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Abstract: This paper deals with robust and autonomous robot tracking using distance
measurements provided by a belt of on-board ultrasonic sensors. The measurements
errors are assumed to be bounded. The method presented uses a set-valued nonlinear
state estimator. As a Kalman filter, it alternates prediction based on past data and
correction to take new measurements into account. Special attention is paid to the
treatment of outliers due, e.g., to a partially outdated map or to faulty sensors.
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1. INTRODUCTION is paid to the treatment of outliers due, e.g., to a
partially outdated map or to faulty sensors.

This paper deals with robust and autonomous
robot tracking using distance measurements pro-
vided by a belt of on-board ultrasonic sensors. The
robot represented on Figure 1 has to localize itself
in a 2D environment, a map of which is available.

The measurements errors are assumed to be
bounded. The method presented uses a set-valued
nonlinear state estimator (Kieffer et al., 1998). As
a Kalman filter, it alternates prediction based on
past data and correction to take new measure-
ments into account. The correction step involves a
robust localization technique developed for static
robot localization and presented in (Kieffer et
al., 1999), (Kieffer et al., 2000). These two contri- Fig. 1. The ROBUTER mobile robot
butions are briefly recalled and special attention




2. STATIC LOCALIZATION

The aim of static localization is the evaluation of
the configuration vector x of a motionless robot.
This vector consists of the position (z,y.) and
orientation 6 of the robot in a given world frame
attached to its environment.

The localization procedure will be used in the
correction step of the recursive state estimation
algorithm.

2.1 Information

The map of the environment consists of a collec-
tion of segments representing landmarks (walls,
pillars, etc.). An example of such a map is repre-
sented on Figure 2.
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Fig. 2. Map of the environment of the robot; the
distances are indicated in meters

Each ultrasonic sensor i emits a wave in a given
direction. This wave is assumed to propagate in
a cone with half-aperture 7. The distance d; to
the closest landmark situated in the emission cone
and such that the incidence angle is lower than
B + v is evaluated. The diffuse reflexion angle
is a characteristic of the surface of the material
composing the obstacle. Figure 3 illustrates the
two possible situations. In (a) the incidence angle
of the ultrasonic wave is lower than 5 + +y, so the
reflected part of the ultrasonic wave is caught by
the sensor. In (b) the incidence angle is greater
than 8+ v, and no reflected wave will be received
directly by the sensor. The sensor may still be
hit after multiple reflexions, but the measurement
reported will then no longer correspond to the
distance from the sensor to the closest landmark
in the emission cone.
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Fig. 3. (a) Valid distance measurement;
(b) invalid distance measurement,

To take measurement inaccuracy into account, an
interval [d;] = [(1 — @) d;, (1 + @) d;] is considered.
The values of 7, a and  are obtained by ex-
perimentation on the robot and on the material
composing the environment. An emission diagram
such as that represented on Figure 4 summarizes
the uncertain distance measurements provided by
the sensors. For each measurement, a landmark
should be at least partially located between the
two arcs of circles representing the uncertainty on
each measurement.
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Fig. 4. An emission diagram

Remark 2.1. For the sake of simplicity, the values
of @ and v have been assumed here to be the
same for all sensors, but the method could deal
easily with differentiated sensors. Similarly, the
angle # may depend on the material hit by the
ultrasonic wave. Information on the value of g for
each segment could easily be incorporated in the
map to lead to a more accurate description.

2.2 Set inversion

The configuration vector x is assumed to belong
to some search boz (or interval vector) [xq] . We
are looking for the set

S ={x€[x0] | t(x) is true}, (1)



where ¢ (x) is a test stating that x is compatible
with the map and the uncertain measurements
provided by the sensors. The test t(x) consists
of a conjunction of elementary tests t; (x), each
associated with a sensor.

t(x)=t1 (X) A ... Ay, (X), (2)

where A represents the logical and and ng is the
number of sensors. For the i*! sensor, ¢; (x) is built
by simulating the telemetric process. The distance
that the " sensor would report if the robot were
in the configuration x is evaluated. If the result
belongs to [d;], which is assumed to contain the
actual distance, the configuration is compatible
with the i*" measurement given the map.

The test ¢ (x) holds true if x is compatible with all
the measurements given the map. For more details
on how t(x) is evaluated, see (Kieffer, 1999) or
(Kieffer et al., 2000). In this paper, the test has
been improved to take the effect of the reflexion
angle 3 into account.

