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Robust Autonomous Robot LoalizationUsing Interval AnalysisMICHEL KIEFFER1, LUC JAULIN1;2, �ERIC WALTER1* AND DOMINIQUE MEIZEL31 Laboratoire des Signaux et Syst�emes, CNRS-Sup�elePlateau de Moulon, 91192 Gif-sur-Yvette, Franefkie�er, jaulin, walterg�lss.supele.fr2 on leave from Laboratoire d'Ing�enierie des Syst�emes Automatis�es, Universit�e d'Angers,2 bd Lavoisier, 49045 Angers, Franejaulin�babinet.univ-angers.fr3 HEUDIASYC, CNRS, Universit�e de Tehnologie de Compi�egne,B.P. 20529, 60205 Compi�egne, Franemeizel�hds.univ-ompiegne.frEditor:Abstrat. This paper deals with the determination of the position and orientation of a mo-bile robot from distane measurements provided by a belt of onboard ultrasoni sensors. Theenvironment is assumed to be two-dimensional, and a map of its landmarks is available to therobot. In this ontext, lassial loalization methods have three main limitations. First, eahdata point provided by a sensor must be assoiated with a given landmark. This data-assoiationstep turns out to be extremely omplex and time-onsuming, and its results an usually not beguaranteed. The seond limitation is that these methods are based on linearization, whih makesthem inherently loal. The third limitation is their lak of robustness to outliers due, e.g., tosensor malfuntions or outdated maps. By ontrast, the method proposed here, based on intervalanalysis, bypasses the data-assoiation step, handles the problem as nonlinear and in a global wayand is (extraordinarily) robust to outliers.Keywords: Interval Analysis - Identi�ation - State Estimation - Outliers - Bounded Errors -Robotis.1. IntrodutionRobots are artiulated mehanial systems employed for tasks that may be dull,repetitive and hazardous or may require skills or strength beyond those of humanbeings. They �rst appeared as manipulating robots with their base rigidly �xed,performing simple and well de�ned elementary tasks in a ontrolled workspae.Sine then, muh of the researh in robotis has been devoted to inreasing theirautonomy, e.g., by adding sensors, mobility and deision apability. Mobile robotsmay take various forms depending on the task and environment. To be autonomous,they must be able to estimate their present state from available prior informationand measurements.The problem to be onsidered here is the autonomous loalization of a robot suhas that desribed by Figure 1 from distane measurements provided by a belt of* Corresponding author



2 M. KIEFFER, L. JAULIN, E. WALTER AND D. MEIZELonboard exteroeptive sensors. Here, ultrasoni sensors are used, whih are knownto be heap but impreise. Other types of sensors providing range data ould beonsidered, with the same methodology. The environment is assumed to be two-dimensional (although a three-dimensional extension poses no problem in priniple),and a map of its landmarks is available to the robot. No speial beaons need tobe introdued in the environment to failitate loalization.

Figure 1. Robuter mobile robot by Robosoft.In this ontext, lassial loalization methods [4℄, [2℄, [17℄, [6℄, [18℄, [21℄ and [5℄have three main limitations. First, eah data point provided by an exteroeptivesensor must be assoiated with a given landmark. This data-assoiation step turnsout to be extremely omplex and time-onsuming, and its results an usually not beguaranteed. The seond limitation is that these methods are based on linearization,whih makes them inherently loal. The third limitation is their lak of robustnessto outliers due, e.g., to sensor malfuntions or outdated maps. By ontrast, themethod proposed here, whih is based on bounded-error set estimation (see, e.g.,[27℄, [22℄, [23℄ and [20℄, and the referenes therein), bypasses the data-assoiationstep, handles the problem as nonlinear and in a global way (see also [19℄) and is(extraordinarily) robust to outliers.This paper is organized as follows. The problem is stated in mathematial termsin Setion 2. Setion 3 desribes the elementary tests that will be used to loatethe robot. Extension to intervals and ombination of these tests are onsidered inSetion 4. Setion 5 desribes the algorithm employed to haraterize the set of allvalues of the loalization parameters that satisfy the tests hosen. The resultingmethodology is illustrated on three tests ases in Setion 6, before drawing someonlusions in Setion 7. The notation used is summarized in Setion 8.



ROBUST AUTONOMOUS ROBOT LOCALIZATION 32. Formulation of the problemComputation will involve two frames, namely the world frameW and a frame R, oforigin  =(x; y) in W , tied to the robot. The angle between R and W , denotedby �, orresponds to the heading angle of the robot (see Figure 2). Points and theiroordinates will be denoted by lower-ase letters in W and by tilded lower-aseletters in R. Thus, a point ~m with oordinates (~x; ~y) in R will be denoted by min W , with m = �xy�+� os � � sin �sin � os � ��~x~y�: (1)Three parameters are to be estimated, namely the oordinates x and y of theorigin of R inW and the heading angle � of the robot. They form the on�gurationvetor p = (x; y; �)T (Figure 2). Given some (possibly very large) initial searhbox [p0℄ in on�guration spae, robot loalization an be formulated as the taskof haraterizing the set S = fp 2 [p0℄ j t (p) holds trueg, where t (p) is a suitabletest or ombination of tests expressing that the robot on�guration is onsistentwith the measurements and prior information.
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Figure 2. Con�guration of the robot.2.1. MeasurementsThe robot of Figure 1 is equipped with a belt of ns onboard Polaroid ultrasonisensors (sonars). The position of the ith sensor in the robot frame R is ~si =(~xi; ~yi) : This sensor emits in a one haraterized by its vertex ~si, orientation ~�iand half-aperture ~i (Figure 3). As ~i is frame independent, ~i = i. This one



