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Hybrid tracking system for robust fiducials registration

in augmented reality

Madjid Maidi -

Abstract An effective augmented reality system requires
an accurate registration of virtual graphics on real images.
In this work, we developed a multi-modal tracking archi-
tecture for object identification and occlusion handling. Our
approach combines several sensors and techniques to over-
come the environment changes. This architecture is com-
posed of a first coded targets registration module based on a
hybrid algorithm of pose estimation. To manage partial target
occlusions, a second module based on a robust method for
feature points tracking is developed. The latest component of
the system is the hybrid tracking module. This multi-sensors
part handles total target occlusions issue. Experiments with
the multi-modal system proved the effectiveness of the pro-
posed tracking approach and occlusion handling in aug-
mented reality applications.

Keywords Augmented reality - Computer vision -
Real-time tracking - Hybrid tracking - Multi-sensors systems
1 Introduction

1.1 Background

This work aims to develop a multi-modal tracking architec-

ture to handle target occlusions in augmented reality (AR)
applications. Most existing systems enable fully visible tar-
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get tracking and fail in presence of occlusions. Many studies
were conducted in this domain to detect and identify fidu-
cial targets using visual tracking methods. However, these
methods are limited in robustness and computing capabilities
due to the algorithm complexity, accuracy and environment
changes. These reasons motivated us to propose and develop
a novel tracking approach to tackle these problematics.

The proposed solution has to improve the vision-based
tracking systems by building a multi-modal architecture
of tracking and occlusion management. This architecture
includes a registration module based on a coded target
approach and a hybrid camera pose computation. The sec-
ond module relies upon a robust estimation method to track
feature point when targets are partially occluded. The third
module is a multi-sensors system intended to overcome total
target occlusion using the kinematic data provided the inertial
measurement unit.

This work contributes to handle some limitations related
to AR systems working in real environments. We have
developed a new detection and identification method to track
coded targets, and a novel pose estimator algorithm is imple-
mented to determine with accuracy the camera localization.
In addition, our system enables partial and total occlusion
handling. The robust tracker and the vision-inertial tracker
allow target tracking in case of partial or total occlusions of
the fiducial markers under various environment conditions.

1.2 Literature review

Accuracy and robustness are prerequisites for developing an
effective AR system. In literature, several AR systems were
developed to track the user’s viewpoint. Technologies based
on active targets are used in various registration applica-
tions in indoor environments. However, these applications
require power sources which limits their use in specific areas



away from interferences and disturbances. Other systems use
passive targets represented by vision systems and require sig-
nificant processing resources. Several marker-based identifi-
cation methods were developed in literature. We will present
an overview of the most known techniques described in exist-
ing works.

ARToolKit [12] is a marker-based tracking system used in
AR applications. Thanks to its robustness performance, it is
used in many AR and computer vision systems. ARToolKit
includes several models of 2D fiducial markers. However, the
performance of the marker detection should be improved to
cope with image correlation uncertainties. ARToolKit track-
ing consists in comparing markers with recorded fiducials
within a database.

CyberCode was proposed by Rekimoto and Ayatsuka [25].
This system uses visual coded targets, and several operations
are required to detect and extract the targets from the image
and estimate the camera pose. The CyberCode algorithm con-
sists, mainly, in finding the guide bar of patterns to retrieve
corners. Then, the code is computed, and this code, called
the CyberCode, identifies the target and allows to track it in
image sequences. Afterward, the pose is determined using
constraints relating the target corners in the image and their
coordinates in the real-world. The CyberCode is composed
of 33 bits, which makes approximately 8 billion possibilities
to defining distinct codes.

In 2002, the Intersense company [21] developed its own
system of coded targets. This system is based on circular tar-
gets. Although it is not the first system based on this kind of
fiducials (Cho and Neumann [5] developed a similar system
in 1998), it encountered a great success since the processing
module operates in real-time and it is implemented on an
embedded system including a camera and an inertial mea-
surement unit. The codes are defined with 15 bits, which
makes at all 32,768 possibilities. The circular fiducials rep-
resent only a single feature point, and so, it is necessary to
have several landmarks to compute the camera pose. Inter-
sense system uses at least 4 targets to estimate the pose.

Fiala [8] proposed a system based on ARToolKit called
ARTag. ARTag is a marker system that uses digital coding to
get a very low false positive and intermarker confusion rate
with a small marker size. The system employs an edge link-
ing method to handle lighting variations. The author created
a series of 2002 single markers coded on 36 bits. ARToolKit
carries out a correlation calculation of the gray level image
following 4 positions of the target, where ARTag uses coded
targets to obtain a very low error rate for identification. More-
over, this method allows fiducial identification in presence of
occlusions.

The multi-sensors systems are usually used to improve
vision-based systems. These hybrid systems exploit the com-
plementarity of sensors to compensate errors of each device.
However, many difficulties can be encountered in experi-

mentation, in particular, the multi-sensor calibration, the data
fusion and the error management.

