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Abstract

Recently, Wiet al.! proposed to investigate charge resonance situations in molecular com-
plexes via a method expressing Configuration Interaction (Cl) in a valeowed-like based
multi-configurational basis determined from constrained DFT calculations. atpt this
method within the Self-Consistent Charge Density Functional Tight Bindi@C(®FTB)
approach and provide the expressions for the gradient of the endfyyespect to the nu-
clear coordinates, allowing for full structural optimization. The method is shimacorrect
for the wrong SCC-DFTB behavior of the potential energy surface idigeociation regions.

We apply this scheme to determine the structural and stability properties of susitiegly
charged molecular dimers, respectively the benzene dimer cation andtiéredimaer cation.
The method is shown to yield binding energies in good agreement with expéaindata and

high level reference calculations.

*To whom correspondence should be addressed



1 Introduction

The description of molecular clusters requires to take adoount the various contributions of
the intermolecular energy, including the Pauli repulstbie, Coulomb interaction, and the London
dispersion. The description of the electronic structurgiodly ionized molecular clusters requires
to consider two further essential contributions, the firs¢ deing charge resonance which may
cause the charge to be partially or totally delocalized dvemolecular units, the second one being
the polarization contribution due to the influence of thergbaBoth of them yield a stabilization
of the charged species as compared to the analogous nedtpaisper description requires correct
balance between charge delocalization and polarizatime$o

While Density Functional Theory (DFT) is an appealing methodlescribe the electronic
properties of clusters up to a few tenths, maybe a few husdasoins, at least in single point
calculations, the use of the most common functionals is knmxfail to describe properly disper-
sion forces. This is a first handicap to deal with moleculasi@rs. Search for new functionals
accounting for dispersicini®is a very active field, while semi-empirical corrections tarslard
DFT calculations are also usEd!8 Description of charge resonance in molecular clusters is
another serious problem in standard Density Functionalagghes. Using canonical Kohn-Sham
orbitals, one arising problem is the self-interaction @ tlelocalized charge. This aspectis particu-
larly prevalent at dissociation, for instance in a catianmecular complex involving two identical
units, and which should dissociate into one molecular oaind one neutral, whereas in restricted
scheme DFT the charge is asymptotically equally shared éywo units, breaking the energy
additivity and further introducing a spurious Coulomb iatgfon between the two moieties. Al-
though such an artifact is essential at the dissociatias ailso expected to play a role all over the
potential energy surface, including the equilibrium getias.

A correct description of dissociation is in principle egsibtained if one uses a multicon-
figurational nature of the wave function. This can be aclddwe high level methods like Con-
figuration Interaction (CI) based methods (Multi-Configuratl Self-Consistent Field MCSCF,

Multi-Rereference Configuration Interaction MRCI) or Coupledst#u approaches but at a high
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computational price. Such calculations may provide berarkmon reasonably small systems (es-
sentially dimers) but rapidly exceed today’s possibiitees soon as the molecular units exceed a
few tens of atoms.

One of the tracks to circumvent the drawbacks of preserd &&T in anab initio framework
is to combine CI for describing long range (Ir) electron-&iec interactions and DFT for the short
range electron-electron interactions (sr). This gavetasiee Ir-sr formalism following Savin’s for-
mulation®-??which make possible combinations of MP2, Coupled Clusteraar@V approaches
with Density Functional Theory, via a partition of the elett-electron Coulomb interaction. This
formulation is quite attractive, nevertheless its nunaraost is significantly larger than that of a
standard DFT calculation.

On the other hand, charge resonance (or excitation resepappears quite simply in valence
bond-like approaché&s-2 explicitely taking into account the multiconfigurationadtare of the
wavefunction via the definition of a basis in which chargedxgcitation) is localized on a given
fragment of the system. This is the essence of the excitonibefs originating from solid states,
but also used in molecular materials and even biologicakesys. An application to molecular
cluster cations and in particular polycyclic aromatic lo@arbon (PAH) cluster cations was pub-
lished by Bouvieret al.?’ defining a resonance charge model based on frozen moleauids,
parametrized fronab initio Cl calculations of dimers. Diatomics-In-Molecule modelwigsingly
ionized rare gas clusters can also be expressed in valendepiziure in a basis of atom-localized
hole configurations with no internal geometrical structOfepaving the way for extensive simu-

lations of the electronic and dynamical properties of iedizare gas clusters (see for instafice