4 M. KIEFFER, L. JAULIN, E. WALTER AND D. MEIZELwill be denoted by C(~si; ~�i; ~i). The sensor measures the time lag between emissionand reeption of the wave reeted or refrated by some landmark. This timelag is then onverted into a distane di to some obstale. To take measurementinauray into aount, eah data point di is assoiated with the interval [di℄ =[di (1� �i) ; di (1 + �i)℄, where �i is the known relative measurement auray ofsensor i. Thus, [di℄ is assumed to ontain the atual distane to the losest reetinglandmark interepting at least part of the ith emission one.
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Figure 3. Emission one.2.2. Prior informationTwo types of prior information will be onsidered. The �rst one is a map M =f[aj ;bj ℄ jj = 1; :::; nw g of the environment, assumed to onsist of nw oriented seg-ments whih desribe the landmarks (walls, pillars, et.). By onvention, whengoing from aj to bj , the reeting fae of the segment is on the left. The half-plane�ajbj situated on the reeting side of the segment [aj ;bj ℄ is therefore harater-ized by �ajbj = nm 2 R2 ���det���!ajbj ;��!ajm� � 0o : (2)The seond type of information (optional) is the knowledge of a set desribed bypolygons to whih p is known a priori to belong.



ROBUST AUTONOMOUS ROBOT LOCALIZATION 53. Loalization testsThis setion enumerates various elementary tests that will be used to build theglobal test t(p) employed to de�ne S.3.1. Data-assoiation testTo estimate the robot on�guration from range data provided by ultrasoni sen-sors, it is of interest to build a test that heks whether a given on�guration isonsistent with these data, given their impreision. For this purpose, informationavailable in the robot frame R will be translated in the world frame W . Considerany ultrasoni sensor of the robot, with emission one C �~s; ~�; ~� (in this setion,the indies i and j will be omitted to simplify presentation). For any given on�gu-ration p =(x; y; �)T, C an be equivalently desribed in W by its vertex s (p) andby two unit vetors �!u1 �p; ~�; ~� and �!u2 �p; ~�; ~� orresponding to its edges, givenby �!u1 = 0� os�� + ~� � ~�sin�� + ~� � ~� 1A ; �!u2 = 0� os�� + ~� + ~�sin�� + ~� + ~� 1A : (3)So one may write C = C (s;�!u1;�!u2) (omitting the dependeny in p; ~� and ~). Byonvention, �!u1 and �!u2 have been indexed so that �!u2 is obtained from �!u1 by aounterlokwise rotation of 2~. Sine ~ is always less than �=2; the ondition forany m 2 R2 to belong to the emission one ism 2 C (s;�!u1;�!u2), (det (�!u1;�!sm) � 0) ^ (det (�!u2;�!sm) � 0) : (4)The algorithm for testing a given on�guration is based on the notion of remote-ness of a segment from a sensor, whih will now be de�ned. Consider �rst a singleisolated segment [a;b℄. Its remoteness from the sensor s, assoiated with the oneC (s;�!u1;�!u2), is de�ned asr (s;�!u1;�!u2; a;b) =1 if s =2 �ab or if [a;b℄ \ C = ;;= minm2[a;b℄\C k�!smk otherwise. (5)The remoteness funtion (5) is evaluated as follows. Equation (2) is used �rst tohek whether s 2 �ab: If this is so, minimization of k�!smk over [a;b℄ \ C is at-tempted. This requires taking di�erent situations into aount. Let h be the orthog-onal projetion of s onto the line (a;b). If h 2 [a;b℄ \ C, then r (s;�!u1;�!u2; a;b) =�!sh. To hek whether h 2 [a;b℄\C, without atually omputing it, one may usethe following relation:h 2 [a;b℄ \ C , �D�!ab;�!saE � 0� ^ �D�!ab;�!sbE � 0�^�D�!ab;�!u1E � 0� ^ �D�!ab;�!u2E � 0� : (6)



6 M. KIEFFER, L. JAULIN, E. WALTER AND D. MEIZELIf h =2 [a;b℄ \ C, the minimum distane is either in�nite (if [a;b℄ \ C = ;) orobtained for one of the extremities of the segment [a;b℄ \ C. Let h1 and h2 bethe intersetions of the line (a;b) with the lines (s;�!u1) and (s;�!u2) : The set ofpossible ends of [a;b℄ \ C is thus K = fa;b;h1;h2g : Therefore, if h =2 [a;b℄ \ C;then r (s;�!u1;�!u2; a;b) is either in�nite or equal to k�!smk, for some m in K. For theexample of Figure 4, r (s;�!u1;�!u2; a;b) = �!sb :
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1Figure 4. Remoteness of an isolated segment [a;b℄ from the sensor s.A test of whether any element of K belongs to [a;b℄ \ C is easily derived from (4).For v 2 fa;bg v 2 C () (det (�!u1;�!sv) � 0) ^ (det (�!u2;�!sv) � 0) : (7)By onstrution, hi 2 C \ (a;b); one thus has only to hek whether hi belongs to[a;b℄ ; whih is equivalent to proving that hi 2 C�s; �!sak�!sak ; �!sbk�!sbk� : Thus, for i = 1; 2,hi 2 [a;b℄ \ C () (det (�!sa;�!ui ) � 0) ^ �det��!sb;�!ui� � 0� : (8)Finally, if neither h nor any element of K belongs to [a;b℄ \ C; then [a;b℄ \ C = ;;and the remoteness is in�nite.Appendix A presents a funtion, based on these tests, evaluating r (s;�!u1;�!u2; a;b)for an isolated segment [a;b℄.Remark. This version of remoteness does not take into aount the fat that ifthe inidene angle of the emitted wave is greater than a given angle (dependingon the nature of the landmark), no wave will return to the sensor. This ouldeasily be taken are of by modifying the de�nition of remoteness so as to takethe inidene angle into aount. Another phenomenon not onsidered is multiplereetion taking plae, for instane, in onave orners. Aounting for multiplereetions would require a more omplex de�nition of remoteness, and is probably



