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How useful are no-arbitrage restrictions for forecasting the term structure of interest rates?

Keywords: Forecast Combination, Encompassing, Loss functions, Instability, A¢ ne Term Structure Models

We develop a general framework for analyzing the usefulness of imposing parameter restrictions on a forecasting model. We propose a measure of the usefulness of the restrictions that depends on the forecaster's loss function and that could be time varying. We show how to conduct inference about this measure. The application of our methodology to analyzing the usefulness of no-arbitrage restrictions for forecasting the term structure of interest rates reveals that: 1) the restrictions have become less useful over time; 2) when using a statistical measure of accuracy, the restrictions are a useful way to reduce parameter estimation uncertainty, but are dominated by restrictions that do the same without using any theory; 3) when using an economic measure of accuracy, the no-arbitrage restrictions are no longer dominated by atheoretical restrictions, but for this to be true it is important that the restrictions incorporate a time-varying risk premium.

Introduction

In recent years the …nance literature has produced major advances in modeling the term structure of interest rates, building on the assumption of absence of arbitrage opportunities in bond markets.

While the no-arbitrage approach has produced good results in terms of in-sample …t, see e.g. De [START_REF] De | Time series and cross section information in a¢ ne term structure models[END_REF] and [START_REF] Dai | Speci…cation analysis of a¢ ne term structure models[END_REF], the papers focusing on out-of sample forecasting have documented a mixed performance of these models. [START_REF] Du¤ee | Term premia and interest rate forecasts in a¢ ne models[END_REF] shows that beating a random walk with a traditional no-arbitrage a¢ ne term structure model is di¢ cult. [START_REF] Ang | A No-Arbitrage Vector Autoregression of Term Structure Dynamics with Macroeconomic and Latent Variables[END_REF] show that imposing no-arbitrage restrictions and an essentially a¢ ne speci…cation of market prices of risk improves out-of-sample forecasts from a VAR [START_REF] Du¢ E | A yield-factor model of interest rates[END_REF], but the gains with respect to a random walk forecast are small. [START_REF] Carriero | Forecasting the Yield Curve using Priors from No Arbitrage A¢ ne Term Structure Models[END_REF] shows that the no-arbitrage restrictions provide better results if they are imposed on the data as prior information rather than as a set of restrictions. More encouraging results have been obtained by [START_REF] Almeida | The role of no-arbitrage on forecasting: Lessons from a parametric term structure model[END_REF], [START_REF] Moench | Forecasting the yield curve in a data-rich environment: A no-arbitrage factor-augmented VAR approach[END_REF], and Favero et al. (2009).

A drawback of the above conclusions is that they are based on informal comparisons of mean squared forecast errors computed over a particular out-of-sample period. In this paper, we develop a formal framework for investigating the usefulness of parameter restrictions in general -and noarbitrage restrictions in particular -when a model is used for forecasting. We achieve several goals: 1) we propose a measure of the usefulness of the restrictions that is tailored to the forecaster's decision problem; 2) the measure can be time-varying; 3) we show how to perform inference about the proposed measure. Our framework can be used to answer questions such as "are no-arbitrage restrictions useful for forecasting the term structure of interest rates?", "are the restrictions useful for bond portfolio allocation?", and "have the restrictions become more or less useful over time?", which are not readily answered using conventional model evaluation and hypothesis testing tools.

Our main idea is to cast the problem in an out-of-sample forecast combination framework, in which there is only one forecast model, but the forecaster has the option of imposing some restrictions on its parameters or to forecast with the unrestricted model. We consider a forecast combination and estimate the optimal combination weight in an out-of-sample framework. We say that the restriction is "useful for forecasting" when the optimal weight is large, and we can formally test the hypothesis that the restrictions are useless by an out-of-sample encompassing test. Optimality of the weight is de…ned with respect to a general forecast loss function, but we show how to specialize the results to either the commonly used quadratic loss or to a loss based on (minus) the utility of a bond portfolio constructed using the model. The latter example of an economically meaningful loss has not been considered before for evaluating no-arbitrage models, and we show how its use can lead to substantially di¤erent conclusions than those based on conventional statistical measures of accuracy.

We further generalize the techniques to an environment with possible instability and provide a test to assess whether the usefulness of the restrictions is time-varying. To gain some intuition for why the usefulness of restrictions could be time-varying, consider the case of a quadratic loss, for which it can be shown that the measure of usefulness captures the bias/variance tradeo¤ between a possibly misspeci…ed restricted model and the unrestricted model. In this case, time variation could be due to the variance of the unrestricted model changing or the restrictions becoming more or less misspeci…ed over time. We should point out that our methods do not allow one to disentangle the two sources of time variation.

We stress that our techniques are not only applicable to the comparison between an unrestricted and a restricted forecast, but they can be more generally used for measuring the usefulness of two alternative sets of restrictions imposed on the same forecasting model. For example, the random walk model that is often used as a benchmark in forecasting can also be viewed as a set of restrictions on a VAR, and one could ask whether the no-arbitrage restrictions are useful relative to the random walk restrictions. Finally, our framework can be used to compare and combine forecasts from nested models, which is similar to the problem considered by Clark and McCracken (2009) in a di¤erent asymptotic context.

From the perspective of forecast combination, our problem is non-standard because we do not combine forecasts from di¤erent models, but forecasts from the same model that are based on di¤erent estimators. This in principle poses challenges for the econometric methodology in that the unrestricted and restricted forecasts may be perfectly correlated in large samples if the restrictions are true. We overcome this problem by considering an out-of-sample environment with non-vanishing estimation uncertainty, as that considered by [START_REF] Giacomini | Tests of Conditional Predictive Ability[END_REF] in the di¤erent context of equal predictive ability tests, and use it to derive out-of-sample encompassing tests.

Encompassing tests are appealing in our context because in case of rejection of the null hypothesis they provide as a by-product a combination weight that can be naturally interpreted as a measure of usefulness of the restrictions, whereas a test of equal predictive ability would force one to choose either the restricted or the unrestricted forecast. This combination weight can further be used to produce combined forecasts that exploit the information contained in the economic restrictions in a way that is optimal for the loss function of interest. Finally, the encompassing approach naturally lends itself to extensions to unstable environments, since the combination weight can be postulated to be time-varying. Our contribution to the literature in this respect is to provide a valid asymptotic theory for testing hypotheses about the time-varying weight.

Note that our problem is also di¤erent from testing the restrictions in-sample, since we allow for the possibility that the restrictions are not true, but are still useful for out-of-sample forecasting for a given loss function.

A measure of the usefulness of economic restrictions 2.1 Set-up and notation

Let y t = (x t ; z t ) 0 indicate the vector of observables, which include the (scalar) variable of interest x t and the vector of predictors z t : We assume that the user has obtained two sequences of h step ahead out-of-sample forecasts for x t , by …rst estimating the model without imposing the restrictions (the "unrestricted forecast") and then re-estimating the model subject to the restrictions (the "restricted forecast"). If the interest is in comparing two alternative sets of restrictions, the unrestricted forecast will be replaced by the alternative restricted forecast, but for simplicity we will continue to refer to the forecasts as "restricted" and "unrestricted".

The forecasts are obtained by a rolling window estimation scheme, which entails estimating the model using data indexed t m + 1; :::; t for each t = m; :::; T h and using the estimated model at time t to produce a forecast for x t+h . This gives two sequences of n T h m + 1 forecasts

n f U t;h o T h t=m and n f R t;h o T h t=m
; denoting respectively the unrestricted and the restricted forecasts.

The asymptotic framework considers the in-sample size m …xed and lets the out-of-sample size n grow to in…nity, so that all results are implicitly conditional on the choice of m, which is user-de…ned.

The computation of the time-varying measure of usefulness further requires choosing a smoothing window of size d; which is a constant fraction of the out-of-sample size n.

The user must …nally choose a forecast loss function L(x t+h ; f t;h ): We consider in particular two types of loss functions, a quadratic loss and a portfolio utility loss. The quadratic loss is de…ned as

L(x t+h ; f t;h ) = (x t+h f t;h ) 2 ; (1) 
where x t in our application will be the yield on a zero coupon bond of maturity . The portfolio utility loss considers the asset allocation problem of an investor who is buying a portfolio of q assets in period t and then sells it in period t+1. In our application such assets will be q zero coupon bonds of maturities 1 ; 2 ; :::; q . De…ning x t as the vector of returns on each asset: x t = (x 1 ; x 2 ; :::; x q ) 0 , and w as a vector of optimal weights, the return on such a portfolio is given by w 0 x t . The portfolio utility loss is similar to that considered by [START_REF] West | A Utility-Based Comparison of Some Models of Exchange Rate Volatility[END_REF], and is given by

L(x t+h ; f t;h ) = w (f t;h ) 0 x t+h + 2 w (f t;h ) 0 w (f t;h ); (2) 
where w (f t;h ) are the optimal portfolio weights for a quadratic utility, and are linear functions of the forecasts (the exact expression is given in (18) below). Note that in this case f t;h is a vector containing the forecasts of each element in x t . The matrix is the variance-covariance matrix of

x t+h ; and is a user-de…ned parameter related to the coe¢ cient of relative risk aversion by the relationship 1 = : Our empirical results are obtained by setting = 1; so that = :5:

Methodology for a general loss function

Consider a combination of the restricted and unrestricted forecast,

f t;h = f R t;h + (1 )(f U t;h f R t;h
); so that is the weight on the restricted forecast.

