths of the limbs as fun
tions of the 
on�guration ve
torinput: 
01; 
02; 
03;  ; �; �r11 := 
os 
os�� sin 
os � sin�;r12 := � 
os sin�� sin 
os � 
os�;r13 := sin sin �;r21 := sin 
os�+ 
os 
os � sin�;r22 := � sin sin�+ 
os 
os � 
os�;r23 := � 
os sin �;r31 := sin � sin�;r32 := sin � 
os�;r33 := 
os �;for i := 1 to 6b01(i) := 
01 + r11b11(i) + r12b12(i) + r13b13(i);b02(i) := 
02 + r21b11(i) + r22b12(i) + r23b13(i);b03(i) := 
03 + r31b11(i) + r32b12(i) + r33b13(i);ym(i) :=p(a01(i) � b01(i))2 + (a02(i)� b02(i))2 + (a03(i)� b03(i))2;end foroutput: ym(i); i = 1; : : : ; 6.that take up to a quarter of an hour on present day personal 
omputers. Thenext se
tion will illustrate the 
apability of IA to deal with 
ompli
ated setsof nonlinear inequations.
3 Lo
alization and tra
king of a vehi
leThe autonomous lo
alization of a vehi
le in a partially known environment is akey issue in mobile roboti
s. The problem 
onsidered in this se
tion is the esti-mation of the position and orientation of a vehi
le from distan
e measurementsprovided by a belt of on-board sonars. The simpler 
ase where the vehi
le isimmobile is treated �rst, before extending the methodology to a

ommodatemotion. 4



3.1 Lo
alizationThe three-dimensional ve
tor x to be estimated 
omprises the position of thevehi
le in the room, spe
i�ed by the Cartesian 
oordinates x1 and x2 of themiddle of the axis between the front wheels in the world frame (in meters),and the angle � of the rotation aligning the axes of a frame atta
hed to therobot with those of the world frame (in radians). The ns sonars of the vehi
ledeliver a ve
tor y of ns distan
es to landmarks of its environment in dire
tionsthat are spe
i�ed in the robot frame. To estimate x from y, one needs a modelym(x), des
ribing how the distan
e measurements are expe
ted to depend onthe 
on�guration ve
tor x, and a map of the environment. The map availableto the robot 
onsists of a 
olle
tion of line segments at known positions inthe world frame, whi
h represent the landmarks (walls, pillars, pie
es of furni-ture...). Our (admittedly fairly simplisti
) measurement model assumes thatthe waves emitted by the sonars propagate inside 
ones, and that the distan
ereported by a given sonar 
orresponds to that to the 
losest line segment atleast partly lo
ated in the emission 
one. For any given point 
on�guration x,it is then possible to 
ompute the ns expe
ted distan
es ym(x), whi
h shouldmat
h the ns a
tual distan
es y. Sin
e dimx�dimy, the equation ym(x) = yusually has no solution for x, be
ause of the un
ertainty in the measurementsand of the approximate nature of the model. It is therefore desirable to �ndall values of x that are 
onsistent with the distan
e measurements given theirun
ertainty. Based on laboratory measurements, it is possible to 
hara
terizethe un
ertainty of the distan
e yi provided by the i-th sonar by using an in-terval [yi℄ instead of a single numeri
al value. The ve
tor y is then repla
edby an interval ve
tor (or box) [y℄; and we are looking for the set S of all
on�gurations that are 
onsistent with the map and distan
e measurementsS= fx 2 [x0℄ j ym(x) 2 [y℄g; (2)where [x0℄ is a sear
h box in 
on�guration spa
e, 
hosen large enough to beguaranteed to 
ontain all 
on�gurations of interest.The SIVIA algorithm (for set inverter via interval analysis [4℄, [5℄) 
an be usedto partition [x0℄ into three sets of nonoverlapping boxes (subpavings), namelyS 
onsisting of those that have been proved to belong to S; �S 
onsisting ofthose boxes for whi
h nothing has been proved yet and a set of boxes thathave been proved not to belong to S and 
an thus be dis
arded. As a result,S is bra
keted between inner and outer approximations:S� S� S= S[�S: (3)5



Unfortunately, in pra
ti
e, S often turns out to be empty, whi
h proves thatthere is no 
on�guration 
onsistent with all measurements. If x� is the (un-known) a
tual 
on�guration of the robot, then ym(x�) =2 [y℄: This is due tothe presen
e in y of outliers, i.e., of distan
es that do not satisfy either ourmodel or our bounds on the measurement errors or both. There are manyreasons for the presen
e of su
h outliers, besides the already mentioned sim-plisti
 nature of the model. The map may be partly outdated, a sensor maybe faulty, people may have inter
epted beams with their 
lothes, or there maybe multiple re
e
tions... The point is that unless the presen
e of outliers istaken into a

ount, the lo
alization pro
edure remains an a
ademi
 exer
isewithout potential for appli
ation. The strategy that we have ele
ted 
onsistsof a

epting that q out of the ns distan
e measurements may be outliers, andof 
hara
terizing the set Sq of all x in [x0℄ that are 
onsistent with ns�q of thedistan
e measurements (see [6℄, [7℄). It is important to understand that this
an be done by SIVIA without spe
ifying whi
h of the ns distan
e measure-ments are outliers, so 
ombinatorial explosion is avoided. A possible poli
y isto start assuming that there is no outlier (q = 0) and to in
rement q until Sqbe
omes nonempty. As some outliers may go undete
ted, it is safer to in
reaseq beyond this minimal value, but this in
reases the size of Sq; so a 
ompromisemust be stru
k between robustness and a

ura
y of the lo
alization.

