
HAL Id: hal-00844629
https://hal.science/hal-00844629

Submitted on 15 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Oscillating gas flow induces reptation of granular
droplets

Javier C. Pastenes, Jean-Christophe Géminard, Francisco Melo

To cite this version:
Javier C. Pastenes, Jean-Christophe Géminard, Francisco Melo. Oscillating gas flow induces reptation
of granular droplets. Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, 2013, 88,
pp.012201. �10.1103/PhysRevE.88.012201�. �hal-00844629�

https://hal.science/hal-00844629
https://hal.archives-ouvertes.fr


Oscillating gas flow induces reptation of granular droplets

Javier C. Pastenes †, Jean-Christophe Géminard ‡, and Francisco Melo†∗
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We report on the reptation of vertically-vibrated droplets of fine particles lying on a solid incline.
On the one hand, time-resolved measurements show that the gas pressure in the gap between the
droplet bottom and the solid surface can be accounted for by a Darcy law. The cumulative effect
of the viscous drag is responsible for the droplet formation. On the other hand, we show that the
gap pressure is responsible for an effective horizontal acceleration whose cumulative effect is the
upward reptation of the droplets. Using various geometries of the solid substrate, we manipulate
the droplets and study the effects of the substrate geometry and of the experimental parameters on
the droplet shape and dynamics. The experimental results are discussed in the light of theoretical
arguments. This study demonstrates that, by the choice of a suitable geometry of the surface and
characteristics of the vibration, one can develop tools for precise powder handling and control.

PACS numbers: 45.70.Mg, 45.70.Qj, 81.05.Rm.

I. INTRODUCTION

In granular compacts formed of relatively small parti-
cles, a rich dynamics arises as the result of the interac-
tions between the grains and the interstitial fluid. Boom-
ing sand [1, 2] as well as the granular jet resulting from
the impact of a solid object onto the surface of a granular
bed [3–5] both illustrate the complexity of the coupling
of a granular system with the interstitial fluid dynam-
ics.

A thick layer of granular material, initially flat and hor-
izontal, subjected to a vertical vibration, exhibits heap-
ing and convection [6–9]. The phenomenon is due to the
periodic gas flow in the interstices between grains. Heap-
ing and convection have attracted considerable attention
and debate, mainly because of the difficulty to discrim-
inate the effects of the solid friction from those of the
gaseous drag. To our knowledge, a simple functional re-
lation between the convection intensity and the driving
force is still lacking.

When the granular layer is sufficiently thin, under pe-
riodic tapping, granular droplets nucleate instead [10].
The droplets formation has been attributed to the in-
terplay between the air flow through the material and
the avalanche properties, which led to propose a scaling
for the droplet size [10]. The granular droplets dynamics
was found to share common features with the liquid coun-
terpart, leading to propose a close analogy between the
governing equations of the granular droplets and those of
partially wetting liquids [10]. Although this analogy was
tempting it has not been explored further, likely due to
the lack of a precise definition of the surface tension for
the granular materials [11].
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If the bottom of the container submitted under vertical
vibration deviates from the horizontal, a striking effect
arises: droplets, instead of moving downhill as could be
expected, climb up [12]. Moreover, droplets grow longer,
like water droplets flowing along a wall, when the in-
clination angle is increased. Their velocity is observed
to be independent of their size but to increase almost
linearly with the tilt angle. However, when the angle ex-
ceeds the repose angle, the droplets loose stability and
form elongated fingers which point upwards; the heads
of the fingers quickly shrink by loss of mass while they
climb. For inclination angles larger than the avalanche
angle, droplets and fingers are no longer observed. In our
previous work, the main experimental parameters were
explored and a qualitative interpretation of the droplets
dynamics was given [12]. However, the mechanism pro-
posed to explain such non intuitive behaviors remained
to be proven by quantitative comparison with the exper-
imental data.