The estimation of camera pose is an important step to
determine the user’s viewpoint in AR applications. In lit-
erature, various visual tracking methods were developed.
Stricker et al. [26] have presented an interactive AR appli-
cation to solve occlusion problem. Occlusions are managed
by locating the user hand and subtracting the background.
This approach is feasible in case of homogeneous back-
ground with the assumption of static camera. Naimark and
Foxlin [21] implemented a hybrid vision-inertial self-tracker
system, which operates in various real-world lighting con-
ditions. The aim is to extract coded fiducials in presence
of very nonuniform lighting. Comport et al. [6] integrated
a M-estimator into a visual control law via an iteratively
re-weighted least squares implementation. The implementa-
tion showed that the method is robust to occlusion, changes
in illumination and miss-tracking. Naimark and Foxlin [22]
presented a technique based on active targets using amplitude
modulation codes instead of binary codes. Such a system
provides high precision with compact targets and operates
in a wide range of viewing angles under various luminos-
ity conditions. Maidi et al. [17,18] presented a robust fidu-
cials tracking method for AR systems. A generic algorithm
for object detection and feature points extraction is devel-
oped to identify targets in real-time. The authors proposed a
tracking method based on RANSAC algorithm to deal with
target occlusion. Gabriele and Didier [3] presented a new
visual-inertial tracking device for augmented and virtual real-
ity applications. The authors provide an evaluation of differ-
ent models and developed a markerless tracking approach.
The solution relies on a 3D model of the scene to predict the
appearances of the features by rendering the model using the
prediction data of the sensor fusion filter. High stability and
accuracy were demonstrated using the developed system.

Recently, the telecommunication market is revolution-
ized by mobile phones and mobile applications. With
high-performance processing units and powerful graphic
processors, more evolved applications could be deployed on
these devices. Thousands of applications are available on
Web portals and can be downloaded from application stores.

In literature, many works are interested in mobile AR
applications. Today, applications on mobile phones or PDA
are marketed for general public [20]. Numerous studies have
been conducted in this domain, Takacs et al. [27] built a
mobile AR system which makes correspondence of refer-
enced images to a database located on server using detection
algorithms based on local descriptors. By directing the cam-
era toward the object of interest, the tracking system pro-
vides information and services on its location. The SURF
method [2] was applied to images captured from the phone
camera. The system is intended for tourists to serve them as a
guide during their visits. Chen et al. [4] realized a recognition



Fig. 1 Synoptic diagram for
tracking and occlusion handling

images

system for AR real-time tracking on mobile phone. The
recognition process allows books and CDs cover tracking.
The system operates in real-time, and the matching part is
performed on a base of 20,000 images stored in a server. Klein
and Murray [13] described an implementation of SLAM
method on a 3G iPhone. The authors demonstrated that the
SLAM approach can operate on mobile phones; however,
the accuracy and the execution time of the system are lim-
ited compared to PC. Wagner et al. [28] presented three
techniques for object tracking in real-time mobile applica-
tion. The authors combined several existing approaches in
literature to implement an AR tracking system. SIFT [14]
and Ferns [23] methods were employed with a tracker-based
model matching. The authors combined both approaches to
overcome drawbacks of each technique.

Smartphones have known large progress in application
development; however, there is a gap between this technolog-
ical progress and the hardware performance of these devices
(memory, processor, power supply, etc.). Consequently, the
mobile phone is not yet adapted to real-time applications,
which demand high material resources. The technical devel-
opment in nanotechnology would allow in a near future to
improving performances of phones CPUs while increasing
their capacity of storage and addressing [20].

The literature review enabled to have an overview of the
main issues and solutions related to our research area. In this
study, we are particularly interested to works connected to
multi-sensors tracking. In this field, the work of You and
Neumann [30] and Foxlin and Naimark [10] is closest to our
problematic. These authors directed their research toward
hybrid systems, data fusion and robust tracking architectures
for real-time AR registration. However, some residual issues
unsolved by the existing solutions led us to propose an orig-
inal multi-modal tracking and occlusion handling approach
for AR applications.

The remainder of the paper is organized as follows: in
Sect. 2, we detail the pose estimation procedure. Section
3 describes the vision-based tracking module. The hybrid
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tracking modality is detailed in Sect. 4. In Sect. 5, we present
the experimental results. Section 6 presents a discussion and
we conclude with Sect. 7.

2 Camera pose estimation
2.1 Problem formulation

To overlay virtual objects on the real scene, the camera pose
must be computed. The pose estimation is based on the
extraction of geometric primitives that enables the matching
of 2D image points with the 3D object points. The 3 modules
of the proposed solution presented in Fig. 1 aim to estimate
the camera pose in order to project synthetic graphics on real
images.