More recently, the concept of using a valence bond configuratescription combined with
a DFT framework was proposed by the group of Van Voo#tisl.1-28-30to investigate charge
delocalization in mixed valence compounds exhibiting pgmei-stability with the perspective of
controlling charge transfer. They developed a method comdpiconstrained DFT with a small CI-

like scheme (CDFT-CI) to deal with charge delocalization iteeded systems. This is extremely



appealing from the computational point of view, since tlze sif the Cl increases linearly with the
number of fragments, and not as a power of the total numbettiveselectrons in the whole sys-
tem, which is a bottleneck. The Self-Consistent-Charge DeRsinctional based Tight Binding
(SCC-DFTBP13%is an alternative to DFT in the quest of addressing largeesyst It is derived
from DFT through several approximations allowing the usparmetrized tables to avoid the ex-
plicit calculation of overlap and interaction integralss ACC-DFTB is derived from DFT it also
inherits its lack in describing charge resonance. Recem#ygresented a preliminary transcription
of the CDFT-CI method in SCC-DFTB framework using also approxiomns to determine the CI
couplings. We provided applications to coronene clustdits @onstrained geometries, because of
lack of the gradient.

In the present paper, we present the general adaptatior @EHT+Cl method to the SCC-
DFTB framework, with the aim of future investigations of cfp@resonance in molecular clusters
with either large units or large size. This method is calleDFTB-VBCI (Valence Bond CI). In
order to perform geometry optimization, we also derive il expressions for the energy gra-
dient with respect to the nuclear coordinates, which we asehieve full structural optimization
for the benzene dimer and water dimer cations, respectively

Section 2 is devoted to the presentation of the general rdetbgy and the DFTB-VBCI ap-
proach and the derivation of analytical expressions fonti@ear forces. In section Section 3, we
benchmark the method on benzene and water ionic dimers draglie of comparisons with high

level calculations. Outlines and perspectives are giveseation Section 4.

2 Methodology

The DFTB-VBCI method is an adaptation of the DFT+CI apprdaén3Cto the SCC-DFTB
scheme with the focus on treating charge resonance in idmraecular clusters. In that ap-
proach, the wave function of the systé#is decomposed on a bagi®'} of configurations where

the charge is localized on different fragments of the systéihe intuitive decomposition of a



molecular cluster leads to identify each of thg,g monomers to a fragment and the wave function

becomes
Nfrag

W= Z by @' (1)
where®!' is the configuration where the charge is fully carried by finegtl. Each charge local-
ized configuratior®' is a single Slater determinant, built from the moleculaitats (MO) {¢' }
resulting from a constrained SCC-DFTB calculation. These ¥8 tonfigurations then interact
within a small Cl-like scheme giving their coefficiersin the wave function and the ground state
energy.

In this methodological part, we first briefly recall the SCC-Edcheme basics (Section 2.1)
before explaining the derivation of the charge localizedfigmrations®' using the constrained
SCC-DFTB (Section 2.2) and the Cl-like scheme calculationt{®e2.3). We present then analyt-
ical expressions for the nuclear forces (Section 2.4) antedorther approximations to accelerate
the approach (Section 2.5). We adopt different font congestto distinguish between matrices
expressed on different basis sets. For instance, the Hemaift matrix is written aBl in the atomic
orbital (AO) basis set7Z in the molecular orbital (MO) basis set ahdin the determinant basis

set (the basis of the charge-localized configurations.

2.1 DFT and SCC-DFTB

Several reviews on the DFTB and SCC-DFTB method can be founkeititterature3'—34 The
SCC-DFTB differs from the DFT expressed on a local basis setidyallowing approximations:
(i) the DFT energy is expanded up to the second order witheitsp charge density fluctuations
around a given reference density (ii) all three center adgon integrals are neglected (iii) the MO

are expressed in a minimal atomic basis set

a=Y cudy 2)
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(iv) the short distance repulsive potential is expressed fasction of two body interactions (v)
the second order term in the DFT energy expansion is exgtessa function of atomic Mulliken

charges and B matrix. With these approximations, the total SCC-DFTB eneegyls

atoms

SCC_DETB _ 2ams E1eP 0 1
E = 5 E +Zn. @R @) + z M aptadp 3)
a,B#a

whereH? is the Kohn-Sham operator at the reference densityE%Fﬁiis the repulsive potential
between atoms and8. The matrix elements dfi® are expressed in the atomic basis $elp

and E;elg’ are interpolated from two body DFT calculations. are the atomic orbital occupation

numbers and|, are the atomic Mulliken charges. The energy minimizatiosbi&ined by solving

self-consistently the secular equation

Zciv(Huv—giSuv):O VU, i (4)
v
Sis the atomic basis overlap matrix and the Hamiltonian ma&adsH = H? +H* with

atoms

Huea vep — ZSIJV Z ( aE+rEB>QE (5)

whereu € a means that the atomic orbitalbelongs to atonm.

