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Abstract

We develop a general framework for analyzing the usefulness of imposing parameter restric-

tions on a forecasting model. We propose a measure of the usefulness of the restrictions that de-

pends on the forecaster�s loss function and that could be time varying. We show how to conduct

inference about this measure. The application of our methodology to analyzing the usefulness of

no-arbitrage restrictions for forecasting the term structure of interest rates reveals that: 1) the

restrictions have become less useful over time; 2) when using a statistical measure of accuracy,

the restrictions are a useful way to reduce parameter estimation uncertainty, but are dominated

by restrictions that do the same without using any theory; 3) when using an economic measure of

accuracy, the no-arbitrage restrictions are no longer dominated by atheoretical restrictions, but

for this to be true it is important that the restrictions incorporate a time-varying risk premium.

Keywords: Forecast Combination; Encompassing; Loss functions; Instability; A¢ ne Term

Structure Models

Acknowledgments: We would like to thank Caio Almeida, Gianni Amisano, Albert Chun

and seminar participants at the 2008 Forecasting in Rio conference, 2009 London and Oxbridge

Time Series workshop and Queen Mary University for useful comments and discussions.

J.E.L. Codes: C52, C53, E43, E47

�Corresponding author, Department of Economics, University College London - Gower Street - WC1E 6BT London.
Tel: +44 0207679 5898 Fax: +44 02079162775 Email: r.giacomini@ucl.ac.uk.



1 Introduction

In recent years the �nance literature has produced major advances in modeling the term structure

of interest rates, building on the assumption of absence of arbitrage opportunities in bond markets.

While the no-arbitrage approach has produced good results in terms of in-sample �t, see e.g. De

Jong (2000) and Dai and Singleton (2000), the papers focusing on out-of sample forecasting have

documented a mixed performance of these models. Du¤ee (2002) shows that beating a random walk

with a traditional no-arbitrage a¢ ne term structure model is di¢ cult. Ang and Piazzesi (2003) show

that imposing no-arbitrage restrictions and an essentially a¢ ne speci�cation of market prices of risk

improves out-of-sample forecasts from a VAR(12), but the gains with respect to a random walk

forecast are small. Carriero (2007) shows that the no-arbitrage restrictions provide better results

if they are imposed on the data as prior information rather than as a set of restrictions. More

encouraging results have been obtained by Almeida and Vicente (2008), Moench (2008), and Favero

et al. (2009).

A drawback of the above conclusions is that they are based on informal comparisons of mean

squared forecast errors computed over a particular out-of-sample period. In this paper, we develop

a formal framework for investigating the usefulness of parameter restrictions in general - and no-

arbitrage restrictions in particular - when a model is used for forecasting. We achieve several goals:

1) we propose a measure of the usefulness of the restrictions that is tailored to the forecaster�s

decision problem; 2) the measure can be time-varying; 3) we show how to perform inference about

the proposed measure. Our framework can be used to answer questions such as "are no-arbitrage

restrictions useful for forecasting the term structure of interest rates?", "are the restrictions useful

for bond portfolio allocation?", and "have the restrictions become more or less useful over time?",

which are not readily answered using conventional model evaluation and hypothesis testing tools.

Our main idea is to cast the problem in an out-of-sample forecast combination framework, in

which there is only one forecast model, but the forecaster has the option of imposing some restrictions

on its parameters or to forecast with the unrestricted model. We consider a forecast combination

and estimate the optimal combination weight in an out-of-sample framework. We say that the

restriction is "useful for forecasting" when the optimal weight is large, and we can formally test the

hypothesis that the restrictions are useless by an out-of-sample encompassing test. Optimality of

the weight is de�ned with respect to a general forecast loss function, but we show how to specialize

the results to either the commonly used quadratic loss or to a loss based on (minus) the utility of

a bond portfolio constructed using the model. The latter example of an economically meaningful

loss has not been considered before for evaluating no-arbitrage models, and we show how its use can

lead to substantially di¤erent conclusions than those based on conventional statistical measures of

accuracy.

We further generalize the techniques to an environment with possible instability and provide a
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test to assess whether the usefulness of the restrictions is time-varying. To gain some intuition for

why the usefulness of restrictions could be time-varying, consider the case of a quadratic loss, for

which it can be shown that the measure of usefulness captures the bias/variance tradeo¤ between a

possibly misspeci�ed restricted model and the unrestricted model. In this case, time variation could

be due to the variance of the unrestricted model changing or the restrictions becoming more or less

misspeci�ed over time. We should point out that our methods do not allow one to disentangle the

two sources of time variation.

We stress that our techniques are not only applicable to the comparison between an unrestricted

and a restricted forecast, but they can be more generally used for measuring the usefulness of two

alternative sets of restrictions imposed on the same forecasting model. For example, the random

walk model that is often used as a benchmark in forecasting can also be viewed as a set of restrictions

on a VAR, and one could ask whether the no-arbitrage restrictions are useful relative to the random

walk restrictions. Finally, our framework can be used to compare and combine forecasts from nested

models, which is similar to the problem considered by Clark and McCracken (2009) in a di¤erent

asymptotic context.

From the perspective of forecast combination, our problem is non-standard because we do not

combine forecasts from di¤erent models, but forecasts from the same model that are based on

di¤erent estimators. This in principle poses challenges for the econometric methodology in that the

unrestricted and restricted forecasts may be perfectly correlated in large samples if the restrictions

are true. We overcome this problem by considering an out-of-sample environment with non-vanishing

estimation uncertainty, as that considered by Giacomini and White (2006) in the di¤erent context

of equal predictive ability tests, and use it to derive out-of-sample encompassing tests.

Encompassing tests are appealing in our context because in case of rejection of the null hypothesis

they provide as a by-product a combination weight that can be naturally interpreted as a measure

of usefulness of the restrictions, whereas a test of equal predictive ability would force one to choose

either the restricted or the unrestricted forecast. This combination weight can further be used to

produce combined forecasts that exploit the information contained in the economic restrictions in a

way that is optimal for the loss function of interest. Finally, the encompassing approach naturally

lends itself to extensions to unstable environments, since the combination weight can be postulated

to be time-varying. Our contribution to the literature in this respect is to provide a valid asymptotic

theory for testing hypotheses about the time-varying weight.

Note that our problem is also di¤erent from testing the restrictions in-sample, since we allow for

the possibility that the restrictions are not true, but are still useful for out-of-sample forecasting for

a given loss function.
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2 A measure of the usefulness of economic restrictions

2.1 Set-up and notation

Let yt = (xt; zt)0 indicate the vector of observables, which include the (scalar) variable of interest xt

and the vector of predictors zt:We assume that the user has obtained two sequences of h�step ahead
out-of-sample forecasts for xt, by �rst estimating the model without imposing the restrictions (the

"unrestricted forecast") and then re-estimating the model subject to the restrictions (the "restricted

forecast"). If the interest is in comparing two alternative sets of restrictions, the unrestricted forecast

will be replaced by the alternative restricted forecast, but for simplicity we will continue to refer to

the forecasts as "restricted" and "unrestricted".

The forecasts are obtained by a rolling window estimation scheme, which entails estimating the

model using data indexed t �m + 1; :::; t for each t = m; :::; T � h and using the estimated model
at time t to produce a forecast for xt+h. This gives two sequences of n � T � h �m + 1 forecastsn
fUt;h

oT�h
t=m

and
n
fRt;h

oT�h
t=m

; denoting respectively the unrestricted and the restricted forecasts.

The asymptotic framework considers the in-sample size m �xed and lets the out-of-sample size n

grow to in�nity, so that all results are implicitly conditional on the choice ofm, which is user-de�ned.

The computation of the time-varying measure of usefulness further requires choosing a smoothing

window of size d; which is a constant fraction � of the out-of-sample size n.

The user must �nally choose a forecast loss function L(xt+h; ft;h): We consider in particular two

types of loss functions, a quadratic loss and a portfolio utility loss. The quadratic loss is de�ned as

L(xt+h; ft;h) = (xt+h � ft;h)2 ; (1)

where xt in our application will be the yield on a zero coupon bond of maturity � . The portfolio

utility loss considers the asset allocation problem of an investor who is buying a portfolio of q assets

in period t and then sells it in period t+1. In our application such assets will be q zero coupon bonds

of maturities �1; �2; :::; � q. De�ning xt as the vector of returns on each asset: xt = (x1; x2; :::; xq)0,

and w� as a vector of optimal weights, the return on such a portfolio is given by w�0xt. The portfolio

utility loss is similar to that considered by West, Edison and Cho (1993), and is given by

L(xt+h; ft;h) = �w�(ft;h)0xt+h +



2
w�(ft;h)

0�w�(ft;h); (2)

where w�(ft;h) are the optimal portfolio weights for a quadratic utility, and are linear functions of

the forecasts (the exact expression is given in (18) below). Note that in this case ft;h is a vector

containing the forecasts of each element in xt. The matrix � is the variance-covariance matrix of

xt+h; and 
 is a user-de�ned parameter related to the coe¢ cient of relative risk aversion � by the

relationship 

1�
 = �: Our empirical results are obtained by setting � = 1; so that 
 = :5:
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2.2 Methodology for a general loss function

Consider a combination of the restricted and unrestricted forecast, f�t;h = f
R
t;h + (1� �)(fUt;h � fRt;h);

so that � is the weight on the restricted forecast.