The optimal weight minimizes the expected out-of-sample loss of the combined forecast:

= arg min 2R E " 1 n T h X t=m L x t+h ; f R t;h + (1 )(f U t;h f R t;h ) # (3) = arg min 2R E [Q n ( )] ;
and is estimated by

b = arg min 2R 1 n T h X t=m L x t+h ; f R t;h + (1 )(f U t;h f R t;h ) (4) 
= arg min

2R Q n ( ) :
The estimated optimal weight b is our measure of the usefulness of the economic restrictions for forecasting, for a given loss function L ( ). A small b indicates that the restrictions are not useful for forecasting, whereas a large b suggests that the economic restrictions can be usefully imposed to obtain more accurate forecasts. b in (4) can be computed for a general loss function using numerical methods, but we show how to derive simple analytical expressions for the special cases of a quadratic and portfolio loss functions in Section 3 below.

The asymptotic distribution of b is obtained by recognizing that b is an M-estimator, which minimizes the (typically well-behaved) objective function Q n ( ) : A similar remark was made by [START_REF] Elliott | Optimal forecast combinations under general loss functions and forecast error distributions[END_REF], in an environment where the forecasts are based on di¤erent models and are taken as given. The fact that in our context the forecasts are based on the same model and depend on in-sample data and estimated parameters introduces some complications, which we handle using a generalization of the key insight in [START_REF] Giacomini | Tests of Conditional Predictive Ability[END_REF]. Speci…cally, we show that an asymptotic theory for b can still be derived by relying on laws of large numbers, central limit theorems and functional central limit theorems for the objective function and its derivatives in spite of the fact that such functions depend in a complex nonlinear manner on the in-sample data through f R t;h and f U t;h : This is because we assume that the in-sample estimation window is …nite, so that the objective function and its derivatives become functions of the …nite history of "short memory" (mixing) processes, and are thus themselves short memory and plausibly satisfy laws of large numbers and central limit theorems.

We rely on the asymptotic properties of b to obtain formal methods for testing the usefulness of the restrictions, both in an environment where such usefulness is constant over time (Section 2.2.1) and in an environment with possibly time-varying usefulness (Section 2.2.2).

Testing the global usefulness of parameter restrictions

We …rst consider an environment in which is constant over time, and can thus be interpreted as a "global" measure of the usefulness of the restrictions.

Proposition 1 below shows how to construct formal tests for whether the unrestricted forecast is useless (H U 0 : = 1) or whether the restricted forecast is useless (H R 0 : = 0), which are essentially out-of-sample encompassing tests. The tests are derived under the following assumptions.

Assumption A. (1) E [Q n ( )] is uniquely minimized at < 1; (2) L x t+h ; f R t;h + (1 )(f U t;h f R t;h
) is convex and twice continuously di¤erentiable with respect to ;

(3) fx t g is mixing with of size r=(r 1) or of size 2r=(r 2); r > 2; 

(4) EjL x t+h ; f R t;h + (1 )(f U t;h f R t;h ) j r=2 <
(6) = E h ( p nr Q n ( )) 2 i > 0 for all n; (7) H = E [r Q n ( )] > 0 for all n; (8) sup 2 kr Q n ( ) E [r Q n ( )]k ! p 0;
where indicates a neighborhood of and r

the second derivative with respect to ;

(9) m < 1; h < 1; n ! 1:

Assumption A(1) is satis…ed by the quadratic and the portfolio utility loss functions considered in Section 3, which are both quadratic polynomials in : Assumption A(2) is stronger than necessary and is only imposed for convenience and because it is satis…ed by the loss functions in Section 3.

Following [START_REF] Newey | Large sample estimation and hypothesis testing[END_REF], it is straightforward to extend the results to an environment with non-convex and non-di¤erentiable objective functions. Assumptions A(3) to A(7) are the familiar primitive conditions guaranteeing applicability of laws of large numbers and central limit theorems for the objective function and its derivatives. Note that these conditions, while ruling out the presence of unit roots, allow the data to be heterogeneous and dependent. Assumption A [START_REF] Del Negro | Priors from General Equilibrium Models for VARs[END_REF] could be violated if the forecasts were perfectly correlated in large samples. To see why, consider for simplicity the quadratic loss case, where

H = E 2 f R t;h f U t;h 2 
: If the restrictions were true, the forecasts would become perfectly correlated as the estimation sample grows, making H converge to zero. This occurrence is however ruled out in our context by A [START_REF] Diebold | Forecasting the term structure of government bond yields[END_REF], which assumes that the estimation sample is …xed, thus preventing estimation uncertainty from disappearing asymptotically.

Assumption A(8) requires a uniform law of large numbers for the second derivatives of the objective function. Primitive conditions for A(8) could easily be found, but we do not specify them here because A(8) becomes considerably simpler for the loss functions considered in Section 3, since in both cases the second derivative of the objective function does not depend on : For these loss functions, A(8) can be replaced with the condition that r Q n has …nite r=2 th moments, which, together with A(3), guarantees that a law of large numbers can be invoked for r Q n . Assumption [START_REF] Diebold | Forecasting the term structure of government bond yields[END_REF] shows that the asymptotic distribution is obtained by letting the out-of-sample size n grow to in…nity, whereas the in-sample size m and the forecast horizon h are …nite.

Proposition 1 (Tests of global usefulness) Suppose Assumption A holds. Let

t U = p n b 1 b ; (5) t R = p n b b ;
where b is given by

b = p b H 1 b b H 1 ; (6) b H = r Q n b ; b = pn 1 X j= pn+1 1 j j p n j n 1 T h X t=m+j s t b s t j b ; s t b = r @L x t+h ; f R t;h + (1 b )(f U t;h f R t;h ) ;
where p n is a bandwidth that increases with the sample size [START_REF] Newey | A Simple, Positive Semi-De…nite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix[END_REF].

Then the hypotheses H U 0 : = 1 and H R 0 : = 0 are rejected at a signi…cance level respectively when t U > c =2 and t R > c =2 ; with c =2 indicating the 1 =2 quantile of a N (0; 1) distribution.

The bandwidth p n used in the construction of the test statistic must be appropriately chosen to account for the possible serial correlation in the …rst derivatives of the loss function. In practice, the accuracy of the estimate of can be an issue, particularly for long-horizon forecasts (see, e.g., Kim

and Nelson, 1993 and Harvey, Leybourne and Newbold, 1998). In our application, we follow Kim and Nelson (1993)'s recommendation and set p n = 2(h 1):

Testing the usefulness of parameter restrictions in the presence of instability

A question that may be of further interest to forecasters is whether the usefulness of the restrictions varies over time. To answer this question, we extend the previous analysis to the case of timevarying forecast combination weights. These time-varying weights can be interpreted as measuring the "local" usefulness of the restrictions, and solve the problem

t = arg min t2R E L(x t+h ; f R t;h + (1 t ) f U t;h f R t;h ; t = m; :::; T h: (7) 
A simple nonparametric estimator of ( 7) can be obtained by computing rolling average weights over windows of size d :

b t;d = arg min t2R t X j=t d+1 L(x j+h ; f R j;h + (1 t ) f U j;h f R j;h ; t = m + d 1; :::; T h: (8) 
Instead of adopting a standard asymptotic approximation to conduct inference about [START_REF] De | Time series and cross section information in a¢ ne term structure models[END_REF], which would require the bandwidth d=n to go to zero as d and n grow to in…nity, we follow a similar approach as Giacomini and Rossi (2010) and obtain a distribution theory for b t;d that has better …nite-sample properties by using a non-standard asymptotic approximation with …xed bandwidth.

Note that in this …xed-bandwidth approximation, however, b t;d is no longer a consistent estimator of t ; but it consistently estimates a "smoothed" version of t :

t;d = arg min t2R t X j=t d+1 E L(x j+h ; f R j;h + (1 t ) f U j;h f R j;h ; t = m + d 1; :::; T h: (9)
Further note that, as a result of adopting a non-standard …xed bandwidth approximation, standard results for optimal bandwidth selection obtained in the nonparametric literature do not apply here. Instead, in our framework di¤erent choices of bandwidth result in a di¤erent null hypothesis being tested.

A plot of the sample path of

n b t;d o T h t=m+d 1
in ( 8) can uncover possible time-variation in the usefulness of the economic restrictions. Proposition 2 below further shows how to test the hypothesis that the unrestricted forecast was consistently useless (H U 0 : t;d = 1 for all t) or that the restricted forecast was consistently useless (H R 0 : t;d = 0 for all t) over time. We control the overall size of the procedure by deriving uniform con…dence bands that have the desired coverage under the null hypothesis.