2.2 Constrained SCC-DFTB

Similarly to the constrained DF?P, the MOs{¢'}, used to build the configuratioh', are obtained
from a minimization of the SCC-DFTB energy with the constraithtat the charge is carried by

fragmentl and that the orbitals are orthonormalized. The correspgnidagrangian is

£ =BT+ S A ((d o) - <2n (@[P'a) - ) 6)
]



whereV' is the Lagrange multiplier ensuring the charge localizationstraintP' is the projector

of the density on fragment N' is the number of electrons on fragménthich defines the charge
localization,Aj; are the Lagrange multipliers ensuring the orbitals ortmovadity constraint. Wu
and Van VoorhisWu and Van VoorHi discussed the effect of several localizations, based en dif
ferent charge definitions (Mulliken, Boys, Léwdin), on thexstrained energy and finally adopting
the Lowdin approach. We used for the constrained SCC-DFTB thiékén charge definition be-
cause (i) the defects of Mulliken charges are less crucal th DFT due to the use of a minimal
atomic basis set (no diffuse functions) and (ii) in the mostded version, SCC-DFTB is a Mul-
liken charge based approach and all the matrix elements lieem parametrized for this charge

defintion. This choice leads to the expression for the camgtr

S niciy Py, =N (7
Vi

P' being the projection matrix expresseds

Oif u¢landv ¢l
Ply =< Sy ifbothpelandvel

$Suv for other casegp € 1 orv €l)

The secular equation (Eqg. (4)) should now be solved wititheatrix modified as follows
Hyv = HY, +Hi, +V'PL,

Similarly to the constrained DFT, Eq. (4) must now be solvelfisonsistently over the atomic
charges and contains an unknown Lagrange multipllerTo overcome some convergence prob-
lems, we have implemented three ways of solving this equatieich can be used alternatively
until one of them converges.

-i- The first one (similar to that 6f) consists in solving the secular equation with an inner loop



to calulate the/' Lagrange multiplier satisfying the constraint keeping dixahargesy, in the
Hamiltonian. An external loop over the Mulliken charges e&fprmed to reach a self-consistent
solution.

-ii- The second approach consists in inverting the two nesiloops, i.e. the inner loop ensur-
ing the self-consistence over the Mulliken charges andxtexmal loop allowing the determination
of the Lagrange multipliey'.

-iii- The third approach is somewhat different and consistéree steps. First, a MO guess
is generated for isolated fragments. The full set of MOs isrthonormalized with a Léwdin
procedure. These MOs do not correspond to an energy mininmghda not satisfy the charge
localization constraint. In the second step, the MOs evtivehange the number of electrons on

fragmentl with the iterative procedure

(H|(n+1):(ﬂl(n)+a<plq|(n)+2(pj'(n)/\ij> Vi (8)

I

wherenis the iteration step. The third term ensures the orthonlizateon constraint. Transposing

this equation in the atomic basis set gives the evolutioheMOs
C'(n+1)=C'(n) + a(StP'C'(n) + XC'(n)) (9)

whereX = aS~IA. At each step, the coefficient is adapted to increase or decrease the number
of electrons on fragmerntand theX matrix is calculated solving a second order equation equiv-
alent to the Rickae?t algorithm already implemented for SCC-DFTB Car Parrinelloenalar
dynamics®. Once a solution satisfying the density constraint is acdethe last step consists in
relaxing the MO to minimize the energy, conserving the cbdogalization and orthonormality

constraints

@(n+1)=¢(n+a (dd;ﬁch}/\u +V'P'<n'> (10)
J



giving the evolution of the coefficients

C'(n+1)=C'(n) + a(SHC' (n) + XC'(n) + V'S IP'C' (n)) (11)

This step requires both the calculation ¥fandV'. Starting from a giverv'! (the one of the
previous step ih > 1), C'(n+ 1) is determined, calculating X with the Rickaert algorithm.eTh
charge carried by fragmehtwith these new coefficients is calculated. If this chargealarge
(resp. too small)y' is decreased (resp. increased). The process is repeatethemholecular

charge satisfies the constraint. Finally, the MOs convergled the charge-localized solution.

2.3 The Configuration Interaction-like scheme

The set of MO{¢' } obtained from a constrained SCC-DFTB is used to build the ehtarcalized
configurationgd' as single Slater determinants. The coefficidntsf these configurations in the

total wave functiort¥ (see Eq. (1)) are obtained by solving the ClI-like scheme

Hi1 Hiz .. Hin) (b1 St Si2 .. Sin\| (b1
H H .. H b .. b

21 Hao 2n 2| _ £ S S Son 2 (12)
Hnl . .. Hnn bn 311 . .. Sﬁn bn

whereSy; is the two configurations overlaj@' |®7) andH, is the energy of the configuratiah!
already calculated with the constrained SCC-DFTB. Followheydpproach of Wit al.12°, the
coupling elementsl|; are calculated by

Hiy = %(Hu +Ha+ NV + NV, — %(VI (@' [P'@”) + V(@' |PY0Y)) (13)

In the case of degenerate systems, one can also include haor®mne configuration to represent

the charge localization on a given fragment, as it will bevaian the applications of Section 2.4.