The optimal weight �� minimizes the expected out-of-sample loss of the combined forecast:

�� = argmin
�2R

E

"
1

n

T�hX
t=m

L
�
xt+h; f

R
t;h + (1� �)(fUt;h � fRt;h)

�#
(3)

= argmin
�2R

E [Qn (�)] ;

and is estimated by

b� = argmin
�2R

1

n

T�hX
t=m

L
�
xt+h; f

R
t;h + (1� �)(fUt;h � fRt;h)

�
(4)

= argmin
�2R

Qn (�) :

The estimated optimal weight b� is our measure of the usefulness of the economic restrictions for
forecasting, for a given loss function L (�). A small b� indicates that the restrictions are not useful
for forecasting, whereas a large b� suggests that the economic restrictions can be usefully imposed to
obtain more accurate forecasts. b� in (4) can be computed for a general loss function using numerical
methods, but we show how to derive simple analytical expressions for the special cases of a quadratic

and portfolio loss functions in Section 3 below.

The asymptotic distribution of b� is obtained by recognizing that b� is an M-estimator, which
minimizes the (typically well-behaved) objective function Qn (�) : A similar remark was made by

Elliott and Timmermann (2004), in an environment where the forecasts are based on di¤erent models

and are taken as given. The fact that in our context the forecasts are based on the same model

and depend on in-sample data and estimated parameters introduces some complications, which we

handle using a generalization of the key insight in Giacomini and White (2006). Speci�cally, we show

that an asymptotic theory for b� can still be derived by relying on laws of large numbers, central
limit theorems and functional central limit theorems for the objective function and its derivatives in

spite of the fact that such functions depend in a complex nonlinear manner on the in-sample data

through fRt;h and f
U
t;h: This is because we assume that the in-sample estimation window is �nite,

so that the objective function and its derivatives become functions of the �nite history of "short

memory" (mixing) processes, and are thus themselves short memory and plausibly satisfy laws of

large numbers and central limit theorems.

We rely on the asymptotic properties of b� to obtain formal methods for testing the usefulness of
the restrictions, both in an environment where such usefulness is constant over time (Section 2.2.1)

and in an environment with possibly time-varying usefulness (Section 2.2.2).
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2.2.1 Testing the global usefulness of parameter restrictions

We �rst consider an environment in which �� is constant over time, and can thus be interpreted as

a "global" measure of the usefulness of the restrictions.

Proposition 1 below shows how to construct formal tests for whether the unrestricted forecast is

useless (HU
0 : �

� = 1) or whether the restricted forecast is useless (HR
0 : �

� = 0), which are essentially

out-of-sample encompassing tests. The tests are derived under the following assumptions.

Assumption A. (1) E [Qn (�)] is uniquely minimized at �� <1;
(2) L

�
xt+h; f

R
t;h + (1� �)(fUt;h � fRt;h)

�
is convex and twice continuously di¤erentiable with re-

spect to �;

(3) fxtg is mixing with � of size �r=(r � 1) or � of size �2r=(r � 2); r > 2;
(4) EjL

�
xt+h; f

R
t;h + (1� �)(fUt;h � fRt;h)

�
jr=2 <1 for all t and all �;

(5) Ejr�L
�
xt+h; f

R
t;h + (1� �

�)(fUt;h � fRt;h)
�
j2r <1 for all t; where r� indicates the �rst deriv-

ative with respect to �;

(6) 
 = E
h
(
p
nr�Qn (��))2

i
> 0 for all n;

(7) H = E [r��Qn (��)] > 0 for all n;
(8) sup�2� kr��Qn (�)� E [r��Qn (�)]k !p 0; where � indicates a neighborhood of �� and r��

the second derivative with respect to �;

(9) m <1; h <1; n!1:
Assumption A(1) is satis�ed by the quadratic and the portfolio utility loss functions considered

in Section 3, which are both quadratic polynomials in �: Assumption A(2) is stronger than necessary

and is only imposed for convenience and because it is satis�ed by the loss functions in Section 3.

Following Newey and McFadden (1994), it is straightforward to extend the results to an environment

with non-convex and non-di¤erentiable objective functions. Assumptions A(3) to A(7) are the

familiar primitive conditions guaranteeing applicability of laws of large numbers and central limit

theorems for the objective function and its derivatives. Note that these conditions, while ruling out

the presence of unit roots, allow the data to be heterogeneous and dependent. Assumption A(7)

could be violated if the forecasts were perfectly correlated in large samples. To see why, consider

for simplicity the quadratic loss case, where H = E

�
2
�
fRt;h � fUt;h

�2�
: If the restrictions were true,

the forecasts would become perfectly correlated as the estimation sample grows, making H converge

to zero. This occurrence is however ruled out in our context by A(9), which assumes that the

estimation sample is �xed, thus preventing estimation uncertainty from disappearing asymptotically.

Assumption A(8) requires a uniform law of large numbers for the second derivatives of the objective

function. Primitive conditions for A(8) could easily be found, but we do not specify them here

because A(8) becomes considerably simpler for the loss functions considered in Section 3, since in

both cases the second derivative of the objective function does not depend on �: For these loss

functions, A(8) can be replaced with the condition that r��Qn has �nite r=2� th moments, which,
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together with A(3), guarantees that a law of large numbers can be invoked for r��Qn. Assumption
(9) shows that the asymptotic distribution is obtained by letting the out-of-sample size n grow to

in�nity, whereas the in-sample size m and the forecast horizon h are �nite.

Proposition 1 (Tests of global usefulness) Suppose Assumption A holds. Let

tU =

p
n
�b�� 1�b� ; (5)

tR =

p
nb�b� ;

where b� is given by
b� =

p bH�1b
 bH�1; (6)bH = r��Qn
�b�� ;

b
 =

pn�1X
j=�pn+1

�
1� j j

pn
j
�
n�1

T�hX
t=m+j

st

�b�� st�j �b�� ;
st

�b�� = r�@L
�
xt+h; f

R
t;h + (1� b�)(fUt;h � fRt;h)� ;

where pn is a bandwidth that increases with the sample size (Newey and West, 1987).

Then the hypotheses HU
0 : �

� = 1 and HR
0 : �

� = 0 are rejected at a signi�cance level � respectively

when
��tU �� > c�=2 and ��tR�� > c�=2; with c�=2 indicating the 1��=2 quantile of a N(0; 1) distribution.

The bandwidth pn used in the construction of the test statistic must be appropriately chosen to

account for the possible serial correlation in the �rst derivatives of the loss function. In practice, the

accuracy of the estimate of 
 can be an issue, particularly for long-horizon forecasts (see, e.g., Kim

and Nelson, 1993 and Harvey, Leybourne and Newbold, 1998). In our application, we follow Kim

and Nelson (1993)�s recommendation and set pn = 2(h� 1):

2.2.2 Testing the usefulness of parameter restrictions in the presence of instability

A question that may be of further interest to forecasters is whether the usefulness of the restrictions

varies over time. To answer this question, we extend the previous analysis to the case of time-

varying forecast combination weights. These time-varying weights can be interpreted as measuring

the "local" usefulness of the restrictions, and solve the problem

��t = arg min
�t2R

E
�
L(xt+h; f

R
t;h + (1� �t)

�
fUt;h � fRt;h

��
; t = m; :::; T � h: (7)

A simple nonparametric estimator of (7) can be obtained by computing rolling average weights
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over windows of size d :

b�t;d = arg min
�t2R

tX
j=t�d+1

�
L(xj+h; f

R
j;h + (1� �t)

�
fUj;h � fRj;h

��
; t = m+ d� 1; :::; T � h: (8)

Instead of adopting a standard asymptotic approximation to conduct inference about (8), which

would require the bandwidth d=n to go to zero as d and n grow to in�nity, we follow a similar

approach as Giacomini and Rossi (2010) and obtain a distribution theory for b�t;d that has better
�nite-sample properties by using a non-standard asymptotic approximation with �xed bandwidth.

Note that in this �xed-bandwidth approximation, however, b�t;d is no longer a consistent estimator
of ��t ; but it consistently estimates a "smoothed" version of �

�
t :

��t;d = arg min
�t2R

tX
j=t�d+1

E
�
L(xj+h; f

R
j;h + (1� �t)

�
fUj;h � fRj;h

��
; t = m+ d� 1; :::; T � h: (9)

Further note that, as a result of adopting a non-standard �xed bandwidth approximation, stan-

dard results for optimal bandwidth selection obtained in the nonparametric literature do not apply

here. Instead, in our framework di¤erent choices of bandwidth result in a di¤erent null hypothesis

being tested.

A plot of the sample path of
nb�t;doT�h

t=m+d�1
in (8) can uncover possible time-variation in the

usefulness of the economic restrictions. Proposition 2 below further shows how to test the hypothesis

that the unrestricted forecast was consistently useless (HU
0 : �

�
t;d = 1 for all t) or that the restricted

forecast was consistently useless (HR
0 : �

�
t;d = 0 for all t) over time. We control the overall size of

the procedure by deriving uniform con�dence bands that have the desired coverage under the null

hypothesis.

The proposition relies on the following set of assumptions.

Assumption B. Let � 2 [0; 1] : Under the hypothesis that ��t;d is constant and equal to ��,
(1)

n
n�1=2

Pm+[�n]
j=m r�L

�
xj+h; f

R
j;h + (1� �

�)(fUj;h � fRj;h)
�o

obeys a Functional Central Limit

Theorem with 
 =limn!1E(n�1=2
PT�h
j=mr�L

�
xj+h; f

R
j;h + (1� �

�)(fUj;h � fRj;h)
�
)2 > 0;

(2) d=n! � 2 (0;1) as d!1; n!1: m <1 and h <1;
(3) b� !p � and b�!p ��:

Primitive conditions for B(1) and B(3) analogous to those listed in Assumption A could be

similarly speci�ed here.

