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Abstract

In this paper the problem of model selection for measure-
ment purpose is studied. A new selection procedure in a de-
terministic framework is proposed. The problem of nonlin-
ear bounded-error estimation is viewed as a set inversion
procedure. As each candidate model structure leads to a
specific set of admissible values of the measurement vector,
the worst-case criterion is used to select the optimal model.
The selection procedure is applied to a real measurernent
problem, grooves dimensioning using Remote Field Eddy
Current (RFEC) inspection.

1. Introduction

Data used to estimate the parameters of a model are al-
ways associated with some uncertainty. Evaluating the qual-
ity of a given estimator requires assessing quantitatively
how this data uncertainty affects the estimates. It must be
recognized that the results will be highly influenced by the
assumptions explicitly or implicitly made about the error
structure. Correct conclusions about the properties of the es-
timates require a correct characterization of the error struc-
ture.

The approach most commonly used is to express the errors
in terms of stochastic uncertainty models. Due to incom-
plete information and the presence of structural model er-
rors resulting from aggregation and obscurity of the process
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dynamics, a stochastic error approach is questionable, since
many of these model errors are inherently deterministic [6].
In addition information about the reliability of the estimates
can only be obtained in closed form if the error density is
Gaussian and the model is linear [17] [18]. Because of these
limitations, an attractive alternative to stochastic characteri-
zation has been proposed. The error in the data is no longer
considered as a random variable with known or parameter-
ized probability density function. Instead, the error is as-
sumed to lie between some known upper and lower bounds.
One is then looking for a suitable charaterization of the set
of all parameter vectors consistent with the model structure,
data and bounds on the error.

" This paper deals with the problem of model selection for

measurement purpose. A general formulation of measure-
ment in a bounded-error context is presented in Section 2.
Previous works [1] [4] [16] develop some criteria leading
to the choice of a nonlinear parametric model in the con-
text of inverse problem. None of them, however, employs a
deterministic framework. In this paper a new selection pro-
cedure based on bounded-error estimation is proposed. Es-
timation is expressed in terms of set inversion. Using the
SiviA (Set Inversion Via Interval Analysis [5]) algorithm
and a recently developed image evaluation algorithm using
interval computations [8], it is possible to enclose in an ap-
proximate but guaranteed way all parameter vectors that are
consistent with the data and noise assumptions. The princi-
ples of these algorithms will be briefly recalled in Section 3.
Thus, 2 set of all admissible vahies of the measurement vec-
tor for each candidate model structure may be computed. In



order to compare these sets, given a reference measurement,
a worst-case design [7] presented in Section 4 will be used.
In Section 5, the feasibility of the approach will be illustrated
for a real measurement problem, grooves dimensioning us-
ing Remote Field Eddy Current (RFEC) inspection.

2. Problem formulation

A problem often encountered in various domains, such
as nondestructive evaluation or so-called indirect measure-
ments, is to estimate some unknown quantity m from a vec-
tor of observed values y. This is due to the inability to use
a transducer to measure m directly or for any other reason
such as harsh environment [4] [14] [16]. The general prob-
lem can be described by the following equations [2] :

f(mk,6)+8k k=1,...,N, 1)
g(6)- @

The first one (1) is the classical nonlinear regression model,
where the observation variable y = [y1, . .., yn] " isrelated
tox = [21,...,2n]7 the vector of the experiment design
(e.g., time, frequency or space coordinates) and to the ob-
servation error ex. A vector 8 (6 € © C RP) of p unknown
parameters is then to be estimated from the N pairs of ob-
servations (xzx, yx ), where © is the prior feasible set for the
parameters. .
In the context of bounded-error estimation (e.g. [12], [13],
[17] and the references therein), the feasible observation er-
ror will be expressed now in terms of a set , i.e., ex € Fy,
where :

Er ={ex eR:

Ye =
m

kaeks—e_k}a k‘:].,,N (3)
In this equation ¢;, and €, are the lower and upper bounds on
the kth observation error, assumed to be known. Estimating
parameters in this context amounts to looking for the set S
of all admissible values of @ that are consistent with (1) and
(3). Sisthus the intersection of © and the set of the solutions
for 8 of the 2N inequalities :
yk—gkﬁf(l’k,g)fyk—ék, k:1:1N (4)
This bounded-error approach leads to set estimates, contrary
to usual applications of the maximum-likelihood approach
which yield point estimates. S has been called the posterior
feasible parameter set.
The quantity to be measured, m, is related to the parameters
6 via (2). Itis usually defined by a functional of the paramet-
ric model m = §( f) (i.e., involving derivation, integration,
interpolation, extrapolation, ... ). This relation is then trans-
formed into a function of 8.
Thus, a second problem to be solved is to find the set M of
all admissible values of m corresponding to the image of S
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using the function g.

