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Abstract

This paper is concerned with developing a semiparametric panel model to explain the trend in
UK temperatures and other weather outcomes over the last century. We work with the monthly
averaged maximum and minimum temperatures observed at the twenty six Meteorological Office
stations. The data is an unbalanced panel. We allow the trend to evolve in a nonparametric
way so that we obtain a fuller picture of the evolution of common temperature in the medium
timescale. Profile likelihood estimators (PLE) are proposed and their statistical properties are
studied. The proposed PLE has improved asymptotic property comparing the the sequential

two-step estimators. Finally, forecasting based on the proposed model is studied.
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1 Introduction

The partially linear regression model was introduced in Engle, Granger, Rice and Weiss (1986),

y=B"X+06(2)+¢ (1)

where 6(.) is an unknown scalar function and € is a zero mean error orthogonal to both X and
6(.). This model embodies a compromise between employing a general nonparametric specification
9(X, Z), which, if the conditioning variables are high dimensional, would lead to serious loss of preci-
sion, and a fully parametric specification which may result in badly biased estimators and inconsistent
hypothesis tests. The implicit asymmetry between the effects of X and Z may be attractive when
X consists of dummy or categorical variables, as in Stock (1989, 1991). This specification arises in
various sample selection models, see Ahn and Powell (1993), Newey, Powell, and Walker (1990), and
Lee, Rosenzweig and Pitt (1992). It is also the basis of a general specification test for functional form
introduced in Delgado and Stengos (1994). The model has been used in a number of applications.
We will use a panel data version of this model to model climate change.

The issue of global warming has received a great deal of attention recently. This paper is concerned
with developing a semiparametric model to describe the trend in UK regional temperatures and other
weather outcomes over the last century. The data we work with conditions the analysis we propose.
We work with the monthly averaged maximum and minimum temperatures observed at the twenty
six Meteorological Office stations. The data is an unbalanced panel. We propose a semiparametric
partial linear panel model in which there is a common trend component that is allowed to evolve in
a nonparametric way. This permits the most general possible pattern for the evolution of a common
secular change in temperature. We also allow for a deterministic seasonal component in temperature,
since we are working with monthly data. Gao and Hawthorne (2006) used a univariate partially linear
model to explain annual global temperature in terms of a nonparametric time trend and a covariate
the southern oscillation index (SOI). They applied existing theory to deduce the properties of their
estimators and developed a new adaptive test of the shape of the trend function. See Campbell and
Diebold (2005) for some alternative analysis of multivariate climate time series data. Peteiro-Lopez
and Gonzalez-Manteiga (2006) worked with a multivariate model with cross-sectionally correlated
errors and different trends for each series. They establish distribution theory for the parametric
components and derive the bias and variance of the nonparametric components. Their setting is
similar to ours except that we impose a common trend structure. Furthermore, the covariates in our
parametric part are also common and deterministic, as they represent seasonality. Most importantly
we allow for unbalanced dataset, which is important in applications. This difference has important

implications for efficient estimation. The asymptotic framework we work with allows a non-trivial



fraction of the data to be missing. We propose to use a profile likelihood method, which in the
unbalanced case is different from the sequential two-step squares method proposed by Robinson
(1998) in the univariate case and employed by Peteiro-Lopez and Gonzalez-Manteiga (2006) in the
multivariate case. This method is fully efficient in the Gaussian case as established in Severini and
Wong (1992). Finally, we allow for heteroskedasticity and serial correlation in the error terms.

We apply our methods to the UK dataset. We show the nonparametric trend in comparison
with a more standard parametric approach. In both cases there is an upward trend over the last
twenty years that is statistically significant. We compare our results with those obtained by Gao and

Hawthorne (2006). We also use our model to forecast future temperature.

2 Model and Data

The subject that we are interested are monthly temperatures {y;; }, where i signifies different stations
and ¢ is the corresponding time when the temperature is recorded, ¢t = 1,..., T and ¢ = 1,...,n.
In practice, there may be missing data in the sense that some stations began keeping records before
other stations. In our application, Oxford started in 1857, while Cardiff Bute Park only began in
1977. So we suppose that station ¢ starts at time t;, ¢ = 1, ..., n, thus records for station ¢ are only
available from time ¢; to T". Order the stations by their starting point so that t; <ty < --- <t, <T.
The complete record occurs after t,. At any point in time there are n; stations available with n;

varying from one to n. The most general model we consider is of the following form
yit = o + B, Dy + ] X + g:i(t/T) + €a,

where i =1,...,nand t = t;,...,T. Here, D, € R? is a vector of seasonal dummy variables, X;; are
a vector of observed covariates, and the error terms € satisfy E(e;|X;;) = 0 a.s.. The functions g;(-)
are unknown but smooth. These represent the trend in temperatures at location i. We shall further
assume that ¢;(-) = ¢(+), so that there is a single common trend, which imposes a standard way of
thinking about climate change. For simplicity we also dispense with the additional covariates X (in
our application we are concerned with documenting the temperature record rather than assigning
changes to particular causes). The parameter vector 0 = (a, ..., ay, ﬂlT, . 52 )T is unknown and
describes the seasonal and level effects for the different locations. The model is not identified as
it stands, since one can add a constant to each «; and subtract the same constant from g(-). For
identification we suppose that > ; @; = 0, in which case the function g(.) represents the common
level of average temperature relative to average seasonal variation. According to Wikipedia (2009):

"Climate change is any long-term significant change in the “average weather" of a region or the earth



as a whole. Average weather may include average temperature, precipitation and wind patterns."
Our model directly permits the measuring of this average weather trend through the function g(-).
In doing the asymptotics we suppose that T — oo but n is fixed (in fact n = 26 in our application).

In conclusion the model we adopt for the application is as follows
Yir = i + B Dy + g(t/T) + e, (2)

where the error term may be heteroskedastic across ¢ and serially correlated over time. Let B? =
(Bi1s -+ B;q)- We can write the model as

d
y=Aa+> C;B;+ Bg+e, (3)

j=1

where y, ¢ is the nT" x 1 data,error vector with zeros in place of missing observations, while o € R",
g = (9(1/T),...,9(1))" € RT , and 3; = (By,,...,0,;) € R". In this case, A, B are matrices
of conformable dimensions of zeros and ones that reflect the commonality and missingness as well,
see below. The matrices C; contains the dummy variable D;. This representation is different from
equation (2) of Peteiro-Lopez and Gonzalez-Manteiga (2006); it allows for the "missingness" of data
in some observation units and preserves a simple algebraic structure that is useful in the sequel.

Suppose n = 2 and T = 3 and for simplicity that d = 0, i.e., no seasonal effect. Then

Y11 10 1 00 11
Y12 10 010 €12
Y13 10|[a 001" e1s
= + g2 | T
0 0 0 Qo 00O 0
g3
Y22 01 010 E99
Y23 01 0 01 €93

3 Profile Likelihood Estimation

Our model may be estimated using different nonparametric methods. We consider in this paper the
widely used kernel estimators. Specifically, we consider the Gaussian profile likelihood procedure for
the general unbalanced case - see additional discussions in Remarks 2 - 3 for advantages of using
profile likelihood estimation. This in general leads to semiparametrically efficient estimators, Severini

and Wong (1992).



3.1 The Estimator of g

We first define the local profile likelihood in the local parameter n € R:

Cot)T) = S5 (i — 0 — 51Dy — 1) Kal(t - )/7)

s=1 =1

- ZZ Yis — i — 8] Dy — 1) Ky ((t — 8)/T),

i=1 s=t;
where I, denotes the set of stations available at time s, which is of cardinality n, and we assumed
the ordering of the stations is consistently chosen. Here, K is a kernel function and £ is a bandwidth
so that K} (.) = K(./h)/h. The first derivative with respect to 7 is given by

WT zzz Yis — 0 — B Dy — ) Kn((t — 8)/T),

s=1 i€l
so that
5 = /T = L i Dems (e ~ i = BT Da) Kil(t = 5)/T)
= 0o = -
T Zf:t Ki((t—s)/T)
TS0 Kl(t = 9)/T) 524 (s — s = B D)
T3 Ka((t = 8)/T)n,
Notice that if we standardize the kernel so that 7' 3.7 K}, (u — s/T) = 1, then, when T is large,
my = m, where my =T-1>"" | Zzzti Ky((s —1t)/T), for all t with t,,/T <t/T < tp41/T.

3.2 The Estimator of 0

The global profile likelihood in the parameter vector 6 is given by

- Z Z (0 — a; — ﬁjTDt - ﬁe'(t/T))2 .

j=1 t=t;
We maximize this subject to the constraint that Zai = 0, equivalently finding the first order
i=1

condition of the Lagrangian L(6,\) = L(0;gp) + A Z a;.

The first derivatives of £ with respect to 6 are:

IL(0; g +(0) 0L(0; g
OB 233 sl 2O o35S T

j=1 t=t; j=1 t=t;




where €;,(0) = yj: — a; — 6;Dt —Go(t/T) and

_ 9Gp(t/T)
80@

0g;:(0) { —Dy — _agga(;{:r) ifj=1i

Qg
ooy else

02,4(6) {—uw if j=i

9B, — —@"a(;/ 1) else
for i =1,...,n, where
95s(t)T) 11 XT:K (¢ $)/T) e iSme
—_— == - — ¢ ,as 1 — oo.
Oay my T = " 0, > my

9G(t/T) 11« —oin, i <my

LAY Sl K, ((t—3s)/T)D, — me ,as T — o0
061 mtT ; h(( )/ ) 011, 7> my

do not depend on the unknown parameters. The profile likelihood equations are linear in 6 and can

be solved explicitly to give the constrained estimators 6. We then define the nonparametric estimator

g(u) = gy(u).