The pose estimation is formulated as a function minimiza-
tion which relates 3D points to the 2D points by the following
equation (Fig. 2):

F(pspaIX’RvT)=O (1)

where P; = (X, Y, Z) is a3D point in object reference frame
and p; = (u, v)7 its projection in the image. Using the per-
spective model of the camera, we have:
su X
sv | = Iy (R T)
s

7 2
1
where s represents the scale factor, (R, T') are the rotation
and the translation of the object reference frame according
to the camera reference frame and 7, is the intrinsic matrix
of the camera [19].

To estimate the camera pose, first, it is necessary to deter-
mine the 2D-3D matching points. Then, we have to find the
perspective transformation which defines the 2D-3D corre-
spondences. The pose estimation requires a calibration pro-
cedure to retrieve the camera intrinsic parameters.



Object reference frame

X

Camera reference frame

Fig. 2 Reference frames used for pose estimation

2.2 Proposed solution

The solution we propose consists in developing a hybrid pose
estimation method which combines the extended Kalman fil-
ter (EKF) and an analytical algorithm. Indeed, the EKF algo-
rithm converges to an optimum for any set of observed points;
however, in order to ensure this convergence into the correct
pose in a minimum time, a good pose parameters initializa-
tion is required. The EKF algorithm can be initialized using
initial rotation guess Ry and translation 7y. Therefore, an ana-
lytical pose estimator is used to compute the correct initial
parameters to allow the convergence of the EKF toward an
optimal solution. Our contribution in this part is to develop
a new pose estimator based on EKF and initialized by an
other pose estimator in order to improve the accuracy of the
camera localization.

2.2.1 Parameters initialization

To compute the first guess of our pose parameters (Ro, Tp),
we use the algorithm of Zhang [31]. This algorithm is adapted
to planar square targets and requires the knowledge of:

1. Intrinsic parameters of the camera.
2. Coordinates of the 4 corners of the fiducial in the image
and their 3D matchings.

This technique requires 2D/3D matching points, and the
relationship between a 3D point P and its image projection
p is given by Eq. 2.

Let’s denote the i’ column of the rotation matrix R by r;.
From Eq. 2 and considering planar objects (Z = 0), one has

[31]:
X
=1x(r1 rzT)(Y) 3)
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Given an image of the model plane, a homography can
be estimated. One denotes it by H = (h hy h3) which is
identified to H = I, (ry r» T ). Once I, is known, the pose
parameters for each image are readily computed as follows
[31]:

r =)»I;1/’l1
rn :)\,I;]hz (4)
r3=1ry Xrj3
T =l "h3

where A = 1/ A7 hy | = 1/ |A7 hy|.
2.2.2 Fitting parameters

To fit the pose parameters estimated by the previous analyt-
ical method, we use a second iterative method based on the
EKF [29].

First, we need to define the state vector of the EKF. Since
our goal is to estimate the camera pose, we use the rotation
angles (¥, 0, ¢) and the translation components (tx, ty, tz)
to represent the system state. The measurement input is pro-
vided by the camera. We have to estimate 6 variables of the
state vector, and so we use the following 8 x 1 measurement
vector:

t
2= (u1 uz u3 ug vy v V3 v4) (5)

where (u;, v;) are feature points in the image.

Time update The time update produces estimates of the state
vector X and the error covariance matrix P. The equations of
projection are given by the following a priori state estimate
and covariance error:

ik_+l = Xx (6)
P = Ak PLAL + O 7

where Q represents the covariance matrix of the process noise
and A is the transition matrix represented by:

A=1Is ®)

Measurement update The measurement update model relates
the state vector to the measurement vector. The measurement
vector is represented by the 2D features points. Based on the
knowledge of the feature points position in the camera ref-
erence frame, we use the perspective projection model as
follows:

up = f (M, Py) (€))
v =g (M, P) (10)

The measurement function is given by:

2kt = h (%) + vk (11)



where v; represents the measurement noise and % is given
by:

h (%) =M x P x xi (12)

and xy is the state vector defined before.
To perform the measurement update, first we compute the
Kalman gain:

Ky = P H] (HkP,;lHkT + ViR VkT) (13)
where:
Hij = g (3. 0) 4
Vij = gy (8. 0) .
The estimation is updated with measurement z:
S =X + Ky (2 — h (%, 0)) (15)

In practice, generally, one does not know the values of the
noise at each time step. Therefore, in Eqs. 14 and 15, one can
approximate the measurement vector without noise (vy = 0)
[29].

Finally, we update the error covariance:

Py = (I — KxHi) P (16)

where:

H=1{ . . (17)

The state vector and the error covariance matrix are
updated using the measurement input from the camera. Once
this step is performed, this data will be the input of the time
update step. These two steps are carried out recursively to
estimate the rotation angles and the translation vector of the
camera coordinate frame according to the workspace coor-
dinate frame.

2.2.3 Hybrid extended Kalman filter algorithm

This method is the combination of the two algorithms pre-
sented before: the EKF and the analytical algorithm. Indeed,
we already mentioned that the EKF problem is the parameter
first guess, so we use the analytical algorithm to initialize the
pose values to accurately estimate the EKF states (Fig. 3).