Proposition 2 (Tests of time variation in usefulness) Suppose Assumption B holds. For a

signi�cance level �; �rst construct the bands:

(b�t;d � k�;� b�p
d
; b�t;d + k�;� b�p

d
); t = m+ d� 1; :::; T � h; (10)

8



where k�;� is tabulated in Table 1 for various values of � = d=n and b� is as in Proposition 1.
The null hypotheses HU

0 : ��t;d = 1 for all t and HR
0 : ��t;d = 0 for all t can be rejected if there

exists at least one t at which, respectively, 1 or 0 fall outside the bands.

3 Special cases: quadratic and portfolio utility loss

This section specializes the general methods described in Section 2.2 to the cases of a quadratic and

a portfolio utility loss.

3.1 Quadratic loss

For a quadratic loss, the objective function in (3) isQn (�) = 1
n

PT�h
t=m

�
xt+h � fRt;h � (1� �)(fUt;h � fRt;h)

�2
;

which is minimized by

�� =
E
hPT�h

t=m

�
xt+h � fUt;h

�
(fRt+h � fUt;h)

i
E

�PT�h
t=m

�
fRt;h � fUt;h

�2� : (11)

A consistent estimator of �� is

b� = PT�h
t=m

�
xt+h � fUt;h

�
(fRt+h � fUt;h)PT�h

t=m

�
fRt;h � fUt;h

�2 ; (12)

or, equivalently, the OLS estimator of � in the regression

xt+h � fUt;h = �(fRt;h � fUt;h) + "t+h; t = m; :::; T � h: (13)

The estimator b� that is needed for constructing the tests in Proposition 1 and Proposition 2 is
in this case given by

b� =  1
n

T�hX
t=m

�
fRt;h � fUt;h

�2!�1vuut pn�1X
j=�pn+1

�
1� j j

pn
j
�
n�1

T�hX
t=m+j

(fRt;h � fUt;h)b"t+h(fRt�j;h � fUt�j;h)b"t+h�j ;
(14)

where b"t+h are regression residuals from (13) and pn is a bandwidth that increases with the sample

size (Newey and West, 1987).

In the presence of possible instability, a consistent estimator of the smoothed measure of useful-

ness ��t;d in (9) can be similarly obtained as

b�t;d =
Pt
j=t�d+1

�
xj+h � fUj;h

�
(fRj;h � fUj;h)Pt

j=t�d+1

�
fRj;h � fUj;h

�2 ; t = m+ d� 1; :::; T � h; (15)

9



or, equivalently, by estimating the OLS coe¢ cient in the following regression over rolling samples of

size d :

xj+h � fUj;h = �t;d(f
R
j;h � fUj;h) + "j+h; (16)

j = t� d+ 1; :::; t;

t = m+ d� 1; :::; T � h:

In the empirical application, the variable to forecast will be xt = y
(�)
t , i.e. the yield of a bond of

maturity � .

3.2 Portfolio utility loss

Let xt = (x1; x2; :::; xq)
0 be a q � 1 vector of risky assets and consider the portfolio w0xt; with

weights summing to 1. In analogy with our empirical application to no-arbitrage VARs, we suppose

the forecaster has a model for xt+h and has the option of estimating it unrestricted or by imposing

restrictions that only a¤ect the conditional mean parameters. We further assume that the model

does not specify conditional variance dynamics, so that the conditional variance of xt+h at time t

simply equals the unconditional variance-covariance matrix of the q assets �; so that V art [xt+h] =

V ar [xt+h] = �:

We suppose that at each time t = m; :::; T � h the forecaster constructs a portfolio by choosing
the weights that minimize a quadratic utility function:

w� = argmin
w

n
w0Et [xt+h]�




2
w0�w

o
; (17)

where Et [�] denotes the conditional mean at time t: The classical solution (Markowitz, 1952) to this
problem is given by

w� = a+BEt [xt+h] ; (18)

a =
��1�

�0��1�
;

B =
1




�
��1 � �

�1��0��1

�0��1�

�
;

where � is a q � 1 vector of ones.
When the economic restrictions only a¤ect the conditional mean of the assets, as is the case

for the no-arbitrage restrictions that we are interested in, the forecaster can construct two di¤erent

portfolios, one by forecasting the conditional mean with the unrestricted model, so that Et [xt+h] =

fUt;h; and one by imposing the restriction and letting Et [xt+h] = f
R
t;h:

We can similarly consider the portfolio whose optimal weights are a function of the combination

10



forecast, and our measure of usefulness is then obtained by minimizing the expected portfolio utility

loss in (2) with respect to the forecast combination weight �:

�� = argmin
�2R

E
n�
�a�B

�
fRt;h + (1� �)(fUt;h � fRt;h)

��0
xt+h+ (19)




2

�
a+B

�
fRt;h + (1� �)(fUt;h � fRt;h)

��0
�
�
a+B

�
fRt;h + (1� �)(fUt;h � fRt;h)

��o
:

The closed-form solution for this problem is

�� =
E
h
(fRt;h � fUt;h)0B0

�
xt+h � 
�

�
a+BfUt;h

��i
E
h

(fRt;h � fUt;h)0B0�B(fRt;h � fUt;h)

i : (20)

A consistent estimator of �� is

b� = PT�h
t=m

h
(fRt;h � fUt;h)0 bB0t �xt+h � 
b�t �bat + bBtfUt;h��iPT�h
t=m

h

(fRt;h � fUt;h)0 bB0tb�t bBt(fRt;h � fUt;h)i ; (21)

where bat and bBt are as de�ned in (18) with � substituted at each time t by an estimate computed
over each rolling window of data up to time t:

b�t = 1

m

tX
j=t�m+1

(xj � x) (xj � x)0 ; with x =
1

m

tX
j=t�m+1

xj : (22)

The estimator of the asymptotic variance b� that is needed for constructing the test in Proposition
1 and the bands in Proposition 2 are obtained by setting

st

�b�� = (fRt;h � fUt;h)0 bB0t hxt+h � 
b�t �bat + bBt �fRt;h + (1� b�)(fUt;h � fRt;h)��i and (23)

@st

�b��
@�

= 
(fRt;h � fUt;h)0 bB0tb�t bBt(fRt;h � fUt;h)
in equation (6).

In the presence of time variation, a consistent estimator of the smoothed measure of usefulness

(9) for a portfolio utility loss can be obtained as

b�t;d =
Pt
j=t�d+1

h
(fRj;h � fUj;h)0 bB0j �xj+h � 
b�j �baj + bBjfUj;h��iPt

j=t�d+1

h

(fRj;h � fUj;h)0 bB0j b�j bBj(fRj;h � fUj;h)i ; t = m+ d� 1; :::; T � h: (24)

In the empirical application, the variable to be forecasted will be xt = (r
(�1)
t ; r

(�2)
t ; :::; r

(�q)
t )0, i.e.

a vector of returns on bonds of q di¤erent maturities.
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4 Illustrative example and �nite sample properties

To gain intuition about the determinants of our measure of usefulness �� and to assess the �nite-

sample properties of our tests, we consider a simple example of two competing sets of restrictions

imposed on the parameters of a linear model and investigate the size properties of the global useful-

ness test in Proposition 1.

Suppose the data-generating process is:

xt = �1z1t + �2z2t + "t; (25)

zt � iidN(0; I2); "t � iidN(0; 1);

and that the two models MU and MR impose the competing restrictions �1 = �U1 or �1 = �R1 ;

while leaving �2 unrestricted. This yields the one-step-ahead forecasts f
U
t = �

U
1 z1;t+1+

b�2z2;t+1 and
fRt = �

R
1 z1;t+1 + b
2z2;t+1 with b�2 and b
2 OLS estimators.

The optimal weight (11) for a quadratic loss function in this example is1:

�� =
�1 � �U1
�R1 � �U1

; (26)

which reveals that the usefulness of the restrictions is determined by the relative amount of bias

implied by the two models, so that �� equals 0 or 1 when either restriction is true. Notice that the

weight does not necessarily fall between 0 and 1, but in principle could be any value on the real

line. Intuitively, in this simple example the relative bias of the models is the sole determinant of

the usefulness of the restrictions because the two forecasts imply the same amount of estimation

uncertainty, but in more general cases there will be a bias-variance trade-o¤ between di¤erent sets

of restrictions.

We now proceed to illustrate the small sample properties of our tests by using a simple Monte

Carlo simulation. We assume that the true DGP is given by (25) and we consider the following two

restricted models. The �rst model imposes on (25) the restriction �1 = �
U
1 = 1:

MU : xt = z1t + �2z2t + "t: (27)

The second model is imposing on (25) the restriction �1 = �
R
1 = 0.

MR : xt = 
2z2t + "t: (28)

1To see why, note that the numerator in (11) is
�
�1 � �U1

� �
�R1 � �U1

�
+E

�
�2 � b�2��b
2 � b�2� and the denominator

is
�
�R1 � �U1

�2
+ E

�b
2 � b�2�2 ; from which the result follows by noting that E
�b�2� = E (b
2) and E �b�2b
2� =

E
�b�22� = E �b
22� :
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For this set of restrictions the expression in (26) simpli�es to �� = 1 � �1. We draw 5000 random
samples from the DGP in (25) setting2 �2 = 1 and using in turn �1 = 1 and �1 = 0. The case

�1 = 1 yields by construction �� = 0 (MU imposes the right restrictions and MR is useless). The

case �1 = 0 yields by construction �
� = 1 (MR imposes the right restrictions and MU is useless).

For each of the 5000 replications we �rst estimate the two restricted models and obtain the

corresponding forecasts. Then we compute �� and b� using (13) and (14), and use them to obtain

the test statistics in (5). Results of our simulation for di¤erent sizes of the estimation window m

and forecast window n are reported in Table 2. Panel A displays the empirical size of the test in (5)

for H0 : � = 0, Panel B reports the empirical size the test in (5) for H0 : � = 1. In both cases the

nominal size of the tests is 0.05.