3.3 In Matrix Notation

We may re-write the vector of 7 as

d
9o = (Go(1/T),....90(1))" = (i, @ K) (y —Aa =) Cj%) : (4)

=1
where K is the 7" x T smoother matrix with typical element K;s = K((t — s)/T)/m,T, and m; =

T Y Kol(s = D)/T).

In matrix notation the profile likelihood estimator solves

d T d
,min_ <y —Aa—=> C;B; - B§e> (y —Aa =) CiB; - B§e>

=1 i=1
or equivalently, since gy is linear in y,
o NT /.~
min (y—X9> (y—XG),
0:aTi,=1

where § = (o, 8],...,8;)" € R™¥D and X = (E, 517 .. ,5’d) is nT by n(d + 1), while: y = My,
A= MA, and 5j = MC; with M = I,y — B(i,, @ K). Ignoring the restriction we can write the above
first order conditions in the following matrix form XTX0 =X 77, except that XTX is singular.

Define ¢" = (1,...,1,0,...,0), then the linear restriction is represented as ¢' 6 = 0. Then define the

6



matrix R, which is a k x (k — 1) matrix, where k = n(d + 1), such that (¢, R) is non singular and
R"q =0, Amemiya (1985, §1.4). In this case, we can take

R Ry
Ry Ry

In—l

. ] ; R4 = dndxnd,
—lp—
n—1 nxn—1

where i,,_1 is the n —1 x 1 vector of ones, and R,, R3 are matrices of zeros of conformable dimensions.

; R1:

It follows that for the profile likelihood estimator subject to the linear restriction g0 = 0, we have
—~ SOOI | ~
0=R (RTXTXR) RTXT7,

where RTXTXR is non-singular.’ Then,

d
G="(i ®K) (,y—Aa—chEj) .
j=1
In computing the least squares estimators in our application we make some additional steps because
T is very large, 1858 in fact. We partition A = (A,...,A})" and B = (B],...,B})", where
A; and B; are T' x n matrices and 7" x T" matrices respectively. Then, for example, MA = A —
(BIKY )\ A" (BK Y A))T) T, where ByKA; is a T x n matrix. In this way one can

avoid matrices of dimensions nT" x n1" or even n1’ x T, which are too large to fit into memory.

4 Asymptotic Properties

In this section we present the asymptotic properties of the estimators defined above. The follow-
ing conditions are quite standard in kernel estimation. For the convenience of asymptotic analy-
sis, we introduce [J-mixing (absolutely regular), which is defined as follows. A stationary process
{(&, F), —00 < t < oo} is said to be S-mixing (or, absolutely regular) if the mixing coefficient 5(n)
defined by

Bln) = B{ sup |P(A|FL) ~ P(A)]}

AeF,
converges to zero as n — 00. [-mixing includes many linear and nonlinear time series models as
special cases; see Doukhan (1994) for more discussion on mixing.

ASSUMPTIONS A.

INote that Ria = (a1,...,05,-1)". We can interpret the above as a reparameterizion to 6 =

(ar,...,0m 1,81 ,...80)T with a,, = 72?;11 «; and then changing A — A* in (3) to reflect the different struc-

n

ture. For example, in the special case given above, A* = (1,1,1,0,—1,—1)T. Then compute 9 by an unconstrained

regression.



1. For each i, ey is a stationary (-mizing with mizing decay rate 3, with lim sup, b' maxi<;<, 3; <
oo for some b > 1, 372 E(eucpyn) = w? and s? = Y po  E(cucitraon) with 0 < w <

minlgign Ws S maxlgign Wj S w < 00.
2. The function g : [0, 1] =R, is continuously differentiable up to the order T > p.

3. The kernel K has support [—1,1] and is symmetric about zero and satisfies [ K(u)du =1. In
addition, [wK(u)du=0,j=1,...,p—1, and [w’K(u)du # 0. Define ,(K) = [uPK(u)du
and ||K||3 = [ K?(2)d=.

4. The bandwidth satisfies:

(a) As T — oo, h — 0, and Th — oo, Th** — 0

(b) h = erT Y2+ with 0 < li%n infep < limsuper < oo.
—00 T—oo

Assumptions Al is a typical assumption in the time series literature and ensures that ¢ is sta-
tionary with weak dependence and that appropriate limiting theory can be applied. This condition
is useful in our technical development and, no doubt could be replaced by a range of similar assump-
tions. Assumption A2 concerns about the smoothness of the trend function and ensures a Taylor
expansion to appropriate order. Assumption A3 for the kernel function and Assumption A4 for the
bandwidth expansion are quite standard in nonparametric estimation: in part a, the bandwidth is
chosen to ensure root-T" asymptotics for parametric quantities; in part b, the bandwidth is chosen to
be optimal for estimation of the nonparametric component.

The asymptotics depends on our assumptions about t; <ty < --- < ¢,. In the simplest case when
t; <ty <--- <t, are finite numbers, the asymptotic results are the same as those with complete data
- the differences in the starting dates are asymptotically ignorable, thus the asymptotic distributions

are unaffected by the difference of starting dates. We shall assume that ¢; — oo in such a way that
t; = |r;T], where r; € (0,1), (5)

fori =1,...,n, (and r,11; = 1) in which case the starting time affects the estimators asymptotically.
To present the main result we need some notation. Let ay; = ZZ:]' (rog1—1s) /8% k=1,2,3,4,

0i = (1 —r; —2a1; + ax), fi = (n+2)ag; — 2a1,; — nag;, and \; = (n2a47i —4nas; + 4ay;), and let
Q, = diag[ SR, . SR .., buu? } :

19

A, = diag{l,...,1—r;...,1—r,}.

S, = diag[éls%, U - T 5nsﬂ



In addition, let A,, be the n x n symmetric matrix whose (7, j)-th element is

i—1 . .
_ { AW S AW, i=j

[ n]”

fi (w? + "%2) + A Zl;é]:,lq‘ Wi A D A, g <
[ (ag1 — 2a11 + > 5 an) o (lag — 2a1+ Y am) oo (nagn — 2a1,) |
Gn = (mm‘ — 2ay; + Zln:i-l,-l CLQZ) (iagi —2a1; + Zl":iﬂ agl) (nasg, — 2a1.,)
i (nag, —2a1,) (nas, — 2ay,) (nag, — 2a1,,)

Then define the matrices:

Q= (6)

(A, +G) @i, A@LLi+G,®Jn |

Q,+ A, [, + An] ® 51
[Qn+An]®1_12i1Tl Sn®1_12111+An®$J11 ’

where 417 is a 11 x 1 vector of ones, and J;; = illilTl is a 11 x 11 matrix of ones, and

b, T
g = I L [ T N A
b® f5in | '
. 1 1
1 ,
=) |3 | 06 @ ds | = | [ s)as
P =1
T Ti
and 0(s) is a weighting function on [0, 1], 6(s) = 1/j, if r; < s <rj11, j = 1,2,...,n. We summarize

the limiting distributions as follows.
THEOREM 1. Suppose that Assumptions A1 - A4 hold, and assume that the initial observation

condition are given by (5). Then, as T — oo,

VT (R'9-R'0+1 (RQR) " R'g") = N (0,(R"QR) " R'QR (R'QR)").
REMARK 1. The asymptotic distribution of the profile likelihood estimator is complicated largely
due to the unbalanced data structure, which affects the limiting distributions under our assumptions.
REMARK 2. The partial linear model that we study in this paper may be estimated by other
methods - see an early version of this paper ALX(2008) for studies of other methods. Comparing the
profile likelihood estimator with the other estimators, the profile likelihood estimator is a joint esti-

mation for the nonparametric and parametric parts, while the other estimators such as the traditional



methods used in the literature of partial linear regressions are sequential two-step estimators. It’s
easy to see that the profile likelihood estimator has a smaller bias term than the two step estimator.
REMARK 3. Heteroskedasticity across ¢, weak correlation over ¢, and seasonality all affect the

limiting results. These effects are reflected through w? and s? in the limits.

If we consider the special case with complete data, all observations start at ¢ = 1, then r; = 0,

i=1,...,n, 1y = 1, and we have §(s) =1/n, for 0 < s <1, j =1,2,...,n. Consequently
. 1 1
1
b= ) | 32 Jo Gyas |~ | o )as || <o
=1 \0 0

This cancellation occurs because of the recentering due to the parametric part of the model.
Thus we have the following simplified asymptotic results for the profile likelihood estimator with

complete data. Let

L.
Q = EX - _EXv (8)
n
In %[n & iirl % Jn 1_12=]n 02y ill
Yx = 1 . 1 , Xy = 1 T 1 ’
15l ® i1 151110 50 @1 i

and {2 is defined by the same formula (7) with

O = diag[ (1-10u .. @-D%l L (-1 ],
1

So o= diag| (1-178 . (-1 (-1 ],
and the (7, j)-th element of A,, is given by
LS w2 = i
[An]ij_{ n212]#ui]’ 2 2 1 2 Z. .
’ —a(1=3) Wi +wf) + 5 iy, G<i

COROLLARY 1. Suppose that Assumptions Al - Aj hold, in the case with complete data, the

profile likelihood estimator has the following asymptotic distribution as T — oo,

VT (R0~ R"0) = N (0. (R"QR) ™ RTQR (R"QR) ') .