3 Vision-based tracking modality

We begin by presenting the first module of our architecture,
which enables visible target tracking.
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Fig. 3 Hybrid Kalman filter pose estimator diagram

3.1 Fiducial recognition approach

Our system detects and identifies objects according to a spe-
cific code associated with the marker. To extract the object of
interest from the scene, images are preprocessed to reduce the
detection error rate. Many operations are applied to process
the image and detect the object shape. The proposed sys-
tem has the advantages of being fast and flexible compared
to ARToolKit or the Intersense system. Indeed, our method
extracts in real-time, the object of interest from the image
by computing the binary code located inside the target. The
used code is composed of 16 bits which allows to reduce
the computing time compared to CyberCode which uses 33
bits. Finally, in our system, only one marker is sufficient to
estimate the camera pose contrary to the system of Intersense
which requires several visual landmarks to calculate the same
pose (4 targets to determine the pose).

Our object detection and identification is composed of the
following steps (Fig. 4):

— Detect contours in image.

— Smooth the image to reduce the noise and eliminate pixel
variations in the contour segments.

— Dilate the smoothed image to remove potential holes
between edge segments.

— Approximate contour with accuracy proportional to the
contour perimeter.

— Find the number of object vertices.

— Identify object boundaries as 4 intersecting lines by test-
ing collinearity of vertices.

— Find the minimum angle between joint edges.



Fig. 4 Fiducial detection process. / Contours detection, 2 Image
smoothing, 3 Image dilatation, 4 Polygonal approximation

Finally, only objects with 4 vertices and right angles are
retrieved and considered as square shapes. Once a square
object is detected, the next step is to identify this object and
match it with a defined template. Our goal is to design fidu-
cials which can be robustly extracted in real-time from the
scene. Therefore, we use two kinds of square fiducials with
different patterns inside (Fig. 5).

The internal code of the fiducial is computed by spatial
sampling of the 3D fiducial model. Then, we project the sam-
ple points on the 2D image using the homography computed
from the 4 vertices of the detected fiducial. We compute the
fiducial code from the sampling grid, and this code is com-
posed of 16 bits and represents the fiducial sample color
(Fig. 6). However, only 4 bits are useful to compute the effec-
tive target code. Finally, the fiducial code can have 4 values
following the 4 possible orientations, this reduces by 4 the
number of target class.

The target system must respect a strong constraint, which
is to allow the detection of target orientation. Each target
rotated by 90° has a distinct code in the identification phase.
Thus, targets have 4 codes following their orientations, and
consequently, the number of target classes is divided by 4
which reduces the number of possible codes (Fig. 7). More-

Fig. 5 Models of fiducials

Fig. 6 Fiducial sampling

over, targets should not have a central symmetry because we
could not distinguish the target orientation.

3.2 Robust points tracking approach

The second module of our architecture allows feature point
tracking. The aim of this part is to manage partial occlusions.
We use the RANSAC algorithm [9] to track 2D points in
image sequences. For many applications, simple geometric
or photometric templates can be sufficient. Projective geom-
etry is a mathematical tool well suited to model the envi-
ronment and the camera acquisition process. However, when
we are confronted to real images (robotic applications), the
modeling becomes inaccurate and the use of robust algo-
rithms is required. In addition, outliers can appear in case of
lighting changes or in presence of occlusions. To overcome
all these problems, we propose a robust method based on
feature points tracking using RANSAC algorithm.

3.2.1 Feature point detection and matching

For feature points detection, we used the Harris detector
[11]. To match the detected feature points in two successive
images, a correlation method is employed. This method finds
similarity areas in two successive frames using a correlation
measure on a window around the point to match (Fig. 8b).
The 3D-2D matching is realized from the camera pose
estimation. The 3D points of the object model are matched



Fig. 7 Codes corresponding to
different target orientations
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Fig. 8 Points matching. a 3D-2D matching, » 2D-2D matching

to their 2D projections, using the camera perspective matrix
(Fig. 8a).

3.2.2 Robust matching

The robust matching method based on RANSAC algorithm
uses the 2D-2D matching points in two successive images.
The setting up of strong matching of these points of interest
is made by an estimate of the RANSAC homography. This
homography represents a geometric constraint between two
images. The determination of this matrix allows to find the
transformation that connects primitive from one image to
another. Points likely to be a good match are validated, while
the false candidates are rejected and eliminated by RANSAC.

3.2.3 Our method

The object of interest is represented by our target models
illustrated in Fig. 5. The feature points tracking is performed
by estimating the homography matrix which binds homolo-
gous 2D points in two successive images. These 2D points
are related by the following homography:

Al g1l &2 &3 uj
A | = g1 g2 &3 V] (18)
A g1 &% &3 1
G

608 1120 1600

where (u1, v1) and (u3, v2) are two homologous points in
two successive images and A is an arbitrary scale factor.