The proposition relies on the following set of assumptions. Assumption B. Let 2 [0; 1] : Under the hypothesis that t;d is constant and equal to , (1)

n n 1=2 P m+[ n] j=m r L x j+h ; f R j;h + (1 )(f U j;h f R j;h ) o obeys a Functional Central Limit Theorem with =lim n!1 E(n 1=2 P T h j=m r L x j+h ; f R j;h + (1 )(f U j;h f R j;h ) ) 2 > 0; (2) d=n ! 2 (0; 1) as d ! 1; n ! 1: m < 1 and h < 1; (3) b ! p and b ! p :
Primitive conditions for B(1) and B(3) analogous to those listed in Assumption A could be similarly speci…ed here. Proposition 2 (Tests of time variation in usefulness) Suppose Assumption B holds. For a signi…cance level ; …rst construct the bands:

( b t;d k ; b p d ; b t;d + k ; b p d ); t = m + d 1; :::; T h; (10) 
where k ; is tabulated in Table 1 for various values of = d=n and b is as in Proposition 1.

The null hypotheses H U 0 : t;d = 1 for all t and H R 0 : t;d = 0 for all t can be rejected if there exists at least one t at which, respectively, 1 or 0 fall outside the bands.

Special cases: quadratic and portfolio utility loss

This section specializes the general methods described in Section 2.2 to the cases of a quadratic and a portfolio utility loss.

Quadratic loss

For a quadratic loss, the objective function in

(3) is Q n ( ) = 1 n P T h t=m x t+h f R t;h (1 )(f U t;h f R t;h ) 2 ;
which is minimized by

= E h P T h t=m x t+h f U t;h (f R t+h f U t;h ) i E P T h t=m f R t;h f U t;h 2 : (11) 
A consistent estimator of is

b = P T h t=m x t+h f U t;h (f R t+h f U t;h ) P T h t=m f R t;h f U t;h 2 ; (12) 
or, equivalently, the OLS estimator of in the regression

x t+h f U t;h = (f R t;h f U t;h ) + " t+h ; t = m; :::; T h: (13) 
The estimator b that is needed for constructing the tests in Proposition 1 and Proposition 2 is in this case given by b

= 1 n T h X t=m f R t;h f U t;h 2 ! 1 v u u t pn 1 X j= pn+1 1 j j p n j n 1 T h X t=m+j (f R t;h f U t;h )b " t+h (f R t j;h f U t j;h )b " t+h j ; (14) 
where b " t+h are regression residuals from ( 13) and p n is a bandwidth that increases with the sample size [START_REF] Newey | A Simple, Positive Semi-De…nite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix[END_REF]).

In the presence of possible instability, a consistent estimator of the smoothed measure of usefulness t;d in ( 9) can be similarly obtained as

b t;d = P t j=t d+1 x j+h f U j;h (f R j;h f U j;h ) P t j=t d+1 f R j;h f U j;h 2 ; t = m + d 1; :::; T h; (15) 
or, equivalently, by estimating the OLS coe¢ cient in the following regression over rolling samples of size d : In the empirical application, the variable to forecast will be x t = y ( ) t , i.e. the yield of a bond of maturity .

x j+h f U j;h = t;d (f R j;h f U j;h ) + " j+h ; (16) 

Portfolio utility loss

Let x t = (x 1 ; x 2 ; :::; x q ) 0 be a q 1 vector of risky assets and consider the portfolio w 0 x t ; with weights summing to 1. In analogy with our empirical application to no-arbitrage VARs, we suppose the forecaster has a model for x t+h and has the option of estimating it unrestricted or by imposing restrictions that only a¤ect the conditional mean parameters. We further assume that the model does not specify conditional variance dynamics, so that the conditional variance of x t+h at time t simply equals the unconditional variance-covariance matrix of the q assets ; so that

V ar t [x t+h ] = V ar [x t+h ] = :
We suppose that at each time t = m; :::; T h the forecaster constructs a portfolio by choosing the weights that minimize a quadratic utility function:

w = arg min w n w 0 E t [x t+h ] 2 w 0 w o ; (17) 
where E t [ ] denotes the conditional mean at time t: The classical solution [START_REF] Markowitz | Portfolio Selection[END_REF] to this problem is given by

w = a + BE t [x t+h ] ; (18) 
a = 1 0 1 ; B = 1 1 1 0 1 0 1 ;
where is a q 1 vector of ones.

When the economic restrictions only a¤ect the conditional mean of the assets, as is the case for the no-arbitrage restrictions that we are interested in, the forecaster can construct two di¤erent portfolios, one by forecasting the conditional mean with the unrestricted model, so that E t [x t+h ] = f U t;h ; and one by imposing the restriction and letting E t [x t+h ] = f R t;h : We can similarly consider the portfolio whose optimal weights are a function of the combination forecast, and our measure of usefulness is then obtained by minimizing the expected portfolio utility loss in [START_REF] Ang | A No-Arbitrage Vector Autoregression of Term Structure Dynamics with Macroeconomic and Latent Variables[END_REF] with respect to the forecast combination weight :

= arg min 2R E n a B f R t;h + (1 )(f U t;h f R t;h ) 0 x t+h + (19) 2 a + B f R t;h + (1 )(f U t;h f R t;h ) 0 a + B f R t;h + (1 )(f U t;h f R t;h ) o :
The closed-form solution for this problem is

= E h (f R t;h f U t;h ) 0 B 0 x t+h a + Bf U t;h i E h (f R t;h f U t;h ) 0 B 0 B(f R t;h f U t;h ) i : (20) 
A consistent estimator of is

b = P T h t=m h (f R t;h f U t;h ) 0 b B 0 t x t+h b t b a t + b B t f U t;h i P T h t=m h (f R t;h f U t;h ) 0 b B 0 t b t b B t (f R t;h f U t;h ) i ; (21) 
where b a t and b B t are as de…ned in [START_REF] Harvey | Tests for Forecast Encompassing[END_REF] with substituted at each time t by an estimate computed over each rolling window of data up to time t:

b t = 1 m t X j=t m+1 (x j x) (x j x) 0 ; with x = 1 m t X j=t m+1
x j :

The estimator of the asymptotic variance b that is needed for constructing the test in Proposition 1 and the bands in Proposition 2 are obtained by setting

s t b = (f R t;h f U t;h ) 0 b B 0 t h x t+h b t b a t + b B t f R t;h + (1 b )(f U t;h f R t;h ) i and (23) 
@s t b @ = (f R t;h f U t;h ) 0 b B 0 t b t b B t (f R t;h f U t;h )
in equation ( 6).

In the presence of time variation, a consistent estimator of the smoothed measure of usefulness [START_REF] Diebold | Forecasting the term structure of government bond yields[END_REF] for a portfolio utility loss can be obtained as

b t;d = P t j=t d+1 h (f R j;h f U j;h ) 0 b B 0 j x j+h b j b a j + b B j f U j;h i P t j=t d+1 h (f R j;h f U j;h ) 0 b B 0 j b j b B j (f R j;h f U j;h ) i ; t = m + d 1; :::; T h: (24)
In the empirical application, the variable to be forecasted will be x t = (r

( 1 ) t ; r ( 2 ) t 
; :::; r

( q ) t ) 0 , i.e.
a vector of returns on bonds of q di¤erent maturities.

Illustrative example and …nite sample properties

To gain intuition about the determinants of our measure of usefulness and to assess the …nitesample properties of our tests, we consider a simple example of two competing sets of restrictions imposed on the parameters of a linear model and investigate the size properties of the global usefulness test in Proposition 1.

Suppose the data-generating process is:

x t = 1 z 1t + 2 z 2t + " t ; (25) 
z t iidN (0; I 2 ); " t iidN (0; 1);

and that the two models M U and M R impose the competing restrictions 1 = U 1 or 1 = R 1 ; while leaving 2 unrestricted. This yields the one-step-ahead forecasts

f U t = U 1 z 1;t+1 + b 2 z 2;t+1 and f R t = R 1 z 1;t+1 + b 2 z 2;
t+1 with b 2 and b 2 OLS estimators. The optimal weight (11) for a quadratic loss function in this example is 1 :

= 1 U 1 R 1 U 1 ; (26) 
which reveals that the usefulness of the restrictions is determined by the relative amount of bias implied by the two models, so that equals 0 or 1 when either restriction is true. Notice that the weight does not necessarily fall between 0 and 1, but in principle could be any value on the real line. Intuitively, in this simple example the relative bias of the models is the sole determinant of the usefulness of the restrictions because the two forecasts imply the same amount of estimation uncertainty, but in more general cases there will be a bias-variance trade-o¤ between di¤erent sets of restrictions.