ROBUST AUTONOMOUS ROBOT LOCALIZATION 7not worthwhile. As will be seen in Setion 4.3, a muh simpler route is to onsidersuh measurements as outliers. }In the normal situation where nw segments are present, the fat that a givensegment may not be deteted, beause it lies in the shadow of another one loserto the sensor, must be taken into aount. Let rij(p) be the remoteness of thejth segment, taken as isolated, from the ith sensor if the on�guration is p. Thisremoteness is given byrij (p) = r �si (p) ;�!u1i �p; ~�i; ~i� ;�!u2i �p; ~�i; ~i� ; aj ;bj� : (9)The remoteness of the map from the ith sensor if the on�guration is p is thenri (p) = minj=1;:::;nw rij (p) : (10)The measurement provided by the ith sensor may be explained by a segment lyingat a proper distane if the following test is satis�ed:Test dati (p): dati (p) holds true if and only if ri (p) 2 [di℄.3.2. In room testAssume that the map partitions the world into two sets, the interior, whih therobot should belong to,Pint = 8<:m 2 R2 ������ nwXj=1 arg���!maj ;��!mbj� = 2�9=; ; (11)and the exterior Pext = 8<:m 2 R2 ������ nwXj=1 arg���!maj ;��!mbj� = 09=; ; (12)where arg���!maj ;��!mbj� ; the angle between ��!maj and ��!mbj , is onstrained to belongto ℄��; �℄. The fat that �� is exluded implies that the boundary between Pintand Pext belongs to the interior. Figure 5 illustrates a situation where part of theroom is forbidden by suitably oriented internal polygons. For eah segment [aj ;bj ℄,the arrow indiates the diretion from aj to bj : Reall that the reeting fae is onthe left when going from aj to bj :If ~m is any point of the robot with oordinates (~x; ~y) in R, then its oordinatesmin W evaluated aording to (1) depend on the robot on�guration p = (x; y; �)Tand the following test will make it possible to eliminate some on�gurations forwhih it would not be in Pint.



8 M. KIEFFER, L. JAULIN, E. WALTER AND D. MEIZEL

-12 12

-12

12

aj

bj

Figure 5. Partition of the world. The interior is in white.Test in room (m):8<: in room (m) = 1 if nwPj=1 arg���!maj ;��!mbj� = 2�;in room (m) = 0 otherwise.When m is the projetion of p onto the x�y plane, in room (m) will be rewrittenas in room (p).As shown in Setion 6, this test will ontribute to eliminating on�gurations moreeÆiently than the data-assoiation test alone, on purely geometrial grounds andin the absene of any measurements. However, it is reliable only when the mapand the partition it indues are reliable. Even when this is not the ase, this testremains of interest, as it forms the basis for the leg in test presented below andstill appliable.Remark. Fititious nonreeting segments may be needed to de�ne Pint and Pext.They may be transparent (open doors and windows), or absorbing. The reetivityof eah of these segments ould be taken into aount with a more elaborate de�-nition of remoteness. With the de�nition adopted here, suh segments may lead tooutliers, see Setion 4.3. }3.3. Leg in testConsider a robot on�guration p = (x; y; �)T, the ith robot sensor si, with oor-dinates (~xi; ~yi) in R, and its assoiated interval measurement [di℄. Let i be the



ROBUST AUTONOMOUS ROBOT LOCALIZATION 9point at a distane equal to the lower bound di of [di℄ from si in the diretion ofemission ~�i. The oordinates of i in W satisfyi = � xy �+� os � � sin �sin � os � �0� ~xi + os�~�i� di~yi + sin�~�i� di 1A : (13)Assuming, as for in room, that the world is partitionned into Pint and Pext, onean de�neTest leg ini(p): leg ini (p) = in room (si(p)) _ in room (i).The following result explains why this test an be used in onjuntion with dati toeliminate on�gurations.Proposition 1 leg ini (p) = 0 ) dati(p) = 0. }Proof: leg ini (p) = 0 implies that si is in Pint and i in Pext (see Figure 6). Thenthere exists j suh that [si; i℄ \ [aj ;bj ℄ 6= ; and si 2 �ajbj . Let mij= [si; i℄ \[aj ;bj ℄. The ith one intersets [aj ;bj ℄ at least atmij . So the remoteness of [aj ;bj ℄from si is less than or equal to k���!simijk. As mij 2 [si; i[ ; k���!simijk < k��!si; ik =di, and the remoteness of [aj ;bj ℄ from si is therefore inompatible with [di℄ ; sodati(p) = 0.The test leg ini(p) thus provides a neessary ondition for p to be onsistent withthe ith measurement. As this ondition is not suÆient, leg ini(p) may hold trueeven when dati(p) holds false. It will only be useful to eliminate some unfeasibleon�gurations more quikly.4. Interval testsThe tests presented in the preeding setion for point on�gurations, should now beextended to interval on�gurations. The notion of Boolean intervals will be usedto take the possible ambiguity of test results into aount. It will then be possibleto give interval ounterparts of the loalization tests, whih will be assoiated toinrease their eÆieny.4.1. Boolean intervals and inlusion testsA Boolean interval is an element of IB = f0; [0; 1℄; 1g, where 0 stands for false, 1for true and [0; 1℄ for indeterminate. It is a onvenient objet for implementingthree-valued logi.Table 1 spei�es the AND (^) and OR (_) operations between two Boolean intervals.As Boolean intervals are sets, standard set operators suh as [ and \ also apply.They should not be onfused with the logial operators _ and ^. For instane,[0; 1℄ ^ 1 = [0; 1℄ but [0; 1℄ \ 1 = 1.
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Figure 6. The test leg ini holds false.Table 1. Operations between Boolean intervalsV 1 0 [0;1℄ W 1 0 [0;1℄1 1 0 [0; 1℄ 1 1 1 10 0 0 0 0 1 0 [0; 1℄[0;1℄ [0; 1℄ 0 [0; 1℄ [0;1℄ 1 [0; 1℄ [0; 1℄The following Boolean funtion will be useful in Setion 4.3 to de�ne tests to dealwith abnormal data resulting from sensor failures or erroneous maps. Let q and mbe positive integers, with q < m. By de�nition, the q-relaxed and testM q(t1; : : : ; tm) = mMi=1 q(ti) (14)holds true if and only if at least m � q of the Booleans ti (i = 1; : : : ;m) are true.When q = 0; Lq is equivalent to the operator ^: When q = m � 1; Lq beomesequivalent to the operator _: Let s be the sum, in the usual real sense, of the valuesof the ti's. To evaluateLq ; it suÆes to hek whether s � m� q.Let IRn be the set of all n-dimensional real boxes (or vetors of real intervals).An inlusion test for the test t : Rn ! f0; 1g is a funtion t[℄ : IRn ! IB suh that