As is clear from the table, the tests in (5) are well sized, and for a given estimation window the

size tends to improve as the size of the forecast window increases.

Before turning to the empirical application we want to brie�y discuss the relation of our approach

to Bayesian forecast combination. A Bayesian econometrician would attach a-priori probabilities p(MU ) =

1�p(MR) and p(MR) to modelsMU andMR. Note that the two models exhaust all the possibilities.

Then he would use Bayes�formula to derive the posterior probability of MR, i.e., p(MRjx), where
x denotes the available data. Under a �at prior this posterior probability is simply given by the

(properly normalized) marginal likelihood of MR. The optimal point forecast for a quadratic loss is

then given by:

f�t = E[xt+1jx] = fUt (1� p(MRjx)) + fRt p(MRjx): (29)

The expression above is conceptually di¤erent from that resulting from forecast combination in a

classical framework. In (29) the optimal weights are probabilities, and as such they are constrained

to be between 0 and 1, while in the classical framework the weights depend on the variances and

correlation between the forecasts and they can in principle be negative or greater than 1. As the

weights are between 0 and 1, the combined forecast produced by the Bayesian econometrician is

a convex combination of the forecasts of the original models, which makes sense as he believes

that the two competing models exhaust all the possibilities. On the other hand, for the classical

econometrician both models can be misspeci�ed, but their forecasts can be useful if combined in

some optimal way. For a comparison of the two approaches with a discussion about the cases in

which they can coincide see Palm and Zellner (1992).

There is a simple example in which the optimal combination weights computed in our framework

can have an interpretation similar to the Bayesian one. Consider the DGP in (25), but further assume

that �1 = �
U
1 with probability 1� � (in which case MU is true) and �1 = �

R
1 with probability � (in

which case MR is true). In this case, the optimal weight is3 �� = �, so the estimate �̂ can be

2As is clear from (26) the choice of the value of �2 in the true DGP does not inl�uence the results as both models
will estimate it unbiasedly.

3To see why note �1 is a discrete random variable independent from all the other variables in (25). It follows that
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thought of as the frequentist equivalent of the posterior probability of MR computed by a Bayesian

econometrician with a �at prior.

5 Application: usefulness of the no-arbitrage restrictions for pre-

dicting the term structure of interest rates

In this section we apply our proposed framework to the problem of forecasting the yield curve

using no-arbitrage restrictions. Our framework enables us to address several questions such as:

"are no-arbitrage restrictions useful for forecasting the term structure of interest rates?", "are the

restrictions useful for bond portfolio allocation?", "does time variation in the term premium help in

forecasting?", and "have the restrictions become more or less useful over time?".

We will start with describing how the no-arbitrage restrictions can be imposed on a VAR model

for the yields, and then turn to the forecasting exercise and provide the results for a quadratic and

a portfolio loss function.

5.1 A benchmark no-arbitrage a¢ ne term structure model (ATSM)

We consider the a¢ ne term structure model (ATSM) proposed by Ang and Piazzesi (2003), which is

a discrete-time version of the a¢ ne class introduced by Du¢ e and Kan (1996), where bond prices are

exponential a¢ ne functions of underlying state variables. The assumption of no-arbitrage (Harrison

and Kreps, 1979) guarantees the existence of a risk neutral measure Q such that the price at time

t of an asset Vt that does not pay any dividends at time t + 1 satis�es Vt = EQt [exp(�it)Vt+1],
where the expectation is taken with respect to the measure Q and it is the short term rate. The

assumption of no-arbitrage is equivalent to the assumption of the existence of the Radon-Nikodym

derivative �t+1, which allows to convert the risk neutral measure into the data generating measure:

EQt [exp(�it)Vt+1] = Et
�
(�t+1=�t) exp(�it)Vt+1

�
: Assume �t+1 follows a log-normal process:

�t+1 = �t exp(�0:5�0t�t � �0t"t+1): (30)

�t is called the market price of risk and is an a¢ ne function of a vector of k factors Ft:

�t = �0 + �1Ft; (31)

where �0 is a k-dimensional vector and �1 a k � k matrix. The short term rate is also assumed to

be an a¢ ne function of Ft:

it = �0 + �
0
1Ft; (32)

the optimal � is �� = E[�1]��U1
�R1 ��

U
1
. Substituting E[�1] = (1� �)�U1 + ��R1 in the expression for �� provides the result.
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where �0 is a scalar and �1 a k-dimensional vector. We assume that the factors follow a zero-mean

stationary vector process:

Ft = 	Ft�1 +
"t; (33)

where "t � iidN(0;�") with �" = I with no loss of generality. The nominal pricing kernel is de�ned
as:

mt+1 = exp(�it)�t+1=�t = exp(��0 � �01Ft � 0:5�0t�t � �0t"t+1); (34)

where the second equality comes from (32) and (30). The nominal pricing kernel prices all assets in

the economy, so, by letting p(�)t denote the time t price of a � -period zero coupon, we have:

p
(�+1)
t = Et(mt+1p

(�)
t+1): (35)

Using the above equations, it is possible to show that bond prices are an a¢ ne function of the state

variables:

p
(�)
t = exp( �A� + �B0�Ft); (36)

where �A� and �B� are a scalar and a k-dimensional vector obeying:

�A�+1 = �A� + �B0� (�
�0) + 0:5 �B0�

0 �B� � �0;
�B0�+1 =

�B0� (	� 
�1)� �01;
(37)

with �A1 = ��0 and �B1 = ��1. See Ang and Piazzesi (2003) for a formal derivation. The continuously
compounded yield on a � -period zero coupon bond is:

y
(�)
t = � ln p(�)t =� = A� +B

0
�Ft; (38)

with A� = � �A�=� and B� = � �B�=� , so yields are also an a¢ ne function of the factors. Equations
(33) and (38) de�ne a state-space model:

Ft = 	Ft�1 +
"t;

Yt = A+BFt + vt;
(39)

where Yt = (y
(�1)
t ; y

(�2)
t ; :::; y

(�q)
t )0 is a q�dimensional vector process collecting all the yields at matu-

rities �1; �2; :::; � q, A = (A�1 ; A�2 ; :::A�q)
0 and B = (B�1 ; B�2 ; :::; B�q)

0 are functions of the structural

coe¢ cients of the model according to equation (37), and vt is a vector of i.i.d. Gaussian measurement

errors with variance �v.

Following common practice, we use three factors, which can be interpreted as the level, slope and

curvature of the term structure. Given that scaling, shifting, or rotation of the factors provides ob-

servational equivalence, a normalization is required. Following Dai and Singleton (2000) we identify
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the factors by assuming factor mean equal to zero, a lower triangular structure for the matrix 	,

and we set �1 = (1; 1; 0)0. Given this identi�cation scheme, the coe¢ cient �0 equals the unconditional

mean of the instantaneous rate, which can be approximated by the sample average of the 1-month

yield. As for second order coe¢ cients, we assume 
 and �v to be diagonal, while we assume absence

of correlation between the state and the measurement equation disturbances, i.e. �"v = 0.

We collect all the parameters to be estimated in the vector:

� = f	;
;�0;�1;�vg: (40)

We estimate � with the EM algorithm, evaluating the likelihood at each iteration by means of the

Kalman Filter. In our application we also consider a speci�cation of the model with constant risk

premium, which amounts to setting �1 = 0 in equation (31).

5.2 VARs with no-arbitrage ATSM restrictions (ATSM-VAR)

Now consider a V AR(p) representation of the q�dimensional vector collecting all the yields at hand:

Yt = �0 +�1Yt�1 + :::+�pYt�p + ut (41)

where Yt = (y
(�1)
t ; y

(�2)
t ; :::; y

(�q)
t )0 and ut is a vector of one-step-ahead forecast errors having a

multivariate normal distribution with variance �u. The V AR in (41) can be interpreted as an

approximation of the Moving Average (MA) representation of Yt. The approximation gets better

as more dynamics are added to the system.

Importantly, as is clear from equation (39), the ATSM features an MA representation. As

the ATSM depends on a vector of coe¢ cients � (eq. (40)) having much fewer elements than the

coe¢ cient matrices of the V AR, the ATSM imposes a set of nonlinear cross-equation restrictions

on the V AR in (41).

To impose such restrictions on the V AR we follow Del Negro and Schorfheide (2004), i.e. we

�rst compute the moments of Yt under the state-space in equation (39), and then impose them on

the V AR in (41). To do so, rewrite the V AR in the data-matrix notation:

Y = X�+ U; (42)

where Y is a T � q data-matrix with rows Y 0t , X is a T � k (where k = 1 + qp) data-matrix

with rows Xt = (1; Y 0t�1; Y
0
t�2; :::Y

0
t�p), � = (�0;�1; :::;�p)

0, and U is a T � q data-matrix with
rows u0t: Let E� denote the expectation under the ATSM model and de�ne the autocovariance

matrices ��xx(�) = E�(XtX
0
t) and �

�
XY (�) = E�(XtY

0
t ), which can be computed using the state-space

representation in (39) for a given �. Then, under the ATSM; the relation between the ATSM
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parameters and the V AR parameters is4 �� = [��xx(�)]
�1��xy(�), where the star indicates that the

ATSM restrictions hold. De�ning �̂ as the maximum likelihood estimator of �, the maximum

likelihood estimator for the V AR coe¢ cients under the ATSM is:

�̂� = [��xx(�̂)]
�1��xy(�̂): (43)

In the following we will refer to this model as the ATSM � V AR. We also consider a speci�cation
in which we impose on the ATSM � V AR the additional restriction of a constant risk premium,

which is obtained simply by setting �1 = 0 in equation (31). We label this case CRP � V AR.
In the empirical application the structural coe¢ cients � and the corresponding ATSM moments

��xx(�̂) and �
�
xy(�̂) are re-estimated in pseudo-real-time as forecasting proceeds forward within our

rolling estimation-forecasting scheme. The maximum likelihood estimator of the unrestricted VAR

(UV AR) is simply �̂ = (X 0X)�1X 0Y .