Fig. 2. Map of the environment of the robotExample 1 Figure 2 presents the map of the environment in whi
h the ns =24 sensors of the robot have produ
ed the emission diagram of Figure 3. Ifthere were no outliers, there would be a line segment of the map at least partlybetween ea
h of the pairs of ar
s of 
ir
les that materialize the un
ertainty in6



Fig. 3. Emission diagramthe distan
e and dire
tion of measurements for any given sonar. It is ne
essaryto assume that there are at least q = 3 outliers to obtain a nonempty set forthe estimated 
on�guration. Figure 4 represents S3 as 
omputed by SIVIA andits two-dimensional proje
tions, and Figure 5 shows two 
on�gurations thatare 
onsistent with all measurements but three. As 
an be seen, there are twotypes of radi
ally di�erent solutions, and this is due to a lo
al symmetry in themap. Let us stress that the fa
t that the solution is not unique is not a defe
tof the method. One should instead be thankful that the ambiguity in the datahas been revealed. �

Fig. 4. Solution set in 
on�guration spa
e and its 2D proje
tions7



Fig. 5. Two possible 
on�gurations, outliers are indi
ated in bold3.2 Tra
kingAssume now that the vehi
le is in (slow) motion. By exa
t dis
retization ofthe kinemati
 equations, a nonlinear dis
rete-time state-spa
e model 
an beobtained as xk+1 = fk(xk;uk;vk); (4)where xk is the 
on�guration of the vehi
le (now a fun
tion of time); uk is aknown two-dimensional 
ontrol ve
tor, 
onstant between times k and k+1; andvk is an unknown state perturbation ve
tor that a

ounts for the un
ertaindes
ription of reality by this model. Assume further that a ve
tor yk of nsdistan
e measurements is obtained at time k, whi
h will be modeled by theobservation equation yk = ym(xk) +wk; (5)8



where the model output ym(:) is as in the stati
 
ase and where the ve
tor wkis the measurement noise. The problem to be treated is then to estimate xkin real time from the information available up to time k, i.e.,Ik = n[x0℄; fui;yi; [vi℄; [wi℄gki=0o ; (6)where [vi℄ and [wi℄ are known boxes respe
tively assumed to 
ontain vi andwi.As in Kalman �ltering, the pro
edure for state estimation alternates a pre-di
tion phase, during whi
h an outer approximation Sk+ of the set Sk+ ofall xk+1 that are 
onsistent with Ik is built, and a 
orre
tion phase, duringwhi
h Ik+1, whi
h in
ludes the new data ve
tor yk+1, is taken into a

ountto update Sk+ into Sk+1. The a
tual state xk+1 is not 
hanged by this op-eration, so the 
orre
tion algorithm boils down to the algorithm for stati
lo
alization, with [y℄ repla
ed by [yk+1℄ = yk+1 � [wk+1℄ and [x0℄ repla
ed bySk+. The same strategy 
an be used for prote
tion against outliers, with qrepla
ed by qk+1. The fa
t that Sk+ is usually mu
h smaller than [x0℄ speedsup the pro
ess. During predi
tion, Sk+ is 
omputed as an outer approximationof the set fk(Sk;uk; [vk℄) by using an in
lusion fun
tion asso
iated to fk. Asthe pessimism of this in
lusion fun
tion de
reases with the widths of its boxarguments, [vk℄ and the boxes of Sk are split into smaller subboxes before
omputing their 
ontributions to Sk+. The resulting image boxes overlap, anda �nal transformation is performed to make Sk+ a subpaving. The resultingstate estimator is a bounded-error nonlinear 
ounterpart to Kalman �ltering,whi
h has no equivalent to the best of our knowledge. For more detail, see [8℄,[9℄.Example 2 Figures 6 and 7 illustrate the tra
king of a robot starting from thesituation des
ribed in Example 1. Their right-hand sides show the proje
tionsonto the (x1; x2) plane of the solution sets from k = 0 to the value indi
ated.Their left-hand sides show, in 
ontinuous lines, the emission diagrams of 
on-�gurations belonging to the solution set for the value of k indi
ated. Up tok = 7, there are two radi
ally di�erent types of 
on�gurations that are 
onsis-tent with the data. One of them is eliminated by the data 
olle
ted at k = 8, seethe emission diagram in dashed lines at the bottom of Figure 6. The presen
eof outliers does not pre
lude a

urate tra
king. �Autonomous robot lo
alization and tra
king are well amenable to solutionvia IA be
ause the number of parameters or state variables to be estimatedis small. The results obtained are global, and no 
on�guration 
ompatiblewith prior information and measurements 
an be missed. They are extremelyrobust, and the estimator used 
an even handle a majority of outliers. Thepresent 
omputing times allow real time implementation for slowly movingvehi
les, but there is ample room for improvement of the methodology, for9



example, by re�ning the algorithms, in
orporating additional information onthe physi
s of the problem and a

ommodating other types of sensors.These problems, as well as other typi
al roboti
 problems su
h as path planing,
an thus serve as ben
hmarks for further studies of the global guaranteedmethods for nonlinear analysis provided by IA.A
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Fig. 6. Tra
king - Part I; top: one of the measurements is so widely o� the mark thatthe emission diagram is not 
ompletely represented; bottom: the emission diagramin dashed lines 
orresponds to a 
on�guration that is no longer 
onsistent with thedata
11



Fig. 7. Tra
king - Part II
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