In the present article, we approach the study of the
granular droplets motion from a heuristic point of view.
By designing an experimental tool to assess the instanta-
neous gas pressure at the droplet base, we investigate
quantitatively the driving mechanism. We show that
droplet formation and reptation results from the cumula-
tive effect of the horizontal component of the viscous drag
force due to the gas flow. At relatively low frequency, a
Darcy law accounts well for the functional dependence
of the droplet velocity on its size and on the inclination
angle, vibration frequency and acceleration. In order to
control the trajectories, we modify the surface geometry
and observe that convex surfaces concentrate the droplets
whereas concave ones disperse them. The selection of the
principal curvatures thus makes it possible to guide the
droplets along trajectories that are the crest lines of the
surface.
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II. EXPERIMENTAL METHOD

FIG. 1. (Color online) (a) Grazing view of droplets climbing
on a convex surface. (c) Top view of petals on a concave
surface. (b) and (d) Droplet shapes obtained as the intersects
of a vertical cone with the vibrating surface [The line in (c)
is a contour obtained with this procedure]. (e) Droplets in a
helical cell. Dashed arrows indicate the droplets trajectories.
Dashed box: enlargement of a droplet [Scale bars: 10 mm].

The droplets dynamics is investigated in various forms
of containers which are vertically vibrated using an elec-
trodynamic modal shaker fed with a sinusoidal wave of
frequency f ranging from 15 to 60 Hz. The vertical ac-
celeration of the container is monitored by means of an
accelerometer with an accuracy of 0.01 g. From the max-
imum acceleration and from the frequency, one can esti-
mate the dimensionless acceleration Γ = Aω2/g and the
maximum amplitude A (We denote g the acceleration due
to gravity and ω = 2πf). The granular material consists
of silica grains of density ρ = (0.49± 0.01) gr/cc and di-
ameter ranging from d = (50± 15) µm to d = (200± 40)
µm, excepted when specified. Layer depths range from
2.5 mm to 10 mm. A high-speed video camera provides
either top or lateral views of the droplets with a spa-
tial resolution of 256 × 256 px2 at 1200 frames per sec-
onds.

From the previous experimental studies, we know that
the droplets diffuse across a flat surface and that, as a
consequence of their upwards motion, they tend to reach
the top of convex surfaces [12], as shown in figure 1(a);
since the droplets motion proceeds along the local maxi-
mum slope, they reach the minimum slope. We take ad-

FIG. 2. (Color online) (a) Inclined bottom cell with view
of the grid (i) protecting the cavity. Right panel: Sketch of
a moving droplet passing above the grid. (b) Convex cell.
Right panel: Sketch of the stationary droplet at the top of
the convex surface.

vantage of this effect to accurately measure the pressure
at the bottom of either a moving or a steady granular
droplet.

In a first experimental configuration, in order to mea-
sure the gas pressure, P (t), at the base of a droplet in
motion and, thus, to elucidate the driving mechanism,
a single curvature cell was designed. The cell is made
of a plexiglass tube (46 mm inner diameter and 80 mm
height) glued to an aluminum mount. The bottom is a
cylinder whose axis makes the angle α with the horizon-
tal [Fig. 2(a)]. In this geometry, the droplets climb up
following the rectilinear crest line of the surface. The
measure of the pressure is made possible by an internal
L-shaped cavity (2 mm in radius) drilled in the aluminum
mount. At one end, the cavity emerges somewhere along
the crest line and thus intersects the droplets trajectory.
A flush-mounted grid (mesh 45 µm) avoids that the par-
ticles enter the cavity. The other end is connected to a
differential pressure sensor (in the range -125 Pa to 125
Pa) through a hose. The use of a non-torsional hose pre-
vents undesired pressure variations likely due to its own
deformation.

In a second experimental configuration, in order to sys-
tematically study the dependence of the excess pressure
at the base of the droplet on the experimental parame-
ters, we use a convex cell (97 mm in diameter), as de-
picted in Fig. 2(b). The pressure underneath the gran-
ular droplet is measured as described above; the cavity
arises exactly at the top of the surface (radius of cur-
vature 57.5 mm, much larger than the typical droplet
size). The droplet remains steady and the gap pressure
is periodic.
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FIG. 3. (Color online) (a)Pressure signal associated with a droplet climbing at 5.8 mm/s[silica particles d = 100 µm, f = 30 Hz,
Γ = 3.0, and α = 12.8◦]. (b) Details of pressure cycle close to the maximum of the pressure variations – I Depression; right after
droplet taking off. II Overpressure; during droplet return to the plate. III Pressure relaxation; after the droplet landing on the
plate. The container acceleration is indicated by the solid line. (c) Droplets velocity as a function of the integrated pressure
[Eq. (1)] for distinct f ; integration limits [0, τc = ωtc] are defined in (b). (d) Pressure cycles for various surface inclination, α,
showing superposition for d = 100 µm, f = 20 Hz, Γ = 2.2. (e) Integrated pressure as function of α.