5.3 Forecasting exercise

For our exercise we use monthly data on zero coupon bond yields of maturities 1-, 3-, 12-, 36-, and

60-month, from January 1964 to December 2003. The data are taken from the Fama CRSP zero

coupon and Treasury Bill �les.

We produce 1-step ahead forecasts using the UV AR (we label such forecasts fUt ), the ATSM �
V AR (fATSMt ), the CRP � V AR (fCRPt ), and a simple random walk (RW ) forecast (fRWt ).

For each of the models at hand the sequences of forecasts are produced over the sample 1974:1

to 2003:12 using a rolling estimation window of 10 years. The procedure thus starts with estimating

all the models using the estimation window 1964:1 to 1973:12, and producing the forecasts for the

vector of yields in 1974:1. Then the estimation window is moved one period ahead, to 1964:2 to

1974:1, and the new estimates are used to produce the forecasts for the vector of yields in 1974:2.

In light of the forecasting focus of the paper, the structural coe¢ cients � and the corresponding

ATSM moments ��xx(�̂) and �
�
xy(�̂) are re-estimated using the data in each of the rolling samples.

We maximize the likelihood of the VAR with no-arbitrage ATSM restrictions using the Broyden,

Fletcher, Goldfarb, and Shanno (BFGS) algorithm with Brent line search.5 The procedure is iterated

until the last forecast (i.e., that for 2003:12) is obtained. For the VAR models, we use a speci�cation

4As stressed above, the approximation is not exact because the state-space representation of the ATSM generates
moving average terms

5 In the �rst estimation window we initialize our algorithm as follows. First we compute a maximum, then we draw
100 alternative starting points by randomizing around this maximum (drawing from a normal with variance derived
from the Hessian at the maximum), maximize again, and check that none of the random initial points leads to a
point with higher likelihood (i.e. a new maximum). If this is not the case, we take the new maximum and repeat the
randomization until no points with higher likelihood are found. Then, for all the remaining estimation windows, we
use the optimum obtained in the previous period t� 1 as initial condition for the maximization performed in period t.
The in-sample �t of the estimated models is extremely high troughout the sample (with the R2 being around 0:998).
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with 3 lags which provides well-behaved residuals.6

5.4 Results for a quadratic loss

We �rst consider the results for a quadratic loss function. In the case at hand the loss function in

(1) specializes to:

L(y
(�)
t+1; ŷ

(�)
t+1) =

�
y
(�)
t+1 � ŷ

(�)
t+1

�2
; (44)

where y(�)t+1 is the yield to maturity of a bond of maturity � in period t + 1 and ŷ
(�)
t+1 is the 1-step

ahead forecast of such variable. We provide results for bonds of �ve di¤erent maturities: 1-, 3-, 12-,

36-, 60- months.

We start with the results based on the global measure of usefulness. Results are displayed in Table

3, which is composed of four panels, each corresponding to a di¤erent combination: ATSM � V AR
and UV AR (panel A), CRP � V AR and UV AR (panel B), ATSM � V AR and RW (panel C),

CRP � V AR and RW (panel D). For each yield, column (1) in Table 3 contains the Root Mean

Squared Forecast Error (RMSFE) (i.e., the realized loss) of the �rst model considered in the

combination. Columns (2) to (4) report the percentage gains over the RMSFE of the model in

column (1) obtained by using, respectively, the second model in the combination, a combination with

equal weights (f�=1=2t ), and a combination based on the estimated optimal weight (f�t ). Column (5)

reports the value of the estimated optimal weight b� (as de�ned in equation (12)). Finally, columns
(6) to (8) report the statistics for the encompassing tests of Proposition (1).

We included in the comparison the case of a combination with equal weights for reference,

because there is a long literature documenting the fact that in practice equal weights usually yield

more accurate forecasts than optimal combination weights. Of course this can happen in a real-time

forecasting exercise, when the optimal weights are estimated using only past information, while in our

case the optimal weights outperform the equal weights by construction. Still, it may be interesting

to see whether the optimal weights are statistically di¤erent from 0:5, because this might explain

the success of combinations with equal weights, and how large are the gains in using optimal rather

than equal weights.

From Panel A we see that the estimated optimal weights b� range between 0:514 and 1:054, and
in all cases the encompassing test rejects the null that the optimal weight is zero, i.e., the restricted

model is useless, while it cannot reject (except for the 1-month yield) the null that the unrestricted

forecast is useless. Therefore there is evidence that imposing the no-arbitrage ATSM restrictions

on a VAR might help in forecasting, although the restrictions are not uniformly useful across yields,

in particular they seem to work better for bonds with longer maturity. This is in line with Carriero

(2007) who shows that the misspeci�cation of the ATSM restrictions is more pronounced at the

6The Bayesian Information Criterion selects 1 lag, but the LM test statistic reported in Johansen (1995) rejects the
null of no residual autocorrelation. The speci�cation with 3 lags is the most parsimonious one which eliminates this
problem. Our results are robust to speci�cations with 1 to 4 lags.
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short-end of the yield curve while it is milder for yields of longer maturities. The pattern of the

forecast gains is obviously related to that of the weights, with the gains from using the combination

and using the restricted model being similar for longer maturities. With regards to the comparison

with the combination with equal weights, in general the optimal weights lead to larger gains, as the

optimal weights are well above 0.5 for all cases except the 1-month yield.

Panel B provides results for the case in which we impose on the ATSM � V AR the additional
restriction of a constant risk premium, i.e. the CRP � V AR . The estimated optimal weights

for the 3-, 36-, and 60- month yields do not change dramatically, while there is a sharp decrease

in the usefulness of the restrictions for the 12-month and especially for the 1-month yield. The

results in terms of signi�cance of the optimal weights are entirely in line with those obtained with

the speci�cation with variation in the risk premium, with a slightly stronger evidence against the

usefulness of the restrictions. Therefore, most of the forecasting gains do not seem to be strongly

related to the presence of time varying rather than constant risk premia in the model, except at the

short end of the yield curve. The combined forecasts based on the optimal weights lead to larger

gains with respect to the case with equal weights.

Panel C and D provide results for the combination between the random walk and the VAR with

no-arbitrage ATSM restrictions (with and without variation in the risk premium). Results for this

case show that most of the gains documented in Panel A and Panel B seem to be related to the failure

of the unrestricted VAR to provide a good forecast of the yield curve rather than to the merits of the

no-arbitrage ATSM restrictions. In particular, for the combination of the ATSM � V AR with the
RW , the estimated optimal weights b� range between �0:186 and 0:629, while for the combination
of CRP �V AR with the RW the weights b� range between 0:090 and 0:380. These �gures are much
lower than those obtained when considering the combination of the VAR with no-arbitrage ATSM

restrictions with the unrestricted VAR (see panels A and B). In particular, all the weights decrease

quite dramatically, and the encompassing test does not reject the null that the no-arbitrage ATSM

restrictions are useless, with the only exception of the weight on the 1-month yield. Indeed, the

latter is the only case in which the random walk produces quite poor forecasts, worse than those

produced by the unrestricted VAR. As a result the gains coming from the optimal combination,

though positive, are relatively small for all maturities but the 1-month. The combination with equal

weights does not work very well for this case, yielding small losses rather than gains in most of the

cases. This happens because the equal weights are too high with respect to the optimal ones.

The di¢ culty in beating the random walk forecasts is not surprising, given the results usually

obtained for the 1-step ahead case in the literature. For example, in the paper by Diebold and Li

(2006) the gains in RMSFE of all the considered models at 1-step-ahead with respect to the random

walk are quite low. Among all the models they consider, the best forecasts for the 3-month and

12-month yield provide gains of at most 4%, the best forecasts of the 24-month yield provide a gain

of 1%, while for yields of longer maturity the gains are either zero or negative. The maximum gain
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in RMSFE in using an ATSM against the random walk found by Almeida and Vicente (2008) for

the 1-step ahead case is of 5% for the 2-year yield, while they found gains in the range of 1%-3.5% for

intermediate maturities, and negative gains for yields of longer maturity. The ATSM estimated by

Moench (2008) outperforms the random walk forecast only for the 6-month yield, with a gain of 3%,

while it is outperformed for all the remaining maturities. Better results are obtained by Favero et al.

(2009) and Moench (2008) by extending the approach with the inclusion of a broad macroeconomic

information set.

We now turn to the results for the local measure of usefulness, which are summarized in Figure 1.

The �gure is composed of 20 panels displayed in 5 rows and 4 columns. The rows display results for

di¤erent yields, while the columns represent di¤erent forecast combinations (respectively fATSMt and

fUt in the �rst column, fCRPt and fUt in the second column, fATSMt and fRWt in the third column,

and fCRPt and fRWt in the last column). Each panel contains a plot of the estimated smoothed

weights, as de�ned in equation (15), together with the 95% bands described in Proposition 2. We

set � = 0:3, which given that our out-of sample size n = 360 implies that the smoothed weights are

estimated using a window of d = 108 observations.

Looking at the �rst two columns in Figure 1, it is clear that the forecasting gains from imposing

the no-arbitrage ATSM restrictions onto the VAR are not constant over time. In particular, the

optimal weight is not statistically di¤erent from one in the �rst part of the sample, but in more

recent years the estimated optimal weight �̂t decreases, signalling that there are small or no gains

in using the no-arbitrage ATSM restrictions from around 1994 to 2003.