The creation of candidate model structures remains mainly
of a heuristic nature. So suppose that a set F' of ny struc-
tures of nonlinear parametric model is available. For the ex-
perimental conditions used, each candidate model f; (j =
1,...,n f) generates a vector output :

fj(x>6):[fj(zl)g)""’fj(xN>e)]T) (%)

The choice of a given structure affects directly the estimate
of m . This is basically related to the sensitivity of the mod-
els f; and function g to 8. This paper is concerned with the
problem of model selection in such a deterministic frame-
work.

3. Set inversion for finding parameter sets

The algorithms used for characterizing S depend on

whether the model output is linear in the parameters. In the
first case, it is possible to use three types of algorithm in-
volving outerbounding ellipsoids or orthotopes, or an exact
description [17].
‘When the model is nonlinear in the parameters, the problem
is much more difficult since S may be nonconvex and even
nonconnected. Butitis still possible to get a precise descrip-
tion of S using interval analysis and set-inversion. The task
of finding all 6 € © satisfying (4) may be expressed as that
of characterizing the set :

S={6e©: f(x,0)cy-E}, 6)
where E = [E; x...x En. S may be equivalently expressed
as:

S=1f5'(y-E) =f5" (V), Y
where fg ! is the reciprocal function (in a set-theoretic sense)

of f defined over ©, and Y = y — [ is the prior feasible
set for the model outputs. For a given function f, interval

1,
b f VACK)
| i
f,(a,b)
W
a
f

b §

Figure 1. Inclusion function ;] of a function f.

analysis [11] provides an inclusion function ffj (see Figure
1) that returns boxes (vector intervals) that are guaranteed
to contain the image by f of any given box [68] included in



the domain of f. The smaller the box [8] is, the more ac-
curately £} ([6]) describes f([6]) [11] [15]. This property is
used in the SIVIA [5]) algorithm. Suppose that © is a box;
a box enclosing the range of f over O is obtained evaluat-
ing f (x,0). Ifffj (x,0) N Y = 0, then it is proved that no
0 € © may satisfy (4) and©® NS = §; iffy (x,0) C Y,
then all values of @ € O satisfy (4), and © is incorporated
in the approximate solutionset S°. If none of these condition
is satisfied, © may be bisected into two sub-boxes on which
the same tests are applied recursively. Boxes are bisected till
their width is lower than some precision parameter ¢. At this
step, if nothing has been proved on the box, they are stored
into an uncertain set ST.

One may thus enclose S into two subpavings (union of
nonoverlapping boxes) :

S°c S c(SsPust). ®)

Obtaining the image M of the set S by the function g is also
achieved using interval analysis by a recently developed IM-
AGESP (Image SubPaving evaluation) algorithm [8]. This
algorithm s able to return a subpaving, i.e., a union of boxes,
containing the image of a given subpaving (for example S°)
by a function (for example g), with any desired precision.

4. Worst-case criterion

The theory of model building is still poor and one is usu-
ally confronted to the model selection problem, in which
several mathematical functions compete to approximate em-
pirical observations.

Consider a finite number of competing models f;(j =
1,...,ny), each of which yields a particular evaluation Mj;
of the set of all admissible values of the measurement quan-
tity. In order to design a robust measurement estimator, we
use the worst-case criterion to select the best model struc-
ture. This natural idea is used in several domains (e.g. ro-
bust control [18] and production quality [7]).

We define a worst case distance :

Amj = mmggmﬁllmr —m|| ©®)

where 1 is the reference measurement, assumed available.
This information is usually obtained from experimental data
or from the simulation of finite element code. The depen-
dency of Am in the experimental conditions # need not be
made explicit since these are assumed fixed.

To choose a model according to this criterion, the model
with the smallest A is picked :

f7=arg min max [l — mi| (10)
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5. Grooves dimensioning using Remote Field
Eddy Current (RFEC) inspection

Remote field eddy current inspection is used for di-
mensining grooves that may occur in ferromagnetic pipes.
An efficient method has been proposed in [3] to estimate
the depth and the length of corrosion grooves from mea-
surement of a pick-up coil signal phase at different positions
close to the defect.

We perform a finite element calculation to obtain a paramet-
ric model of the physical phenomenon. In this approach, the
dimensions of the groove are linked to the model parameters
through a polynomial function. So, an estimate of the size of
the groove may be computed.