If we further assume that e;; are iid distributed with mean zero and variance o?, Q, = S, =

(1 — %)2 o?I,where I, is the n-dimensional identity matrix, and the (7, j)-th element of A, is given

by
1 _102’ i=3j
0 JFi



We next analyze the estimator of the trend function. The asymptotic results of this estimator is
summarized in Theorem 2 below whose proofs are again given in the Appendix.
THEOREM 2. Suppose that Assumptions A1 - AJ hold, and assume that the initial observation

condition are given by (5). Then, as T — oo,
1
VTh[g(u) — g(u) — APb(u)] = N(O, E@AKH%) for w € [ry, rmy1), m=1,...,n—1,
Y 1
VTh[g(u) — g(u) — hb(u)] = N <O, Eoﬂ”KH%) , for u > r,.

where b(u) = Z%g(p)(u)up([(), while @2, =m™' Y " wi wr=n"tY00 Wi
In the special case with complete data, we have the following special result.
COROLLARY 2. Suppose that Assumptions A1 - A4 hold and all observations start at t = 1.

Then, as T — o0,

VIR () - gt0) - 10(w)] = N (02K R ). 0

REMARK 4. It is possible to extend the above results to allow for cross-sectional dependence as
well, since the CLT is coming from the weak dependence in the large time series dimension. Suppose
instead that e, = (e1,...,6m)" = Z(¢/T)Y?n,, where the vector 7, = (1y,...,7m,) " is stationary
[-mixing with the same decay rate as in assumption Al, while =(u) is a symmetric positive definite
matrix of smooth functions. Let U(s) = Enn/., and ¥o, = > oo U(s). Then the asymptotic
variance in (9) becomes || K||3i "= (u)?¥ = (u)"/%i/n, where i = (1,1,...,1)". However, the results
for § are much more complicated in this case.

REMARK 5. One can also expect that Theorem 2 continues to hold in the case where n — oo.
In this case, the rate of convergence of §(u) is of order 1//T'mh, and if u > r, this rate is 1/v/Tnh.
The precise rates attainable depend on the distribution of the sequence 71,73, ... throughout [0, 1].
However, the asymptotic distribution is the same regardless of whether n is large or not. The
corresponding results for 0 have to be rethought in this case because the dimensions of this parameter

vector increases.

5 Forecasting

In this section we consider forecasting based on the semiparametric model (2). In particular, we
consider g-step forecasting, i.e. forecasting of y; 71, based on information upto time 7. Our primary
interest is to forecast y; 7y, with finite ¢, although our analysis allows for forecasts with ¢ — oo
under appropriate expansion rate of g. The common structure in our model allows us to exploit the

forecasting gains entailed by these restrictions (reduction in forecasting variance), which amount to

11



homogeneity restrictions in a panel-data environment. These restrictions were found to be helpful
in the empirical application of Hoogstrate, Palm, and Pfann (2000) for GDP forecasts. In a recent
paper, Issler and Lima (2009) have a theoretical explanation of why these restrictions might work in
practice.

Notice that

Yirrq = % + B Drog+ g(1+ ¢/T) + €544

Therefore, a simple forecast for y; 744, that ignores the error dynamics, can be obtained based on
estimators for «;, §;, and a predictor of g(1 4+ ¢/T") based on observations i = 1,...,n and t < T.
Since estimators for «y, 3; are studied in the previous sections, we study forecasting of g(1+ ¢/7') in
this section and construct a predictor of y; 7, using the predicted g(1+¢/T"). We are also interested

in forecasting the average temperature, 7y, = Z?:l YiT+q/M, given by
_ =T A
Urig =B Dryg+9(1+¢/T)+7, (10)

_T _
where 8 =371, B;/n, and Eriq = Y1, €i11q/ 1
We first consider the simple case when {¢;; }, are martingale difference sequences. Since forecasting
of g(1+ ¢/T) is the key issue, we note that

Eryiriq = ai + 51‘TDT+q +9(14¢/T),

where Er denotes conditional expectation given the data.

We make the following assumptions to facilitate forecasting the common trend.

A1’ For each i, e is a martingale difference sequence, F (¢2,) = o7, and 0 < g < minj<i<, 0; <

maXxi<i<n 0 <7 < oo
A2’ The function g : [0, 1 + €] =R, some € > 0, is continuously differentiable up to the order T > p.

A5 K is a one-sided kernel satisfying (a) K and K' are continuous on [—1,0]; (b) ui(KC) > 0 and
1 (K)ps(K) — 3 (K)? > 0, where pu5(K) = [°, wK (u)du.

A6 The bandwidth h satisfies A4(a) and the bandwidth hy satisfies h/hy — 0 as T — 0.

We construct a local polynomial predictor for g(1 + ¢/T). Notice that g (-) is a smooth function
under Assumption A2’; therefore, when T' — oo, ¢/T — 0, by a Taylor expansion of g(-) around
u =1 to the 7-th order (7 =p — 1),

o0 =500 (3 +o((3)) - (3)' +((3))

k=0
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As will be more clear later in this section, forecasting at time T is largely affected by data

information close to time 7. We let
n ~ T B T
y,=n (yit =i = B; Dy) =5, — B Dx,
i=1
for t,, <t <T.Let K(-) be a one-sided kernel whose properties are defined in Assumption A5 above,

we consider the following local polynomial estimation at the end point 7":

S (1) (-5 (5))

where h; is a bandwidth parameter satisfying Assumption AG.
We summarize the asymptotic behavior of the local polynomial estimator (11) in the following

Theorem. Let

M:+1(’C)
BE) = e |7
M§T+1(K)
wK) (k) K vi(K) (K)o viK)
M= | H0O I el | e | A0 K vl |
pr(K)  pra (K)o ps(K) vi(K) ... V3, (K)

and i} (K) = ffl K (u) uFdu, v5(K) = ffl w K%(u)du. Let also Dy, = diag (1,h,...,h7).
THEOREM 3. Suppose that Assumptions A1, A2', A3, Aj, A5, and A6 hold, as T — oo,

VThDy, (7 —~ — ki M(K) ' B(K)) = N <0, %UQM(IC)‘1V(IC)M(IC)‘1> ,

where o> =n"'Y " o2

The above result indicates that the leading bias effect of local polynomial estimation of (g, V1, - - ,7,)
is given by h™™1 D, M (K)~1 B(K), and the leading variance effect is given by
WDy P M(K) YV (K)M(K)~*D; /nTh. The local polynomial predictor for g(1 + ¢/T) is then given

by
and our predictor for y; 71, is given by
~ ~ T ~
Yir+q = Qi+ B; Drig +9(1 +¢/T). (12)

13



The forecast for average temperature is just the average forecast, so

~ =T .
Uriq =0 Drig+3g(1+q/T), (13)

where § = n! S BZT

The forecasting error is given in the following theorem. Let P, = (1, (q/Th),...,(q/Th))". Let
E}. denotes asymptotic conditional expectation given the data.

THEOREM 4. Suppose that Assumptions A1, A2', A8, A4, and A5 hold, as T — oo, the fore-

casting bias in Y; r+q i given by
Et{§irq — Yirra] = by = I [PTM(K)T'B(K) + o(1)] ,

and the forecasting error variance in Y14 is given by
1

E; [(firsa — Erlirrq)’] = oF + <Tnh [PIM(K) =V (K)M(K)™P, + o<1>]> o,

2 is defined in Theorem 3. For the forecast of average temperature, @T +q» the forecasting bias

where, o
is the same as that of Y;r+q given by the above formula, and the forecasting error variance in §T +q
18 given by

1 1

B [@Tﬂ . Eﬁm) 2] == <1 + o [PTMK) V()M (K) P, + 0(1)]> o2,

The results of Theorems 3 and 4 indicate that the forecasting error of ¥; 11, is dominated by that
of the local polynomial forecaster of g(1+¢/7). In particular, for the leading case of forecasting with
finite ¢, the bias term is dominated by the first term in b, : A7 By, where By is the first element
in the (7 + 1)-vector M (K)~'B(K). The forecasting error variance is dominated by ¢ + Vo2 /Tnh,
where V; is the (1,1)-element of matrix M (K)~ 'V (K)M(K)~!. Similar result can be obtained for
the average temperature forecaster @T +q- These results also hold for more general cases as long as
q/Th — 0.

If we allow that ¢ — oo, the order of magnitude of the forecasting error is determined jointly by
the bandwidth h and the forecasting distance ¢/T". In the case of ¥; 114, if ¢/Th — 0, the bias term
is dominated by the first term in b, : A7 By, and the forecasting error variance is dominated by
0? 4+ Voo /Tnh, where By and Vj are defined in the same way as above. If ¢/Th — ¢ € (0,00), the
leading bias term is affected by all terms in b, : A" ATM(K) "' B(K), where A, = (1,4,...,67)".
The leading variance terms is giving by: o + AT M (K)"*V(K)M(K)™*A,0%/Tnh. If ¢/Th — oo,

our theory is not applicable.
REMARK 4. In the general case when {¢;}, are weakly dependent,
ET.%’,T—Q—q =o; + BIDT—&-q + g(l -+ C]/T) + ETEi,T+q7

14



where Ep denotes conditional expectation given the data. Under our condition Al, Ere;pyq # 0
(although Ere; 1y — 0 as ¢ — 00). To forecast Ere; iy, we should fit a time series model (say, an
ARMA model as Box and Jenkins) to the error term, and using the existing forecasting method to
construct a predictor. In this case, we may detrend and remove the seasonal components from y; ¢

using our estimates @, 3;, and §(t/T), i.e.
~ —~ AT —~
Eit = Yix — a; — B; Dy — g(t/T)

and then fit the estimated stochastic component €;; by an appropriate ARMA model to obtain
forecast of €; 144, say, ETsZ-’TJrq. A predictor for y; 7., can then be constructed by g(1 + ¢/T) that

we obtained earlier in this section together with other components, i.e.
~ ~ T ~ =~
YiT+q = O + ﬂi DT+q + g(l + Q/T) + ETgi,Tﬂ]'

In the AR(1) special case €;; = pe; 1—1+1;;, Where 1, is iid, we have Ere; 7, = pe; 7. More generally,
for ARMA process errors one could use the standard linear forecasting techniques associated with
Box and Jenkins. Alternatively, we may ignore the error dynamics and simple construct forecasts for
Yir+q and Yp,, by (12) and (13). Such predictors are asymptotically equivalent to predictors that
takes into account the weak correlation in ¢;, for long-run forecasting (the case ¢ — 00), but are less

efficient for short-run forecasting than predictors that utilize the correlation property.