The principle of the occlusion handling is explained in
the diagram of Fig. 9. We use two different types of fidu-
cial models with two distinct codes. Initially, both fidu-
cial models must be visible to the camera to identify and
extract their 4 feature points. If these points are visible, then,
they are tracked with the identification algorithm presented
in Sect. 3.1. If one of the 4 target points is occluded, the
target is not identified and the robust tracking algorithm
is launched. This algorithm based on RANSAC algorithm
allows the tracking of visible feature points by computing a
rigid transformation between two successive images acquired
by the camera. Finally, if both fiducials are occluded,
the robust algorithm fails and cannot track feature points
anymore.

The robust method enables tracking when targets are par-
tially occluded. However, the main problem of this method
is the number of visible points in case of partial occlusion.
Indeed, the constraint is to have a number of points >4 to
be able to estimate the camera pose. Nevertheless, in a real
environment, the number of visible points can change con-
stantly and the constraint we mentioned before is not always
respected. To solve this problem, we use another motion sen-
sor which is the inertial measurement unit (IMU) in order to
locate the vision system when the visual markers are less
than 4 points.

4 Hybrid tracking modality
4.1 System description and calibration

Our hybrid tracking system is composed of a camera and
an IMU. Each sensor substitutes the other to compute the
camera pose. The orientation is determined separately by the
two sensors. For the translation, the camera is used to correct
the IMU drift. Our approach of data substitution switches the
system to the adapted tracking module according to target
visibility.

The multi-sensors system contains an IMU: MTi from
Xsens which provides the following measurements: acceler-
ations, angular velocities, magnetic fields and angular rota-
tions, and a Sony camera model XC-555P with a 6 mm focal



Fig. 9 Synoptic Diagram for
occlusion handling
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length, allowing real-time video capture. The data of the two
sensors are provided at a sampling time and expressed in their
respective reference frame.

We describe, now, the rotation calibration between the
IMU and the camera. This procedure determines the rotation
between the IMU reference frame R’ and the camera refer-
ence frame RC [16]. The rotation between these reference
frames is given by:

Rcr = RcwRwi (19)

with:

e Rc;: rotation of the IMU reference frame R’ according
to the camera reference frame RC.

e Ry : rotation of the world reference frame RW according
to the camera reference frame R€.

e Ry rotation of the IMU reference frame R’ according
to the world reference frame RV .

The rotation calibration between the camera reference
frame and the IMU reference frame is carried out in two
steps: first, the calibration of the IMU global reference frame
to compute Ry rotations and then, a camera pose estimation
to determine Rcw .

The IMU computes the rotations of its local reference
frame R! according to the global reference frame R
(defined according to the north magnetic). We define a new
global reference frame using the reset functionality of the
IMU software to define a new global reference frame super-
imposed to the world frame.

The rotation of the camera reference frame is derived from
the pose estimator algorithm. Indeed, the pose estimation
determines the rotation Rcw . Finally, the determination of
the rotation between the IMU and the camera R¢; is com-
puted by Eq. 19 using the two rotations: Rcw and Ry.

4.2 Visual-inertial data substitution

We present now the hybrid algorithm used for occlusion han-
dling and the IMU and the camera data substitution. For the
rotation data, the camera estimates the orientation when tar-
gets are visible and the IMU determines the orientation if
targets are occluded. The data substitution is carried out for
translation, and the two sensors compute the translation at
the same time because the IMU requires measurements of
the camera to correct its drift. The hybrid system is com-
posed of 3 modules (Fig. 10):

— Module of camera pose estimation.

— Module of orientation estimation from the IMU.

— Module of position estimation from the IMU accelera-
tions.

The temporal diagram of data substitution from the camera
and the IMU is represented in Fig. 11. If the target is visible
and identified, the vision-based module enables tracking and
estimates the camera pose. However, when the target is not
detected due to occlusion or motion blur, the pose in this
case is estimated by the IMU. This diagram shows also the
collaboration between the two sensors. The data substitution
between the IMU and the camera allows to correct the drift
of IMU positions and maintains camera tracking in presence
of occlusions.

4.3 Kalman filter implementation

To use the Kalman filter, the motion must be modelled to per-
form the prediction and the correction of Kalman filter states
and covariances. In our study, the Kalman filter estimates
the camera translation from the IMU accelerations. The state
vector is defined as following:



Fig. 10 Data substitution in the
hybrid tracker
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The state model of the system is given by:

2
Xy Xi 1+ ATV + 81024, Wi,
Vi |= Vi1 +AT Ap_i +[ W2,
Ay Ak—1 Wk3—1
(21

where W,i_l represents the measurement noise and Xy, Vi,
Ay are 3x 1 vectors representing respectively, position, veloc-
ity and acceleration.