Figure (2) illustrates a typical experimental apparatus used
for groove dimensioning; the sensor is pushed inside the
pipe and along with the coil position 2, the phase of the de-
tector voltage y is acquired. The distance between exciter
and detector coils is chosen so that the remote field condition
is satisfied. We need a previous knowledge of the relation-

. . Pipe
Exciter coil J{
! '

Detector coil

rn

Sensor

14

2mm 35 mm

Figure 2. Schematic illustration of the sensor pipe.

ship between the groove parameters (length and depth) and
the observed data (detector phase). A finite element model-
ing has been used to obtain such a relation.

Taking into account symmetry and the range of the data, sev-
eral mathematical functions may be considered to approxi-
mate it.

Three competing nonlinear model structures fi {(p; = 2),
fa (p2 = 3) and f3 (ps = 4) are considered here :

6 61

Lh@8) = e ht@Ll?
fo(®,0) = 6;(arctan(fz(x + 03 + L))
—arctan(fz(x — 03 + L))
+ arctan (8 (2 + 03 — L))
—arctan(f,(z — 03 — L)))
f3(x,8) = 01(exp(—bslx — 05 + L|*)

+exp(—ba|z + 04 + L|03))

where L is an experimental constant (half-distance between
coils). Figure 3 shows an example of simulated observed



data computed by a finite element code and mean-square fit-
ted curves for each models, for given groove parameters.
These model structures have a different numbers of param-
eters. The Final Prediction Error (FPE) criterion developed
by Akaike (1970), measures a compromise between model
complexity and goodness of fit [10] :

N
Jrre(f;) = %t—g‘j‘%%z %(fj(l'k,é) —u)?

The obtained results are reported in Table 1. The model
fa appears to be the best model in the FPE criterion sense
(this does not still the same for another groove parame-
ters). However, when estimating a measurement quantity,
the structure classification order may change. The measure-

depth=1.66mm, length=4mm
04 . . , .
'\ i
035} 5
ﬁ\ B
03t [ ’b @ ?l
S - I 1 f 3
E 5 ¢ b
£0.25} [ P
g " o
3 02 ;o P
g ¢ \ Rl \
£ AL S A
gos S A
£ Py oz od
0.1 ‘5 u a
o 4
R/ ).
0.0sf J .
_/' N,
B0 60 w20 0 20 40 60 80
X n mm

Figure 3. Observations (o) and mean-square fitted
curves for the models 1 (..), 2 (- -) and 3 (.-.).

ment goal is to estimate the size of the defect (length (!) and
depth (d)) from the knowledge of detector phase. In a previ-
ous approach [4] [3], the measurement quantity is expressed
as a function of the optimal parameters of the model. An al-
gebraic form for g is chosen, a bilinear polynomial function
of 8, which may be written as follows :

d=9g4(8) = 37, » cnbibn + 3 cf;

1= gu(8) = 20 5 chpbiln + 2o, it
d

For several real defects dimensions, the coefficients (cf, , cf)
and (cl),, ¢}) have been computed in the least-squares sense
[3]. Thus for each candidate models an analytical form of
m; = [d;,1;]7(j = 1,3) as a function of 6 is obtained.

In deterministic framework the error is assumed to lie be-
tween some upper and lower bounds (e, €x). Thus each
collected data from the detector belongs to an interval y; €
¥k = [yx + ex, yx + €x]. The prior feasible set Y for the
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model outputs is given by the cartesian product of these N
intervals ¥ = y; X ... X yn (figure 4).
For our application some decisions should be taken from

04 - —
035} | [
b

% 025 l [ | I

.

g o5t [ :

g 0. |I ‘h ||‘ |

2 0.05} ||(| |||||| I,[" k
ommmnlmmmn|||m||ll" llllmmmunummnumu
_0'9-580 -60 40 —2'0 X inémm 2.0 4‘0 6lo 80

Figure 4. Data with error bars.

the numeric value of the defect size, we have to evalu-
ate quantitatively how this data uncertainty affects the esti-
mates. The error bounds are assumed unknown and the data
uncertainty is an additional parameter to be identified. A
simple bounds structure given by a constant bound e for all
the data set is chosen (yx = [yx ~ e, yx + €],k =1...N).
Estimation procedure should find the set of the parameters
values and the additional parameter e. A recently developed
MEBOE (Minimal error bound estimator) algorithm [9] esti-
mates the smallest error bound so that the set S is not empty.
Using the SIVIA algorithm the feasible set S for the parame-
ters is determined. Figure 5 shows this uncertainty informa-
tion on parameters for the first model. The set M of all ad-
missible values of the measurement for each candidate mod-
els is computed using the image evaluation algorithm (Fig-
ure 6). In order to guarantee the quality of the measurement
in the worst case, Am for each candidate model is com-
puted. fo is still the best structure in the second criterion
sense. However, the selection criterion used here takes into
account the final objective of modelling.