Moreover, by comparing the �rst and the second column of Figure 1, it is apparent that the e¤ect

of including a time varying rather than constant risk premium is not strong, and is mostly limited

to the short end of the yield curve, which con�rms the results found using the global measure (see

Table 2).

Finally, by looking at the last two columns of Figure 1, it is clear that when the VAR with

no-arbitrage restrictions is combined with the random walk, one cannot reject the null that the

no-arbitrage ATSM restrictions are useless throughout the sample.

5.5 Results for a portfolio utility loss

The portfolio utility loss considers the asset allocation problem of an investor who is buying a

portfolio of bonds in period t and then sells it in period t + 1, and therefore earning/losing the

change occurring in the value of the portfolio within t and t + 1. The holding period return on a

yield of maturity � is:

r
(�+1)
t+1 = p

(�)
t+1 � p

(�+1)
t = ��y(�)t+1 + (� + 1)y

(�+1)
t : (45)
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Equation (45) shows that a forecast of the yield ŷ(�)t+1 provides a forecast of the holding period return

r̂
(�+1)
t+1 via a simple transformation7:

r̂
(�+1)
t+1 = �� ŷ(�)t+1 + (� + 1)y

(�+1)
t : (46)

Collecting all the returns under consideration in the vector rt+1 = (r
(�1+1)
t+1 ; r

(�2+1)
t+1 ; :::; r

(�q+1)
t+1 )0, and

setting xt+1 = rt+1 the loss function in (2) specializes to:

L(rt+1; ft;1) = �w�(ft;1)0rt+1 +



2
w�(ft;1)

0�w�(ft;1); (47)

where ft;1 is a vector of forecasts of rt+1 and can be derived from the forecasts of the yields by using

(46).

Results for the global measure of usefulness are in Table 4. Each panel in the table corresponds to

a di¤erent forecast combination: Panels A and B contain results from the combination of fATSMt and

fCRPt with the unrestricted VAR forecasts fUt , while panels C and D contain results of the combi-

nation of fATSMt and fCRPt with the random walk forecasts fRWt . Column (1) contains the portfolio

utility loss of the �rst model considered in the combination. Columns (2) to (4) report the percent-

age gains over the utility loss of the model in column (1) obtained by using, respectively, the second

model in the combination, a combination with equal weights (f�=1=2t ), and a combination based on

the estimated optimal weight (f�t ). Column (5) reports the value of the estimated optimal weightb� (as de�ned in equation (12)). Finally, columns (6) to (8) report the statistics for the encompassing
tests of Proposition (1).

Two main results emerge from Table 4. First, by looking at the t-statistics for the encompassing

tests of Proposition 1 it appears that the random walk restrictions no longer dominate the no-

arbitrage ATSM restrictions when considering a portfolio utility loss, but both forecasts are useful.

As a result, the gains from combining these two models are high (depending on the assumption on

the risk premium, they are respectively 18.82% and 14.24%).

Second, it appears that the choice between a constant or time varying risk premium can be

important. The losses occurring when the forecasts are produced with the no-arbitrage restricted

VAR are indeed much higher in the case of constant risk premium than in the case of time varying

risk premium. This can be interpreted as evidence that keeping �xed the risk premium worsens the

forecasts because it increases model misspeci�cation. When the risk premium is time varying the

optimal weights are not statistically di¤erent from the equal weights (see column 8), while when the

risk premium is �xed the optimal weight decreases.

We now turn on the results for the local measure of usefulness, which are summarized in Figure

7 It also follows that the forecast error made in forecasting the holding period return is proportional to that made
in forecasting the yield of a given bond: r̂(�+1)t+1 � r(�+1)t+1 = ��(ŷ(�)t+1 � �y

(�)
t+1). This also implies that using the holding

period return rather than the yields in the quadratic loss function would not change the optimal weight �̂ in that case.
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2. The Figure is composed of four panels, each corresponding to a di¤erent forecast combination.

Each panel contains a plot of the estimated smoothed weight, as de�ned in equation (24), together

with the 95% bands described in Proposition 2.

Similarly to the case of a quadratic loss, we observe a clear pattern of decreasing usefulness of

the no-arbitrage ATSM restrictions over time.

Another interesting result, which is in stark contrast with the quadratic loss case, is that assuming

a constant risk premium clearly worsens the performance of the no-arbitrage forecasts. As is clear

from the Figure, the weights are uniformly lower in panels B and D with respect to panels A and C.

Moreover, as is clear in panels B and D, in the second part of the sample it is not possible to reject

the null that the no-arbitrage VAR with constant risk premium is useless. This suggests that the

incorporation of a time-varying risk premium in the no-arbitrage ATSM restrictions may not be

important from a statistical point of view, but it is essential when evaluating the forecasts in terms

of their usefulness for constructing bond portfolios.

The results displayed in Figure 2 also con�rm the fact that, di¤erently from the quadratic loss

case, the random walk restrictions no longer dominate the no-arbitrage ATSM restrictions when

considering a portfolio utility loss. Even though the usefulness of the no-arbitrage ATSM restrictions

relative to a random walk has decreased over time, both restrictions appear to be useful, and the

optimal forecast combination exploits information from both.

5.6 Additional results

In this subsection we address two additional issues. First we provide results for a 12-step-ahead

forecast horizon. Second, we provide results for the case in which the optimal � is chosen ex-ante

within a pseudo-real-time forecasting exercise.

Table 5 displays results based on a 12-step-ahead forecast horizon for both the quadratic loss and

the portfolio utility loss. The multi-step forecasts are obtained by iteration. Results are in line with

those obtained for the 1-step-ahead case. For the quadratic loss imposing the no-arbitrage ATSM

restrictions improves the forecasting performance of a VAR in the yields, but the restrictions are

less useful when used in combination with a random walk forecast. For the portfolio utility loss

the no-arbitrage ATSM restrictions are always useful, providing very large forecasting gains. For

both loss functions the forecasts based on optimal weights largely outperform the simple equal

combination weights forecast. The only major di¤erence with respect to the 1-step-ahead case is

that the assumption of constant term premium does not seem to play an important role in the case

of the portfolio utility loss.

Table 6 displays results for a forecasting exercise in which rather than evaluating the usefulness of

the restrictions we try to understand whether forecast combination using estimated optimal weights

is a viable and e¢ cient way to produce forecasts in real time. Note that to implement our scheme

in real time two estimation windows are needed. The �rst window is needed to estimate the model�s
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coe¢ cients. Then a second window is needed to estimate � using past (from the point of view of the

simulation) out of sample forecasts. Once � is obtained, forecasts for the future can be computed.

As a result the sample on which the �gures displayed in Table 6 are based is di¤erent from that used

for Tables 3, 4, and 5. For analogy with our analysis for the estimation of the smoothed � we select

the estimation window to be equal to d = 108 observations. This implies that the �rst forecast used

for evaluation is that of the period 1983:2, and the estimated optimal weights used at time t in this

exercise are the lagged values (i.e., the values at time t�1) of the optimal weights depicted in Figure
1 and Figure 2. For both loss functions the ATSM � V AR works well when combined with an

unrestricted VAR, while when combined with a random walk the no-arbitrage ATSM restrictions

are useful only under the portfolio utility loss, and not under the quadratic loss (except at the short

end of the curve). The results obtained with equal weights are similar to those obtained with the

optimal weights for the quadratic loss, while they are worse for the utility loss. The latter result

is not surprising, as Figure 2 shows that the optimal weights for the utility loss are statistically

di¤erent from 0.5 in most of the sample.

6 Conclusions

In this paper we have developed a general framework for analyzing the usefulness of imposing

parameter restrictions on a forecasting model. We have proposed a measure of usefulness based on

the weight that a set of restrictions receives within an optimal forecast combination. Importantly,

the proposed measure can vary over time and depends on the forecaster�s loss function. We have

shown how to estimate the measure of usefulness out-of-sample and perform inference about it, both

in a stable framework and in a framework with possible instability.

We have applied our methodology to the problem of analyzing the usefulness of no-arbitrage

ATSM restrictions for forecasting the term structure of interest rates.

Our results reveal that: 1) the restrictions have become less useful over time; 2) using a statistical

measure of accuracy, the restrictions are a useful way to reduce parameter estimation uncertainty,

but are dominated by restrictions that do the same without using any theory; 3) using an economic

measure of accuracy, the no-arbitrage ATSM restrictions are no longer dominated by atheoretical

restrictions, but for this to be true it is important that they incorporate a time-varying risk premium.