Solving Eq. (12) provides both the ground state of the systethsome excited states generated
via charge resonance. Although these excited states antenést, for instance in spectroscopy,

we focus in this work on the ground state which correspondsedowest eigenvalugg.

2.4 Analytical gradient

Calculating derivatives of the energy upon atomic nucleeggiired to perform molecular dynamics
or geometry optimization. Their numerical calculation @sgible by finite differences but the
number of energy calculation® x 3Natomg turns out to be quite large even for small systems.
In SCC-DFTB, it is convenient to use the derivatives of the mattementgH® S T) which are
known and tabulated. Differentiating Eq. (12) with respgedhe nuclear coordinat, of atoma

leads to the force expression
ﬁaEg = Zj'bl bJ ([_jaHIJ - EgﬁaSIJ) (14)

We now present the calculation of the derivatives for thgalmal and off-diagonal elements sepa-

rately. The differentiation operatdfl“a is replaced by the symba}, to simplify the expressions.

2.4.1 Derivative of the diagonal element

The diagonal elemer,; is the energy of the configuratioh'. Differentiating (Eq. Eq. (3)) and
using the eigenvalue equation (Eg. (4)), the moleculargshaonservation (Eq. (7)) and orthonor-
mality constraints leads to the analytical

1

H
OH| = 0,E™P+ Z N; Z CivCip (aaHSV +V! aaPLv + (% - Ei)daﬁlv) + Qa%aarabe (15)
v v
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2.4.2 Derivative of the off-diagonal elements

The differentiation of the off-diagonal elements is obeairby differentiating Eq. (13) to give

1 1
OaH\ 35143 = EAIJ + EA]I

with
Ay = (GaHy +N'oVHS s+ (Hy +N'VH 3.9
—(®!|P @) gV — V', (9P |@Y))

(16)

We must now express the derivatives of the Lagrange mutgdhV' andd,Vv?, as well as the
overlaps (real overlap and through the projectors) betvigeand®’. As there is no relationship
between the MO of the two configurations, there is no HellfRapaman type simplification for
the derivatives of their overlaps. The derivatives of thieitat coefficients and of the Lagrange
multipliers must be explicitely calculated. The calcwatpf the derivatives of the coefficients has
already been expressed for DFT (see for instdf)cand its expression only differs here through
the term containing the constraint.

For a given configuratio®', the derivative of the coefficients of the orbitdlg } can be related

to the orbitals themselves byuamatrix

00l = Zc,'(uuik (17)

The conservation of normalized MO already imposes the forthe diagonal term of the

matrix

1
Ui =5 Cl, CivGaSuv- (18)
v
For the off-diagonal elements;;;;, differentiating Eq. (4) leads to

_ Ot} — £j0a]
- 8j — &

Uij (29)
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whered,.¥ and d,.77 are the derivatives of the SCC-DFTB overlap and Hamiltoniatrioes

expressed in the molecular orbital basis set

5a<5ﬂij = Z Cilucljvdasﬂv
uv

uv

In the constrained SCC-DFTB, the Hamiltonian matrix derivatiepends -i- on the derivatives of
matricesH®, S, andP -ii- on the derivatives of the coefficients and -iii- on thaidatives of the

Lagrange multipliers. These three contributions are ngplieixely separated
0274 = 0a.Fij +%Mij,klukl +0V' 7 (21)
whered,.Zj contains the first contribution
0aFij = %ci'uc'jvdaFuv (22)
with

HL,
OaFucavep = daHgv‘f‘VldaPuV"i‘daSuvﬁ

+ 3Sw3s ((0araé +0al ep)de +YiM 31 Y wee (Mag + T ep)CiwCi daswl)

The second term in Eq. (21) accounts for the Hamiltonian deégeces on the orbital coeffi-

cients with
oH
A= vy Ffwcllw (23)
v @ kw
and
JoH 1
=508 Y Y SiolTay+Tpy+Tag +Tge)ci (24)
g, 2 & AeE

whereu € a;v € B;w < y. In the last term of Eq. (21)77; accounts for the Hamiltonian differ-
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entiation upon the Lagrange multiplier
Pij =Y CiuCjyPuv (25)
v

Compacting thej indices in a singlenindice and th&l indices in a singl@ indice, we now define

Un = Uj
0a.Fij — £j0aS
Vm -
Ej—§&

B — Aij ki

mn $j — &
Wm = «@ij

m E—§&

and rewrite Eq. (19)

u = Butv+dV'w
= (1-B)v+av'(1-B)tw
= W 4oV (26)

with® = (1-B) lvandu = (1-B) 'w
We now determin@,V' using the fact thal' remains constant. Differentiating Eq. (7) leads to
I v

which can be expressed with thenatrix

dN' = z;niciucivaapuv +2%niuij Zij =0 (28)