ROBUST AUTONOMOUS ROBOT LOCALIZATION 11for any [x℄; t([x℄) � t[℄([x℄), i.e.,t[℄([x℄) = 1 ) 8x 2 [x℄; t(x) = 1;t[℄([x℄) = 0 ) 8x 2 [x℄; t(x) = 0: (15)Example: An inlusion test t[℄ for t(x), x 2 Y , where Y is some prede�ned set,is 8<: t[℄ ([x℄) = 1 if [x℄ � Y ;t[℄ ([x℄) = 0 if [x℄ \ Y = ;;t[℄ ([x℄) = [0; 1℄ otherwise. (16)Example: To obtain an interval ounterpart for Lq , it suÆes to evaluate thesum of the interval values of the ti[℄'s and to ompare the result with m � q. Forinstane,Lq[℄(1; [0; 1℄; 0; 1) is equal to 0 if q = 0; to [0; 1℄ if q = 1 and to 1 if q = 2.Let t[℄1 and t[℄2 be two inlusion tests assoiated with the same test t. t[℄1 will besaid to be more powerful than t[℄2 if for any [x℄; t[℄1([x℄) � t[℄2([x℄): The intersetionof two inlusion tests assoiated with the same point test is more powerful thanany of them. The following theorem will be useful to de�ne more powerful tests.Theorem 1 Let t[℄ be an inlusion test for t and u[℄ be an inlusion test for u, suhthat if t(x) holds true then u(x) does. Then t0[℄ = �[0; 1℄ ^ u[℄� \ t[℄ is an inlusiontest for t; whih is more powerful than t[℄. }Proof: If u[℄ ([x℄) 2 f[0; 1℄ ; 1g then [0; 1℄ ^ u[℄ ([x℄) = [0; 1℄ and t0[℄ ([x℄) = [0; 1℄ \t[℄ ([x℄) = t[℄ ([x℄) : If u[℄ ([x℄) = 0, then (15) holds and 8x 2 [x℄; u(x) = 0. Therefore8x 2 [x℄; t(x) = 0 (if there existed x0 2 [x℄ suh that t(x0) = 1, then u(x0)would be equal to 1). As 8x 2 [x℄; t(x) = 0, t[℄ ([x℄) is either 0 or [0; 1℄ : Thust0[℄ ([x℄) = ([0; 1℄ ^ 0)\ t[℄ ([x℄) = 0\ t[℄ ([x℄) = 0; so t0[℄ ([x℄) � t[℄ ([x℄). Thus, t0[℄ ([x℄)is an inlusion test for t, and is more powerful than t[℄ ([x℄).Consider a test t obtained by performing logial operations on the results ofelementary tests. A possible way to obtain an inlusion test assoiated with t is toreplae eah operator by its interval ounterpart and eah elementary test by anassoiated inlusion test. The result will be alled a natural interval extension of t.4.2. Interval extensions for the loalization testsA natural interval extension of eah elementary data-assoiation test dati is builtas in Example 8<: dati[℄ ([p℄) = 1 if ri[℄ ([p℄) � [di℄ ;dati[℄ ([p℄) = 0 if ri[℄ ([p℄) \ [di℄ = ;;dati[℄ ([p℄) = [0; 1℄ otherwise. (17)



12 M. KIEFFER, L. JAULIN, E. WALTER AND D. MEIZELThis test is based on the evaluation of remoteness, whih involves a number ofonditional branhings, and it remains to be deided whih branhes should beexeuted. The funtion presented below and derived from Kearfott's Chi funtion[12℄ is a possible way of getting rid of the problem. If t is the Boolean result of atest and y and z are two real numbers, then�(t; y; z) = � y if t = 1;z if t = 0: (18)The interval ounterpart of � (t; y; z) is given by�[℄([t℄ ; [y℄ ; [z℄) = 8<: [y℄ if [t℄ = 1;[z℄ if [t℄ = 0;onvex hull of [y℄ and [z℄ if [t℄ = [0; 1℄ : (19)The result of the evaluation of a test based on �[℄ is therefore always an interval.For more details on the interval extension of remoteness, see Appendix B.A natural interval extension of in room might be very pessimisti, beause of theaumulation of unertainty over a sum of angles. Instead, the following intervalversion of in room will be used, where [m℄ is a box enlosing the set m([p℄) for agiven interval on�guration [p℄ and [m℄ is the enter of [m℄.Interval test in room[℄ ([m℄):8>>>><>>>>: in room[℄ ([m℄) = 1 � if [aj ;bj ℄ \ [m℄ = ;, for j = 1; :::; nw;and in room �[m℄� = 1;in room[℄ ([m℄) = 0 � if [aj ;bj ℄ \ [m℄ = ;, for j = 1; :::; nw;and in room �[m℄� = 0;in room[℄ ([m℄) = [0; 1℄ otherwise. (20)If [m℄ does not interset any segment of the map, it is either in Pint or in Pext.To deide whih of them [m℄ is inluded in, it suÆes to hek one point (here[m℄). As in Setion 3, when [m℄ is the projetion of [p℄ onto the x � y spae,in room[℄ ([m℄) is written as in room[℄ ([p℄).The natural interval extension of leg ini is obtained by substituting in room[℄ forin room.4.3. Combining loalization testsThe three elementary tests de�ned in Setion 3 should now be ombined into aglobal test t(p). In the ideal ase where the map is orret and no error bound isviolated, this global test an be written as tideal(p) = in room(p)^ (Vnwi=1 dati(p)).A neessary ondition for dati(p) to hold true is that leg ini(p) does. As thisondition is not suÆient, leg ini an only be used in onjuntion with dati in