6 Application

Our dataset contains the average maximum temperature within a month (T'M AX), the average
minimum temperature within a month ("M IN), the difference between the average maximum and
minimum temperatures within a month b(TTRANGE), all measured in degrees Celsius and also the
number of hours of sunshine and the number of millimeters of rainfall. The primary data source is
the met office web site for each of the twenty six stations.? The first observations were taken in 1853

at Armagh and Oxford so that we have a total of 1858 time series records.

2The data are available at http://www.metoffice.gov.uk/climate/uk/stationdata/
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Figure 1.

In the working paper version of this paper we provide the full results of a univariate parametric
analysis based on a quadratic trend. This shows evidence of seasonality and an upward trend for
all stations. There is also some evidence of serial correlation in the residuals but little evidence of
GARCH effects. The error correlation does not affect the estimation of the regression coefficients
and changes only slightly the standard errors. Similar results were obtained for both maximum
and minimum temperature. We also report results for the range. These are somewhat different.
Specifically, the trend coefficients are significant in only nine cases, with seven of those cases having
a similar upward trend, whereas the other two actually have a negative trend in range. Range has
also a significant seasonal effect and a significant autocorrelation coefficient in most cases. The results
for sunshine hours are not so consistent as for temperature. There are seven stations with significant
trends, six of them with increasing trend. Overall though many other stations have negative, albeit
insignificant, trends. With rainfall, the trend is not significant in any station.

One critique of such a parametric analysis is that the implied trend is a little unrealistic and poorly
estimated. Extrapolating beyond the sample implies an outrageously high temperature twenty years
from now, which is just not credible. This is why we have advocated a semiparametric approach.

We next present the results of the semiparametric analysis. In Tables 1 and 2 we give the

estimated values of 6 and the associated standard errors for TMAX and TMIN. The parameter
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values are strongly significant and show evidence of geographic variability in the level of temperature
and seasonality. These results are broadly consistent with the individual purely parametric results
we gave in the working paper version.

We present in Figures 2 and 3 the implied trend from the parametric analysis. The jagged nature
of the graph is caused by the introduction of new stations. Also note that the implied trend at the
end of the period is quite extreme. Our results are somewhat different from those obtained in Gao
and Hawthorne (2006) for example, since we find evidence of trend starting much later. In Figures
4 and 5 we give the estimated nonparametric trend over the same period. The trend is much more
moderate especially at the end of the period. In Figures 6 and 7 we give the trend just for the recent
period by only considering the balanced subset of the data. Even though the nonparametric trend
indicates some variation i.e., some downward movements, but generally it climbs upward, this being
more pronounced after 1995. In both cases, balanced and unbalanced, we can easily claim that there
is an upward trend for the TMAX and TMIN values. These were implemented using a Gaussian
kernel and Silverman’s rule of thumb bandwidth (which in this case yield h ~ 0.05). As we remarked
in the text, the estimation of the common trend is purely local and unaffected by earlier data. The
standard errors for the nonparametric estimators of TMAX and TMIN over the shown period are
0.476709, 0.48602 respectively, indicating the level of significance of the estimated curves.

We next present the result of an out of sample analysis. We compute the estimated forecast
based on local linear smoothing. We report the absolute error for the p-step forecast, where p =
1,2,...,12, so forecasting out to one year ahead. The forecast errors given in Figures 8 and 9 appear
reasonable and are better than the corresponding parametric results, which substantially overpredict

the temperature in this period.

ek Figures and Tables Here***

7 Conclusion

In conclusion, we have developed a semiparametric model we think is appropriate for modelling the
changes in temperatures observed at a cross section of locations. The model and methods are defined
for the important practical case of unbalanced data. The methods we develop give similar results to
a parametric analysis and help to confirm the main finding of a gradual upward trend in temperature
in the UK, although with somewhat less trend obtained by the nonparametric method than the

parametric one.
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8 Appendix

8.1 Proof of Theorems

PrOOF OF THEOREM 1. The first order condition (FOC) for 6 is

oS (v - B Dy gty 1)) 22D

Oay;
]767 t=t; %

oy (e — 6~ B Dy~ Gu(t/T)) (1 . %) 0

t=t;

(9£

03(t/T)
- —;;(yﬁ—a] 5, D= Go(t/T)) 52—

- :Z (s~ @~ B D1~ ttym)) (s + 22 ) o,

where:

0go(t/T) _ 11 —p <My
90 ZKh ((t—s)/T) — o

Stl 1> My

0ge(t/T) _ 11 — e, i< my
R IR |

s—t; 011, 1> My

Thus, fori=1,...,n,

ZZ (ylt —a; — 51 D, — ——ZZ (Z/gs .- B'TDS) Kn((t — 9)/T)) a/g\%(i/iT) n

I#i t=t; j=1 s=t;

ET: (?Jit Dt———ZZ (v - @ -—ﬁ-DS) Kh((ts)/:r)> <1+%ZT)) =0,

t=t; j=1 s=t;

T3 (s 0 2SS e ) e om) B

I#i t=t; j=1 s=t;
T T 11 T dge(t/T)

~ > [} -
; vit — Qi — B; Dt—E?;§<y]S -3, D)Kh((t—s)/T) <Dt+7aﬁi >_o,

Substitute the true model y; = a; + ﬁth + g(t/T) + €; into the above FOC, notice that
AT R AT T
Yir — 0 — B; Dy = e+ g(t/T) — (4 — a;) — (51 — B ) Dy,
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thus we have, fori =1,..., n, the corresponding FOC w.r.t. «; is given by

§[Z% LAY ;af’@;m (3 -ar)

Eﬂ};Z@(Zw m3an)] o)
[ ;; (ZKh((t—s)/ﬂ)% (@ — )

> -0) [T (5 pane- om) B
(BT_W) [;;mt (TZDKh )>%ZT)

-0y (1- 2L - am) (14 2200)

t=t;

+ (BZT - ﬁj) i (Dt - mit%iDsKh((t — 5)/T)> (1 + ab\%(ZZT)>

t=t;

Y ~(1ly L 0lt/7)
_ Z Oé —Q; Z; (ET;;Kh((tS)/T)) ( —eaal )

J#i,j=1
~T T 11 T a/g\g(t/T)
_#;l(ﬂf —5?)2 (WT;DSKA(ts)/T)) <1+ o )
Rt 11 Go(t/T)
— ;; Elt—ﬁt?]zlgqsffh ((t—s /T)) 90

22 (9 ) ———ZZg s/ T)En((t - >/T>) R
I#i =t j=1 s=t; i
+2.

(eit 4 mi% ZaisKh«t - s)/T)> (1 + %ﬁ)
g(t/T) ———ZZg s/ TV (( ts)/T)) < 35%(ZT>)

j=1 s=t;

me T Zé‘jsKh((t — S)/T)) <1 n a%@(;iT))

J#L=1 s=t;j

ol
£
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and the corresponding FOC w.r.t. 3; is

; [ET: a@gZT) G, — an) + ; ;aga ;/ Dp | (B —o7)

;{ >2 (zK @gﬂs;”))lw

z< ) [ZZ (%;Dsf{h“”””) =)
(AT BT) [;;mt (1 ;DsKh((t—s)/T)> %ZT)

T

@)} (1 e Z Ki((t - s)/T>> (o 25510)

t=t;

+ (5 - 8) 3 (Dt— mit%épsm((t—s)/ﬂ) (Dt+ aﬁg(;i:r))

t=t;

Y ~(Lly 9Gu(t/T)
_ Z a; — Qj Z (ET;KFL(@S)/T)> <Dt—l— 9851 )

J#4j=1 t=t;
SR )3 Ry o5 (t/)
_ﬁ;j_l (/6] — B ) ; (mtTZDsKh,((t - S)/T)) <Dt+ 95, )
= ZZ (Elt ilzzgjs[(h t— s /T)) 699<t/T)
I#i 1=t i1 =t
T - = B Jge(t/T)

+2.2 |9/ Zng/TKh (=) | 2l

I t=t )

T

+Z (Eit ~ mit% ZgisKh((t — 5)/T)> <Dt + %ﬁ)
"’Z (Q(t/ - ——ZZQ s/T)Kp((t — s)/T)) < 8998(;/‘11))
2

j=1 s=t;

b %o () T)
Z ZngKh((t - 5)/T)) <Dt + T@) .