Now, we use the Kalman filter to model the camera. Mea-
surements are provided by the IMU, and the filter uses accel-
eration measurements and computes a double integration in
order to estimate positions. When the sensor data are avail-
able, the filter predicts and corrects the states. The predic-
tion step uses the state estimated at the previous moment
to produce an estimate in a current state. In the correction

or update step, observations at the current time are used to
correct the predicted state in order to improve the estimate
accuracy.

4.3.1 Prediction

The state prediction and the error covariance are defined by
the following projection equations:

xAk_ = AXp_1

Pr = AP AT +Q (22)
The translation model is represented by:
Xk 1 AT % Xk—1
Vi l=10 1 AT Vie—1 (23)
Ay 00 1 Ap_q

where AT is the sampling time.



Fig. 12 Virtual object overlay
in a tracking sequence

4.3.2 Correction

In this step, the filter updates the system states with accel-
erations data of the IMU, first of all, the Kalman gain is
computed by:

-1
(24)

_ p—yT - T
Ki= P H' (HPTHT +R)
where H is the measurement matrix and R is the measure-
ment noise covariance.

The states are, thereafter, updated with accelerations mea-
surement by the following equation:

R =% + Ke (zx — HEY) (25)

with zi, the measurement vector represented by the camera
accelerations Ac.
Finally, the covariance error is updated by:

Py =(I — K H) P (26)

where

=(000000111)" 27)

Our Kalman filter computes the IMU position according
to a reference point. However, we are interested in estimating
the camera position according to the world reference frame.
Indeed, the IMU device is connected to the camera. When the
hybrid sensor makes a translation motion, the acceleration of
both sensors is the same and given by:

Ac = RciA; (28)
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5 Experiments

5.1 Visual tracking

For the visual tracking module, we used a single camera with
6mm focal length. First, we test the algorithm of fiducial
identification and pose estimation. We printed on a standard
laser printer 80 x 80 mm black and white fiducials. The iden-
tification algorithm detects squares in image then computes
the target codes, and if there is a matching with the template
code, the target is identified and can be tracked in the image.

Since the pose parameters were determined, we have pro-
jected a virtual cube on the detected real target in the image
to evaluate the visual rendering stability. In this experiments,
the camera is moved freely around fiducials. The identifica-
tion algorithm detects and tracks targets in frames, and the
hybrid EKF estimates position and orientation of the cam-
era. Figure 12a, b show virtual objects overlaying upon real
targets, different type of targets are defined to test the effec-
tiveness of the marker identification algorithm. In Fig. 12c,
the planar marker is used to compute the camera pose para-
meters which are used afterward to project a virtual wire
model of a cylinder head.

The second part of the visual tracking experiments is the
evaluation of different localization methods. A comparison
between these methods is performed in order to determine the
performances and the weakness of each one. We compared
our hybrid EKF method to the 3 other algorithms which are
the analytical algorithm of Zhang [31], the hybrid Orthogo-
nal Iteration (OI) [7,15] and the EKF [19]. The comparison



between these algorithms is carried out according to the fol-
lowing criteria:

— Execution time.
— Reconstruction error.
— Generalization error.

The experimental tests were realized using the following
hardware configuration:

— Pentium IIT 1.1 GHz.
— Matrox Meteor II framegrabber.
— Sony XC-555P camera.

5.1.1 Execution time

The first analysis, which is the execution time of algorithms,
shows that the analytical algorithm is the fastest method with
19.40 ps for one pose estimation, the hybrid EKF makes
112.27 ps to estimate the same pose, then we have 153.25 s
for the hybrid OI and finally, 13,530.30 us are necessary
for the EKF to determine the pose parameters. So, in terms
of computation time, the analytical algorithm presents the
best performance than the other methods unlike the EKF
which is very slow and seems to be unadapted to real-time
applications.

5.1.2 Reconstruction error

In this experimentation, the camera is moved around the tar-
get, and the 4 algorithms estimate the pose parameters and
we evaluate the reconstruction error within the image. The 4
algorithms computed 1,400 poses, and the error is estimated
by re-projecting the object model on the image. For each pose
computation, we re-project the target model on the image and
we measure the difference between the real target corners
and the projected corners. We notice that the hybrid EKF is
the most stable and accurate method compared to the other
algorithms. From Fig. 13, when the distance between fidu-
cials belongs to [0.10, 0.45] m, the analytical method and the
hybrid EKF present the lowest reconstruction error, the two
algorithms are accurate and stable in this interval. However,
when this distance becomes greater than 0.45m, the hybrid
Ol is more accurate than the other methods. The reconstruc-
tion error is important in the EKF, because the algorithm did
not converge to the optimal solution due to bad parameter
initialization.

5.1.3 Generalization error
To determine the generalization error, we printed 4 square

targets with 5cm side on a paper. One of the targets is used
to compute pose parameters, and the 3 others are used for
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Fig. 14 Generalization error according to distance between fiducials

generalization error. This generalization error is computed
by re-projecting the models of objects which were not used
in the pose estimation procedure and we project them on
the image. The obtained results on generalization error are
represented in Fig. 14. The hybrid EKF presents the best
performance in terms of generalization error comparing to
other algorithms.

