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Interval analysis for guaranteed and robustnonlinear estimation in robotisEri Walter a, Lu Jaulin  and Mihel Kie�er aaLaboratoire des Signaux et Syst�emes, CNRS{SUPELEC{UPS91192 Gif-sur-Yvette, FraneLISA, Universit�e d'Angers, 2 Bd Lavoisier, 49045 Angers, FraneAbstratOne of the hallenges of interval analysis is to explore and bridge the gap betweentrivial illustrative examples for whih it is not really needed and atual ompliatedappliations for whih it is still powerless. Two examples of appliations pertainingto this gap are presented in this paper. The �rst one orresponds to the forwardkinemati problem for a Stewart-Gough platform, a benhmark for numerial andsymbolial omputations. All real solutions are isolated in a guaranteed manner.The seond example is relative to the loalization and traking of a vehile in apartially known environment from distane measurements provided by sonars. Theunavoidable presene of outliers is taken into aount, whih makes the methodatually appliable. None of these problems an be solved satisfatorily by the usualloal numerial methods based on iterative re�nements, and the advantages providedby an approah based on interval analysis are evidened.Key words: interval analysis, outliers, robotis, robust estimation, stateestimation, Stewart-Gough platform
1 IntrodutionInterval analysis (IA) makes it possible to obtain numerial solutions on om-puters to suh basi problems as solving sets of nonlinear equations or inequal-ities or minimizing nononvex ost funtions. These numerial solutions areprovided under the form of sets guaranteed to ontain all atual solutions ofthe initial mathematial problem. This is a onsiderable advantage over theusual numerial methods that deliver a point estimate obtained by iterativere�nement of some initial guess, without any guarantee of exhaustivity.Preprint submitted to Elsevier Preprint 17 November 2000



Unfortunately, IA su�ers from the urse of dimensionality, and many prob-lems of pratial interest turn out to be too omplex to be handled. One ofthe hallenges of IA is thus to explore and bridge the gap between trivial il-lustrative examples for whih it is not really needed and atual ompliatedappliations for whih it is still powerless.The purpose of this paper is to present two nontrivial but workable examplestaken from the �eld of robotis. Neither of them an be solved satisfatorily bythe usual loal numerial methods based on iterative re�nements. Given thespae available, their presentation will be skethy, but referenes are providedfor more information. The �rst appliation, onsidered in Setion 2, is a lassi-al problem of parallel robotis, whih has beome a benhmark for numerialand symbolial omputations. The seond appliation, desribed in Setion 3,is the loalization and traking of a mobile robot from distane measurementsprovided by sonars.2 Forward kinemati problem for a Stewart-Gough platform

Fig. 1. Stewart-Gough platformA Stewart-Gough platform (SGP) onsists of a base and a mobile plate, on-neted by six limbs with variable lengths (Figure 1). By ating on the lengthsof these limbs, one an modify the position of the mobile plate relative to thebase. This devie is an example of a parallel robot, as opposed to an artiu-lated arm where the e�etors attahed to the artiulations at in series. SGPsare used in ight simulators, as well as in many other appliations where foreand preision are required. What is known as the forward (or diret) kinemati2



problem for an SGP is the omputation of all the possible on�gurations ofthe mobile plate relative to the base given� the positions a(i) (i = 1; : : : ; 6) of the onnetions between the limbs andbase, de�ned in a frame R0 attahed to the base by the numbers a01(i), a02(i)and a03(i);� the positions b(i) (i = 1; : : : ; 6) of the onnetions between the limbs andmobile plate, de�ned in a frame R1 attahed to the mobile plate by thenumbers b11(i), b12(i) and b13(i);� and the lengths yi of the limbs.The on�guration of the platform is spei�ed by the vetorx = (01; 02; 03;  ; �; �)T; (1)where 01, 02 and 03 are the oordinates of the origin of the frame of the mobileplate in R0, and where  , � and � are the Euler angles of the transformationfrom R1 to R0. The model omputing the vetor ym of the lengths of thelimbs as a funtion of the on�guration x an be written as in Table 1.The forward kinemati problem an now be formulated as that of omputingall x's suh that ym(x) = y, where the numerial value of y is known. Thisproblem has generated a lot of heat among mathematiians, mehaniians andomputer algebraists. It is known that there are at most 40 omplex solutionsin the most general ase, but of ourse only the real solutions are of interest.Hansen's algorithm for sets of nonlinear equations [1℄ an be used to solve it[2℄ and [3℄. This involves a guaranteed numerial searh in a six-dimensionalbox of on�guration spae, whih is hosen large enough to enlose all so-lutions. Among the advantages of the IA approah, one may note that theproblem is easily treated on a personal omputer even in the most generalase where the base and mobile plate are nonplanar, that all the real solutionsare obtained (and only them), that the trigonometri funtions are handled assuh without having to perform an overparametrization to make the equationspolynomial and that the numerial results are provided with a reliable eval-uation of their auray (eah on�guration vetor onsistent with the datais isolated in a very small box guaranteed to ontain it). Last and not least,IA allows unertainty in measurements and geometri parameters to be takeninto aount.This problem evidenes the apability of IA to solve ompliated sets of nonlin-ear equations in an exhaustive and guaranteed manner. IA is already ompeti-tive with methods based on omputed algebra, over whih it has the advantageof providing a guaranteed evaluation of the numerial auray of the solutionsthat it delivers. Muh remains to be done, however, to speed up omputations3