=1 s=t;

M| =

1
my
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If we denote:

C1(1,11 cee C’aJn C(b,ll cee Cb71n
CT@ — ,CTJ):
i Oa,nl cee Ca,nn C(b,nl cee Cb,nn
CA,11 ce CA,ln CB,11 B CB,m
CT,A = ,OT,B:
i CA,nl cee CA,nn CYB,nl cee CB,nn
da,l dA,l €a,1 €A1
da = y dA = y €a = y €A 5
da,n dA,n €an €An
LS P T e $)/1)) (1+ 2440
T - S S (S Bl )/ )
T l#i t=t; my s=t; h da;
) )
o 1 R S S (S0, (- /1))
a,ij T _Zt N (nung 4 Ky ((t — s) /T)) <1+ 99(t/T)
: 1 XL, (P - 255, DK - 5)/T)) (14 24D)
bii — T
T\ =[Sl & (350, DIK(t - s)/T) ) 220
G )
o L[ SLormEn 4y S (S, DK - 9)/T) D)
bij =
T T O (mtT >oay, DKn((t - 5)/T)) (1 + aﬁeum)

oy = \/_ZZ( (t/T) ___ZZQ(S/T V(- )/T)) GE%(ZT)

I#i t=t sy
rE (- g S am) (o842
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.- LT;Gt—mi}Zg i t—S)/T)) (1+ 2D
1 ¢ d 59t/ T
AE (T xmse-omEiE)-
Y (o ) > 13 (ST ame—m D).,
TJ ' J#i,j=1 =t I#£i t=t;

’ﬂ

> 12(2 i orm (122D

VT 55 s=t;

o EnL (- Wi Ky((t — 5)/T)) (D + St
Casi = T { [ Zl# Zt W= (Z - Kn((t — s)/T)) age(t/T ] }
o ST, Hn 15 ST L (Zs ) KM(t—s)/T)%)
" T N Zt—t (mt T > o, (= 5)/T)) (Dt + %;{T))
L1 [ L (D= AL, DIK(E = 9/T)) (D + )
wt [Z# S (% ST, DIK(t - 5)/T)) T/}
1 [z (mz il sm) (Dt+ _@g;{ﬂ)]
day = \}TZZT: (g t)T) _Lliig (s)T)Kn((t s)/T)) %;/T)
I#i t=t; J=1 s=t; i

j=1 s=t;

+> (9 t/T) ———ZZg s/T) K ts)/T)) <Dt+—a§§2/T)>
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99(t/T)
LT

€A

52'5Kh((t — S)/T)) <Dt

)

T N
1 11 95s(t/T)
—TZ(ZZmKh«ts)m W),
s=t; \ l#i t=t,
L —~ 9u(t/T) S g 0o t/T)
I 23 DI e DD D B DI B AR 8
37 \=t JELI=1" s=t; \I#i t=t
n T T .
L 1 1 95 (t/T)\ )
VT TZ< Lt o)1) D+ ZHLDY ),
JjAig=1 " s=t; \t=t;
then we have _
Cra Crp VT (@ — a) | e R
Cra Crp VT (6 — ﬁ) i da ex
Let )
a d, .
CT _ CT, CT,b : dT _ - e 7
Cra Crp da | e

the FOC can be written as:
CT\/T (9\— (9) = dT + er.

Thus the profile likelihood estimator subject to the linear restriction ¢'6 = 0 satisfies
VT (0-0) = R(R'CrR) " RTdr + R (RTCrR) ™" Rer,
where R is the K x (K — 1) normalized orthogonal complements of g.

By results of Lemmas 1 and 2, as T' — oo :

C11 C1; Cin
Cro= | ca Cii Cin =A,+ G, =Cy,
L Cnl Cni Cnn i
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o
[ en ey e cn ]
- 1.
= Ci1 Cii Cin | ® (12111> = (A +Gy) ® <12111> 5
| Cni Cn |

C11 C1i Cin

12

Cnl Cni Cnn

and

1 1
C1T,B - An & EIH + Gn ® 192 111111
Thus

A, + G, A, + G ®
CTHQ:[ ( )

By Lemma 3, the bias terms are

[ ja ] = —VTh? +0(\/Thp),

b® i
where:
-
b— [ b ... b ... b, ]
1 1
1
b= 1) | 3 [ [ 8297 / w(s)g
£\,
where w(s) and d(s) are weighting functions on [0,1] :
1. .
is) = —,ifry<s<rj,j=12,...,n
J
1
w(s) = 1=6(s)=1—=,ifr;<s<rj,j=12,...
J
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1
= Ci1 Cii Cin | ® <—111> = (A, +G,)®

1
Eln

1
(A +G ) 121; An®1—12]11 +Gn®1_%2i1T1i11 ] :

, M.



By Lemma 4, the stochastic term er converge in distribution to a multivariate normal with

covariance matrix

Qi Qe || Qut Ay [, + A @ 1511
Qo1 Qoo Q.+ A4, ® %ilTl Sn ® ﬁjll +A,® 122 J11

PrROOF OF THEOREM 2. Consider

n T
T Zi:] ZZ:ti (yis — 0y — BZ Ds) Kh(u — S/T)
TV, Y, Kn(u—s/T) .
If o <u < tmTH’ i ZtT:ti Kp(u—t/T)/T =>", ZtT:ti K([u—t/T] /h)/Th = m. Therefore,

gp(u) =

n T
gp(u) = % >N Ku(u—t/T) (yit & — B:Dt>

i=1 t=t;

- T#miimu—tm /1) (= = 5] Di = @ — o) = (B: = 57) D)

i=1 t=t;

© i SO Kt/ ) (s07) 2~ @)~ (31~ 67) )

ilttl

- TthZK [w—t/T] /h)g(t/T) + hZZK [w—t/T /D)

=1 t=t; =1 t=t;

TthZK [ —t/T] /1) (@ — o)

Tmh;tE;K [u—t/T)] /h)( ) .

For the first stochastic term,

TthZK [u—t/T] /h)ey = Z{ThZK [u—t/T] /h)gn}

=1 t=t; i=1 t=t;

Again, for each i, >, K([u —t/T] /h)e; is a weighted sum of weakly correlated random variables

and a CLT applies,
T

Z (lu—t/T) [h)ey = wi| | K||2/%¢

’L"
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The second term is simply a kernel smoothed estimator of g(u),

m

1
LSS Kl 4/T) gt/ T)

i=1 t=t;

_ % > % N K([u—t/T) /h)g(t/T)

= X KT /h){ > () g<f‘><u)}+o<hp>

_ %Z(g + g )/1z”K(z)dz+o(h”).>

0
1 1
= g(u)+ Hh”g(p)(u) / YK (z)dz + o(hP).
! 0

For the third and fourth terms,

TiZ K= t/7) /1) @ = a) =0, (1)

Z (fu /11 /1) (B - )Dt—op(jT_h),

uMg ¥

the preliminary estimation of # does not affect the first order asymptotics for this estimator.

Thus for t,,/T < u < typ/T,m=1,...,n—1,

VTR () — () — WD) = N (0,% (% Dﬁ) ||K||§> .

i=1
For u > t,/T,

VR[5 (1) = g(u) — #b(u)] = N (o, ; (% Z“’?> HKH§> .

PROOF OF THEOREMS 3 AND 4. Notice that when ¢/T — 0, as T — oo, under Assumption

A2’ by a Taylor expansion,

T T k T
o(1+4/T) D () (7)) =X (7) +o (7))
+4q/T) Z k,g =) ol l; e (7) +oll7
The local polynomial estimation at the end point T is given as follows:

T Yo 1

T—1 2
t:leC (W) <gt _ fyTxt) , Wwhere v = : , Ty = t__T ]
o ()
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The local polynomial estimator can be written as

é'c <TT—7zt> “”””:] 71 e A0 > (TT—_ht) (“T (#yl) .

By result of ALX(2008),
T—t
ZK ( ) Ty ] ZK (W) ZEtgt
~1
e L (T—t t—T\" _ .
Z K < ) T4, ] (7— n 1)'g(T+1)(1) ;’C (T—h> (.@t <T—h> + Op((Th) 1/2 +h +1‘

Notice that, under Assumption 5,

and thus
W) ) . p(K)
A () [ 0 |
WK) i (K) L s, (K)

Notice that, although with incomplete data, when we consider the end point 7" and neighbourhood

around 7', observations from all i are available,

Z( )( )(ZE“> ZN wiv )—N(O,”;’;—(f)éwg>,

and
Vi(K) Vi) ... vi(K)
\/__Z < >$t5t = N 0 Z;;;w% l/y{(]C) V;(IC) Vj'+1(.K:) - N <O,%w2V(IC)> 7
7 (K)o Vs, (K)



where w? = """ w?/n, since
T k T
1 T—1 t—T 1 T—s
El Sk (20 (20) co) (=&
(w/_Th; ( Th ) ( Th ) “) <~/_Th; < Th
- <Z . <j>) [r@r =)

j=—00

) <ST_hT>l€”>

The variance term of the local polynomial estimator is
T -1 T
1 T—1t 1 T—1t 1
— K| —— ' —= K| —— )& M(K)™'N (0, V(K
Th 2- ( Th ) xtact] Thz < Th ) TE = (K) < )W (K)

= N <o7 %cﬁM(}C)lV(IC)M(IC)l) :

And the bias term

M:—H(’C)

L _en Ly r—t t—T\™" 1 T+ +2(K)

e )“)T_h;“(T—h) (xt(T—U >*<T+1>!9( ol B RG]
;u;rJrl(lC)

Thus
VTh (7 -~ — M (K)B(K)) = N (0, %wQM(IC)IV(IC)M(IC)1> .