We want to stress the fact that these conclusions do not necessarily imply that bond markets have

become more or less e¢ cient over time, because �rst of all our method can only reveal time variation

in the usefulness of the restrictions, but does not allow us to determine its source. Secondly, the

results are conditional on the particular speci�cation of no-arbitrage restrictions, and for the ATSM

in particular this involves a number of additional assumptions that are not necessarily grounded in

economic theory.
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Proofs

Proof of Proposition 1. We �rst show that, under Assumption A, b� is asymptotically normal,
so that ��1

p
n(b� � ��) !d N(0; 1); where �2 = H�1
H�1: The results in the Proposition then

follow from showing consistency of b�2 for �2: Asymptotic normality of b� is obtained by verifying the
assumptions of Theorem 3.1 of Newey and McFadden (1994), since b� can be viewed as an extremum
estimator obtained by maximizing the objective function �Qn (�) over R. First, we show that
assumptions (i)-(iii) of Theorem 2.7 of Newey and McFadden (1994) are satis�ed, so that b�!p ��:
Assumption (i) of Theorem 2.7 is equivalent to A(1). Assumption (ii) of Theorem 2.7 requires
concavity of�Qn (�) ; which is implied by A(2). Assumption (iii) requires thatQn (�)�E [Qn (�)]!p

0 for all �: Since any measurable function of the �nite history of yt is mixing of the same size as yt;
fUt;h and f

R
t;h are mixing of the same size as yt, because they are functions of a window of in-sample

data m that is �nite by A(9). This implies that L
�
xt+h; f

R
t;h + (1� �)(fUt;h � fRt;h)

�
is also mixing

with � of size �r=(2r � 1) or � of size �r=(r � 1), which, together with A(4), implies that the
conditions of Corollary 3.48 of White (2001) are satis�ed and thus Qn (�)� E [Qn (�)]!p 0 for all
�. We next verify conditions (i)-(v) of Theorem 3.1 of Newey and McFadden (1994). Conditions (i)
and (ii) are implied by A(1) and A(2). Condition (iii) requires that 
�1=2

p
nr�Qn (��)!d N(0; 1):


 is �nite by A(5) and it is positive by A(6). By arguments similar to those used above, one can

show that A(3) implies that Zt � 
�1=2r�L
�
xt+h; f

R
t;h + (1� �

�)(fUt;h � fRt;h)
�
is mixing with � of

size �r=(2r � 2) or � of size �r=(r � 2). This, together with A(5), implies that the sequence fZtg
satis�es the conditions of Corollary 3.1 of Wooldridge and White�s (1988), and thus condition (iii)
is satis�ed. Conditions (iv) and (v) of Newey and McFadden (1994) coincide with A(7) and A(8).
Finally, A(3), A(5) and A(9) imply that the conditions of Theorem 6.20 of White (2001) are satis�ed
and thus b
 is a consistent estimator of 
. This, in turn, implies that the conditions of Theorem 4.1
of Newey and McFadden (1994) are satis�ed and thus b�2 !p �2; which completes the proof.

Proof of Proposition 2. Let Lt+h (��) = L(xt+h; fRt;h + (1� �
�)(fUt;h � fRt;h)) and, for ease of

notation, henceforth drop the subscript d from b�t;d: For t = m+ d� 1; :::; T � h we have
b��1pd(b�t � ��) = bH�1 ��� b��1d�1=2 tX

j=t�d+1
r�Lj+h (��)

= (d=n)�1=2 bH�1 ��� b��1
1=2
0@
�1=2n�1=2 tX

j=m

r�Lj+h (��)

�
�1=2n�1=2
t�dX
j=m

r�Lj+h (��)

1A
where � lies between b�t and ��: By B(1), we have


�1=2n�1=2

0@ tX
j=m

r�Lj+h (��)�
t�dX
j=m

r�Lj+h (��)

1A =) [B (�)� B (� � �)] ;

where B is a standard univariate Brownian motion. By B(2), (d=n)�1=2 ! ��1=2: By B(3),bH�1 ��� b��1
1=2 !P H�1��1
1=2 = 1 and thus b��1pd(b�t � ��) =) [B (�)� B (� � �)] =
p
� under

the null hypothesis. Let k�;� solve Pr fsup� j [B (�)� B (� � �)] =
p
�j > k�;�g = �. Then, under

either HU
0 or HR

0 , (1 � �)% of the time �� is contained within (b�t � k�;� b�p
d
; b�t + k�;� b�p

d
) for all

t = m+ d� 1; :::; T � h: The values of k�;� in Table 1 are obtained by Monte Carlo simulation.
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Tables and Figures

Table 1. Critical values k�;� for the con�dence bands in Proposition 2
� = d=n

� 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.05 3.393 3.179 3.012 2.890 2.779 2.634 2.560 2.433 2.248
0.10 3.170 2.948 2.766 2.626 2.500 2.356 2.252 2.130 1.950

Table 2: Empirical Size of the tests in (5).

Panel A: Case �1 = 1 (�
� = 0)

Percentage of rejections of H0 : � = 0
m
#
n n! 50 100 150 250 500 1000

50 0.070 0.068 0.053 0.056 0.054 0.052
100 0.067 0.059 0.056 0.053 0.051 0.051
150 0.074 0.064 0.056 0.052 0.047 0.048
250 0.073 0.060 0.058 0.052 0.049 0.048

Panel B: Case �1 = 0 (�
� = 1)

Percentage of rejections of H0 : � = 1
m
#
n n! 50 100 150 250 500 1000

50 0.068 0.069 0.052 0.058 0.053 0.052
100 0.067 0.057 0.059 0.053 0.051 0.049
150 0.074 0.064 0.057 0.052 0.046 0.047
250 0.070 0.060 0.058 0.052 0.049 0.051

The table contains the percentage of rejections for the tests in (5)

with a nominal size of 0.05



Table 3. Results with Quadratic Loss.

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: ATSM-VAR and UVAR
RMSFE %gain

Yields (fUt ) (fATSMt ) (f
�=1=2
t ) (f�t ) b� t�=1 t�=0 t�=1=2

1-month 0.808 0.51 4.84 4.85 0.514 -4.301*** 4.553*** 0.126
3-month 0.709 6.42 6.62 7.41 0.736 -1.486 4.147*** 1.331
12-month 0.682 11.93 8.50 11.96 1.054 -0.231 4.525*** 2.378**
36-month 0.526 8.19 6.78 8.37 0.875 -0.619 4.331*** 1.856*
60-month 0.460 6.70 5.79 6.97 0.840 -0.872 4.572*** 1.850*

Panel B: CRP-VAR and UVAR
RMSFE %gain

Yields (fUt ) (fCRPt ) (f
�=1=2
t ) (f�t ) b� t�=1 t�=0 t�=1=2

1-month 0.808 -13.91 1.04 2.70 0.280 -8.833*** 3.444*** -2.695***
3-month 0.709 6.20 6.83 7.51 0.709 -1.792* 4.367*** 1.288
12-month 0.682 9.46 8.97 10.35 0.777 -1.071 3.473*** 1.336
36-month 0.526 9.22 7.50 9.37 0.889 -0.567 4.545*** 1.989**
60-month 0.460 6.05 6.18 6.93 0.740 -1.753* 4.995*** 1.621

Panel C: ATSM-VAR and RW
RMSFE %gain

Yields (fRWt ) (fATSMt ) (f
�=1=2
t ) (f�t ) b� t�=1 t�=0 t�=1=2

1-month 0.837 3.86 5.73 5.99 0.629 -2.695*** 4.562*** 0.933
3-month 0.607 -9.33 -3.06 0.25 -0.186 -5.528*** -0.870 -3.199***
12-month 0.596 -0.88 -0.09 0.05 0.188 -2.135** 0.496 -0.820
36-month 0.473 -2.13 -0.35 0.05 0.128 -3.649*** 0.536 -1.557
60-month 0.424 -1.11 -0.002 0.14 0.249 -2.530*** 0.839 -0.845

Panel D: CRP-VAR and RW
RMSFE %gain

Yields (fRWt ) (fCRPt ) (f
�=1=2
t ) (f�t ) b� t�=1 t�=0 t�=1=2

1-month 0.837 -10.08 4.00 4.80 0.356 -7.607*** 4.212*** -1.697**
3-month 0.607 -9.59 -1.94 0.10 0.090 -8.043*** 0.800 -3.621***
12-month 0.596 -3.71 -0.42 0.81 0.295 -2.945*** 1.234 -0.855
36-month 0.473 -0.99 0.55 0.61 0.380 -2.645*** 1.626 -0.509
60-month 0.424 -1.83 -0.27 0.06 0.148 -3.948*** 0.685 -1.632

Each of the four panels displays the results from the combination of two models. The considered combinations are:
VAR with no-arbitrage ATSM restrictions (fATSMt ) and unrestricted VAR (fUt ) (panel A), VAR with no-arbitrage
ATSM restrictions and constant risk premium (fCRPt ) with unrestricted VAR (fUt ) (panel B), VAR with no-arbitrage
ATSM restrictions (fATSMt ) and random walk (fRWt ) (panel C), VAR with no-arbitrage ATSM restrictions and

constant risk premium (fCRPt ) and random walk (fRWt ) (panel D).
For each panel, results are reported for each of the �ve yields at hand. Column (1) contains the Root Mean Squared

Forecast Error (RMSFE) (i.e. the realized loss) of the �rst model considered in the combination. Columns (2) to (4)
report the percentage gains over the RMSFE of the model in column (1) obtained by using, respectively, the second

model in the combination, a combination with equal weights (f
�=1=2
t ), and a combination based on the estimated

optimal weight (f�t ). Column (5) reports the value of the estimated optimal weight b� (as de�ned in equation (12)).
Finally, columns (6) to (8) report the statistics for the encompassing tests of Proposition (1). The stars *, **, ***,
indicate rejection of the null at 10%, 5%, and 1% level. The statistic t�=1 is used to test the null that the unrestricted
forecast is useless. The statistic t�=0 is used to test the null that the restricted forecast is useless. The statistic
t�=1=2 is used to test the null that the optimal weight is 0.5.



Table 4. Results with Portfolio Utility Loss.