We now proceed to illustrate the small sample properties of our tests by using a simple Monte Carlo simulation. We assume that the true DGP is given by ( 25) and we consider the following two restricted models. The …rst model imposes on [START_REF] Palm | To Combine or not to Combine? Issues of Combining Forecasts[END_REF] the restriction 1 = U 1 = 1:

M U : x t = z 1t + 2 z 2t + " t : (27) 
The second model is imposing on (25) the restriction

1 = R 1 = 0. M R : x t = 2 z 2t + " t : (28) 
1 To see why, note that the numerator in ( 11) is 1

U 1 R 1 U 1 +E 2 b 2 b 2 b 2 and the denominator is R 1 U 1 2 + E b 2 b 2 2
; from which the result follows by noting that

E b 2 = E (b 2 ) and E b 2 b 2 = E b 2 2 = E b 2 2 :
For this set of restrictions the expression in (26) simpli…es to = 1 1 . We draw 5000 random samples from the DGP in (25) setting 22 = 1 and using in turn 1 = 1 and 1 = 0. The case 1 = 1 yields by construction = 0 (M U imposes the right restrictions and M R is useless). The case 1 = 0 yields by construction = 1 (M R imposes the right restrictions and M U is useless).

For each of the 5000 replications we …rst estimate the two restricted models and obtain the corresponding forecasts. Then we compute and b using ( 13) and ( 14), and use them to obtain the test statistics in [START_REF] Clark | Tests of Equal Forecast Accuracy and Encompassing for Nested Models[END_REF]. Results of our simulation for di¤erent sizes of the estimation window m and forecast window n are reported in Table 2. Panel A displays the empirical size of the test in [START_REF] Clark | Tests of Equal Forecast Accuracy and Encompassing for Nested Models[END_REF] for H 0 : = 0, Panel B reports the empirical size the test in ( 5) for H 0 : = 1. In both cases the nominal size of the tests is 0.05.

As is clear from the table, the tests in ( 5) are well sized, and for a given estimation window the size tends to improve as the size of the forecast window increases.

Before turning to the empirical application we want to brie ‡y discuss the relation of our approach to Bayesian forecast combination. A Bayesian econometrician would attach a-priori probabilities p(M U ) = 1 p(M R ) and p(M R ) to models M U and M R . Note that the two models exhaust all the possibilities.

Then he would use Bayes'formula to derive the posterior probability of M R , i.e., p(M R jx), where

x denotes the available data. Under a ‡at prior this posterior probability is simply given by the (properly normalized) marginal likelihood of M R . The optimal point forecast for a quadratic loss is then given by:

f t = E[x t+1 jx] = f U t (1 p(M R jx)) + f R t p(M R jx): (29) 
The expression above is conceptually di¤erent from that resulting from forecast combination in a classical framework. In [START_REF] Wooldridge | Some invariance principles and central limit theorems for dependent heterogeneous processes[END_REF] the optimal weights are probabilities, and as such they are constrained to be between 0 and 1, while in the classical framework the weights depend on the variances and correlation between the forecasts and they can in principle be negative or greater than 1. As the weights are between 0 and 1, the combined forecast produced by the Bayesian econometrician is a convex combination of the forecasts of the original models, which makes sense as he believes that the two competing models exhaust all the possibilities. On the other hand, for the classical econometrician both models can be misspeci…ed, but their forecasts can be useful if combined in some optimal way. For a comparison of the two approaches with a discussion about the cases in which they can coincide see [START_REF] Palm | To Combine or not to Combine? Issues of Combining Forecasts[END_REF].

There is a simple example in which the optimal combination weights computed in our framework can have an interpretation similar to the Bayesian one. Consider the DGP in [START_REF] Palm | To Combine or not to Combine? Issues of Combining Forecasts[END_REF], but further assume that 1 = U 1 with probability 1 (in which case M U is true) and 1 = R 1 with probability (in which case M R is true). In this case, the optimal weight is 3= , so the estimate ^ can be thought of as the frequentist equivalent of the posterior probability of M R computed by a Bayesian econometrician with a ‡at prior.

5 Application: usefulness of the no-arbitrage restrictions for predicting the term structure of interest rates

In this section we apply our proposed framework to the problem of forecasting the yield curve using no-arbitrage restrictions. Our framework enables us to address several questions such as:

"are no-arbitrage restrictions useful for forecasting the term structure of interest rates?", "are the restrictions useful for bond portfolio allocation?", "does time variation in the term premium help in forecasting?", and "have the restrictions become more or less useful over time?".

We will start with describing how the no-arbitrage restrictions can be imposed on a VAR model for the yields, and then turn to the forecasting exercise and provide the results for a quadratic and a portfolio loss function.

A benchmark no-arbitrage a¢ ne term structure model (ATSM)

We consider the a¢ ne term structure model (AT SM ) proposed by [START_REF] Ang | A No-Arbitrage Vector Autoregression of Term Structure Dynamics with Macroeconomic and Latent Variables[END_REF], which is a discrete-time version of the a¢ ne class introduced by Du¢ e and Kan (1996), where bond prices are exponential a¢ ne functions of underlying state variables. The assumption of no-arbitrage [START_REF] Harrison | Martingales and arbitrage in multiperiod securities markets[END_REF] guarantees the existence of a risk neutral measure Q such that the price at time t of an asset V t that does not pay any dividends at time t + 1 satis…es

V t = E Q t [exp( i t )V t+1 ],
where the expectation is taken with respect to the measure Q and i t is the short term rate. The assumption of no-arbitrage is equivalent to the assumption of the existence of the Radon-Nikodym derivative t+1 , which allows to convert the risk neutral measure into the data generating measure:

E Q t [exp( i t )V t+1 ] = E t ( t+1 = t ) exp( i t )V t+1 :
Assume t+1 follows a log-normal process:

t+1 = t exp( 0:5 0 t t 0 t " t+1 ): (30) 
t is called the market price of risk and is an a¢ ne function of a vector of k factors F t :

t = 0 + 1 F t ; ( 31 
)
where 0 is a k-dimensional vector and 1 a k k matrix. The short term rate is also assumed to be an a¢ ne function of F t :

i t = 0 + 0 1 F t ; ( 32 
) the optimal is = E[ 1 ] U 1 R 1 U 1 . Substituting E[ 1 ] = (1 ) U 1 + R 1 in the expression for provides the result.
where 0 is a scalar and 1 a k-dimensional vector. We assume that the factors follow a zero-mean stationary vector process:

F t = F t 1 + " t ; (33) 
where " t iidN (0; " ) with " = I with no loss of generality. The nominal pricing kernel is de…ned as:

m t+1 = exp( i t ) t+1 = t = exp( 0 0 1 F t 0:5 0 t t 0 t " t+1 ); (34) 
where the second equality comes from (32) and (30). The nominal pricing kernel prices all assets in the economy, so, by letting p

( ) t
denote the time t price of a -period zero coupon, we have:

p ( +1) t = E t (m t+1 p ( ) t+1 ): (35) 
Using the above equations, it is possible to show that bond prices are an a¢ ne function of the state variables:

p ( ) t = exp( A + B 0 F t ); (36) 
where A and B are a scalar and a k-dimensional vector obeying:

A +1 = A + B 0 ( 0 ) + 0:5 B 0 0 B 0 ; B 0 +1 = B 0 ( 1 ) 0 1 ; 
(37)

with A 1 = 0 and B 1 = 1 . See [START_REF] Ang | A No-Arbitrage Vector Autoregression of Term Structure Dynamics with Macroeconomic and Latent Variables[END_REF] for a formal derivation. The continuously compounded yield on a -period zero coupon bond is:

y ( ) t = ln p ( ) t = = A + B 0 F t ; (38) 
with A = A = and B = B = , so yields are also an a¢ ne function of the factors. Equations (33) and (38) de…ne a state-space model:

F t = F t 1 + " t ; Y t = A + BF t + v t ; (39) 
where Y t = (y

( 1 ) t ; y ( 2 ) t 
; :::; y

( q ) t
) 0 is a q dimensional vector process collecting all the yields at maturities 1 ; 2 ; :::; q , A = (A 1 ; A 2 ; :::A q ) 0 and B = (B 1 ; B 2 ; :::; B q ) 0 are functions of the structural coe¢ cients of the model according to equation (37), and v t is a vector of i.i.d. Gaussian measurement errors with variance v .

Following common practice, we use three factors, which can be interpreted as the level, slope and curvature of the term structure. Given that scaling, shifting, or rotation of the factors provides observational equivalence, a normalization is required. Following [START_REF] Dai | Speci…cation analysis of a¢ ne term structure models[END_REF] we identify the factors by assuming factor mean equal to zero, a lower triangular structure for the matrix , and we set 1 = (1; 1; 0) 0 . Given this identi…cation scheme, the coe¢ cient 0 equals the unconditional mean of the instantaneous rate, which can be approximated by the sample average of the 1-month yield. As for second order coe¢ cients, we assume and v to be diagonal, while we assume absence of correlation between the state and the measurement equation disturbances, i.e. "v = 0.

We collect all the parameters to be estimated in the vector:

= f ; ; 0 ; 1 ; v g: (40) 
We estimate with the EM algorithm, evaluating the likelihood at each iteration by means of the Kalman Filter. In our application we also consider a speci…cation of the model with constant risk premium, which amounts to setting 1 = 0 in equation (31).