III. EXPERIMENTAL RESULTS

A. Droplet shape

Basically, the droplet formation originates from the mi-
gration of the surface grains toward the hills under the
action of the gas flow. The granular convection is not
significant, and after a few collisions with the plate the
droplets acquire stationary conical shapes, although the
largest droplets (on flat and convex surfaces) have ten-
dency to be rounded at the top [Fig. 1(a)]. On the con-
vex surface, the droplets grow longer along the maximum
slope. On the concave surface [Fig. 1(c)], the droplets are
petal-shaped. These shapes which are apparently very
different are accounted for by considering the intersect
of the vibrating surface and of a vertical cone exhibiting
the same slopes as the droplet [Fig. 1(d)]. The apex of
the cone coincides with the droplet apex. This simple
geometrical construction is in good agreement with the

experimental shapes [Fig. 1(c)].

B. Droplet velocity and driving mechanism

The first experimental configuration makes possible
to measure the pressure difference, ∆P (t)= P (t)− P0

(P0 stands for the ambient pressure), during the whole
droplet transit above the grid [Fig. 3(a)].

Within a cycle, ∆P (t) has three stages as depicted in
Fig. 3(b): a depression (zone I) beginning immediately
after the droplet take-off (occurring when the container
acceleration equals −g), an overpressure (zone II) ob-
served as the droplet approaches the vibrating surface,
and a pressure relaxation (zone III) due to the gas evac-
uation through the droplet which enters in contact with
the surface at tc, compacts and finally comes to rest [13].
The envelope of such signal, given that the droplet ve-
locity is known, provides an indication of the pressure
profile along the droplet bottom. The amplitude of the
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pressure variations is maximum when the droplet apex is
at the vertical of the grid.

The mechanism driving the droplet motion is now seen
as follows. During the take-off, the pressure in the gap
between the droplet base and the solid surface decreases,
which leads to a net force, normal to the surface, pushing
the droplet toward the surface. Integration of the pres-
sure profile across the droplet base provides us with an
estimate of the intensity of the latter force and, thus,
of its horizontal component. One can then write the
equation governing the motion of the droplet center of
mass along the horizontal. Considering a droplet of av-
erage height 〈h〉 and volume V = S〈h〉, climbing along
a slope making the angle α with the horizontal, one gets

ρV d2x(t)
dt2 =

∫
S

(P (~r, t) − P0) sin(α)dS, where x(t) is the
horizontal position of the droplet, P (~r, t) the pressure
at the position ~r at time t in the plane of the droplet
base, and S the surface area of the droplet bottom. The
average horizontal velocity of the droplet can then be
estimated under the form

vx =
ω

2π

sin(α)

ρ〈h〉

[∫
0

tc∫
0

t

〈∆P (t′)〉Sdt′dt
]
, (1)

where 〈∆P (t)〉S is the average, over the surface S, of the
pressure difference P (~r, t)− P0 at time t.

In order to check Eq. (1) experimentally, we produced
droplets having the same average height, 〈h〉, by ensur-
ing that all the material in the cell was forming a single
droplet. We measured their velocity and the associated
pressure variations. In order to estimate the effects of
the driving force, we consider, instead of 〈∆P (t)〉S , the
pressure difference ∆P (t) during the pressure cycle hav-
ing the maximum amplitude [Fig. 3(b)]. One can indeed
guess that 〈∆P (t)〉S = C∆P (t) with C a geometrical fac-
tor smaller than unity. The data displayed in Fig. 3(c)
corroborate the linear dependence of the droplet velocity
on the integrated effect of the driving force for distinct
driving frequencies. The experimental slope leads to
C ≈ 0.85, which indicates that the pressure varies slowly
across the droplet base, except near the periphery where
some gas leak might be present. In our previous work
[12] we showed that vx is a nearly linear function of α,
which is consistent with Eq. (1) if the pressure variation
is independent of α. Consistently, Fig. 3(d) displays raw
pressure data indicating that the pressure cycle remains
almost unchanged when the angle α is varied. More-
over, Fig. 3(e) shows that the integrated pressure is in-
deed nearly independent on α, supporting the validity of
Eq. (1). It is worth noting that the size of the grid lim-
its the smallest particle size that can be characterized to
d > 45 µm. This fact, along with the observation that
droplets are no longer robust for d > 200 µm, makes it
difficult to determine the dependence of vx on the diame-
ter d of the particles. Despite this difficulty, we observed
that at fixed Γ and f , vx exhibits little dependence on
d.