Characterizing S using (1) is a set inversion
problem, which is solved in an approximated but
guaranteed way using S1viA (for Set Inversion Via
Interval Analysis) (Jaulin and Walter, 1993). The
set S is enclosed in a union of nonoverlapping
boxes (or subpaving) S. This outer approximation
can be made as precise as desired. It is guaranteed,
in the sense that all the configurations compatible
with the available information belong to it.

2.3 Robustness to outliers

Ultrasonic sensors are cheap but unreliable. Er-
roneous measurements, or outliers, are frequent,
due, e.g., to multiple reflections, sensor failures,
outdated maps, etc. In the presence of such out-
liers, the set S, as defined by (1), may turn out
to be empty. Using the g-relazed and Boolean
operator, denoted by @ o it is possible to tolerate
up to g outliers by characterizing the set

Sq = {x € [%0] | touttiers(X, q) is true},

where

toutliers (X, Q) = @ q (tl (x)7 cee 7tns (X))
=@, () 3)

holds true if at least ng — ¢ of the tests ¢;(x) do.

A possible policy is to start with ¢ = 0,
which corresponds to using (1), and to increase
q by one whenever the set of possible configu-
rations is found empty. This corresponds to a

guaranteed implementation of the Outlier Min-
imal Number Estimator (OMNE) ((Lahanier et
al., 1987), (Pronzato and Walter, 1996), and
(Walter and Piet-Lahanier, 1988)). For more de-
tails, see (Jaulin et al., 1996), (Kieffer et al., 1999)
and (Kieffer et al., 2000).

2.4 Ezxample

The robot is placed in an environment, the map
of which is represented on Figure 2. The (un-
known) configuration of the robot is (z,y.,0) =
(6 m,3.5 m,6.10 rad). The distance measurements
provided by the on-board sensors corresponds to
the emission diagram of Figure 4. Simulated data
were obtained taking a = 0.02, v = 0.1978 rad
and B = 0.5 rad. Three outliers have been intro-
duced to simulate sensors failures.

The search box [x¢] is taken equal to [0 m, 12 m]x
[0 m,12 m] x [0 rad, 27 rad]. The static localiza-
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Fig. 5. Two of the possible configurations obtained
by the static localization procedure

tion procedure returns no solution till at least
three outliers are tolerated. When ¢ = 3, the
solution set S consists of two disconnected sub-
sets, which are guaranteed to contain the actual
configuration provided there are no more than
three outliers. Figure 5 displays two configurations
belonging to the solution subpaving S represented
on Figure 6, for ¢ = 3. The measurements cor-
responding to outliers have been represented in
bold.

When q is increased, the volume of the solution set
may increase. Table 1 summarizes the computing
times for the localization procedure, for ¢ = 0
up to 4, on a Pentium-IT 450 MHz personnal
computer.
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Fig. 6. Solution set of the static localization pro-
cedure, with ¢ = 3, and its projections

Volume of S | Comput. time | Cumul. c. t.

q |

0] 0 | 97 sec. | 97 sec.

1 144 sec. 241 sec.
2 189 sec. 430 sec.
3 0. 004 275 sec. 705 sec.
4 0.011 346 sec. 1051 sec.

Table 1: Result of static localization

3. TRACKING

The robot may now be moving. Qur aim is then to
estimate its configuration (or state) as a function
of time. Only the initial static localization results
and measurements obtained during motion may
be taken into account.

The state x of the robot and the measurements y
satisfy a nonlinear model

X1 = §i (%, 0, vp) ,
1=0,1,... 4
{YIZhl(Xl)+Wl: b (4)

where u; € R™,x; € R" and y; € RP are respec-
tively the input, state, and measurement vectors.
This model is obtained by exact discretization of
the kinematic equations of the robot; the state
perturbation v; takes, e.g., unmodelled frictions
into account. The robot is steered by the inde-
pendently adjustable speeds of two of its wheels,
which are characterized by the input vector u;.

The initial state xg is assumed to be included in
some prior compact set Xo C R™. {v;} and {w;}
are unknown state perturbation and measurement
noise sequences, assumed to belong respectively to
the known intervals sequences {[v],} and {[w],}. £
and h; are known functions (or finite algorithms).