VARs with no-arbitrage ATSM restrictions (ATSM-VAR)

Now consider a V AR(p) representation of the q dimensional vector collecting all the yields at hand:

Y t = 0 + 1 Y t 1 + ::: + p Y t p + u t (41) 
where

Y t = (y ( 1 ) t ; y ( 2 ) t 
; :::; y

( q ) t
) 0 and u t is a vector of one-step-ahead forecast errors having a multivariate normal distribution with variance u . The V AR in (41) can be interpreted as an approximation of the Moving Average (M A) representation of Y t . The approximation gets better as more dynamics are added to the system.

Importantly, as is clear from equation (39), the AT SM features an M A representation. As the AT SM depends on a vector of coe¢ cients (eq. ( 40)) having much fewer elements than the coe¢ cient matrices of the V AR, the AT SM imposes a set of nonlinear cross-equation restrictions on the V AR in (41).

To impose such restrictions on the V AR we follow Del Negro and Schorfheide (2004), i.e. we …rst compute the moments of Y t under the state-space in equation (39), and then impose them on the V AR in (41). To do so, rewrite the V AR in the data-matrix notation:

Y = X + U; ( 42 
)
where Y is a T q data-matrix with rows Y 0 t , X is a T k (where k = 1 + qp) data-matrix with rows X t = (1; Y 0 t 1 ; Y 0 t 2 ; :::Y 0 t p ), = ( 0 ; 1 ; :::; p ) 0 , and U is a T q data-matrix with rows u 0 t : Let E denote the expectation under the AT SM model and de…ne the autocovariance matrices xx ( ) = E (X t X 0 t ) and XY ( ) = E (X t Y 0 t ), which can be computed using the state-space representation in (39) for a given . Then, under the AT SM; the relation between the AT SM parameters and the V AR parameters is 4

= [ xx ( )] 1
xy ( ), where the star indicates that the AT SM restrictions hold. De…ning ^ as the maximum likelihood estimator of , the maximum likelihood estimator for the V AR coe¢ cients under the AT SM is:

^ = [ xx ( ^ )] 1 xy ( ^ ): (43) 
In the following we will refer to this model as the AT SM V AR. We also consider a speci…cation in which we impose on the AT SM V AR the additional restriction of a constant risk premium, which is obtained simply by setting 1 = 0 in equation ( 31). We label this case CRP V AR.

In the empirical application the structural coe¢ cients and the corresponding AT SM moments xx ( ^ ) and xy ( ^ ) are re-estimated in pseudo-real-time as forecasting proceeds forward within our rolling estimation-forecasting scheme. The maximum likelihood estimator of the unrestricted VAR (U V AR) is simply ^ = (X 0 X) 1 X 0 Y .

Forecasting exercise

For our exercise we use monthly data on zero coupon bond yields of maturities 1-, 3-, 12-, 36-, and 60-month, from January 1964 to December 2003. The data are taken from the Fama CRSP zero coupon and Treasury Bill …les.

We produce 1-step ahead forecasts using the U V AR (we label such forecasts f U t ), the AT SM V AR (f AT SM t ), the CRP V AR (f CRP t ), and a simple random walk (RW ) forecast (f RW t ).

For each of the models at hand the sequences of forecasts are produced over the sample 1974:1 to 2003:12 using a rolling estimation window of 10 years. The procedure thus starts with estimating all the models using the estimation window 1964:1 to 1973:12, and producing the forecasts for the vector of yields in 1974:1. Then the estimation window is moved one period ahead, to 1964:2 to 1974:1, and the new estimates are used to produce the forecasts for the vector of yields in 1974:2.

In light of the forecasting focus of the paper, the structural coe¢ cients and the corresponding AT SM moments xx ( ^ ) and xy ( ^ ) are re-estimated using the data in each of the rolling samples.

We maximize the likelihood of the VAR with no-arbitrage AT SM restrictions using the Broyden, Fletcher, Goldfarb, and Shanno (BFGS) algorithm with Brent line search. 5 The procedure is iterated until the last forecast (i.e., that for 2003:12) is obtained. For the VAR models, we use a speci…cation 4 As stressed above, the approximation is not exact because the state-space representation of the ATSM generates moving average terms 5 In the …rst estimation window we initialize our algorithm as follows. First we compute a maximum, then we draw 100 alternative starting points by randomizing around this maximum (drawing from a normal with variance derived from the Hessian at the maximum), maximize again, and check that none of the random initial points leads to a point with higher likelihood (i.e. a new maximum). If this is not the case, we take the new maximum and repeat the randomization until no points with higher likelihood are found. Then, for all the remaining estimation windows, we use the optimum obtained in the previous period t 1 as initial condition for the maximization performed in period t. The in-sample …t of the estimated models is extremely high troughout the sample (with the R 2 being around 0:998).

with 3 lags which provides well-behaved residuals. 6

Results for a quadratic loss

We …rst consider the results for a quadratic loss function. In the case at hand the loss function in (1) specializes to:

L(y ( ) t+1 ; ŷ( ) t+1 ) = y ( ) t+1 ŷ( ) t+1 2 ; ( 44 
)
where y

( )
t+1 is the yield to maturity of a bond of maturity in period t + 1 and ŷ( ) t+1 is the 1-step ahead forecast of such variable. We provide results for bonds of …ve di¤erent maturities: 1-, 3-, 12-, 36-, 60-months.

We start with the results based on the global measure of usefulness. Results are displayed in Table 3, which is composed of four panels, each corresponding to a di¤erent combination: AT SM V AR and U V AR (panel A), CRP V AR and U V AR (panel B), AT SM V AR and RW (panel C), CRP V AR and RW (panel D). For each yield, column (1) in Table 3 contains the Root Mean Squared Forecast Error (RM SF E) (i.e., the realized loss) of the …rst model considered in the combination. Columns ( 2) to (4) report the percentage gains over the RM SF E of the model in column (1) obtained by using, respectively, the second model in the combination, a combination with equal weights (f =1=2 t

), and a combination based on the estimated optimal weight (f t ). Column [START_REF] Clark | Tests of Equal Forecast Accuracy and Encompassing for Nested Models[END_REF] reports the value of the estimated optimal weight b (as de…ned in equation ( 12)). Finally, columns [START_REF] Dai | Speci…cation analysis of a¢ ne term structure models[END_REF] to [START_REF] De | Time series and cross section information in a¢ ne term structure models[END_REF] report the statistics for the encompassing tests of Proposition [START_REF] Almeida | The role of no-arbitrage on forecasting: Lessons from a parametric term structure model[END_REF].

We included in the comparison the case of a combination with equal weights for reference, because there is a long literature documenting the fact that in practice equal weights usually yield more accurate forecasts than optimal combination weights. Of course this can happen in a real-time forecasting exercise, when the optimal weights are estimated using only past information, while in our case the optimal weights outperform the equal weights by construction. Still, it may be interesting to see whether the optimal weights are statistically di¤erent from 0:5, because this might explain the success of combinations with equal weights, and how large are the gains in using optimal rather than equal weights.

From Panel A we see that the estimated optimal weights b range between 0:514 and 1:054, and in all cases the encompassing test rejects the null that the optimal weight is zero, i.e., the restricted model is useless, while it cannot reject (except for the 1-month yield) the null that the unrestricted forecast is useless. Therefore there is evidence that imposing the no-arbitrage AT SM restrictions on a VAR might help in forecasting, although the restrictions are not uniformly useful across yields, in particular they seem to work better for bonds with longer maturity. This is in line with Carriero (2007) who shows that the misspeci…cation of the AT SM restrictions is more pronounced at the short-end of the yield curve while it is milder for yields of longer maturities. The pattern of the forecast gains is obviously related to that of the weights, with the gains from using the combination and using the restricted model being similar for longer maturities. With regards to the comparison with the combination with equal weights, in general the optimal weights lead to larger gains, as the optimal weights are well above 0.5 for all cases except the 1-month yield.

Panel B provides results for the case in which we impose on the AT SM V AR the additional restriction of a constant risk premium, i.e. the CRP V AR . The estimated optimal weights for the 3-, 36-, and 60-month yields do not change dramatically, while there is a sharp decrease in the usefulness of the restrictions for the 12-month and especially for the 1-month yield. The results in terms of signi…cance of the optimal weights are entirely in line with those obtained with the speci…cation with variation in the risk premium, with a slightly stronger evidence against the usefulness of the restrictions. Therefore, most of the forecasting gains do not seem to be strongly related to the presence of time varying rather than constant risk premia in the model, except at the short end of the yield curve. The combined forecasts based on the optimal weights lead to larger gains with respect to the case with equal weights.