Using the previous expression farleads to the following expression for the derivatives of the

13



Lagrange multiplier
_ Qi Zuv niCiuCivdaPuv + Zzij N; Uﬂ ,@ij
23 nu; Zij

V' = (29)

2 can now be calculated from Eg. (21), as well as whaatrix from Eq. (19) and finally
the derivatives of the coefficients from Eq. (17). T®e derivatives are computed from this MO
coefficients derivatives and the derivatives of the AO aqerihatrix. For efficiency, the determi-
nant expansions appearing in the calculation of the derastvere calculated using the Sherman-
Morrison formula? A similar approach is applied to the derivatives of the prtid overlap matrix

(@![P]a).

2.5 \Variants of the DFTB-VBCI: the HOMO approximation

We will consider the following approximation to the DFTB-VBQb@roach: we assume that, in a
molecular cluster, the MOs of the different charge localizenfigurations mostly differ through
their Highest Occupied Molecular Orbital (HOMO). The oegr$ and projected overlaps between

two configurations can be simplified in

Sty = (@'®7) ~ (diomol Fomo) (30)

(@'|P'|0?) ~ N'(@iomol #omo) + (BiomolP' [ #Romo)

The off-diagonal Cl matrix element becomes

Hiz =~ =(Hi +Hi){@\omol Bomo) (31)

|_\
< NIBP

5( "(@iomolP' [ @omo) + V7 (@iomol P’ #iomo))

The advantage of this approach is to avoid any Slater detamhoverlap calculation and only the

derivatives of the HOMO coefficients need to be calculated.

14



3 Applications

We will now apply the DFTB-VBCI method to the treatment of two fatype cationic molecular

clusters, namely the benzene dimer and the water dimer.

3.1 Benzene Dimer

Several authors have investigated benzene dimer clugteighalevels of theories. Let us cite for
instance MultiReference Configuration Interaction inclgd8ingle and Double excitations (MR-
CISD*% and Equation-Of-Motion Coupled-Cluster model with Singfel @ouble substitutions
for lonized systems (EOM-IP-CCSH*9 discussing the relative energies of characteristic iso-
mers, namely the sandwiches (stacked, paralleindy-displaced) and T-shaped configurations
(see Figure 1). Both calculations gave the sandwich parditgliaced isomers to be the most
stable structures, about 7-8 kcal mbllower than the T-shaped. Both approaches can describe
in principle correctly the charge resonance states. HomeN®-CISD may suffer from the lack

of size consistence which could explain that the bindinggies (12.3 kcal moi® for the dis-
placed sandwich and 5.4 kcal mélfor the T-shaped) are significantly smaller than those abthi
with EOM-IP-CCSD (20.2 kcal moit and 12.4 kcal moll) whereas the energy difference be-
tween the two isomers is in good agreement (about 7-8 kcaf hrekspectively)??WARNING

cest du MRCPA size consistent??The Dg, symmetric stacking is another structure of interest
which is slightly less stable (about 2 kcal mé) than the two sandwich displaced isomers. DFT
calculationd3-4° performed with the B3LYP functional give reasonable bindamgrgies for the
sandwhich structure (17-19 kcal md) but underestimate the energy difference between the two
structures due to an over-stabilization of the T-shapedsire. In the following, we will use the
EOM-IP-CCSD#*42results as references to benchmark our method as they aresteecenab
initio calculations and the corresponding binding energies fntbst stable structures around 20
kcal/mol (see Table 1 are in good agreement with the expetamhstudies providing values in the

15-20 kcal/mol rangé46-51

15



() (d)

Figure 1. Benzene dimer cations optimized at the DFTB-VBCI leta) T-shaped, (b) sandwich
stacked, (ck-displaced and (dy-displaced isomers.

Following*?, we call 1§ and iy the degenerate MO in the neutral benzene molecule. In the
ionized monomer, these two levels are degenerate at theahgabmetry but undergo Jahn-Teller
distortion leading to an acute angle configuration (ion@afrom therg orbital) or an obtuse an-
gle configuration (ionization from thﬂg orbital). We use the qualitative molecular description of
the Dimer Molecular Orbitals Linear Combination from the gireent Molecular Orbitals (DMO-
LCFMO*Y), to describe a benzene dimer, composed of two fragmengdiéabA and B. In this
framework, the constrained state”B can be obtained either from removing one electron from
the rg‘ or from theng orbitals of A. Consequently, we need two configurations tacdes the
constrained form AB. In the case of the symmetrig, sandwich stacked dimer, these two B
configurations are degenerate and are built as follows: wehesconstrained SCC-DFTB to min-
imize the electronic energy with an occupation of 1.5 fortile highest occupied MOs (HOMO
and HOMO-1) orbitals and 2 for the lower electron energytatbi The two A'B configurations
are then built from the obtained MOs as shown on Figure 2. HEneesprocedure is applied to
obtain two AB" configurations and the ClI matrix to be diagonalized is-amatrix.