C. Pressure pattern vs. experimental parameters

In order to systematically study the dependence of
pressure pattern ∆P (t) on the experimental parameters,
we use the second experimental configuration. We thus
consider the periodic variations of the pressure under-
neath the droplet bouncing vertically at the top of the
convex surface. As before, three stages are distinguished
in a pressure cycle [Fig. 4(a)]

We propose a simplified approach to account for the
experimental pattern. Indeed, the precise calculation of
the temporal evolution of the gap pressure would require
to find the self-consistent droplet shape , which is dif-
ficult. Thus, in a first simplified approach, we neglect
the grain convection and, even, consider that the droplet
does not deform and exhibits a simple conical shape. On
the one hand, the droplet is submitted to the pressure
force so that the altitude, z(t), of the droplet center of
mass in the frame of reference moving with the solid sur-
face obeys z̈(t)+ z̈p(t) = −g+ 1

ρV

∫
ST
P (r, t) ẑ ·dS, where

zp(t) = A sinωt is the vertical position of the solid surface
and ẑ the vertical unit vector. The integral is calculated
over the whole area, ST , of the external surface of the
droplet. Considering the average pressure 〈∆P (t)〉S at
the droplet bottom at time t, one can rewrite the latter
relation in the form z̈(t) + z̈p(t) = S

ρV 〈∆P (t)〉S − g. On

the other hand, the pressure difference across the droplet
induces a gas flow through the grains. The instanta-
neous flow-rate is approximately given by a Darcy law,
q = −κη∇P , where η is the gas viscosity. The perme-

ability κ is given by the Ergun relation , κ = ψ3d2

150(1−ψ)2 ,

where ψ is the porosity [14]. Finally, assuming that
the gas is incompressible [15], one can estimate that the
variation ṡ(t) of the gap s(t) between the droplet base
and the solid surface is only permitted by the gas flow
through the droplet, which imposes that ṡ = qz, with

qz = κ
η
〈∆P (t)〉S
〈h〉 . In addition, notice that in absence of

dilation of the droplet, ż = ṡ. Thus, combining the
equation governing the vertical motion of the droplet and
the condition imposed by the gas incompressibility, one
gets

s̈(τ) +
ṡ(τ)

τκ
=
A

Γ
[Γ sin(τ + τ0)− 1], (2)

where we defined τ = ωt and τ0 = ωt0 = arcsin 1/Γ,
t0 being the time of the droplet take-off. The parameter
τκ = ωκρ/η is a relaxation time. Eq. (2) was first ob-
tained for a porous oscillating piston (the Kroll’s model)
and has an analytic solution which writes [16],

〈∆P (τ)〉S = − ρg〈h〉
1 + τ2

κ

[
√

Γ2 − 1(sin τ − τκ cos τ)

+ τκ sin τ − τ2
κ + cos τ

+ τκ(
√

Γ2 − 1 + τκ)e−
τ
τκ − 1]. (3)

The pressure difference exhibits a minimum,
〈∆P 〉S,min, which, in the limit of small τκ (< 0.7)
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FIG. 4. (Color online) (a) Typical gap pressure showing three main stages I Depression; right after droplet taking off. II
Overpressure; during droplet return to the plate. III Pressure relaxation [Γ = 2.6, f = 15Hz]. (b) Maximum droplet radius as
function of Γ for distinct f . Inset, droplet height vs droplet radius; proportionality is in agreement with the (supposed) conical
shape. (c) Maximum depression versus droplet height [f = 20 Hz]. (d) Maximum depression vs Γ for distinct f . Straight lines
are the best adjustment to the Eq. (4) which leads to ψ ≈ 0.54. [(a)-(d) Silica gel, d = 100µm]. (e) Creep onset, Γc, vs f for
distinct d, silica gel and glass particles. Solid lines are best fits to Eq. (6) with β = 0.3. (f) Γc for variable gas pressure P0 for
distinct gases [silica gel, d = 100µm, f = 20 Hz]. Inset, Γc vs η for increasing η: Butane, Air, Argon and Neon. Solid line is
from Eq. (6) with β = 0.3.

and Γ slightly larger than 1, is obtained by minimization
of Eq. (3) with respect to τ , leading to:

〈∆P 〉S,min ≈ −ρg〈h〉
[
(Γ− 1)− Γ

2
τκ

2
]
. (4)

Assuming that the pressure difference measured at the
center of the droplet base ∆P (0, τ) [Fig. 4(a)] differs
from 〈∆P (τ)〉S only by a multiplicative factor, one esti-
mates that the maximum amplitude of the pressure vari-
ations is simply proportional to 〈∆P 〉S,min. With this

assumption, Eq. (4) correctly predicts the amplitude of

the pressure variations is proportional to both 〈h〉 and
(Γ − 1), in agreement with the experimental data dis-
played in Fig 4(c) and (d) respectively. We mention
that 〈∆P 〉S,min is a slowly varying function of τκ and
that the regime for large τκ >> 1 is neither captured by
Eq. (4) nor observed for the parameter range explored in
the experiments.
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IV. DISCUSSION

In the present section, we discuss thoroughly the con-
sequences of the relations established above.

First, we consider the condition for the droplet forma-
tion. A condition for the vibration to heap the grains is
that the work of the pressure in a cycle must exceed the
potential energy necessary to rise a single layer of grains
over a height equal to the layer thickness. The condition
can be written

∫
(〈P 〉S − P0) dz ≥ ρg〈h〉d, which leads

to the minimum dimensionless acceleration, Γh, given by

(Γh − 1) Γh ≥ dω2

g in the limit τκ � 1.

In addition, as shown in Fig. 4(e), the critical acceler-
ation Γc for the droplets to creep is nearly linear with
ω and decreases with d. Moreover, Γc depends linearly
on the gas viscosity [see inset in Fig. 4(f)] and decreases
with increasing material density. Interestingly, the mea-
surements of Γc as a function of the gas pressure show
that Γc is not a function of the gas density, which indi-
cates that the relevant parameter is indeed the dynamical
viscosity η [Fig. 4(f)]. The correct scaling for Γc can be
recovered by assuming that a minimum gap, of the order
of d, is required for the droplet to creep (the droplet ef-
fectively takes off, the pertinent scale being given by the
grain size). From Eq. (2), by replacing the maximum gap
by βd, with β a numeric constant, we find:

150β(1− ψ)2ηω

dψ3gρ
≈
∫

0

τs

[Γc sin(τ + τ0)− 1] dτ, (5)

where τs is the dimensionless time at which the gap is
maximum. Interestingly, for τκ << 1, the right-hand-
side of Eq. (5) can be approximated to Γc − 1, leading
to:

Γc − 1 ≈ 150β(1− ψ)2ηω

dψ3gρ
. (6)

Eq. (6) provides a functional dependence on the parame-
ters that is consistent with our experimental data (includ-
ing those in [12]) as shown in Fig. 4(e). All experimental

curves in Fig. 4(e) are fitted with the Eq. (6) by using
a single parameter β = 0.3. For τκ > 1, the right-hand-
side of Eq. (5) is, in addition, a function of τκ leading
to an implicit expression for Γc that can be calculated
numerically.

Finally note that, since the pressure variation is pro-
portional to 〈h〉 [Eq. (4)], Eq. (1) immediately predicts
that the droplet velocity is independent of the droplet
size, as confirmed experimentally [12].

V. CONCLUSIONS

In summary, we showed that droplets forming and rep-
tation are quantitatively accounted for by measuring and
modeling the pressure excess due to the gas flow through
the porous granulate. This agreement suggests that gas
leak expected to occur at the droplet periphery is not
dominant in the range of the parameters we explored ex-
perimentally. A simplified model accounts satisfactorily
for the dependence of the droplet velocity on the main
experimental parameters. For instance, given that the
gap pressure is almost independent of τκ = ωκρ/η in the
limit τκ << 1, the droplet velocity is independent of the
gas dynamical viscosity.

In addition, we show that the droplet size can be con-
trolled on a convex surface by selecting the vibration pa-
rameters as shown in Fig. 4(b) where the size is decreased
by increasing the acceleration in a range of driving fre-
quencies. In turn, droplets trajectories can be defined
by the choice of the surface geometry as illustrated in
Fig. 1(e), where droplets follow the helical trajectory de-
fined by the crest line of the surface. Thus, combining
concave with convex geometries and selecting suitable
vibration parameters, a variety of strategies and devices
can be devised for powder handling and control (ranging
from micro-delivery to separation, [17]).
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