ROBUST AUTONOMOUS ROBOT LOCALIZATION 13order to failitate elimination of inonsistent on�gurations in an interval ontext.The resulting interval testtideal[℄([p℄) = in room[℄ ([p℄)^ nŵi=1 ��leg ini[℄ ([p℄) ^ [0; 1℄� \ dati[℄ ([p℄)�! (21)is more powerful than the natural interval extension of tideal, aording to Theo-rem 1.Remark. Elementary tests are performed from the left to the right, thus startingby the simplest methods available to eliminate a given on�guration box. For theatual implementation, advantage is also taken of the fat that leg ini[℄([p℄) evalu-ates faster than dati[℄([p℄); so all leg ini[℄([p℄) are evaluated before all dati[℄([p℄).}Assume now that the part of the map involved in the de�nition of Pint is still or-ret but that outliers are present. Outliers are data points for whih the hypothesesmade on the bounds of the measurement errors are violated. In the ontext of robotloalization, they are almost unavoidable. They may orrespond, for instane, tomultiple reetions, to the presene of persons or piees of furniture, to sensor fail-ures, et. In the presene of suh outliers, the set S, as de�ned by tideal, may turnout to be empty. Using the q-relaxed and operator Lq introdued in Setion 4.1,tideal[℄ an be modi�ed intotoutliers[℄([p℄; q) = in room[℄([p℄ )^ nwMi=1 q[℄ ��leg ini[℄([p℄) ^ [0; 1℄� \ dati[℄([p℄)�! ; (22)to tolerate up to q outliers. A possible poliy is to start with q = 0, whih or-responds to using tideal, and to inrease q by one whenever the set of possibleon�gurations is found to be empty. More details on this tehnique and the stop-ping riterion an be found in [10℄: It orresponds to a guaranteed implementationof the Outlier Minimal Number Estimator (Omne) ([16℄, [26℄ and [24℄).When no reliable Pint and Pext are available, the test in room[℄ an be droppedfrom tideal[℄ or toutliers[℄, depending on the reliability of the remaining data. Anotheroption, not onsidered further in what follows, would be to give the same on�deneto in room[℄ as to dati[℄ and writetrobust[℄([p℄; q) = nwMi=0 q[℄ �ti[℄� ; (23)where t0[℄ = in room[℄([p℄ );ti[℄ = �leg ini[℄([p℄) ^ [0; 1℄� \ dati[℄([p℄); i = 1; : : : ; nw: (24)



14 M. KIEFFER, L. JAULIN, E. WALTER AND D. MEIZELThe purpose of the next setion is to show how the set of all possible on�gurationsan be haraterized in a systemati way, one a suitable test t (p) has been de�ned.5. Reursive set inversionThe set S = fp 2 [p0℄ j t (p) = 1g an also be written as t�1[p0℄ (1). CharaterizingS an therefore be viewed as a problem of set inversion, whih an be solved inan approximated but guaranteed way using the Sivia (Set Inversion Via IntervalAnalysis) algorithm [7℄, [8℄, [9℄. Here, a reursive version of Sivia will be used,whih will make it possible to redue the amount of testing required to enlose Sin an outer subpaving bS (i.e., a union of boxes in on�guration spae), with thehelp of the notion of masked tests.If t[℄ ([p0℄) = 1, [p0℄ is in the solution set S and is stored in bS. If t[℄ ([p0℄) = 0, then[p0℄ has a void intersetion with S and is dropped altogether from further onsid-eration. If t[℄ ([p0℄) = [0; 1℄ and if the width of [p0℄ is larger than some prespei�edpreision parameter �, then [p0℄ is biseted, leading to two hild subboxes L [p℄ andR [p℄, and the test t[℄ (:) is reursively applied to eah of them. Any box with widthless than � is onsidered small enough and inorporated in bS . This algorithm is�nite. Its omplexity has been studied in [9℄. Upon ompletion, bS is guaranteed toenlose S.5.1. Masked testsIf the value of an elementary inlusion test over a box [p℄ is either true or false, thisresult remains valid for any subbox of [p℄. It is thus no longer neessary to evaluateit again over its hildren. Only elementary tests with unertain values have to betested again. This is the priniple of masked tests, whih may be found for examplein [25℄, but had not so far been implemented in Sivia. Consider a test t obtained byBoolean ombination of p elementary tests ti: In the ontext of interval evaluation,interval extensions ti[℄ of these elementary tests are used. The assoiated mask fora given value of [p℄ is the funtion �[℄ (:) : IR3 ! IB p de�ned by�[℄ ([p℄) = �t1[℄ ([p℄) ; : : : ; tp[℄ ([p℄)�T : (25)Exept when [p℄ = [p0℄ ; whenever t is to be evaluated over a box [p℄ ; the resultsof the elementary tests ti[℄ have already been evaluated over at least one parent box.Provided that these results have been stored in a mask [�℄ attahed to this parentbox, it is no longer neessary to evaluate tests whih have already reeived unam-biguous answers. The resulting masked test, whih is also in harge of updating[�℄, will be denoted by t[℄ ([p℄ ; [�℄).5.2. Masked SiviaMasked tests are inorporated into Sivia with the help of the reursive funtionClassify (see Table 2). This funtion makes it possible to store boxes in the outer