In the other isomers (displaced sandwiches and T—shapmﬂgtandng orbitals of each frag-

ments are no longer degenerate and one could in principteles® the energy of these configura-
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tions without using fractional occupation numbers. Howgwe could not obtain a self-consistent
solution of theA'B state (respectivelAB™) with the constrained SCC-DFTB since thg and
718 orbitals on fragment A (respectively on B), although not degate remain close in energy.
We therefore decided to keep the procedure used foDthestacked sandwich isomer filling the
HOMO and HOMO-1 orbitals with 1.5 electrons. Although thérfg of MO is fixed, these MO

relax anyway and are no longer degenerate in the final resliésto the coupling with geometry

relaxation.

3.1.1 Sandwich isomer

-30

Figure 3: Dissociation potential energy curves of the catibenzene dimer in the stacked sand-
wich configuration calculated with SCC-DFTB and DFTB-VBCI apmiues.

We first discuss the results obtained for the stacked sahdwithe Dg,, geometry. Figure 3
represents the energy of the dimer corresponding to dessmicialong the-axis, orthogonal to the
planes of the monomers. For this example, the fragmentg@zerf at the monomer neutral ge-
ometry). The zero energy reference corresponds to the suine geparated fragments calculated

independently namellf (CgH{ ) + E(CgHg). The SCC-DFTB dissociation curve reminds the dis-
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Figure 2: Two electronic configurations (right) obtaineahfr constrained SCC-DFTB calculation
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Table 1: Binding energies of cationic benzene dimer obtaatedifferent levels of theory. The
stacked sandwich structure correspond to constraibgdoptimization whereas the other iso-
mers are fully optimized with its respective method. RéBieniazeket alPieniazek et af! ;
bPieniazelet al.*? ; CIbrahimet al.** ; Yltagakiet al.*3 ; ®Kryachkd*® ; T Miyoshi et al.*°

DFTB-VBCI HOMO SCC-DFTB| EOM-IP-CCSD DFT CASSCF+MC
Approximation| SCC-DFTB| EOM-IP-CCSD DFT CASSCF+MC

Stacked 17.70 17.91 29.53 18.34 17.4¢-19.1

Sandwich

x-displaced 20.90 20.43 29.01 19.58 - 12.3

y-displaced 21.26 20.79 29.21 19.8P 16.57 10.9

T-shaped 9.23 16.90 24.68 12.4% 15.7¢

sociation curve of B calculated with DFT and can be explained as follows. Firgt,3CC-DFTB
energy does not converge to the sum of the energies of thenéaig at the dissociation limit. At
infinite distance, the charge is equally distributed overttho fragments. As the evolution of the
self-interaction error with the number of electrons on giinant is unfortunately not constant nor
linear, we have X ESCC-PFTB(CgH2) £ ESCOPFTB(CH ) + ESCC-PFTB(CgHg). At shorter
distances, the energy increases and a barrier is even elddszfore reaching the minimum which
is here a metastable minimum. The responsible repulsiv&ibation has a IR behavior and
can be attributed to the artificial repulsion of two half ded fragment, which is a different case
of self-interaction than the previous one. Finally, the imim is much too low in energy (29.5
kcal/mol) as compared to the reference calculations (skele T3.

As can be seen from Figure 3, the DFTB-VBCI method does not préisenvrong behavior
pattern of the SCC-DFTB curve. At the dissociation limit, theergy converges to the sum of
the energies of the fragments. Actually, in Eq. (12) the lay@r and coupling terms vanish and
the energies of the localized configurations are degenerettese energies are calculated with
the electronic density corresponding to one charged ancheaial monomer and not that of two
half charged fragments. The Coulombic self-interactigR tepulsion also disappears with this
approach as well as the corresponding barrier. Finallybii@ing energy for the stacked sandwich
(17.70 kcal/mol) is strongly smaller than the SCC-DFTB onej2%cal/mol) and gives a much
better agreement with that of EOM-IP-CCSD calculation at 4&&al/mol.
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The dissociation curve obtained applying the HOMO appreatiom detailed in Section 2.5 is
also plotted on Figure 3. It is almost identical to the DFTB-VRBQtve with a binding energy of
17.91 kcal/mol vs 17.70 kcal/mol for the DFTB-VBCI.

