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Abstract

One of the challenges of interval analysis is to explore and bridge the gap between
trivial illustrative examples for which it is not really needed and actual complicated
applications for which it is still powerless. Two examples of applications pertaining
to this gap are presented in this paper. The first one corresponds to the forward
kinematic problem for a Stewart-Gough platform, a benchmark for numerical and
symbolical computations. All real solutions are isolated in a guaranteed manner.
The second example is relative to the localization and tracking of a vehicle in a
partially known environment from distance measurements provided by sonars. The
unavoidable presence of outliers is taken into account, which makes the method
actually applicable. None of these problems can be solved satisfactorily by the usual
local numerical methods based on iterative refinements, and the advantages provided
by an approach based on interval analysis are evidenced.

Key words: interval analysis, outliers, robotics, robust estimation, state
estimation, Stewart-Gough platform

1 Introduction

Interval analysis (IA) makes it possible to obtain numerical solutions on com-
puters to such basic problems as solving sets of nonlinear equations or inequal-
ities or minimizing nonconvex cost functions. These numerical solutions are
provided under the form of sets guaranteed to contain all actual solutions of
the initial mathematical problem. This is a considerable advantage over the
usual numerical methods that deliver a point estimate obtained by iterative
refinement of some initial guess, without any guarantee of exhaustivity.
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Unfortunately, TA suffers from the curse of dimensionality, and many prob-
lems of practical interest turn out to be too complex to be handled. One of
the challenges of TA is thus to explore and bridge the gap between trivial il-
lustrative examples for which it is not really needed and actual complicated
applications for which it is still powerless.

The purpose of this paper is to present two nontrivial but workable examples
taken from the field of robotics. Neither of them can be solved satisfactorily by
the usual local numerical methods based on iterative refinements. Given the
space available, their presentation will be sketchy, but references are provided
for more information. The first application, considered in Section 2, is a classi-
cal problem of parallel robotics, which has become a benchmark for numerical
and symbolical computations. The second application, described in Section 3,
is the localization and tracking of a mobile robot from distance measurements
provided by sonars.

2 Forward kinematic problem for a Stewart-Gough platform

Fig. 1. Stewart-Gough platform

A Stewart-Gough platform (SGP) consists of a base and a mobile plate, con-
nected by six limbs with variable lengths (Figure 1). By acting on the lengths
of these limbs, one can modify the position of the mobile plate relative to the
base. This device is an example of a parallel robot, as opposed to an articu-
lated arm where the effectors attached to the articulations act in series. SGPs
are used in flight simulators, as well as in many other applications where force
and precision are required. What is known as the forward (or direct) kinematic



problem for an SGP is the computation of all the possible configurations of
the mobile plate relative to the base given

e the positions a(i) (i = 1, ...,6) of the connections between the limbs and
base, defined in a frame Ry attached to the base by the numbers af (i), a(7)
and ad(i);

e the positions b(i) (i = 1, ...,6) of the connections between the limbs and

mobile plate, defined in a frame R; attached to the mobile plate by the
numbers b1 (i), b(i) and bi(i);
e and the lengths y; of the limbs.

The configuration of the platform is specified by the vector

X = (C?,cg,cg,w,ﬁ, ¢)T? (1)

where ¢, ¢ and ¢ are the coordinates of the origin of the frame of the mobile
plate in Ry, and where 1, # and ¢ are the Euler angles of the transformation
from Ry to Ry. The model computing the vector y,, of the lengths of the
limbs as a function of the configuration x can be written as in Table 1.

The forward kinematic problem can now be formulated as that of computing
all x’s such that y,,(x) =y, where the numerical value of y is known. This
problem has generated a lot of heat among mathematicians, mechanicians and
computer algebraists. It is known that there are at most 40 complex solutions
in the most general case, but of course only the real solutions are of interest.
Hansen’s algorithm for sets of nonlinear equations [1] can be used to solve it
[2] and [3]. This involves a guaranteed numerical search in a six-dimensional
box of configuration space, which is chosen large enough to enclose all so-
lutions. Among the advantages of the IA approach, one may note that the
problem is easily treated on a personal computer even in the most general
case where the base and mobile plate are nonplanar, that all the real solutions
are obtained (and only them), that the trigonometric functions are handled as
such without having to perform an overparametrization to make the equations
polynomial and that the numerical results are provided with a reliable eval-
uation of their accuracy (each configuration vector consistent with the data
is isolated in a very small box guaranteed to contain it). Last and not least,
TA allows uncertainty in measurements and geometric parameters to be taken
into account.