3.1 Recursive nonlinear state estimator

An idealized version of the state estimator will
first be presented. Consider a set A} containing

all possible values of the state vector x; at time /.
At time [ 4+ 1, a set A} containing all the values
of the state vector that are accessible from an x;
taken in Aj is evaluated using the state equation
in (4). This yields set (D in Figure 7. Note that A}
and A4 may both consist of disconnected subsets.

X, =A

I‘2A

Fig. 7. Idealized state estimation algorithm

Suppose that at time [ + 1, a measurement vector
Yi+1 becomes available. Taking the bounds on
measurement errors into account, the output may
belong to a set Y41 (see Figure 7 - set ).
In the observation equation in (4), the function
h; ;1 describes how the measurement are obtained
(here, the function used to build the tests ¢; (x)
will be used). The state should thus belong to the

set X%, = hl;ll (Vi+1) (see Figure 7 - set ).

The set Aj; of all the state vectors x;41 compat-
ible with the information available at time [+ 1 is
then the intersection of X, and X ; (see Figure 7

- set @).

Figure 7 thus illustrates the two basic steps of the
recursive nonlinear state estimation algorithm.
The prediction step evaluates how the set con-
taining the state evolves and the correction step
takes newly available information into account to
discard parts of the predicted set.

In general, this idealized algorithm is not im-
plementable. It can however be used to derive
an approximated but guaranteed state estimator
based on interval analysis (see (Kieffer, 1999) and
(Kieffer et al., 1998)).

3.2 Application to robust robot tracking

The resulting nonlinear state estimator is applied
to the tracking of the robot from measurements
that may contain outliers.

The prediction step uses an exact discretization
of the kinematic equations of the robot. Although
no state perturbation has been considered in the
example of Section 3.3, it could easily be incorpo-
rated in the motion equations.



The correction step is implemented using the
static localization procedure presented in Sec-
tion 2. Only the configuration subspace corre-
sponding to the set obtained during the previous
prediction step is explored, which leads to a spec-
tacular speeding up of the localization procedure.

Concerning the number of outliers that may be
tolerated during tracking, various policies may be
considered. At each step, one may begin with
g = 0 and increase ¢ as long as the corrected
set remains empty. Another strategy would fix
g = Qup, some bound of the tolerated number
of outliers. This second technique is less time-
consuming, but also less efficient in eliminating
subsets that cannot contain the actual state.

3.3 Ezample

The environment, initial configuration and first
measurements remain the same as in the static
localization example. The tracking algorithm is
initialized with the results obtained by the lo-
calization procedure. The robot actually moves
from the room located on the right of the bottom
of Figure 2 to that on top. During motion, new
measurements are taken every second to correct
the predicted set containing the state of the robot.
The second strategy is applied and the maximum
number of tolerated outliers ¢ = gy, is taken equal
to eight.

The evolution of the projection of the solution
set onto the (z,y) plane is presented on the top
of Figure 8. On the bottom of the same figure,
the robot has been represented in configurations
belonging to the solution set. Until step 7, this set
consists of two disconnected parts, both of which
may contain the actual state of the robot. After
this step, there are more than eight outliers for
each configuration belonging to the left subset,
which is then eliminated.

The entire procedure takes about 20 sec. on a Pen-
tium-IT personnal computer at 450 MHz, which
allows real time implementation.

4. CONCLUSIONS

The procedure advocated here does not suffer
some of the traditional drawbacks of previous
localization methods. It delivers a guaranteed so-
lution, unlike the methods based on extended
Kalman filtering (see (Crowley, 1989), (Leonard
and Durrant-Whyte, 1991) and (Leonard and
Durrant-Whyte, 1992)) or bounded-error tech-
niques requiring a linearization, such as described
in (Bertsekas and Rhodes, 1971), (Durieu et
al., 1996), (Maksarov and Norton, 1996) and
(Schweppe, 1973). It does not need a separate

matching algorithm to recognize the environment
prior to localization, contrary to (Drumbheller,
1987) and (Grimson and Lozano-Pérez, 1987). It
directly manages multiple hypotheses contrary to
(Halbwachs and Meizel, 1997). It does not request
any separate initialization procedure, contrary to
(Leonard and Durrant-Whyte, 1991) and (Neira
et al., 1996).

The main drawback of this procedure is that its
complexity is exponential in the dimension of x,
which poses no problem in this case of robot
tracking.

A demonstration of the robot localization and
tracking can be found at

http://www.supelec.fr/lss/fr/personnels/kieffer /robotloc.htm
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