ROBUST AUTONOMOUS ROBOT LOCALIZATION 15approximation bS of the solution set, aording to the results of the evaluation ofthe masked interval test t[℄ ([p℄ ; [�℄). In an e�ort to store boxes as large as possiblein bS, whenever the two hildren of the same parent box turn out to have to beenstored in bS; either beause t holds true or beause the value of t is indeterminateand they are small enough, these two hildren are merged into their parent box.The proess is iterated as long as possible before storing the result into bS :Table 2. Reursive funtion alled byMaskSivia.ClassifyInputs: [p℄ ; [�℄ ; bS; �;Outputs: [t℄ ; bS;[t℄ = t[℄ ([p℄ ; [�℄) ;if ([t℄ 6= [0; 1℄) return([t℄ ; bS);if (w ([p℄) < �) return([0; 1℄; bS);else biset [p℄ into L [p℄ and R [p℄ ;�[tL℄ ; bS� = Classify�L [p℄ ; [�℄ ; bS; �� ;�[tR℄ ; bS� = Classify�R [p℄ ; [�℄ ; bS; �� ;if ([tL℄ ^ [tR℄ 6= 0) return([tL℄ ^ [tR℄ ; bS);if ([tL℄ 6= 0) store L [p℄ into bS;if ([tR℄ 6= 0) store R [p℄ into bS;return �0; bS� :Classify is �rst alled by MaskSivia desribed by Table 3. If the value [t0℄returned by Classify to MaskSivia di�ers from 0, then the whole initial searhbox [p0℄ must be inluded in bS. Else, the outer approximation bS has been builtreursively by Classify.6. Test asesInterval-based loalization will now be illustrated on three test ases. Althoughbased on simulations, these test ases are realisti and the harateristis of therobot (size, sensors loation and performanes) are those of the robot of Figure 1.Table 3. Reursive MaskSivia.MaskSiviaInputs: [p0℄ ; �;Outputs: bS;Initialisation: bS = ;; [�0℄ = [0; 1℄p;�[t0℄ ; bS� = Classify�[p0℄ ; [�0℄ ; bS; �� ;if ([t0℄ 6= 0) bS = f[p0℄g ;return � bS� :



16 M. KIEFFER, L. JAULIN, E. WALTER AND D. MEIZELThis robot is equipped with ns = 24 ultrasoni sensors on its periphery. Eah ofthem has been found to have an emission angle ~ of 0:2 rad and a distane relativeinauray � of 2% within its operating range.In eah of the test ases treated, the initial searh domain in on�guration spae is[�12m; 12m℄�[�12m; 12m℄�[0; 2�℄, and the preision parameter � is taken equal to0:04. All omputations were performed on a P233MMX personal omputer, usinga C++ implementation of MaskSivia.6.1. First test aseThis test ase illustrates the potential ontribution of the various aelerating toolsproposed in this paper under ideal onditions. The robot is loated in the roomdesribed by Figure 7, and the map available to the robot mathes this environmentexatly. Figure 8 desribes the emission diagram of the 24 sensors. It is suh thatan obstale should lie at least in part between the two ars assoiated with anygiven sensor.

-12 12

-12

12

Figure 7. Map used by the robot for Test Cases 1 to 3. The projetion of the initial searh boxonto the x� y spae is the external square.This diagram was obtained by omputing the remoteness of eah sensor from themap aording to (10) for an atual on�guration given by (x; y; �) = ��2; 3; 9�32 �.Obviously, this atual on�guration is not transmitted to the loalization algorithm.Table 4 indiates omputing time for various ombinations of the tests proposed.
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Figure 8. Emission diagram (Test Case 1).Table 4. Computing times forTest Case 1.Tests Mask Time (se.)tdat[℄ no 97tdat[℄ yes 29troom[℄ no 91troom[℄ yes 27tleg[℄ no 48tleg[℄ yes 11tideal[℄ no 49tideal[℄ yes 11The test tdat[℄ only involves the elementary tests dati[℄, i = 1; : : : ; ns. The test troom[℄ombines in room[℄ and tdat[℄. The test tleg[℄ uses leg ini[℄, i = 1; : : : ; ns to reinforetdat[℄. Finally, tideal[℄ ombines all these tests as desribed by (21). In all ases, theresulting solution boxes turn out to be very similar, and Figure 9 presents thoseobtained with the omplete algorithm. The union of these boxes is guaranteed toontain all on�gurations onsistent with the map and measurements. The atualrobot on�guration is indiated in blak.On this example, the masked version of Sivia using tleg[℄ or tideal[℄ is about tentimes quiker than a basi Sivia using only tdat[℄. The mask appears responsiblefor most of the improvement, followed by leg ini[℄ and in room[℄: When the maskand leg ini[℄ are implemented, in room[℄ leads to no improvement, but rememberthat leg ini[℄ is based on in room[℄.The next two examples will illustrate more diÆult but quite realisti situations.
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cFigure 9. Outer approximation of the set of all possible on�gurations and its 2D projetions(Test Case 1). The atual on�guration is indiated in blak.6.2. Seond test aseIn this test ase, the room and map remain idential to those of Test Case 1, but theatual (unknown) on�guration is now (x; y; �) = (1;�7:5; �), and the emissiondiagram is given by Figure 10. In 19 seonds,MaskSivia using tideal[℄ �nds the set