Panel C and D provide results for the combination between the random walk and the VAR with no-arbitrage AT SM restrictions (with and without variation in the risk premium). Results for this case show that most of the gains documented in Panel A and Panel B seem to be related to the failure of the unrestricted VAR to provide a good forecast of the yield curve rather than to the merits of the no-arbitrage AT SM restrictions. In particular, for the combination of the AT SM V AR with the RW , the estimated optimal weights b range between 0:186 and 0:629, while for the combination of CRP V AR with the RW the weights b range between 0:090 and 0:380. These …gures are much lower than those obtained when considering the combination of the VAR with no-arbitrage AT SM restrictions with the unrestricted VAR (see panels A and B). In particular, all the weights decrease quite dramatically, and the encompassing test does not reject the null that the no-arbitrage AT SM restrictions are useless, with the only exception of the weight on the 1-month yield. Indeed, the latter is the only case in which the random walk produces quite poor forecasts, worse than those produced by the unrestricted VAR. As a result the gains coming from the optimal combination, though positive, are relatively small for all maturities but the 1-month. The combination with equal weights does not work very well for this case, yielding small losses rather than gains in most of the cases. This happens because the equal weights are too high with respect to the optimal ones.

The di¢ culty in beating the random walk forecasts is not surprising, given the results usually obtained for the 1-step ahead case in the literature. For example, in the paper by [START_REF] Diebold | Forecasting the term structure of government bond yields[END_REF] the gains in RM SF E of all the considered models at 1-step-ahead with respect to the random walk are quite low. Among all the models they consider, the best forecasts for the 3-month and 12-month yield provide gains of at most 4%, the best forecasts of the 24-month yield provide a gain of 1%, while for yields of longer maturity the gains are either zero or negative. The maximum gain in RM SF E in using an AT SM against the random walk found by [START_REF] Almeida | The role of no-arbitrage on forecasting: Lessons from a parametric term structure model[END_REF] for the 1-step ahead case is of 5% for the 2-year yield, while they found gains in the range of 1%-3.5% for intermediate maturities, and negative gains for yields of longer maturity. The AT SM estimated by [START_REF] Moench | Forecasting the yield curve in a data-rich environment: A no-arbitrage factor-augmented VAR approach[END_REF] outperforms the random walk forecast only for the 6-month yield, with a gain of 3%, while it is outperformed for all the remaining maturities. Better results are obtained by Favero et al.

(2009) and [START_REF] Moench | Forecasting the yield curve in a data-rich environment: A no-arbitrage factor-augmented VAR approach[END_REF] by extending the approach with the inclusion of a broad macroeconomic information set.

We now turn to the results for the local measure of usefulness, which are summarized in Figure 1.

The …gure is composed of 20 panels displayed in 5 rows and 4 columns. The rows display results for di¤erent yields, while the columns represent di¤erent forecast combinations (respectively f in the last column). Each panel contains a plot of the estimated smoothed weights, as de…ned in equation ( 15), together with the 95% bands described in Proposition 2. We set = 0:3, which given that our out-of sample size n = 360 implies that the smoothed weights are estimated using a window of d = 108 observations.

Looking at the …rst two columns in Figure 1, it is clear that the forecasting gains from imposing the no-arbitrage AT SM restrictions onto the VAR are not constant over time. In particular, the optimal weight is not statistically di¤erent from one in the …rst part of the sample, but in more recent years the estimated optimal weight ^ t decreases, signalling that there are small or no gains in using the no-arbitrage AT SM restrictions from around 1994 to 2003.

Moreover, by comparing the …rst and the second column of Figure 1, it is apparent that the e¤ect of including a time varying rather than constant risk premium is not strong, and is mostly limited to the short end of the yield curve, which con…rms the results found using the global measure (see Table 2).

Finally, by looking at the last two columns of Figure 1, it is clear that when the VAR with no-arbitrage restrictions is combined with the random walk, one cannot reject the null that the no-arbitrage AT SM restrictions are useless throughout the sample.

Results for a portfolio utility loss

The portfolio utility loss considers the asset allocation problem of an investor who is buying a portfolio of bonds in period t and then sells it in period t + 1, and therefore earning/losing the change occurring in the value of the portfolio within t and t + 1. The holding period return on a yield of maturity is:

r ( +1) t+1 = p ( ) t+1 p ( +1) t = y ( ) t+1 + ( + 1)y ( +1) t : (45) 
Equation ( 45) shows that a forecast of the yield ŷ( ) t+1 provides a forecast of the holding period return r( +1) t+1 via a simple transformation 7 :

r( +1) t+1 = ŷ( ) t+1 + ( + 1)y ( +1) t : (46) 
Collecting all the returns under consideration in the vector r t+1 = (r

( 1 +1) t+1
; r

( 2 +1
) t+1

; :::; r

( q +1) t+1
) 0 , and setting x t+1 = r t+1 the loss function in (2) specializes to:

L(r t+1 ; f t;1 ) = w (f t;1 ) 0 r t+1 + 2 w (f t;1 ) 0 w (f t;1 ); (47) 
where f t;1 is a vector of forecasts of r t+1 and can be derived from the forecasts of the yields by using (46).

Results for the global measure of usefulness are in Table 4. Each panel in the table corresponds to a di¤erent forecast combination: Panels A and B contain results from the combination of f AT SM ), and a combination based on the estimated optimal weight (f t ). Column (5) reports the value of the estimated optimal weight b (as de…ned in equation ( 12)). Finally, columns (6) to (8) report the statistics for the encompassing tests of Proposition [START_REF] Almeida | The role of no-arbitrage on forecasting: Lessons from a parametric term structure model[END_REF].

Two main results emerge from Table 4. First, by looking at the t-statistics for the encompassing tests of Proposition 1 it appears that the random walk restrictions no longer dominate the noarbitrage AT SM restrictions when considering a portfolio utility loss, but both forecasts are useful.

As a result, the gains from combining these two models are high (depending on the assumption on the risk premium, they are respectively 18.82% and 14.24%).

Second, it appears that the choice between a constant or time varying risk premium can be important. The losses occurring when the forecasts are produced with the no-arbitrage restricted VAR are indeed much higher in the case of constant risk premium than in the case of time varying risk premium. This can be interpreted as evidence that keeping …xed the risk premium worsens the forecasts because it increases model misspeci…cation. When the risk premium is time varying the optimal weights are not statistically di¤erent from the equal weights (see column 8), while when the risk premium is …xed the optimal weight decreases.

We now turn on the results for the local measure of usefulness, which are summarized in Figure 7 It also follows that the forecast error made in forecasting the holding period return is proportional to that made in forecasting the yield of a given bond:

r( +1) t+1 r ( +1) t+1 = (ŷ ( ) t+1 y ( ) t+1 
). This also implies that using the holding period return rather than the yields in the quadratic loss function would not change the optimal weight ^ in that case. Each panel contains a plot of the estimated smoothed weight, as de…ned in equation ( 24), together with the 95% bands described in Proposition 2.

Similarly to the case of a quadratic loss, we observe a clear pattern of decreasing usefulness of the no-arbitrage AT SM restrictions over time.

Another interesting result, which is in stark contrast with the quadratic loss case, is that assuming a constant risk premium clearly worsens the performance of the no-arbitrage forecasts. As is clear from the Figure, the weights are uniformly lower in panels B and D with respect to panels A and C. Moreover, as is clear in panels B and D, in the second part of the sample it is not possible to reject the null that the no-arbitrage VAR with constant risk premium is useless. This suggests that the incorporation of a time-varying risk premium in the no-arbitrage AT SM restrictions may not be important from a statistical point of view, but it is essential when evaluating the forecasts in terms of their usefulness for constructing bond portfolios.

The results displayed in Figure 2 also con…rm the fact that, di¤erently from the quadratic loss case, the random walk restrictions no longer dominate the no-arbitrage AT SM restrictions when considering a portfolio utility loss. Even though the usefulness of the no-arbitrage AT SM restrictions relative to a random walk has decreased over time, both restrictions appear to be useful, and the optimal forecast combination exploits information from both.

Additional results

In this subsection we address two additional issues. First we provide results for a 12-step-ahead forecast horizon. Second, we provide results for the case in which the optimal is chosen ex-ante within a pseudo-real-time forecasting exercise.

Table 5 displays results based on a 12-step-ahead forecast horizon for both the quadratic loss and the portfolio utility loss. The multi-step forecasts are obtained by iteration. Results are in line with those obtained for the 1-step-ahead case. For the quadratic loss imposing the no-arbitrage AT SM restrictions improves the forecasting performance of a VAR in the yields, but the restrictions are less useful when used in combination with a random walk forecast. For the portfolio utility loss the no-arbitrage AT SM restrictions are always useful, providing very large forecasting gains. For both loss functions the forecasts based on optimal weights largely outperform the simple equal combination weights forecast. The only major di¤erence with respect to the 1-step-ahead case is that the assumption of constant term premium does not seem to play an important role in the case of the portfolio utility loss. Table 6 displays results for a forecasting exercise in which rather than evaluating the usefulness of the restrictions we try to understand whether forecast combination using estimated optimal weights is a viable and e¢ cient way to produce forecasts in real time. Note that to implement our scheme in real time two estimation windows are needed. The …rst window is needed to estimate the model's coe¢ cients. Then a second window is needed to estimate using past (from the point of view of the simulation) out of sample forecasts. Once is obtained, forecasts for the future can be computed.