Notice that

1
I~ _ pT—k+1
T e =h Bi + VThk+1/2 Us,
and our forecaster for g(1 + ¢/T') is given by
by ~ . (q\*
91+q/T)= ) - (T) :

k=0

Thus, the forecasting error is
9 +q/T) —g(1+q/T)

- S ) ()

k=0

_|_

. 1 q\* q\"
7) U)rel(z)):
k=0 <\/Thk+1/2 <T> k) o\
The bias and variance terms are given by

> (e (1) ) = 2 () )

k=0
T 1 q k 1 T q k

0= S (8) - S () O
po \/Thk+1/2 T

by



whose order of magnitude are jointly determined by the bandwidth h and the forecasting distance

q/T. In particular, the prediction error is given by
~ ~ /\T A
YiTrqg — YiTrq = €irq — (G — ) — (51- - BZT) Dryg—[g(1+q/T) = g(1 +q¢/T)],

Since the parameter estimates are of smaller error, for any fixed ¢,

~ . 1 . 1
YiT+q — YiT+q = EiT+q — 1By — \/T_hUO + 0p <h oy \/T_h> .

Thus, the forecasting bias is of order O(h™™!), with leading term h™"! By, and the leading term of
forecasting variance is

1
2, =
wi + Vo

where Vj is the (1,1)-element in the matrix Lw? M (K)~'V (K)M(K)™. [ |

8.2 Lemmas

LEMMA 1. For each ¢, as T' — oo:

n
Coii — Ci=1—1;—2a; +1ias + g sy,

I=i+1

1o : - 1o
Cb,z‘z‘ —  Ci; Elu = (1 — Ti) — 20411' + 1a9; -+ l_zi-;l a9y Eln y

1. : - 1.
Caii — Cii o) = 1 =7 —2ay; +iag + Z ax |\ g |

l=i+1
- 1 N S L .7,
CB,z’i — C“ = (1 — 7”05[11 F— QQIiEIHIH + Zagiﬁluln + Z 9 Ellllll
I=i+1
1 , - 1.1,
= (1 — Ti)ﬁlll + | 2a9; — 2a4; + Z a9y ﬁllllll .
I=i+1
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LEMMA 2. For ¢ # j, as T — oo:

Coij — ¢ij = (max(i,j)— 1)a2,max(i7j) + Z a1 — 201 max(i.j)

l=max(%,5)
1.+ . - L.t
Chij — Cij i) = (max(i, j) — 1)asmax(,j) + Z | A1 — 201 max(i,j) g
L l=max(%,5) ]
C L ( (1,7) = 1) 2 + Zn: L;
Ajij Cij 12 11 ax\, ] A2 max(i,5) A1, max(i,5) . gl 12 11 )
L l=max(i,5) ]
1 .. .
CB,ij = Gj 122 111111 = (maX(Z,j) - 1)a2,max(i,j) 2aq ;max(i,5) + Z 122 111111 .
I=max(%,5)
LEMMA 3. For each ¢, as T" — oc:
de; = —VTh’b; + o(VTh?)
1 1
1
- —\/Thpﬁup(K) > / 5(s)g® (s)ds | — / w(s)g® (s)ds | | + o(VTh?),
. l#i Tl Ti
da; = —VTh*b; (—111) +o(VTh?)
1 1
1 1
= VT =p,(K) | / 5(s)g™ (s)ds | — / w(s)g® (s) ds <Elu> + o(VTh?),
p: 1#£4
T Ti
where w(s) and (s) are weighting functions on [0,1] :
1
o(s) = =, ifry<s<ri,ji=12,...,n.
J
1
w(s) = 1—6(3):1—;,ifrj <s<rj,j=12,...,n

LEMMA 4. For each ¢, as T" — o0,

1 1
ea,ijN(O,Uz), eA,i:>N< 120A1]11+ 1220A2J11>

where:
i—1
o2 = (1 —r; —2ay; + ag) w? + (nas; — 4naz; + 4az;) Zw + Z nas; — 4nas +4a2j)
j=1 Jj=i+1
0% = 85 (L—ri—2ay + ay), 04y = (nay — 4nag; + 4ay;) Z w? + Z (nag; — 4nas; + 4agj) w
j<i §>i
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8.3 Proof of Lemmas

Proof of Lemma 1. Notice that

52 (Eiemam) By
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t tj I£i t=t s=t;
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t=t; s=t;
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1
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Proof of Lemma 2. We have
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=
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For Cbﬂ‘j, lfJ > 1,

T ~
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Cus = 7 [Z R )Y
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5 [i
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1>

T
1 11
T;(mT >

T
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I#i t= tl
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I<i t=t;

5=t

RS T\ 99(t/T)
{z Z] - (Tth«ts)/T)Ds) Be. ]

t=t; t=t; s=t;

Q;

"1 1.
= - ZZ 7 (rig1 — 1) <ﬁllTl>
=Jj

+(i—1)[

I=j k=l

1,
aig <E11Tl

iam] (1—12ifl> —i%(rlﬂ—n < >+Zl2 T — 7 <

+

l=j

n

> 112 (ri1 — 7”1)] <1—1211T1> +

l=j

) + (i — 1)ag, <%iﬂ> - [(j —i—1)ay; (1—1211T1>]

l=j

. - 1,
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Proof of Lemma 3. Notice that
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and

T

%Z(H@e@%ﬂ) (g@)m%% E;Kh (t—9)/T)g (7 ))

t=t; j=1s
1

= \/:thiﬂp(f() ( / w(s)g® (s) ds) +o(VThP),

we have

1 T
doi = ﬁ22<g t/T) ———Zng/TKh (t—5)/T)

I#i t=t j=1 s=t;

+i Z (g(t/T) - mi% Z Zg(s/T)Kh((t A S)/T)> (1 N aﬁoa(ZT)>

o SO0 ( [ it ds) VTR0 / (g (s ds) +o(VTW)
= L (KNT {Z ( [0 ) ds> - ( / w(s)g® (5 )] +o(VTH),
= \s
= 7 Z (gum 4 Q;iig“/T)Kh“HVT)) )
Y (g<t/T> N > st s)/T>) (0 2251)
L > i (g@sm - mi%jiégwnm((t— s)/T)) (~o-55in)
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Proof of Lemma 4. Notice that

€a,1 €A1
€q = ,and €A s
€a,n €An
1 et 2 1 et L2 itl
o =TT & ( m +mz>5” ﬁ( m e )

since

t

tit1—1 . tip2—1 .
1 2 7 1 2 1+ 1 1 2
- =Y (-2 +5)a+—=Y (- +5 )+ +—=Y [(1-=
VT < my m?) t VT ( my m2> t VT < my

t=tit1

Under assumption Al,

T
1
lim Var | — Cit€;

t=t;

ti+1_1 . ti+2—1 .
1 2 1 2 1
= limVar |— g <1——+L2) €ir| +1lim Var | — <1——+%> Eit
\/T & my  m; T Fary my my
g —li41
T
1 2 n
+ .-+ lim Var —E (1——+—>5i +o(1
\/Tt:tn my th ! M)

n 1 2
= Z (Tj+1 — 7']) <1 — _.> (.U?
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Next,

1 T
—— Z Cijt€jt = Nj (OWJ? (na4,max(i,j) - 4na3,max(i,j) + 4a2,ma.x(i,j))) )

VT t=t;

in particular, for j < ¢,
T
1
— Z Cijt€jt
VT t=t;

1 <& 1 2 1 <
= — nl—|——le;y=— Ciit€ s
7 ((g) ) o= yr e

n n 2 2
= N; <O,w? (rjp1 —15) <j—2 — j) ) = N; (O,M? (nas; — 4nag; + 4(12i)) )
=i
since
1 I
lim Var —Zcijtejt]
T t=t;
1 « 1 2 1 2
= — _ _ — _ — t—
23 (n () ) () -7 ) e
- n 2 2
= W?Z(rerl _rs) < 2 ;) )
and for j > 1,
1 I
S Ci"tg‘t
\/TZ; Jt=73
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1 1 2 1
= 7= N\ — ) —— |&t= 7= Cijt€jt
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Thus

12— n

j=1 j=i+1
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Next, we consider
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1 11 1 i 1
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and for j =i+ 1,...,n,

1 1,
\/7 ZC’”tsjt — N; (0 w? (nag; — 4naz; + 4ay;)) (12 > (EIL)) .