5.1.4 Discussion

Comparative studies of pose estimation were presented in the
literature [1,7,24]. An analysis of re-projection error enabled
to find comparative elements between our method and the
pose estimation method proposed by Ansar and Daniilidis
[1]. The authors estimated the re-projection error to <0.5
pixels for a distance representing 12 times the size of tar-
get side. In our study, the lowest re-projection error is <0.5
pixels for a distance of <0.6m, which represents 12 times



Fig. 15 Partial occlusion of
targets

Fig. 16 Partial occlusion with
change in scale

the size of target side. Moreover, our method presents a bet-
ter precision in the pose parameters estimation compared to
linear N-points method of Ansar and Daniilidis [1]. In the
work of Didier [7], the OI method presented the best com-
promise in terms of computing time, generalization error and
real distance estimation compared to the least squares and
the analytical algorithms. Whereas, in our evaluations, the
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hybrid Kalman filter performs the best performances during
the experimental tests compared to other methods including
the hybrid OI presented in [7].

We can conclude that the hybrid techniques are well
adapted to estimate the camera pose. This type of methods
contributes to the improvement of the execution time and the
registration accuracy.



Fig. 17 Partial occlusion with
change in illumination

Fig. 18 Partial occlusion with
change in orientation
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5.2 Robust tracking results

We present now the experiments we realized to evaluate the
robust tracker. The test consists in using a set of images taken
from various environment conditions. As we see in Fig. 15,
the targets are tracked even if they are not identified (visible
points less than 4 for one target). The robust tracker handles
occlusions, maintains the virtual cube overlaying and it is
robust to change in scale (Fig. 16), illumination (Fig. 17) and
orientation (Fig. 18).

Table 1 shows the execution time and reconstruction error
of the robust algorithm according to the number of visible
points. We notice that the accuracy of the pose estimation
depends on the used number of points. A better pose esti-
mation is obtained when the number of visible points is sig-
nificant; however, the time execution increases also in this
case.

Table 1 Execution time and reconstruction errors of the robust method

Visible points Exec. time (ms) Recons. err. (pixel)
4 35.37 0.75
5 36.11 0.41
6 36.91 0.34
7 37.57 0.30

Fig. 19 Tracking results with
the hybrid system when target is
visible
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5.3 Hybrid tracking results
5.3.1 Visible target

In this part, we present the obtained results from the hybrid
tracker. In this test, the target is totally visible by the camera,
so the pose can be estimated either by the camera or the
IMU. The camera and the IMU frequencies are, respectively,
25 and 100Hz. The goal of this experiment is to check the
registration precision by projecting a virtual cube using the
IMU data.

In Fig. 19, the virtual cube is superimposed on the target
using the IMU pose parameters. The results show that the
estimated pose using the IMU is accurate. Indeed, the virtual
object is correctly aligned on real targets for different camera
pose.

We observe in Fig. 20a that the two curves are practically
superimposed and the IMU does not present a drift. Indeed,
the camera corrects the IMU drift for each acceleration data
used in the Kalman filter because the sensors have the same
frequency. On the other side (Fig. 20b), we notice that the
two curves are shifted, and this drift is due to the camera
sampling time which is 4 times greater than the IMU data
sampling.

The Fig. 21 illustrates the IMU drift. The accumulation of
constants of integration is the main cause of the drift. Indeed,
the IMU positions are computed from double integration of

My
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Fig. 20 Tracking with the hybrid system. a IMU frequency: 25Hz,
b IMU frequency: 100 Hz

accelerations. This drift error is represented by the difference
between the IMU positions and the camera positions.

5.3.2 Occluded target

In this experiment, we tested our hybrid system in presence
of occlusions. We occluded partially and totally the target
to check the IMU capability to estimating the pose. Results
illustrated in Fig. 22 show that the IMU computes correctly
the position and the orientation and allows the overlying of
the virtual cube on targets, whereas the camera is not able to
determine the pose because the object of interest is not iden-
tified. In this experiment, the first tracking module based on
the vision localization system fails. This registration module
is launched if the target is totally visible to the camera; how-
ever, if one feature point of the target is not visible, then the
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identification algorithm stops tracking the target. The hybrid
module replaces the camera tracking, the IMU estimates
the pose of its local reference frame according to the target
reference frame, and since the hybrid system is calibrated,
then the IMU pose is projected into the camera reference
frame.

The hybrid sensor enables target tracking when mark-
ers are totally occluded by another object in the scene. The
advantage of this module is to keep tracking and to allow
localization of the system in worst conditions of visibility.

Figure 22 shows a complete scenario of occlusion man-
agement of the hybrid tracker. Indeed, when the target is
visible, the visual-based tracker enables identification and
real-time tracking. However, when the target is occluded and
the number of feature points is not sufficient to estimate the
pose transformation, in this case the IMU replaces the camera
and estimates the pose.