Table 1Model omputing the lengths of the limbs as funtions of the on�guration vetorinput: 01; 02; 03;  ; �; �r11 := os os�� sin os � sin�;r12 := � os sin�� sin os � os�;r13 := sin sin �;r21 := sin os�+ os os � sin�;r22 := � sin sin�+ os os � os�;r23 := � os sin �;r31 := sin � sin�;r32 := sin � os�;r33 := os �;for i := 1 to 6b01(i) := 01 + r11b11(i) + r12b12(i) + r13b13(i);b02(i) := 02 + r21b11(i) + r22b12(i) + r23b13(i);b03(i) := 03 + r31b11(i) + r32b12(i) + r33b13(i);ym(i) :=p(a01(i) � b01(i))2 + (a02(i)� b02(i))2 + (a03(i)� b03(i))2;end foroutput: ym(i); i = 1; : : : ; 6.that take up to a quarter of an hour on present day personal omputers. Thenext setion will illustrate the apability of IA to deal with ompliated setsof nonlinear inequations.
3 Loalization and traking of a vehileThe autonomous loalization of a vehile in a partially known environment is akey issue in mobile robotis. The problem onsidered in this setion is the esti-mation of the position and orientation of a vehile from distane measurementsprovided by a belt of on-board sonars. The simpler ase where the vehile isimmobile is treated �rst, before extending the methodology to aommodatemotion. 4



3.1 LoalizationThe three-dimensional vetor x to be estimated omprises the position of thevehile in the room, spei�ed by the Cartesian oordinates x1 and x2 of themiddle of the axis between the front wheels in the world frame (in meters),and the angle � of the rotation aligning the axes of a frame attahed to therobot with those of the world frame (in radians). The ns sonars of the vehiledeliver a vetor y of ns distanes to landmarks of its environment in diretionsthat are spei�ed in the robot frame. To estimate x from y, one needs a modelym(x), desribing how the distane measurements are expeted to depend onthe on�guration vetor x, and a map of the environment. The map availableto the robot onsists of a olletion of line segments at known positions inthe world frame, whih represent the landmarks (walls, pillars, piees of furni-ture...). Our (admittedly fairly simplisti) measurement model assumes thatthe waves emitted by the sonars propagate inside ones, and that the distanereported by a given sonar orresponds to that to the losest line segment atleast partly loated in the emission one. For any given point on�guration x,it is then possible to ompute the ns expeted distanes ym(x), whih shouldmath the ns atual distanes y. Sine dimx�dimy, the equation ym(x) = yusually has no solution for x, beause of the unertainty in the measurementsand of the approximate nature of the model. It is therefore desirable to �ndall values of x that are onsistent with the distane measurements given theirunertainty. Based on laboratory measurements, it is possible to haraterizethe unertainty of the distane yi provided by the i-th sonar by using an in-terval [yi℄ instead of a single numerial value. The vetor y is then replaedby an interval vetor (or box) [y℄; and we are looking for the set S of allon�gurations that are onsistent with the map and distane measurementsS= fx 2 [x0℄ j ym(x) 2 [y℄g; (2)where [x0℄ is a searh box in on�guration spae, hosen large enough to beguaranteed to ontain all on�gurations of interest.The SIVIA algorithm (for set inverter via interval analysis [4℄, [5℄) an be usedto partition [x0℄ into three sets of nonoverlapping boxes (subpavings), namelyS onsisting of those that have been proved to belong to S; �S onsisting ofthose boxes for whih nothing has been proved yet and a set of boxes thathave been proved not to belong to S and an thus be disarded. As a result,S is braketed between inner and outer approximations:S� S� S= S[�S: (3)5