This problem evidences the capability of IA to solve complicated sets of nonlin-
ear equations in an exhaustive and guaranteed manner. IA is already competi-
tive with methods based on computed algebra, over which it has the advantage
of providing a guaranteed evaluation of the numerical accuracy of the solutions
that it delivers. Much remains to be done, however, to speed up computations



Table 1
Model computing the lengths of the limbs as functions of the configuration vector

J . 0o .0 0
1nput . 017027 63,'1/), 0, ¢

711 = COS 1) cOS ¢ — sin 1) cos # sin ¢;
r19 := — oS 1 sin ¢ — sin ) cos O cos ¢;
ri13 := siny sin ;

ro1 = siny cos ¢ + cos 1 cos O sin ¢;
roo 1= — sin ) sin ¢ + cos 1 cos O cos ¢;
rog := — cos Y sinb;

r31 := sin @ sin ¢;

r30 := sin @ cos ¢;

r33 := cos 0;

fori:=1 to 6

b?(z) = C(l] + 7"11[)% (’L + Tlgb%(i) + 7'131)%(2');

)
bg(z) = Cg + ’I"le% (Z) + 7"221)%(2') + ngbé(’i)
B3(i) := 5 + ranb (i) + r3203(d) + razbs(i);
ym(i) == /(] (d) — bY(2))? + (a3 (1) — D5(4))2 + (a3 (d) — b3(4))?;

end for

output: ym(i), 1=1,...,6.

that take up to a quarter of an hour on present day personal computers. The
next section will illustrate the capability of IA to deal with complicated sets
of nonlinear inequations.

3 Localization and tracking of a vehicle

The autonomous localization of a vehicle in a partially known environment is a
key issue in mobile robotics. The problem considered in this section is the esti-
mation of the position and orientation of a vehicle from distance measurements
provided by a belt of on-board sonars. The simpler case where the vehicle is
immobile is treated first, before extending the methodology to accommodate
motion.



3.1 Localization

The three-dimensional vector x to be estimated comprises the position of the
vehicle in the room, specified by the Cartesian coordinates x; and x5 of the
middle of the axis between the front wheels in the world frame (in meters),
and the angle # of the rotation aligning the axes of a frame attached to the
robot with those of the world frame (in radians). The ng sonars of the vehicle
deliver a vector y of ng distances to landmarks of its environment in directions
that are specified in the robot frame. To estimate x from y, one needs a model
¥m(X), describing how the distance measurements are expected to depend on
the configuration vector x, and a map of the environment. The map available
to the robot consists of a collection of line segments at known positions in
the world frame, which represent the landmarks (walls, pillars, pieces of furni-
ture...). Our (admittedly fairly simplistic) measurement model assumes that
the waves emitted by the sonars propagate inside cones, and that the distance
reported by a given sonar corresponds to that to the closest line segment at
least partly located in the emission cone. For any given point configuration x,
it is then possible to compute the ng expected distances y,(x), which should
match the ng actual distances y. Since dim x < dimy, the equation y,,(x) =y
usually has no solution for x, because of the uncertainty in the measurements
and of the approximate nature of the model. It is therefore desirable to find
all values of x that are consistent with the distance measurements given their
uncertainty. Based on laboratory measurements, it is possible to characterize
the uncertainty of the distance y; provided by the i-th sonar by using an in-
terval [y;] instead of a single numerical value. The vector y is then replaced
by an interval vector (or box) [y]|, and we are looking for the set S of all
configurations that are consistent with the map and distance measurements

S ={x € [xo] | ym(x) € [y]}, (2)

where [x] is a search box in configuration space, chosen large enough to be
guaranteed to contain all configurations of interest.

The SIVIA algorithm (for set inverter via interval analysis [4], [5]) can be used
to partition [Xp] into three sets of nonoverlapping boxes (subpavings), namely
S consisting of those that have been proved to belong to S, AS consisting of
those boxes for which nothing has been proved yet and a set of boxes that
have been proved not to belong to S and can thus be discarded. As a result,
S is bracketed between inner and outer approximations:

ScScS=SuUASs. (3)



Unfortunately, in practice, S often turns out to be empty, which proves that
there is no configuration consistent with all measurements. If x* is the (un-
known) actual configuration of the robot, then y,,(x*) ¢ [y]. This is due to
the presence in y of outliers, i.e., of distances that do not satisfy either our
model or our bounds on the measurement errors or both. There are many
reasons for the presence of such outliers, besides the already mentioned sim-
plistic nature of the model. The map may be partly outdated, a sensor may
be faulty, people may have intercepted beams with their clothes, or there may
be multiple reflections... The point is that unless the presence of outliers is
taken into account, the localization procedure remains an academic exercise
without potential for application. The strategy that we have elected consists
of accepting that ¢ out of the ng distance measurements may be outliers, and
of characterizing the set S?of all x in [x(] that are consistent with ns— ¢ of the
distance measurements (see [6], [7]). It is important to understand that this
can be done by SIVIA without specifying which of the ng distance measure-
ments are outliers, so combinatorial explosion is avoided. A possible policy is
to start assuming that there is no outlier (¢ = 0) and to increment ¢ until S¢
becomes nonempty. As some outliers may go undetected, it is safer to increase
¢ beyond this minimal value, but this increases the size of S%, so a compromise
must be struck between robustness and accuracy of the localization.