3.1.2 T-shaped and displaced sandwich

The T-shaped and displaced sandwiches have been optimitezlivany geometrical constraint.
The binding energies are reported in Table 1. The T-shamedeshas a binding energy of 9.23
kcal/mol which is slightly smaller than the EOM-IP-CCSD onenather difference concerns the
charge localization. With EOM-IP-CCSD, the charge is mostlyalized on the stem fragment
(88 %) whereas this localization drops to 56 % with the DFTB-VBEIpossible explanation
for this charge localization discrepancy could be relatethtk of stabilization by polarization.
In DFTB-VBCI, the benzenet system can be polarized in the direction parallel to the éeez
ring. However, due to the reduced basis set used, the pati@mnzof therr system perpendicular
to the benzene ring cannot be accounted for. This lack ofigat#gon could be at the origin of the
destabilization of the configuration where the charge is@aby the stem fragment, leading to an
over-sharing of the charge and an underestimation of théirgrenergy. Another possibility is the
definition of charges of the charge analysis inalhanitio calculation (NBO).

At the SCC-DFTB level, thex- andy- displaced dimers are overstabilized as compared to
reference calculations. Similarly to what is observed far $tacked sandwich dimer the DFTB-
VBCI approach gives considerably improved binding enerd?®@s90 and 21.26 kcal/mol) in very
good agreements with those of EOM-IP-CCSD (20.14 and 20.1&#koh. These two structures
are almost degenerate, treisplaced being slightly more stable. The energy diffeess however
probably much smaller than the expected accuracy of ouroappr These are clearly cases in
which quantum vibrational effects should be considered.

Applying the HOMO approximation to the DFTB-VBCI leads to veiyn#ar results. The
most stable structures are tkeandy-parallel displaced ones with binding energies which diffe

by less than 2.5 % from those of DFTB-VBCI. The T-shaped is foundet less stable than the
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previous isomers but its binding energy is overestimatedpared to reference calculations and
DFTB-VBCI, suggesting that the differences between the twdigorations can not be reduced

to a change in the HOMO.

3.2 Water dimer cation

The potential energy surface of cationic water dimers ha&s ievestigated at at hight level of
theories CCSD(T) ) and EOM-IP-CCSID4° The stable structures belong to two families. In the
first one, the two water monomers are superimposed in aryamtigtric pattern and the charge is
equally distributed over the two units. The second one te$um a proton transfer leading to two
non-symmetric units [5O - OHJ', in which the charge is mostly localized on the®ifragment.
The structures, found to be minima by Chegtgal.>*, have been optimized with DFTB-VBCI

method within a conjugated gradient scheme.

o3

P %30

(a) (b)

Figure 4: Water dimer cations optimized at the DFTB-VBCI leya).[H3O-OHJ? isomer and (b)
antisymmetric or [HO-H,QO]" isomer.

3.2.1 [H3O - OH]* structure

Section 3.2 compares the binding energies obtained at the[F®- level to those resulting from
other calculations. For the B - OHJ", most of the DFT fuctionals (except for the BH&H) give
reasonable results compared to CCSD(T) values. Similarypbthding energy obtained at the
SCC-DFTB level, without CI correction is close to that of CCSD@%.3 versus 44.6-45.9).

In this system, the DFTB-VBCI considers the interaction betwiée configurations where

the positive charge is localized either on theHor on the OH subfragments. We started the
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Table 2: Binding energies of cationic water dimer obtainedifé¢rent levels of theory? Lee and
KimLee and KinP>; P Chenget al Cheng et aP* ¢ Barnett and LandmanBarnett and Landrfan
d Sodupeet al.5>” MCPF = SCF + electron correlation included with size extensiaified-
Coupled-Pair Functionaf; Gill and Radon?®

AntiSymmetric| H30-OH (Cs)| H30-OH (C1)
DFTB-VBCI 35.44 42.31 -
HOMO Approx. 35.74 42.33 -
SCC-DFTB 68 46.3 -
GGC 53.7% 48.66 -
BLYP 58.4 - 49.3
B3LYP 51.5 - 49.8
MPW1K 42 .9 - 49.F
BH&HLYP 41.43 - 49 .
MP2 40.48 [ 43.5 50.9 46.47F
MP4 41.1 49.F -
CCSD(T) 39.53/39.59 46.64 46.70'/ 46.69
MCPF 36.1 45.9 45,93

optimization from the @ global CCSD(T) minimum. The absence of symmetry of this mimmu
leads to non-degenerate HOMOs. For the two charge-lochtiaafigurations. The DFTB-VBCI
optimization leads however to a Cs structure. Due to the plapametry, degeneracies must
be considered in thdetailler .... ?????????????7The weights of the two configurations in
the Cl approach indicate that the charge is mostly locali8d9(%) on the HO fragment. In
CCSD(T) calculations, the charge is localized also strormmgglized on this fragment but only at

We notice that if the DFTB-VBCI minimumGg-trans) is different from the C1 minimum
obtained with CCSD(T). In CCSD(T), thes-trans isomer corresponds to a transition state 0.04
kcal/mol higher in energy than the glob@ minimum®* (< 0.2 kcal mol* for the EOM-IP-
CCSD fitted surface of Kamarchat al.>°, and 0.03 kcal/mol at the SCF+MCPF le¥8l Such a
small energy difference is far beyond the expected accufitye DFTB-VBCI method. The bind-
ing energy ofCs-trans isomer is close (42.7 kcal/mol) to that obtained wigimple SCC-DFTB

calculation (46.3 kcal/mol). This is due to the fact that ttarge is not significantly delocal-

ized between the two fragments and that the SCC-DFTB caloulatready attributes most of the
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charge to the BO fragment. The artificial stabilization by the self-intetian error is therefore
less crucial. This also explains why most of the SCC-DFTB fianetis give reasonable results for

this structure.