Unfortunately, in pratie, S often turns out to be empty, whih proves thatthere is no on�guration onsistent with all measurements. If x� is the (un-known) atual on�guration of the robot, then ym(x�) =2 [y℄: This is due tothe presene in y of outliers, i.e., of distanes that do not satisfy either ourmodel or our bounds on the measurement errors or both. There are manyreasons for the presene of suh outliers, besides the already mentioned sim-plisti nature of the model. The map may be partly outdated, a sensor maybe faulty, people may have interepted beams with their lothes, or there maybe multiple reetions... The point is that unless the presene of outliers istaken into aount, the loalization proedure remains an aademi exerisewithout potential for appliation. The strategy that we have eleted onsistsof aepting that q out of the ns distane measurements may be outliers, andof haraterizing the set Sq of all x in [x0℄ that are onsistent with ns�q of thedistane measurements (see [6℄, [7℄). It is important to understand that thisan be done by SIVIA without speifying whih of the ns distane measure-ments are outliers, so ombinatorial explosion is avoided. A possible poliy isto start assuming that there is no outlier (q = 0) and to inrement q until Sqbeomes nonempty. As some outliers may go undeteted, it is safer to inreaseq beyond this minimal value, but this inreases the size of Sq; so a ompromisemust be struk between robustness and auray of the loalization.

Fig. 2. Map of the environment of the robotExample 1 Figure 2 presents the map of the environment in whih the ns =24 sensors of the robot have produed the emission diagram of Figure 3. Ifthere were no outliers, there would be a line segment of the map at least partlybetween eah of the pairs of ars of irles that materialize the unertainty in6



Fig. 3. Emission diagramthe distane and diretion of measurements for any given sonar. It is neessaryto assume that there are at least q = 3 outliers to obtain a nonempty set forthe estimated on�guration. Figure 4 represents S3 as omputed by SIVIA andits two-dimensional projetions, and Figure 5 shows two on�gurations thatare onsistent with all measurements but three. As an be seen, there are twotypes of radially di�erent solutions, and this is due to a loal symmetry in themap. Let us stress that the fat that the solution is not unique is not a defetof the method. One should instead be thankful that the ambiguity in the datahas been revealed. �

Fig. 4. Solution set in on�guration spae and its 2D projetions7



Fig. 5. Two possible on�gurations, outliers are indiated in bold3.2 TrakingAssume now that the vehile is in (slow) motion. By exat disretization ofthe kinemati equations, a nonlinear disrete-time state-spae model an beobtained as xk+1 = fk(xk;uk;vk); (4)where xk is the on�guration of the vehile (now a funtion of time); uk is aknown two-dimensional ontrol vetor, onstant between times k and k+1; andvk is an unknown state perturbation vetor that aounts for the unertaindesription of reality by this model. Assume further that a vetor yk of nsdistane measurements is obtained at time k, whih will be modeled by theobservation equation yk = ym(xk) +wk; (5)8