As a result the sample on which the …gures displayed in Table 6 are based is di¤erent from that used for Tables 3,4, and 5. For analogy with our analysis for the estimation of the smoothed we select the estimation window to be equal to d = 108 observations. This implies that the …rst forecast used for evaluation is that of the period 1983:2, and the estimated optimal weights used at time t in this exercise are the lagged values (i.e., the values at time t 1) of the optimal weights depicted in Figure 1 and Figure 2. For both loss functions the AT SM V AR works well when combined with an unrestricted VAR, while when combined with a random walk the no-arbitrage AT SM restrictions are useful only under the portfolio utility loss, and not under the quadratic loss (except at the short end of the curve). The results obtained with equal weights are similar to those obtained with the optimal weights for the quadratic loss, while they are worse for the utility loss. The latter result is not surprising, as Figure 2 shows that the optimal weights for the utility loss are statistically di¤erent from 0.5 in most of the sample.

Conclusions

In this paper we have developed a general framework for analyzing the usefulness of imposing parameter restrictions on a forecasting model. We have proposed a measure of usefulness based on the weight that a set of restrictions receives within an optimal forecast combination. Importantly, the proposed measure can vary over time and depends on the forecaster's loss function. We have shown how to estimate the measure of usefulness out-of-sample and perform inference about it, both in a stable framework and in a framework with possible instability.

We have applied our methodology to the problem of analyzing the usefulness of no-arbitrage AT SM restrictions for forecasting the term structure of interest rates.

Our results reveal that: 1) the restrictions have become less useful over time; 2) using a statistical measure of accuracy, the restrictions are a useful way to reduce parameter estimation uncertainty, but are dominated by restrictions that do the same without using any theory; 3) using an economic measure of accuracy, the no-arbitrage AT SM restrictions are no longer dominated by atheoretical restrictions, but for this to be true it is important that they incorporate a time-varying risk premium.

We want to stress the fact that these conclusions do not necessarily imply that bond markets have become more or less e¢ cient over time, because …rst of all our method can only reveal time variation in the usefulness of the restrictions, but does not allow us to determine its source. Secondly, the results are conditional on the particular speci…cation of no-arbitrage restrictions, and for the ATSM in particular this involves a number of additional assumptions that are not necessarily grounded in economic theory. The table summarizes the results for the 12-step ahead forecast horizon, using the quadratic utility loss and the portfolio utility loss. Each panel considers a di¤erent forecast combination. For each panel, the …rst 5 rows display the results for the quadratic loss. Therefore, the …rst …ve entries of column (1) in each panel are the RMSFE in forecasting the corresponding yield 12-step-ahead. The last row (Portfolio) displays results for the portfolio utility loss. Therefore, the last entry in column (1) is the utility loss associated with the portfolio. Columns (2)-( 8) have the same structure as in Tables 2 and3. In particular columns (2) to (4) report the percentage gains over the RMSFE or Utility Loss of the model in column (1) obtained by using, respectively, the second model in the combination, a combination with equal weights (f =1=2 t
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), and a combination based on the estimated optimal weight (f t ). Column (5) reports the value of the estimated optimal weight b (as de…ned in equation [START_REF] Du¢ E | A yield-factor model of interest rates[END_REF] for the quadratic loss and in equation [START_REF] Markowitz | Portfolio Selection[END_REF] for the utility loss). Finally, columns (6) to (8) report the statistics for the encompassing tests of Proposition [START_REF] Almeida | The role of no-arbitrage on forecasting: Lessons from a parametric term structure model[END_REF]. The stars *, **, ***, indicate rejection of the null at 10%, 5%, and 1% level. The statistic t =1 is used to test the null that the unrestricted forecast is useless. The statistic t =0 is used to test the null that the restricted forecast is useless. The statistic t =1=2 is used to test the null that the optimal weight is 0.5. The used bandwidth is 2(h 1). The table summarizes the results for the pseudo-real-time implementation of our forecasting exercise, at 1-stepahead horizon. The sample used for forecast evaluation is 1983:2 to 2003:12, and it di¤ers from the evaluation sample used in Table 3, Table 4 andTable 5. This happens because at each point in time we need a training sample for which past out of sample forecasts are available in order to estimate the optimal . For analogy with the computation of the smoothed we use a training sample of 108 observations. Each panel considers a di¤erent forecast combination. For each panel, the …rst 5 rows display the results for the quadratic loss. Therefore, the …rst …ve entries of column [START_REF] Almeida | The role of no-arbitrage on forecasting: Lessons from a parametric term structure model[END_REF] in each panel are the RMSFE in forecasting the corresponding yield 12-step-ahead. The last row (Portfolio) displays results for the portfolio utility loss. Therefore, the last entry in column (1) is the utility loss associated with the portfolio. Columns (2)-( 8) have the same structure as in Tables 2 and3. In particular columns (2) to (4) report the percentage gains over the RMSFE or utility loss of the model in column (1) obtained by using, respectively, the second model in the combination, a combination with equal weights (f =1=2 t

), and a combination based on the estimated optimal weight (f t ). [START_REF] Newey | A Simple, Positive Semi-De…nite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix[END_REF]. The red dashed lines are the 95% bands in equation [START_REF] Diebold | Comparing Predictive Accuracy[END_REF].

j = t d + 1 ;

 1 :::; t; t = m + d 1; :::; T h:

  unrestricted VAR forecasts f U t , while panels C and D contain results of the combination of f AT SM t and f CRP t with the random walk forecasts f RW t . Column (1) contains the portfolio utility loss of the …rst model considered in the combination. Columns (2) to (4) report the percentage gains over the utility loss of the model in column (1) obtained by using, respectively, the second model in the combination, a combination with equal weights (f =1=2 t

2 .

 2 The Figure is composed of four panels, each corresponding to a di¤erent forecast combination.

Figure 1 :

 1 Figure1: Results for Quadratic Loss. The blue solid line is the estimated optimal weight b t in equation[START_REF] Giacomini | Forecast Comparisons in Unstable Environments[END_REF] . The red dashed lines are the 95% bands in equation[START_REF] Diebold | Comparing Predictive Accuracy[END_REF].

Figure 2 :

 2 Figure2: Results for Portfolio Utility Loss. The blue solid line is the estimated optimal weight b t in equation[START_REF] Newey | A Simple, Positive Semi-De…nite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix[END_REF]. The red dashed lines are the 95% bands in equation[START_REF] Diebold | Comparing Predictive Accuracy[END_REF].

Table 1 .

 1 Critical values k ; for the con…dence bands in Proposition 2

	= d=n

Table 2 :

 2 Empirical Size of the tests in[START_REF] Clark | Tests of Equal Forecast Accuracy and Encompassing for Nested Models[END_REF].

	Panel A: Case 1 = 1 ( = 0)
	Percentage of rejections of H 0 : = 0
	m # 50	n n ! 50 0.070 0.068 0.053 0.056 0.054 0.052 100 150 250 500 1000
	100	0.067 0.059 0.056 0.053 0.051 0.051
	150	0.074 0.064 0.056 0.052 0.047 0.048
	250	0.073 0.060 0.058 0.052 0.049 0.048
	Panel B: Case 1 = 0 ( = 1)
	Percentage of rejections of H 0 : = 1
	m # 50	n n ! 50 0.068 0.069 0.052 0.058 0.053 0.052 100 150 250 500 1000
	100	0.067 0.057 0.059 0.053 0.051 0.049
	150	0.074 0.064 0.057 0.052 0.046 0.047
	250	0.070 0.060 0.058 0.052 0.049 0.051
	The table contains the percentage of rejections for the tests in (5)
	with a nominal size of 0.05

Table 3 .

 3 Results with Quadratic Loss.

		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Panel A: ATSM-VAR and UVAR				
		RMSFE %gain					
	Yields 1-month	(f U t ) 0.808	(f AT SM t 0.51	) (f t 4.84 =1=2	) (f t ) 4.85	b 0.514 -4.301*** 4.553*** 0.126 t =1 t =0 t =1=2
	3-month	0.709	6.42	6.62	7.41	0.736 -1.486	4.147*** 1.331
	12-month 0.682	11.93	8.50	11.96 1.054 -0.231	4.525*** 2.378**
	36-month 0.526	8.19	6.78	8.37	0.875 -0.619	4.331*** 1.856*
	60-month 0.460	6.70	5.79	6.97	0.840 -0.872	4.572*** 1.850*
	Panel B: CRP-VAR and UVAR				
		RMSFE %gain					
	Yields							

Table 5 .