1
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Finally we analyze the covariance terms:
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If ¢ > j,
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Thus, let
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Cov (eq,€4)
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Appendix D: Figures for the Application Analysis
Results

Average Trend by OLS
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Trend by Nonparametric Method:Unbalanced Case

Figure 4: TREND in TMAX by NONPARAMETRIC METHOD - UNBALANCED CASE
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Table 1: Maximum Temperature Nonparametric Results

STATION TIME ALPHA BETAs RSS

Aberporth 1942-2007  15.1545  -4.8198  2.4600  -3.7686  3.4780  -2.7198  4.4884  -1.6743 54908  -1.0563  6.4845  0.4039  0.0177
(0.4872)  (0.4987) (0.4875) (0.5051) (0.4978) (0.4800) (0.4975) (0.4796) (0.4893) (0.4900) (0.4880) (0.4793)

Armagh 1865-2007  15.3314  5.8443 131241  6.8956  14.1421  7.9443 151526 8.9534  16.1549  10.0314  17.1486  10.4707 0.1213
(0.4969)  (0.4798)  (0.4792) (0.4928) (0.4871) (0.4925) (0.4889) (0.4900) (0.5090) (0.4920) (0.4982) (0.4788)

Bradford 1908-2007  14.2064  -4.9778 23021  -3.9265  3.3201  -2.8777  4.3305  -1.8322 53320  -1.0553  6.3266  0.2460  0.0840
(0.4793)  (0.4799)  (0.5464) (0.5566) (0.5468) (0.5657) (0.5610) (0.5319) (0.5561) (0.5316) (0.5497) (0.5413)

Bracmar 1959-2007 124661  6.2878  13.5676  7.3390  14.5856  8.3878  15.5060  9.4333  16.5984 104748  17.5921 111030  0.0500
(0.5372)  (0.5304) (0.5553) (0.5319) (0.5303) (0.5547) (0.5453) (0.5588) (0.5427) (0.5494) (0.5715) (0.5548)

Cambridge 1959-2007  16.2552  -3.7045  3.5753  -2.6532  4.5933  -1.6045  5.6038  -0.558)  6.6061  0.4826  7.5998  1.4374  0.0004
(0.5566)  (0.5293)  (0.5305) (0.5318) (0.5412) (0.5522) (0.5418) (0.5611)  (0.5557) (0.5270) (0.5515)  (0.5262)

Cardiff 1977-2007  15.6739  3.0741  10.3530 41253 113719 51741 123823  6.2196  13.3847  7.2611  14.3784  8.2978  0.0244
(0.5444)  (0.5364) (0.5320) (0.5254) (0.5506) (0.5268) (0.5261) (0.5502)  (0.5405) (0.5540) (0.5382) (0.5449)

Durham 1880-2007  14.4470  3.7207  11.0095  4.7809 120275 58207  13.0379  6.5113  14.0403  7.6098 150340  8.9534  0.0125
(0.5625)  (0.5506) (0.5520) (0.5249) (0.5257) (0.5270) (0.5450) (0.5550) (0.5451) (0.5641) (0.5590) (0.5301)

Eastbourne 1959-2007 158710 3.0741  10.3539 41253 113719 51741  12.3823 62196  13.3847  7.2611 143784  8.2978  0.0020
(0.5545)  (0.5300) (0.5476) (0.5395) (0.5359) (0.5286) (0.5536) (0.5298) (0.5285) (0.5530) (0.5432)  (0.5568)

Greenwich 1959-2004 16.1333 -5.4322 1.8477 -4.3809 2.8657
5546

3.8761  -2.2866  4.8785  -1.2451 58722  -0.5548  0.0085
(0.5408)  (0.5479)  (0.5656)  (0.5535) (0. 0.

) (0.5280) (05291) (0.5200) (0.5424) (0.5533) (0.5431) (0.5626)

Hurn 1957-2007 87890 125155  19.7954  13.5668  20.8133  14.6155 21.8238  15.6611 22.8261  16.4415 23.8199  17.7393  0.0191
(0.5572)  (0.5284) (0.5525) (0.5273) (0.5458) (0.5376) (0.5334) (0.5262) (0.5522) (0.5281) (0.5272) (0.5513)

Lerwick 1930-2007 61471  13.2163 204961  14.2675 215141 15.3163 225246  16.3619  23.5269  17.1254  24.5206  18.4401  0.0296
(0.5417)  (0.5553)  (0.5393) (0.5460) (0.5634) (0.5513) (0.5530) (0.5256) (0.5269) (0.5282) (0.5435) (0.5536)

Leuchers 1957-2007  6.9764  3.0741  10.3530  4.1253 113719 51741 123823  6.2196  13.3847  7.2611  14.3784 82978  0.0401
(0.5433)  (0.5624) (0.5569) (0.5284)  (0.5527) (0.5282) (0.5456) (0.5378) (0.5349) (0.5270) (0.5521) (0.5279)

Newton Rigg 1959-2007 52113 39111  11.1910  4.9624  12.2090  5.6380  13.2194  7.0567  14.2217  7.7849  15.2155  9.1349  0.0506
(0.5269)  (0.5512)  (0.5415)  (0.5550) (0.5390) (0.5461) (0.5643) (0.5524) (0.5529) (0.5270) (0.5277) (0.5283)

Oxford 1853-2007  4.9145  3.0741  10.3530  4.1253  13.0460 51741 123823 -1.2794  1.9531  15.2543  14.3784  8.2978  0.0612
(0.5420)  (0.5538)  (0.5438) (0.5634) (0.5580) (0.5200) (0.5532) (0.5281) (0.5466) (0.5381) (0.5340) (0.5273)

Paisley 1950-2007 37738 3.0741  10.3530 41253  13.8831 51741 123823  -0.6978  8.3368  21.5850  14.3784  8.2978  0.0072
(0.5528)  (0.5200) (0.5278) (0.5520) (0.5426) (0.5559) (0.5399) (0.5468) (0.5639) (0.5516) (0.5538) (0.5261)

Ringway 1949-2004 58577 -6.3399  0.9399  -5.2887 147201  -4.2399  2.9683  -3.1853  3.9707  -21529  4.9644  -1.5097  0.0082
(0.5275)  (0.5289)  (0.5425) (0.5525) (0.5421) (0.5612) (0.5557) (0.5274) (0.5518) (0.5271) (0.5445) (0.5368)

Ross-on-wye 1930-2007 87682 -3.5391  3.7408  -2.4878 51857  -1.4390 57692  -0.3935  6.7715  0.6480  7.7653  1.4127  0.0113
(0.5342)  (0.5259) (0.5510) (0.5268) (0.5259) (0.5502) (0.5403) (0.5539) (0.5380) (0.5452) (0.5637) (0.5517)

Shawbury 1957-2007  10.4095  -14.4370 -7.1572 -13.3858 54648  -12.3370 -5.1287 -11.2915 -4.1264 -10.4299 -3.1327  -9.1391  0.1033
(0.5520)  (0.5262) (0.5268) (0.5273) (0.5433) (0.5542) (0.5444) (0.5636) (0.5586) (0.5293) (0.5538) (0.5284)

Sheffied 1883-2007  15.8198 6.1523 13.4321 7.2035
(0.5470)  (0.5388)  (0.5343)  (0.5277) (

7438 82523 154605  9.2078 16,4629 103393  17.4566 110581  0.0127
.5530)  (0.5295)  (0.5278)  (0.5523)  (0.5430) (0.5562) (0.5405) (0.5473)

S o

Southampton 1855-2004 127800 -3.9741  3.3057  -2.9220  6.0228  -1.8741 53341  -1.1075 63365  0.2120  7.3302  1.2496  0.0124
(0.5639)  (0.5517) (0.5543) (0.5261) (0.5276) (0.5202) (0.5418) (0.5518) (0.5414) (0.5606) (0.5549)  (0.5265)

St Mawgan 1957-2007 117145  13.6632  20.9431  14.4184  6.3018  15.7632 229715 16.5131  23.9738  16.8030 24.9676  18.8870  0.0135
(0.5510)  (0.5260) (0.5437) (0.5361) (0.5337) (0.5252) (0.5504) (0.5260) (0.5252) (0.5494) (0.5396) (0.5534)

Stornoway 1873-2007  13.0459  -10.1131  -2.8333  -9.0619  6.5808  -8.0131  -0.8049  -6.9676  0.1975  -5.9261  1.1912  -4.9243 0.0145
(0.5374)  (0.5443) (0.5634) (0.5513) (0.5515) (0.5256) (0.5260) (0.5266) (0.5426) (0.5532) (0.5433) (0.5625)

Sutton Bonnington ~ 1959-2007  15.4447  4.6062  11.8860  5.6575  6.8599  6.7062  13.9145  7.7518  14.9168 85469 159105  6.4822  0.0156
(0.5577)  (0.5286) (0.5527) (0.5278) (0.5463) (0.5380) (0.5335) (0.5268) (0.5518) (0.5285) (0.5269) (0.5511)

Tiree 1930-2007  25.9146  7.9759  3.9880  9.9699  7.1389  4.8250 120626  6.0228  3.0114  3.9880 85748  6.8309  0.0166
(0.5417)  (0.5551)  (0.5394)  (0.5461) (0.5631) (0.5508) (0.5532) (0.5253) (0.5266) (0.5281) (0.5409) (0.5517)

Valley 1930-2007  25.8283 82550  4.1275  10.3187 74179 4.9645 124113 63018  3.1500  4.1275  8.9236  T.1797  0.0177
(0.5408)  (0.5604)  (0.5546) (0.5261) (0.5506) (0.5255) (0.5436) (0.5356) (0.5330) (0.5250) (0.5500) (0.5255)

Yeovilton 1964-2007  32.7795  8.5340  4.2670  10.6675  7.6969 51741 123823  G.5808  3.2004  4.2670  14.3784  8.2978  0.0187
(0.5249)  (0.5493)  (0.5394) (0.5529) (0.5371) (0.5438) (0.5624) (0.5507) (0.5512) (0.5249) (0.5255)  (0.5260)

* The values in the parentheses indicate the standard errors.