where the model output ym(:) is as in the stati ase and where the vetor wkis the measurement noise. The problem to be treated is then to estimate xkin real time from the information available up to time k, i.e.,Ik = n[x0℄; fui;yi; [vi℄; [wi℄gki=0o ; (6)where [vi℄ and [wi℄ are known boxes respetively assumed to ontain vi andwi.As in Kalman �ltering, the proedure for state estimation alternates a pre-dition phase, during whih an outer approximation Sk+ of the set Sk+ ofall xk+1 that are onsistent with Ik is built, and a orretion phase, duringwhih Ik+1, whih inludes the new data vetor yk+1, is taken into aountto update Sk+ into Sk+1. The atual state xk+1 is not hanged by this op-eration, so the orretion algorithm boils down to the algorithm for statiloalization, with [y℄ replaed by [yk+1℄ = yk+1 � [wk+1℄ and [x0℄ replaed bySk+. The same strategy an be used for protetion against outliers, with qreplaed by qk+1. The fat that Sk+ is usually muh smaller than [x0℄ speedsup the proess. During predition, Sk+ is omputed as an outer approximationof the set fk(Sk;uk; [vk℄) by using an inlusion funtion assoiated to fk. Asthe pessimism of this inlusion funtion dereases with the widths of its boxarguments, [vk℄ and the boxes of Sk are split into smaller subboxes beforeomputing their ontributions to Sk+. The resulting image boxes overlap, anda �nal transformation is performed to make Sk+ a subpaving. The resultingstate estimator is a bounded-error nonlinear ounterpart to Kalman �ltering,whih has no equivalent to the best of our knowledge. For more detail, see [8℄,[9℄.Example 2 Figures 6 and 7 illustrate the traking of a robot starting from thesituation desribed in Example 1. Their right-hand sides show the projetionsonto the (x1; x2) plane of the solution sets from k = 0 to the value indiated.Their left-hand sides show, in ontinuous lines, the emission diagrams of on-�gurations belonging to the solution set for the value of k indiated. Up tok = 7, there are two radially di�erent types of on�gurations that are onsis-tent with the data. One of them is eliminated by the data olleted at k = 8, seethe emission diagram in dashed lines at the bottom of Figure 6. The preseneof outliers does not prelude aurate traking. �Autonomous robot loalization and traking are well amenable to solutionvia IA beause the number of parameters or state variables to be estimatedis small. The results obtained are global, and no on�guration ompatiblewith prior information and measurements an be missed. They are extremelyrobust, and the estimator used an even handle a majority of outliers. Thepresent omputing times allow real time implementation for slowly movingvehiles, but there is ample room for improvement of the methodology, for9



example, by re�ning the algorithms, inorporating additional information onthe physis of the problem and aommodating other types of sensors.These problems, as well as other typial roboti problems suh as path planing,an thus serve as benhmarks for further studies of the global guaranteedmethods for nonlinear analysis provided by IA.Aknowledgment: The authors thank INTAS for its support under grantRFBR-97-10782.Referenes[1℄ E. R. Hansen, Global Optimization using Interval Analysis, Marel Dekker, NewYork, 1992.[2℄ O. Didrit, Analyse par intervalles pour l'automatique; r�esolution globale etgarantie de probl�emes non lin�eaires en robotique et ommande robuste, Th�esede dotorat, Universit�e Paris-Sud, Orsay (juin 1997).[3℄ O. Didrit, M. Petitot, E. Walter, Guaranteed solution of diret kinematiproblems for general on�gurations of parallel manipulators, IEEE Trans. onRobotis and Automation 14 (2) (1998) 259{266.[4℄ L. Jaulin, E. Walter, Guaranteed nonlinear parameter estimation from bounded-error data via interval analysis, Math. and Comput. in Simulation 35 (1993)1923{1937.[5℄ L. Jaulin, E. Walter, Set inversion via interval analysis for nonlinear bounded-error estimation, Automatia 29 (4) (1993) 1053{1064.[6℄ M. Kie�er, L. Jaulin, E. Walter, D. Meizel, Robust autonomous robot loalizationusing interval analysis, Reliable Computing 6 (3) (2000) 337{362.[7℄ M. Kie�er, L. Jaulin, E. Walter, D. Meizel, Nonlinear identi�ation based onunreliable priors and data, with appliation to robot loalization, in: A. Garulli,A. Tesi, A. Viino (Eds.), Robustness in Identi�ation and Control, Springer,London, 1999, pp. 190{203, LNCIS 245.[8℄ M. Kie�er, Estimation ensembliste par analyse par intervalles, appliation �a laloalisation d'un v�ehiule, PhD dissertation, Universit�e Paris-Sud, Orsay (1999).[9℄ M. Kie�er, L. Jaulin, E. Walter, Guaranteed reursive nonlinear state estimationusing interval analysis, in: Pro. 37th IEEE Conferene on Deision and Control,Tampa, Deember 16-18, 1998, pp. 3966{3971.
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Fig. 6. Traking - Part I; top: one of the measurements is so widely o� the mark thatthe emission diagram is not ompletely represented; bottom: the emission diagramin dashed lines orresponds to a on�guration that is no longer onsistent with thedata
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Fig. 7. Traking - Part II
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