 5 Quadratic and Portfolio Utility Loss: 12-step-ahead results

	-month	0.837		3.86		5.73	5.99	0.629 -2.695*** 4.562*** 0.933
	3-month	0.607		-9.33		-3.06	0.25	-0.186 -5.528*** -0.870	-3.199***
	12-month 0.596		-0.88		-0.09	0.05	0.188 -2.135**	0.496	-0.820
	36-month 0.473		-2.13		-0.35	0.05	0.128 -3.649*** 0.536	-1.557
	60-month 0.424		-1.11		-0.002	0.14	0.249 -2.530*** 0.839	-0.845
	Panel D: CRP-VAR and RW			
		RMSFE	%gain			
	Yields 1-month	(f RW t 0.837	)	(f CRP t -10.08	)	(f t 4.00 =1=2	) (f t ) 4.80	b 0.356 -7.607*** 4.212*** -1.697** t =1 t =0 t =1=2
	3-month	0.607		-9.59		-1.94	0.10	0.090 -8.043*** 0.800	-3.621***
	12-month 0.596		-3.71		-0.42	0.81	0.295 -2.945*** 1.234	-0.855
	36-month 0.473		-0.99		0.55	0.61	0.380 -2.645*** 1.626	-0.509
	60-month 0.424		-1.83		-0.27	0.06	0.148 -3.948*** 0.685	-1.632

Table 6 :

 6 Pseudo-real-time simulationPanel A: ATSM-VAR and UVAR

		Loss	%gain		
	1-month	(f U t ) 0.561	(f AT SM t 1.66	) (f t 6.05 =1=2	) (f t ) 5.55
	3-month	0.341	11.63		12.87	13.47
	12-month 0.376	7.31		7.04	7.73
	36-month 0.380	3.78		4.77	4.42
	60-month 0.371	2.75		3.69	3.20
	Portfolio -1.218 -37.19		-4.17	1.00
	Panel B: CRP-VAR and UVAR	
		Loss	%gain		
	1-month	(f U t ) 0.561	(f CRP t -30.71	)	(f t -3.58 =1=2	) (f t ) 1.02
	3-month	0.341	-3.66		7.20	8.56
	12-month 0.376	-1.54		3.91	2.21
	36-month 0.380	4.06		4.67	4.20
	60-month 0.371	3.57		5.32	5.39
	Portfolio -1.218 -167.69	-34.70	-0.60
	Panel C: ATSM-VAR and RW	
		Loss	%gain		
	1-month	(f RW t 0.594	) (f AT SM t 7.14	) (f t 11.38 =1=2	) (f t ) 11.03
	3-month	0.294	-2.31		0.46	1.30
	12-month 0.341	-1.99		-0.50	-0.66
	36-month 0.352	-3.94		-0.88	-0.25
	60-month 0.349	-3.62		-1.04	-1.11
	Portfolio -1.231 -38.07		5.18	8.20
	Panel D: CRP-VAR and RW	
		Loss	%gain		
	1-month	(f RW t 0.594	) (f CRP t -23.42	)	(f t 6.26 =1=2	) (f t ) 8.13
	3-month	0.294	-20.02		0.16	-0.22
	12-month 0.341	-11.73		-2.69	-1.97
	36-month 0.352	-3.64		-0.55	-1.48
	60-month 0.349	-2.75		-0.06	-1.50
	Portfolio -1.231 -166.99	-22.17	5.02

As is clear from[START_REF] West | Asymptotic Inference about Predictive Ability[END_REF] the choice of the value of 2 in the true DGP does not inl ‡uence the results as both models will estimate it unbiasedly.

To see why note 1 is a discrete random variable independent from all the other variables in[START_REF] Palm | To Combine or not to Combine? Issues of Combining Forecasts[END_REF]. It follows that

The Bayesian Information Criterion selects 1 lag, but the LM test statistic reported in[START_REF] Johansen | Likelihood-based Inference in Cointegrated Vector Auto-regressive Models[END_REF] rejects the null of no residual autocorrelation. The speci…cation with 3 lags is the most parsimonious one which eliminates this problem. Our results are robust to speci…cations with 1 to 4 lags.

Proofs

Proof of Proposition 1. We …rst show that, under Assumption A, b is asymptotically normal, so that 1 p n( b ) ! d N (0; 1); where 2 = H 1 H 1 : The results in the Proposition then follow from showing consistency of b 2 for 2 : Asymptotic normality of b is obtained by verifying the assumptions of Theorem 3.1 of [START_REF] Newey | Large sample estimation and hypothesis testing[END_REF], since b can be viewed as an extremum estimator obtained by maximizing the objective function Q n ( ) over R. First, we show that assumptions (i)-(iii) of Theorem 2.7 of [START_REF] Newey | Large sample estimation and hypothesis testing[END_REF] are satis…ed, so that b ! p : Assumption (i) of Theorem 2.7 is equivalent to A(1). Assumption (ii) of Theorem 2.7 requires concavity of Q n ( ) ; which is implied by A(2). Assumption (iii) requires that Q n ( ) E [Q n ( )] ! p 0 for all : Since any measurable function of the …nite history of y t is mixing of the same size as y t ; f U t;h and f R t;h are mixing of the same size as y t , because they are functions of a window of in-sample data m that is …nite by A [START_REF] Diebold | Forecasting the term structure of government bond yields[END_REF]. This implies that L x t+h ; f R

) is also mixing with of size r=(2r 1) or of size r=(r 1), which, together with A(4), implies that the conditions of Corollary 3.48 of [START_REF] White | Asymptotic theory for econometricians[END_REF] are satis…ed and thus Q n ( ) E [Q n ( )] ! p 0 for all . We next verify conditions (i)-(v) of Theorem 3.1 of [START_REF] Newey | Large sample estimation and hypothesis testing[END_REF]. Conditions (i) and (ii) are implied by A(1) and A(2). Condition (iii) requires that 1=2 p nr Q n ( ) ! d N (0; 1): is …nite by A(5) and it is positive by A [START_REF] Dai | Speci…cation analysis of a¢ ne term structure models[END_REF]. By arguments similar to those used above, one can show that A(3) implies that

) is mixing with of size r=(2r 2) or of size r=(r 2). This, together with A(5), implies that the sequence fZ t g satis…es the conditions of Corollary 3.1 of Wooldridge and White's (1988), and thus condition (iii) is satis…ed. Conditions (iv) and (v) of [START_REF] Newey | Large sample estimation and hypothesis testing[END_REF] coincide with A(7) and A [START_REF] De | Time series and cross section information in a¢ ne term structure models[END_REF]. Finally, A(3), A(5) and A [START_REF] Diebold | Forecasting the term structure of government bond yields[END_REF] imply that the conditions of Theorem 6.20 of White ( 2001) are satis…ed and thus b is a consistent estimator of . This, in turn, implies that the conditions of Theorem 4.1 of [START_REF] Newey | Large sample estimation and hypothesis testing[END_REF] are satis…ed and thus b 2 ! p 2 ; which completes the proof.

Proof of Proposition 2.

and, for ease of notation, henceforth drop the subscript d from b t;d : For t = m + d 1; :::; T h we have

where lies between b t and : By B(1), we have

where B is a standard univariate Brownian motion. By B(2), (d=n 

) (panel D).

For each panel, results are reported for each of the …ve yields at hand. Column (1) contains the Root Mean Squared Forecast Error (RMSFE) (i.e. the realized loss) of the …rst model considered in the combination. Columns (2) to (4) report the percentage gains over the RMSFE of the model in column (1) obtained by using, respectively, the second model in the combination, a combination with equal weights (f =1=2 t

), and a combination based on the estimated optimal weight (f t ). Column (5) reports the value of the estimated optimal weight b (as de…ned in equation ( 12)).

Finally, columns [START_REF] Dai | Speci…cation analysis of a¢ ne term structure models[END_REF] to [START_REF] De | Time series and cross section information in a¢ ne term structure models[END_REF] report the statistics for the encompassing tests of Proposition [START_REF] Almeida | The role of no-arbitrage on forecasting: Lessons from a parametric term structure model[END_REF]. The stars *, **, ***, indicate rejection of the null at 10%, 5%, and 1% level. The statistic t =1 is used to test the null that the unrestricted forecast is useless. The statistic t =0 is used to test the null that the restricted forecast is useless. The statistic t =1=2 is used to test the null that the optimal weight is 0.5.

Table 4. Results with Portfolio Utility Loss.

(1)

(

Panel A: ATSM-VAR and UVAR Utility Loss %gain ), and a combination based on the estimated optimal weight (f t ). Column (5) reports the value of the estimated optimal weight b (as de…ned in equation ( 21)).

Finally, columns [START_REF] Dai | Speci…cation analysis of a¢ ne term structure models[END_REF] to [START_REF] De | Time series and cross section information in a¢ ne term structure models[END_REF] report the statistics for the encompassing tests of Proposition [START_REF] Almeida | The role of no-arbitrage on forecasting: Lessons from a parametric term structure model[END_REF]. The stars *, **, ***, indicate rejection of the null at 10%, 5%, and 1% level. The statistic t =1 is used to test the null that the unrestricted forecast is useless. The statistic t =0 is used to test the null that the restricted forecast is useless. The statistic t =1=2 is used to test the null that the optimal weight is 0.5.