Table 2: Minimum Temperature Nonparametric Results

STATION TIME ALPHA BETAs RSS

Aberporth 1942-2007  2.3700  1.4734  0.2254  5.6285  0.6890  0.2364  2.0505  -0.3964  0.8742 14239 05348  0.4685  0.0060
(0.3920)  (0.3956) (0.3924) (0.4025) (0.3999) (0.3910) (0.3934) (0.3915) (0.3931) (0.3933) (0.3937)  (0.3900)

Armagh 1865-2007  -12.1000  -0.3669  0.2042 19268  0.0289  -0.4264 05512  -0.1645  0.0073  0.1473  -0.0057 -0.0322  0.0414
(0.3936)  (0.3909) (0.3905) (0.3917) (0.3914) (0.3907) (0.3932) (0.3937) (0.3966) (0.3918) (0.3954) (0.3910)

Bradford 1908-2007  2.4400  -0.6241  -0.1922 54360  0.6477  0.9084  1.5923  -1.4851  0.3493  0.8633  1.8578  0.8119  0.0286
(0.3914)  (0.3907)  (0.4418) (0.4447) (0.4411) (0.4531) (0.4514) (0.4316) (0.4433) (0.4327) (0.4422) (0.4346)

Bracmar 1959-2007  -23.2000  -1.1384  -0.7543 27556  -1.8227  -8.1432  -0.4675  -4.3715  -1.5970  -1.4042  -6.1424  -0.4642  0.0170
(0.4347)  (0.4302) (0.4432) (0.4317) (0.4310) (0.4443) (0.4382) (0.4466) (0.4373) (0.4422) (0.4535) (0.4450)

Cambridge 1959-2007  -10.0000  1.5187  0.1604  3.2441  -0.2018  -1.0108  0.5976 ~ -0.9870  -0.1347  0.0658  -2.9559  -0.1144  0.0001
(0.4446)  (0.4313) (0.4321) (0.4311) (0.4372) (0.4405) (0.4366) (0.4489)  (0.4468) (0.4273) (0.4390) (0.4282)

Cardiff 1977-2007 141000 10.1165  2.7597  9.7292  3.0061  2.9027  4.4568 15635 27471 44601  4.2095  1.9633  0.0083
(0.4379)  (0.4303) (0.4306) (0.4261) (0.4389) (0.4273) (0.4269) (0.4399) (0.4344) (0.4422) (0.4331) (0.4382)

Durham 1880-2007  -10.6000  -0.9650  -0.0809  2.6062  -0.2255  -1.4849  0.6923  -0.9738  -0.1399  0.1163  0.5467  -0.0260  0.0043
(0.4443)  (0.4416)  (0.4402) (0.4275)  (0.4279) (0.4269) (0.4409) (0.4439) (0.4400) (0.4521) (0.4503)  (0.4306)

Eastbourne 1950-2007 141000 1.0138  0.2478 26369  -0.1960  -0.2064 05028  -0.7961  -0.1243  0.3758  -2.6351  -0.0318  0.0007
(0.4424)  (0.4317)  (0.4411) (0.4335) (0.4337) (0.4290) (0.4422) (0.4304) (0.4298) (0.4431) (0.4371) (0.4454)

Greenwich 1959-2004  2.3300  0.4489  0.0478  2.0135  -0.3236  -0.5904  -0.0544  0.1148  1.0281  -0.8050  -2.2322  0.4821  0.0029
(0.4361)  (0.4414)  (0.4415) (0.4441) (0.4434) (0.4304) (0.4311) (0.4209) (0.4379) (0.4411) (0.4372) (0.4495)

Hurn 1957-2007  0.6770 14351  0.5469  3.3147 03461 13415  1.5557  -0.8845  -0.0024  1.2413  -0.6726  0.5926  0.0065
(0.4474)  (0.4281)  (0.4396) (0.4290) (0.4387) (0.4311) (0.4310) (0.4266) (0.4396) (0.4280) (0.4276)  (0.4405)

Lerwick 1930-2007  -0.3170  -0.6313  -0.4225  0.0437  -0.0396  -3.2641  -0.3394  -2.2625  -1.1694  0.1087  -0.5898  -0.4956  0.0101
(0.4351)  (0.4430)  (0.4337) (0.4391)  (0.4449) (0.4421)  (0.4409) (0.4278) (0.4285) (0.4277) (0.4399) (0.4427)

Leuchers 1957-2007 141000 -0.1221  -0.6054  0.1052  -0.7358  -24101  0.5969  -34711  -1.8482  -0.4097  -2.0278  -0.2939  0.0137
(0.4387)  (0.4510)  (0.4490) (0.4294)  (0.4411) (0.4304) (0.4399) (0.4323) (0.4327) (0.4279) (0.4348) (0.4293)

Newton Rigg 1959-2007  -10.7000  1.6483  0.1243  2.5238  -0.5422  -2.6037  0.7267  -1.2317  0.5687  -0.1050  -3.0580  -0.1080  0.0173
(0.4287)  (0.4418)  (0.4362) (0.4442) (0.4350) (0.4402) (0.4468) (0.4433) (0.4423) (0.4296) (0.4301) (0.4289)

Oxford 1853-2007 111000 0.8900  0.2388 44482 05737  0.7781  1.2236  0.3525  1.0488  0.5365  1.2410  0.4168  0.0209
(0.4386)  (0.4418)  (0.4380) (0.4503) (0.4484) (0.4289) (0.4404) (0.4207) (0.4395) (0.4318) (0.4315) (0.4274)

Paisley 1959-2007 131000 1.1270  -0.0092  1.0388  -0.7462  -2.0505  0.6267  -1.4248  0.2422  -0.0785  -2.2996  -0.1408  0.0024
(0.4404)  (0.4289) (0.4283) (0.4412) (0.4362) (0.4438) (0.4345) (0.4398) (0.4454) (0.4428) (0.4417)  (0.4284)

Ringway 1949-2004  -3.7600  1.3717 01330 3.0620 02753  0.0132  0.8333  1.2322 21747  -0.1999  -0.0831  1.0261  0.0028
(0.4291)  (0.4284)  (0.4391) (0.4354) (0.4379) (0.4501) (0.4481) (0.4287) (0.4340) (0.4296) (0.4391) (0.4317)

Ross-on-wye 1930-2007 47800 3.3694  0.6580 45835 07623  0.3430  1.1623  -0.1583  0.7323  1.3839 15353  0.6428  0.0038
(0.4321)  (0.4272) (0.4404) (0.4286) (0.4280) (0.4344) (0.4356) (0.4433) (0.4342) (0.4330) (0.4395) (0.4428)

Shawbury 1957-2007  -3.1400  2.3822  0.4179 37905 03513 05314  1.7280  -1.1052  0.0875 11700  -0.4155  0.6032  0.0352
(0.4415)  (0.4290) (0.4204) (0.4282) (0.4388) (0.4421) (0.4383) (0.4506) (0.4487) (0.4293) (0.4407)  (0.4300)

Sheffied 1883-2007 14000  -3.5342  -0.7545  3.0605  -0.5274  -1.3703  0.1892  -1.7463  -0.5579  -0.6915  -1.1898  -0.2726  0.0043
(0.4399)  (0.4320) (0.4318) (0.4277)  (0.4406) (0.4291) (0.4284) (0.4415) (0.4366) (0.4439) (0.4348)  (0.4400)

Southampton 1855-2004 11700 09202 0.1034  3.2253 05978  0.5331  0.8900  0.6020  0.6692  0.1148 11430  0.5367  0.0042
(0.4456)  (0.4432)  (0.4419) (0.4285) (0.4293) (0.4285) (0.4317) (0.4413) (0.4307) (0.4493) (0.4473) (0.4279)

St Mawgan 1957-2007  -25.3000  2.2557  1.0314  3.6950  0.7932  2.6404  2.1836  0.2021 08031  1.8220 05734  1.0597  0.0046
(0.4332)  (0.4287) (0.4383) (0.4249) (0.4255) (0.4266) (0.4333) (0.4278) (0.4273) (0.4402) (0.4349) (0.4361)

Stornoway 1873-2007  -4.0600  -1.1364  -0.3128 05396  -0.2145  -1.4758  0.4455  -1.6589  -0.6657  -0.2020  -0.2599  -0.0102  0.0050
(0.4334)  (0.4387)  (0.4391) (0.4424) (0.4344) (0.4284) (0.4288) (0.4275) (0.4382) (0.4413) (0.4375) (0.4499)

Sutton Bonnington ~ 1959-2007  -10.7000  1.9809  0.1297  2.9827  -0.3925  -1.5656  0.5088  -1.2404  -0.2772  0.0450  -2.9690  -0.0229  0.0053
(0.4481)  (0.4285)  (0.4399) (0.4295) (0.4392) (0.4314) (0.4313) (0.4270) (0.4397) (0.4284) (0.4277)  (0.4407)

Tiree 1930-2007  14.0500  1.0180  0.3159  1.7306 04153  -0.3880  0.5462  -0.4916  0.0478  1.1533  0.7886  0.1933  0.0057
(0.4362)  (0.4431)  (0.4339) (0.4392) (0.4451) (0.4427) (0.4411) (0.4279) (0.4287) (0.4278) (0.4375) (0.4345)

Valley 1930-2007 150000 24432 0.8413  3.8132 08073  0.6812 12713  0.4618  0.8848  1.8880  1.6453  0.7447  0.0060
(0.4365)  (0.4420)  (0.4399) (0.4274) (0.4390) (0.4280) (0.4314) (0.4305) (0.4310) (0.4262) (0.4392) (0.4272)

Yeovilton 1964-2007 152000  6.0330  1.9238  8.0683  1.6078  2.8385  3.1332  0.6487 26123  3.1542 18167  1.6489  0.0064
(0.4269)  (0.4333) (0.4285) (0.4355) (0.4268) (0.4381) (0.4445) (0.4201) (0.4341) (0.4279) (0.4281) (0.4269)

* The values in the parentheses indicate the standard errors.