Figure 10. Emission diagram (Test Case 2).of boxes desribed by Figure 11. This set onsists of two disonneted subsets, oneof whih ontains the atual on�guration of the robot. Figure 12 illustrates thefat that, due to loal symmetries, there are indeed two radially di�erent typesof possible on�gurations, eah of whih orresponds to a di�erent assoiation ofsegments of the map with distanes measured by the sensors. Note that this dataassoiation is a by-produt of the algorithm, and does not need to be performed by
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Figure 11. Outer approximation of the set of all possible on�gurations (Test Case 2) and its 2Dprojetions.a preproessor as in the usual loalization methods. Given that data assoiation isone of the bottleneks of automated loalization, this is no minor advantage.6.3. Third test aseThe additional diÆulties reated by outliers and an outdated map will now betaken into aount. The map provided to the robot is the same as in the previ-ous test ases, but it is now partly inorret. The atual environment is that ofFigure 13.The previous pillar has been moved, and a seond one added. Moreover, twoout of the 24 distanes have been taken equal to twie their atual values. Theatual (unknown) on�guration is the same as in the �rst test ase. Any of themodi�ations onsidered here (i.e., the inorret map or the outliers) is enoughto make the set found by the original algorithm empty. Note that the map anno longer be assumed to be orret, so in room[℄ will not be employed. The valueof q is inreased until the set of boxes found using toutliers[℄ without in room[℄beomes nonempty, whih takes plae when q = 6. The set of possible on�gurationsthus found is slightly larger than that on Figure 9, but similar and will not be
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Figure 12. Two possible on�gurations (Test Case 2).
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Figure 13. Room of Test Case 3.repeated. It still ontains the atual robot on�guration. Figure 14 presents a typialon�guration of this set, where the data that ould not be assoiated are indiatedby numbers. Emission ones labelled 1 and 6 are inonsistent with the map, beauseof the presene of obstales that are loser to the sensors onsidered. Emissionones labelled 2 to 5 orrespond to the two misspei�ed pillars. Table 5 indiatesomputing time and various properties of bS as funtions of q. Note that the set of



ROBUST AUTONOMOUS ROBOT LOCALIZATION 21boxes obtained for a given value of q is only guaranteed to ontain the atual roboton�guration if there are no more than q atual outliers. One may protet oneselfagainst a larger number of outliers by inreasing q. The sets obtained here for q > 6are quite lose to that obtained for q = 6; the atual number of outliers. The resultof this robust loalization proedure thus turns out to be rather insensitive to thehoie made for q.Table 5. Charateristis of bS and umulated omputing time asfuntions of q for Test Case 3.q Set volume Bounding box (outward rounded) Time0 0 ; 7 s.1 0 ; 21 s.2 0 ; 41 s.3 0 ; 71 s.4 0 ; 113 s.5 0 ; 166 s.6 2:68 � 10�3 [�2:14;�1:87℄[2:85; 3:15℄[0:83; 0:95℄ 249 s.7 3:09 � 10�3 [�2:14;�1:87℄[2:85; 3:15℄[0:83; 0:95℄ 366 s.8 4:25 � 10�3 [�2:16;�1:82℄[2:83; 3:17℄[0:83; 0:95℄ 519 s.9 5:88 � 10�3 [�2:18;�1:82℄[2:83; 3:19℄[0:83; 0:96℄ 776 s.10 8:05 � 10�3 [�2:21;�1:80℄[2:81; 3:19℄[0:82; 0:97℄ 1126 s.Computing time is seen to inrease with q, beause it beomes inreasingly diÆ-ult to eliminate a box.Contrary to what would be the ase with traditional methods involving a phaseof data assoiation, no ombinatoris is involved in deiding whih q measurementshave to be onsidered as outliers, and this is again a tremendous simpli�ation.7. Conlusions and perspetivesAutonomous robot loalization is partiularly well amenable to solution via intervalanalysis, beause the number of parameters to be estimated is small. In this ontext,the method advoated here has de�nite advantages over onventional numerialmethods. It is not neessary to enumerate all possible assoiations between sensordata and landmarks, nor is it neessary to onsider all possible hoies of q outliersamong ns data points. As a result, ombinatorial explosion is avoided. The resultsobtained are global, and no on�guration ompatible with prior information andmeasurements an be missed. These results are extremely robust, and the estimatorused an even handle a majority of outliers. Provided that the number of atualoutliers is less than or equal to the value hosen for q; the results are still guaranteed.The present omputing times seem already aeptable for a stati loalization withsuh remarkable properties.The method is exible, and additional information on the physis of the problemould readily be inorporated. One ould, for instane, take into aount the fatthat the operational range of ultrasoni sensors is limited, or that the inideneangle should be small enough for the reeted or refrated wave to be piked up
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Figure 14. Possible on�guration for Test Case 3.by the sensor. Other types of sensors suh as rotating laser range �nders (see, e.g.,[1℄, [3℄), as well as multi-sensor data fusion [11℄ should form the subjet of futurestudies in the ontext of interval methods suh as those advoated in this paper.In this paper, loalization was stati; a natural extension of the present work is toonsider the traking of the set of possible on�gurations of a moving robot. Thisan be done [15℄, [13℄, using a reently developed bounded-error state estimationtehniques for nonlinear models [14℄. The fat that the initial searh domain inon�guration spae is muh smaller at any given time instant redues drastiallythe omputational e�ort and makes it ompatible with real time.The methodology desribed obviously applies to many other �elds, where feasibil-ity is also de�ned in terms of possibly nonlinear inequalities. The ase where someof these inequalities may not be meaningful ould be handled diretly by treatingthem as outliers.8. NotationVetors are in bold with an arrow on top: �!u . Points are in bold: a;b; . Co-ordinates for two-dimensional vetors �!u and points a are denoted by xu; yu andxa; ya.