{ | f | fa f3
Jrpe | 2.1107% ] 1.910~% | 0.0105
Am 2.20 1.53 4.05

Table 1. Obtained results for both criterion.

6. Concluding remarks

The problem of nonlinear model selection has been con-
sidered for a measurement dedicated approach. In context
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Figure 5. Set of feasible parameters for the first
model structure.
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Figure 6. Image M of the set S for each candidate
model.

of bounded-error estimation, a new selection procedurs has
been proposed. As each candidate structure yields a par-
ticular evaluation of the set of all admissible values of the
measurement quantity, a worst case design is used to select
the optimal model. The pessimism introduced by interval
computations, as soon as there are many occurrences cf the
parameters in the formal expression of the model function,
and the increasing of the complexity of the set description
with the parameters number are the main limitations of
such deterministic techniques. It might be of interest to use
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a different selection criterion and compare its results with
the worst-case ones.

The choice between the stochastic approach presented in
[1] [2] and the deterministic one treated in this paper, can
be oriented by answering the two following questions :

- What kind of information is available ?

If the probability density function (PDF) of the additive
random noise which corrupts the data is known, statistical
methods are likely to be more appropriate. On the other
hand, if noise specification are in terms of tolerance, the
deterministic approach might be more suitable.

- What is the purpose of the measurement ?

If the goal is to guarantee the quality in the worst case, then
minimax design should be preferred, which can be done in
a deterministic framework such as that described here.

If we intend to get credible PDF for the measurement, the
minimization of the PDFs distance with statistical tools
seems more appropriate [1].

We thank MLE. Davoust and J. Oksman for letting us use
their data.

References

[1] S. Brahim-Belhouari and G. Fleury. Choice of nonlin-
ear models via Kullback Leibler information criterion
- a measurement dedicated approach -. Proc. Int. Symp.
on Nonlinear Theory and its Application, pp. 1141-
1144, Swizterland, 1998.

[2] S.Brahim-Belhouari and G. Fleury. Probability distri-
bustion in nonlinear estimation - a measuremerit dedi-
cated approach -. Proc. 9th IEEE Workshop on Statis-
tical Signal and Array Processing, pp. 395-398, Port-
land (USA), 1998.

[3] M.-E. Davoust, G. Fleury and J. Oksman. A paramet-
ric estimation approach for grooves dimensioning us-
ing remote field eddy current inspection. 7o appear in
Research in Nondestructive Evaluation, 1999.

[4] G. Fleury. Non-intrusive time-of-flight flow-meter-
parametric estimation and optimization. Sensors and
Actuators, A(46-47):364-368, 1995.

[5] L. Jaulin and E. Walter. Set inversion via interval anal-
ysis for nonlinear bounded-error estimation. Automat-
ica, 29(4):1053-1064, 1993.

[6] M. Milanese, J. P. Norton, H. Piet-Lahanier and
E. Walter (ed.). Bounding approaches to system iden-
tification. Plenum, New York, 1996.

[7]1 M. Keramat. Analyse statistique et optimisation du
rendement de fabrication des circuits électroniques.



Ph.D Dissertation, Université de Paris XI, Orsay,
1998.

[8] M. Kieffer, L. Jaulin and E. Walter. Guaranteed recur-
sive nonlinear state estimation using interval analysis.
To appear in Proc. 37th IEEE CDC, 1998.

[9] M. Kieffer. Estimation ensembliste par analyse par in-
tervalles, application a la localisation d’un vehicule.
Ph.D Dissertation, Université de Paris XI, Orsay,
1999.

[10] L. Ljung. System Identification, Theory of the User.
Prentice-Hall, Englewood cliffs, 1987.

[11] R. Moore. Interval Analysis. Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1966.

[12] R. Moore. Parameter sets for bounded-error data.
Math. Comput. Simulation, 34:113-119, 1992.

[13] J. P. Norton (ed.). Special issue on bounded-error esti-
mation. Int. J. of Adaptive Control and Signal Process-
ing; Issue 1 : 8(1), 1994; Issue 2 : 9(2), 1995.

[14] B. D. Olin, W. Q. Meeker. Application of statistical
methods to Non-Destructive Evaluation. Technomet-
rics, 38(2):95-112, 1996.

[15] H. Ratschek and J. Rokne. Computer Methods for the
range of functions. Halsted Press, New York, 1984.

[16] L. Sandu, J. Oksman and G. Fleury. Information cri-
teria for the choice of parametric functions for mea-
surement. Accepted in IEEE Trans. on Measurements,
1999.

[17] E. Walter (ed.). Parameter Identification with error
bound. Math. Comput. Simulation, 32(5&6), 1990.

[18] E. Walter, L. Pronzato. Identification of parametric
models from experimental data. Springer, London,
1997.

1080