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: ATSM-VAR and UVAR
Utility Loss %gain
(fUt ) (fATSMt ) (f

�=1=2
t ) (f�t ) b� t�=1 t�=0 t�=1=2

-1.35 7.96 23.55 23.75 0.551 -6.082*** 7.460*** 0.689

Panel B: CRP-VAR and UVAR
Utility Loss %gain
(fUt ) (fCRPt ) (f

�=1=2
t ) (f�t ) b� t�=1 t�=0 t�=1=2

-1.35 -66.12 9.09 15.57 0.304 -13.527*** 5.906*** -3.811***

Panel C. ATSM-VAR and RW
Utility Loss %gain
(fRWt ) (fATSMt ) (f

�=1=2
t ) (f�t ) b� t�=1 t�=0 t�=1=2

-1.60 -8.66 18.61 18.82 0.453 -9.267*** 7.668*** -0.799

Panel D. CRP-VAR and RW
Utility Loss %gain
(fRWt ) (fCRPt ) (f

�=1=2
t ) (f�t ) b� t�=1 t�=0 t�=1=2

-1.60 -71.34 6.74 14.24 0.289 -17.48*** 7.131*** -5.176***

Each of the four panels displays the results from the combination of two models. The considered combinations are:
VAR with no-arbitrage ATSM restrictions (fATSMt ) and unrestricted VAR (fUt ) (panel A), VAR with no-arbitrage
ATSM restrictions and constant risk premium (fCRPt ) with unrestricted VAR (fUt ) (panel B), VAR with no-arbitrage
ATSM restrictions (fATSMt ) and random walk (fRWt ) (panel C), VAR with no-arbitrage ATSM restrictions and

constant risk premium (fCRPt ) and random walk (fRWt ) (panel D).
Column (1) contains the portfolio utility loss of the �rst model considered in the combination. Columns (2) to (4)

report the percentage gains over the utility loss of the model in column (1) obtained by using, respectively, the second

model in the combination, a combination with equal weights (f
�=1=2
t ), and a combination based on the estimated

optimal weight (f�t ). Column (5) reports the value of the estimated optimal weight b� (as de�ned in equation (21)).
Finally, columns (6) to (8) report the statistics for the encompassing tests of Proposition (1). The stars *, **, ***,
indicate rejection of the null at 10%, 5%, and 1% level. The statistic t�=1 is used to test the null that the unrestricted
forecast is useless. The statistic t�=0 is used to test the null that the restricted forecast is useless. The statistic
t�=1=2 is used to test the null that the optimal weight is 0.5.



Table 5. Quadratic and Portfolio Utility Loss: 12-step-ahead results

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: ATSM-VAR and UVAR
Loss %gain
(fUt ) (fATSMt ) (f

�=1=2
t ) (f�t ) b� t�=1 t�=0 t�=1=2

1-month 1.632 41.37 28.75 41.37 0.999 -0.007 18.728*** 9.361***
3-month 1.711 50.29 34.14 50.29 0.996 -0.145 35.379*** 17.617***
12-month 1.570 51.51 33.50 51.67 1.046 0.952 21.834*** 11.393***
36-month 1.242 46.39 32.88 46.50 0.961 -0.474 11.677*** 5.601***
60-month 1.119 41.02 31.03 41.55 0.911 -0.923 9.471*** 4.274***
Portfolio 4.258 61.88 60.57 68.65 0.761 -4.137*** 13.174*** 4.518***

Panel B: CRP-VAR and UVAR
Loss %gain
(fUt ) (fCRPt ) (f

�=1=2
t ) (f�t ) b� t�=1 t�=0 t�=1=2

1-month 1.632 20.77 21.63 24.45 0.733 -2.715*** 7.455*** 2.370***
3-month 1.711 37.29 30.29 38.62 0.860 -2.668*** 16.406*** 6.869***
12-month 1.571 42.60 31.98 43.11 0.915 -1.551 16.653*** 7.542***
36-month 1.242 51.37 36.03 51.53 0.956 -0.966 21.234*** 10.134***
60-month 1.119 56.28 39.21 56.57 0.947 -1.447 26.029*** 12.291***
Portfolio 4.258 87.90 83.31 95.58 0.779 -3.710*** 13.089*** 4.670***

Panel C: ATSM-VAR and RW
Loss %gain
(fRWt ) (fATSMt ) (f

�=1=2
t ) (f�t ) b� t�=1 t�=0 t�=1=2

1-month 0.837 -14.38 1.27 2.96 0.285 -6.480*** 2.585*** -1.947***
3-month 0.607 -40.09 -13.24 0.44 -0.104 -14.538*** -1.376 -7.957***
12-month 0.596 -27.87 -8.92 0.29 -0.105 -12.260*** -1.168 -6.714***
36-month 0.473 -40.80 -13.03 0.24 -0.075 -15.014*** -1.047 -8.031***
60-month 0.424 -55.50 -17.60 0.13 -0.044 -23.389*** -0.983* -12.186***
Portfolio -1.601 -201.36 -26.67 7.56 0.160 -37.034*** 7.048*** -14.993***

Panel D: CRP-VAR and RW
Loss %gain
(fRWt ) (fCRPt ) (f

�=1=2
t ) (f�t ) b� t�=1 t�=0 t�=1=2

1-month 0.837 -54.55 -8.57 2.79 0.163 -15.086*** 2.944*** -6.071***
3-month 0.607 -76.70 -21.15 0.33 0.053 -34.100*** 1.904** -16.098***
12-month 0.596 -51.39 -12.97 0.30 0.063 -17.912*** 1.275 -8.811***
36-month 0.473 -27.73 -6.93 0.06 0.042 -13.531*** 0.590 -6.471***
60-month 0.424 -15.24 -4.14 0.003 -0.015 -10.685*** -0.157 -5.421***
Portfolio -1.601 -132.15 -5.12 12.78 0.229 -18.337*** 5.446*** -6.445***

The table summarizes the results for the 12-step ahead forecast horizon, using the quadratic utility loss and the
portfolio utility loss. Each panel considers a di¤erent forecast combination. For each panel, the �rst 5 rows display the
results for the quadratic loss. Therefore, the �rst �ve entries of column (1) in each panel are the RMSFE in forecasting
the corresponding yield 12-step-ahead. The last row (Portfolio) displays results for the portfolio utility loss. Therefore,
the last entry in column (1) is the utility loss associated with the portfolio. Columns (2)-(8) have the same structure
as in Tables 2 and 3. In particular columns (2) to (4) report the percentage gains over the RMSFE or Utility Loss
of the model in column (1) obtained by using, respectively, the second model in the combination, a combination with

equal weights (f
�=1=2
t ), and a combination based on the estimated optimal weight (f�t ). Column (5) reports the

value of the estimated optimal weight b� (as de�ned in equation (12) for the quadratic loss and in equation (21) for the
utility loss). Finally, columns (6) to (8) report the statistics for the encompassing tests of Proposition (1). The stars
*, **, ***, indicate rejection of the null at 10%, 5%, and 1% level. The statistic t�=1 is used to test the null that the
unrestricted forecast is useless. The statistic t�=0 is used to test the null that the restricted forecast is useless. The
statistic t�=1=2 is used to test the null that the optimal weight is 0.5. The used bandwidth is 2(h� 1).



Table 6: Pseudo-real-time simulation

Panel A: ATSM-VAR and UVAR
Loss %gain
(fUt ) (fATSMt ) (f

�=1=2
t ) (f�t )

1-month 0.561 1.66 6.05 5.55
3-month 0.341 11.63 12.87 13.47
12-month 0.376 7.31 7.04 7.73
36-month 0.380 3.78 4.77 4.42
60-month 0.371 2.75 3.69 3.20
Portfolio -1.218 -37.19 -4.17 1.00

Panel B: CRP-VAR and UVAR
Loss %gain
(fUt ) (fCRPt ) (f

�=1=2
t ) (f�t )

1-month 0.561 -30.71 -3.58 1.02
3-month 0.341 -3.66 7.20 8.56
12-month 0.376 -1.54 3.91 2.21
36-month 0.380 4.06 4.67 4.20
60-month 0.371 3.57 5.32 5.39
Portfolio -1.218 -167.69 -34.70 -0.60

Panel C: ATSM-VAR and RW
Loss %gain
(fRWt ) (fATSMt ) (f

�=1=2
t ) (f�t )

1-month 0.594 7.14 11.38 11.03
3-month 0.294 -2.31 0.46 1.30
12-month 0.341 -1.99 -0.50 -0.66
36-month 0.352 -3.94 -0.88 -0.25
60-month 0.349 -3.62 -1.04 -1.11
Portfolio -1.231 -38.07 5.18 8.20

Panel D: CRP-VAR and RW
Loss %gain
(fRWt ) (fCRPt ) (f

�=1=2
t ) (f�t )

1-month 0.594 -23.42 6.26 8.13
3-month 0.294 -20.02 0.16 -0.22
12-month 0.341 -11.73 -2.69 -1.97
36-month 0.352 -3.64 -0.55 -1.48
60-month 0.349 -2.75 -0.06 -1.50
Portfolio -1.231 -166.99 -22.17 5.02

The table summarizes the results for the pseudo-real-time implementation of our forecasting exercise, at 1-step-
ahead horizon. The sample used for forecast evaluation is 1983:2 to 2003:12, and it di¤ers from the evaluation sample
used in Table 3, Table 4 and Table 5. This happens because at each point in time we need a training sample for which
past out of sample forecasts are available in order to estimate the optimal �. For analogy with the computation of
the smoothed � we use a training sample of 108 observations. Each panel considers a di¤erent forecast combination.
For each panel, the �rst 5 rows display the results for the quadratic loss. Therefore, the �rst �ve entries of column (1)
in each panel are the RMSFE in forecasting the corresponding yield 12-step-ahead. The last row (Portfolio) displays
results for the portfolio utility loss. Therefore, the last entry in column (1) is the utility loss associated with the
portfolio. Columns (2)-(8) have the same structure as in Tables 2 and 3. In particular columns (2) to (4) report the
percentage gains over the RMSFE or utility loss of the model in column (1) obtained by using, respectively, the second

model in the combination, a combination with equal weights (f
�=1=2
t ), and a combination based on the estimated

optimal weight (f�t ).



Figure 1: Results for Quadratic Loss. The blue solid line is the estimated optimal weight b�t in
equation (15) . The red dashed lines are the 95% bands in equation (10).



Figure 2: Results for Portfolio Utility Loss. The blue solid line is the estimated optimal weight b�t
in equation (24). The red dashed lines are the 95% bands in equation (10).
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