ROBUST AUTONOMOUS ROBOT LOCALIZATION 23h�!u ;�!v i : salar produt of �!u and �!v;(a;b) : line supported by a and b;[a;b℄ : line segment between a and b;�!ab : vetor with extreme points a and b;(s;�!u ) : line supported by s with diretion vetor �!u ;~ : half aperture of the emission one,i : index for sensors,j : index for segments,d(s; (a;b)) : distane from s to (a;b);d�!u (s; (ab)) : distane from s to (a;b) along �!u ;ns : number of sensors,nw : number of segments,p =(x; y; �)T : robot on�guration,S : set of all feasible robot on�gurations,IR : set of real intervals,IB : set of Boolean intervals,^ : logial AND;_ : logial OR;w([p℄) : width of [p℄ .Appendix AReal evaluation of remotenessTable A.1 presents the implementation of the real evaluation of remoteness, basedon Setion 3.1.The distane d (s; (a;b)) from s to the line (a;b) (Figure A.1) is given byd (s; (a;b)) = �!ah = det��!ab; �!as��!ab ; (A.1)and the distane d�!u (s; (a;b)) from s to the line (a;b) along the unit vetor �!u byd�!u (s; (a;b)) = k�!amk = �!ahjsin �j = det��!ab; �!as��!ab jsin �j = ���det��!ab; �!as�������det ��!ab;�!u ���� : (A.2)Appendix BInterval evaluation of remotenessThe interval ounterpart of Table A.1 is given by Table B.1.In this table, ��![s℄ a stands for the set of all vetors with origin in the box [s℄ andextremity at a. The box [s℄, guaranteed to ontain the loation of the sensor s for



24 M. KIEFFER, L. JAULIN, E. WALTER AND D. MEIZELTable A.1. Evaluation of remoteness.r (s;�!u1;�!u2;a;b)if �det ��!ab;�!as� � 0�return (+1);if �D�!ab;�!saE�0� ^ �D�!ab;�!sbE�0� ^ �D�!ab;�!u1E�0� ^ �D�!ab;�!u2E�0�then rh = d (s; (a;b)), else rh = +1;if (det (�!u1;�!sa) � 0) ^ (det (�!u2;�!sa) � 0)then ra = ksak, else ra = +1;if �det ��!u1;�!sb� � 0� ^ �det ��!u2;�!sb� � 0�then rb = �!sb, else rb = +1;for i = 1 to 2if (det (�!sa;�!ui) � 0) ^ �det ��!sb;�!ui� � 0�then rhi = d�!ui (s; (a;b)) , else rhi = +1;return �min �rh; ra; rb; rh1 ; rh2�� :Table B.1. Inlusion funtion for remoteness.r[℄ �[s℄ ;��![u1℄;��![u2℄;a;b�[t1℄ = det��!ab;��!a [s℄�;if �t1 � 0�return (+1);[th℄ = �D�!ab;��![s℄aE�0� ^ �D�!ab;��![s℄bE�0� ^ �D�!ab;��![u1℄E�0� ^ �D�!ab;��![u2℄E�0�;[rh℄ = � �[th℄ ; d[℄ ([s℄ ; (a;b)) ;+1�;[ta℄ = �det ���![u1℄;��![s℄a� � 0� ^ �det ���![u2℄;��![s℄a� � 0�;[ra℄ = � �[ta℄ ; ��![s℄a ;+1�;[tb℄ = �det ���![u1℄;��![s℄b� � 0�^ �det ���![u2℄;��![s℄b� � 0� ;[rb℄ = � �[tb℄ ;��![s℄b ;+1�;for i = 1 to 2�thi � = �det ���![s℄a;�![ui℄� � 0� ^ �det ���![s℄b;�![ui℄� � 0�;�rhi � = ���thi � ; d�![ui℄ ([s℄ ; (a;b)) ;+1�;return �min �[rh℄ ; [ra℄ ; [rb℄ ; �rh1� ; �rh2 ���;
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Figure A.1. Distanes from the point s to the line (a;b).any on�guration in [p℄ = ([x℄ ; [y℄ ; [�℄)T, is evaluated by replaing all ourrenesof the real variables in (1) by their interval ounterparts. Similarly, the harateris-tis of the one (3) are evaluated as [C℄ = C �[s℄ ;�![u1℄;�![u2℄�. Finally, the minimumof two intervals is de�ned as followsmin ([a℄ ; [b℄) = �min (a; b) ;min �a; b�� ;the extension to more intervals being straightforward.Referenes1. J. Borenstein, H. Everett, and L. Feng. Navigating Mobile Robots. A. K. Peters Ltd.,Wellesley, Massahusetts, 1996.2. J. Crowley. World modeling and position estimation for a mobile robot using ultrasoniranging. In Pro. IEEE Int. Conf. on Robotis and Automation, pages 674{680, Sottsdale,Arizona, 1989.3. J. L. Crowley, F. Wallner, and B. Shiele. Position estimation using prinipal omponentsof range data. In IEEE Int. Conf. on Robotis and Automation, pages 3121{3128, Leuven,1998.4. M. Drumheller. Mobile robot loalization using sonar. IEEE Trans. on Pattern Analysisand Mahine Intelligene, 9(2):325{332, 1987.5. E. Halbwahs and D. Meizel. Multiple hypothesis management for mobile vehiule loaliza-tion. In CD Rom of the European Control Conferene, Louvain, 1997.6. A. A. Holenstein, M. A. M�uller, and E. Badreddin. Mobile robot loalization in a struturedenvironment luttered with obstales. In Pro. IEEE Int. Conf. on Robotis and Automation,pages 2576{2581, Nie, 1992.7. L. Jaulin. Solution globale et garantie de probl�emes ensemblistes ; appliation �a l'estimationnon lin�eaire et �a la ommande robuste. PhD dissertation, Universit�e Paris-Sud, Orsay, 1994.8. L. Jaulin and E. Walter. Guaranteed nonlinear parameter estimation from bounded-errordata via interval analysis. Math. and Comput. in Simulation, 35:1923{1937, 1993.9. L. Jaulin and E. Walter. Set inversion via interval analysis for nonlinear bounded-errorestimation. Automatia, 29(4):1053{1064, 1993.10. L. Jaulin, E. Walter, and O. Didrit. Guaranteed robust nonlinear parameter bounding. InPro. IMACS|IEEE{SMC CESA'96 Symposium on Modelling and Simulation, volume 2,pages 1156{1161, Lille, 1996.
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