12 |

Fig. 2. Map of the environment of the robot

Example 1 Figure 2 presents the map of the environment in which the ng =
24 sensors of the robot have produced the emission diagram of Figure 3. If
there were no outliers, there would be a line segment of the map at least partly
between each of the pairs of arcs of circles that materialize the uncertainty in



Fig. 3. Emission diagram

the distance and direction of measurements for any given sonar. It is necessary
to assume that there are at least ¢ = 3 outliers to obtain a nonempty set for
the estimated configuration. Figure 4 represents S3 as computed by SIVIA and
its two-dimensional projections, and Figure 5 shows two configurations that
are consistent with all measurements but three. As can be seen, there are two
types of radically different solutions, and this is due to a local symmetry in the
map. Let us stress that the fact that the solution is not unique is not a defect
of the method. One should instead be thankful that the ambiguity in the data
has been revealed. [

Fig. 4. Solution set in configuration space and its 2D projections
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Fig. 5. Two possible configurations, outliers are indicated in bold

3.2 Tracking

Assume now that the vehicle is in (slow) motion. By exact discretization of
the kinematic equations, a nonlinear discrete-time state-space model can be
obtained as

Xk+1 = fk(Xk, Ug, Vk)? (4)

where xj, is the configuration of the vehicle (now a function of time); uy is a
known two-dimensional control vector, constant between times k and k£41; and
vj is an unknown state perturbation vector that accounts for the uncertain
description of reality by this model. Assume further that a vector yj of ng
distance measurements is obtained at time £, which will be modeled by the
observation equation

Vi = Ym(Xk) + Wi, (5)



where the model output y,(.) is as in the static case and where the vector wy,
is the measurement noise. The problem to be treated is then to estimate x;
in real time from the information available up to time &, i.e.,

T = {[xo], {wi,yi vil, [wil} o} (6)

where [v;] and [w;] are known boxes respectively assumed to contain v; and
W;.

As in Kalman filtering, the procedure for state estimation alternates a pre-
diction phase, during which an outer approximation S, of the set S, of
all x;1 that are consistent with Z; is built, and a correction phase, during
which 7.y, which includes the new data vector yx.1, is taken into account
to update Sj, into Sy,;. The actual state x,,; is not changed by this op-
eration, so the correction algorithm boils down to the algorithm for static
localization, with [y| replaced by [yx11] = Yk+1 — [Wie1] and [xq] replaced by
Si+. The same strategy can be used for protection against outliers, with ¢
replaced by g.1. The fact that S, is usually much smaller than [x,] speeds
up the process. During prediction, S is computed as an outer approximation
of the set f.(Sk, ug, [vi]) by using an inclusion function associated to fi,. As
the pessimism of this inclusion function decreases with the widths of its box
arguments, [vy] and the boxes of S; are split into smaller subboxes before
computing their contributions to S,,. The resulting image boxes overlap, and
a final transformation is performed to make S, a subpaving. The resulting
state estimator is a bounded-error nonlinear counterpart to Kalman filtering,
which has no equivalent to the best of our knowledge. For more detail, see [8],

[9]-

Example 2 Figures 6 and 7 illustrate the tracking of a robot starting from the
situation described in Example 1. Their right-hand sides show the projections
onto the (x1,x2) plane of the solution sets from k = 0 to the value indicated.
Their left-hand sides show, in continuous lines, the emission diagrams of con-
figurations belonging to the solution set for the value of k indicated. Up to
k =17, there are two radically different types of configurations that are consis-
tent with the data. One of them is eliminated by the data collected at k = 8, see
the emission diagram in dashed lines at the bottom of Figure 6. The presence
of outliers does not preclude accurate tracking. [

Autonomous robot localization and tracking are well amenable to solution
via TA because the number of parameters or state variables to be estimated
is small. The results obtained are global, and no configuration compatible
with prior information and measurements can be missed. They are extremely
robust, and the estimator used can even handle a majority of outliers. The
present computing times allow real time implementation for slowly moving
vehicles, but there is ample room for improvement of the methodology, for



example, by refining the algorithms, incorporating additional information on
the physics of the problem and accommodating other types of sensors.

These problems, as well as other typical robotic problems such as path planing,
can thus serve as benchmarks for further studies of the global guaranteed
methods for nonlinear analysis provided by TA.
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Fig. 6. Tracking - Part T; top: one of the measurements is so widely off the mark that
the emission diagram is not completely represented; bottom: the emission diagram
in dashed lines corresponds to a configuration that is no longer consistent with the
data
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k=21
Fig. 7. Tracking - Part II
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