The hybrid tracking manages target occlusions when they
are not identified by the vision system. The condition of total
or partial visibility of the target is not required for this regis-
tration module. The multi-sensors system provides an inter-
esting solution for the occlusion management; however, drifts
in translation allow a short duration use of the IMU, espe-
cially, when the hybrid system is moving.

5.3.3 Motion blur

In order to test the robustness of our system in case of image
blur generated by abrupt motions of the hybrid sensor, we car-
ried out an experiment which consists in moving the tracking
device very quickly around the target. We notice in Fig. 23
that the target is tracked although it is not detected by the cam-
era due to bad image quality. However, the IMU replaces the
camera and enables the pose estimation and the overlaying of
the virtual cube. This experiment shows another advantage of
the use of the IMU. In case of motion blur, the vision system
is not very robust to noninstantaneous image acquisitions. If
the motion frequency of the hybrid sensor is higher than the
camera frequency, this phenomenon appears. The IMU does
not require the target visibility to locate the sensor reference
frame in 3D space. However, if the motion sensor is carried
out in a frequency higher than that of the IMU, a latency is
generated in this case, and this will cause a positioning shift
of the virtual overlaying.

5.4 Overall system test

In order to test the overall system of occlusion management,
we integrated the visual and the robust trackers presented
previously with the hybrid system developed in this section
(Fig. 24). Indeed, when the target is partially occluded, the
RANSAC algorithm allows to track the object feature points,
and then, the pose is estimated and the virtual cubes are



Fig. 21 IMU drift

Fig. 22 Tracking results with
the hybrid system when target is

occluded

overlaid upon targets. However, if both targets are totally
occluded, the robust algorithm does not manage anymore
the tracking and, consequently, the hybrid module starts and
enables the camera localization.
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6 Discussion

In this paper, we contribute to handle some limitations related
to AR systems working in real-time within real environments.




Fig. 23 Tracking results with
the hybrid system in presence of
motion blur

We proposed and developed a detection and identification
system for coded targets. This system is based on a spatial
sampling of rectangular areas within the image. The visual
tracker enables real-time 2D localization with high accuracy.
Indeed, our system uses a code of 16 bits, while other sys-
tem such as CyberCode [25] computes 33-bits code and also
imposes some constraints to object shapes. Besides, only a
single target is required for the identification process, con-
trarily to Intersense system [21] which needs multiple targets
to compute its circular codes.

For target tracking in images, we developed a hybrid algo-
rithm of pose estimation to improve the accuracy and speed of
localization by combining an analytical method and an itera-
tive technique based on the Kalman filter. We proved, exper-
imentally, that our pose estimator enables better localization
compared to the existing techniques (Analytical algorithm,
Hybrid OI, EKF).

Moreover, the occlusion handling represents an important
contribution in our work. The robust tracker and the vision-
inertial tracker enable target tracking in case of occlusions
and environment changes. Similar works are presented in
the state of the art; however, compared to existing works,
our tracker estimates both translation and rotation of the
camera using the IMU data. Besides, the calibration proce-
dure of the hybrid system requires, only, a single camera and
IMU pose to determine the transformation between reference
frames.

Experiments in a real life conditions demonstrated that our
hybrid tracking device brings significant improvements to
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vision-based tracking systems. This system can run in indoor
and outdoor environment and meet real-time and accuracy
requirements.

7 Conclusion

This work enabled to overcome some limitations related to
tracking systems in augmented reality. We contributed in this
paper to solve the problem of markers registration by estab-
lishing a multi-modal architecture of tracking and occlusion
handling. This architecture consists of a registration module
of coded targets based on a hybrid algorithm of pose esti-
mation. We extended our space-time localization method by
a module of feature points tracking and occlusion manage-
ment. This step is based on the study of the tracking proper-
ties (feature points detection, 2D-2D and 2D-3D matching)
and on the adaptation and the management of various exper-
imental conditions. Finally, we included into our system, a
multi-sensors tracking part. This module is composed of a
hybrid device which overcomes total target occlusion. The
fusion of kinematic data from the IMU and the camera images
opens new prospects to improve the robustness of vision-
based systems in augmented reality applications. However,
such multi-sensor systems present some limitations which
are difficult to overcome. In this context, it is important to
identify the intrinsic parameters of the sensors in order to
characterize more finely the duality and the collaboration of
the heterogeneous data resulting from the sensors.



Fig. 24 Overall tracking
system results

In near future, we plan to use the AR tracking system
in outdoor environments. In the application, we associate the
vision-inertial tracker with a GPS in order to localize robustly
and accurately the user in the environment where the data
acquisition conditions cannot be controlled. Moreover, the
AR hybrid system can be used as a wearable self-tracker to
perform robust localization. A motivating application would
be the use of the hybrid sensor with a mixed reality helmet.
Our system enables real-time registration of virtual object
overlaid on the user’s visor. The tracking should be stable
and robust to motion blur and illumination changes.
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