3.2.2 Antisymmetric structure

It can be seen from Section 3.2 that, at the CCSD(T) level, thisyanmetric isomer is less sta-
ble by 7 kcal/mol than the [D - OH]" isomer. At the DFT level, the binding energy strongly
depends on the choice of the functional. For instance, th®[HOH]" structure is more stable
than [H30 - OHJ with MPW1K, BH&H and BH&LYP functionals but it is the opposite thithe
BLYP, BPW91, HCTH407 and B3LYP functionals. At the SCC-DFTB levieg binding energy
of the OO isomer is strongly overestimated (68 versus 39 for[TY making this isomer 22
kcal/mol more stable than the §& - OHJ" isomer. The DFTB-VBCI has then a drastic effect,
reducing the binding energy to 38 kcal/mol, a value clos&é#oQ@CSD(T) ones (35-39 kcal/mol).
In this isomer, the charge is equally distributed betweent®o equivalent fragment. The over-
stabilization observed at the SCC-DFTB level is attributethtoself-interaction error due to this
this strong delocalization and corrected by the DFTB-VBCI apph. Finally, we notice that for
both the [HO - OH]™ and [H,O - H,O ]t isomers, the binding energies obtained with the HOMO

approximation are very close to that obtained with the flHITB-VBCI method.

4 Conclusion

An extended method combining a VBCI-like scheme with the SCC®Ras been developed.
The method has been implemented together with its analligiiedient to make possible complete
optimization, including namely the intra-molecular anteramolecular degrees of freedom. We
have benchmarked this approach on ionized dimers of bermreheater.

In the benzene dimer cation, the self-interaction errot te@origin of an unphysical behavior

of the SCC-DFTB dissociation energy curve. It turns to be fodyrected with the DFTB-VBCI as
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detailed for the stacked sandwich. This method will alloypgéoform explorations of potential en-
ergy surfaces by molecular dynamics or Monte Carlo sampliitig tive focus of studying ionized
dimers dissociation. The binding energies obtained fdeht isomers with the DFTB-VBCI
compare well with those of high-level calculations as wellexperimental data, these standard
energies being strongly overestimated with the SCC-DFTB. Weelier notice that the main error
for the DFTB-VBCI binding energy concerns the T-shaped strecivhich is understabilized by
3 kcal/mol. This may be due to the use of point charges and sitgesnistreatment of the mul-
tipolar nature of the benzemesystem interacting with that of the charged top benzenethEur
improvement of the DFTB-VBCI could include such multipolar cgstion of therr system (see
for instancé&®) in order to account for this effect but at the price of a larg@mputational effort to
derive the energy gradient.

The second benchmark system is the ionized water dimer.\ildnengin isomers strongly differ
by a proton transfer. The binding energy[eO — OH] " isomers calculated at the DFT level with
several functionals are in good agreement with referentoelledéions. This is also the case with
SCC-DFTB and DFTB-VBCI due the localization of the charge onHe® subfragment reducing
the multiconfigurational nature of the wavefunction anddek-interaction error in standard DFT
based calculations. On the opposite, in ffHeO — H,O] ™ isomer the charge is equally carried by
the two fragments and the binding energies obtained at Dl &trongly differ depending on the
choice of the functional. With SCC-DFTB, this structure is @tabilized and becomes atrtificially
the most stable one. This effect is corrected with the DFTB-V&gaHroach which gives a binding
energy close to that of high level of calculations.

Taking advantage of the SCC-DFTB in terms of computationatieficy, the DFTB-VBCI
will allow to deal with systems larger than dimers. In ourypoers study, DFTB-VBCI has been
used to characterize binding energies, ionization paiksais well as charge localization in stacked
coronene clusters with frozen intramolecular geometmebsagjual spacings between the planes of
the units’®. This work was however performed before the developmennalygical gradients and

it will be of interest to characterize the effects of intraxdainter-molecular relaxation in these
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clusters. It is known that in rare gas clustersitélet, Art, Kri and Xeg!, the hole tends to

delocalize on few units (from 2 to 4, depending the rare gas)that the other atoms tend to
organize in crowns around a linear core. It will be intensgsto understand how the internal
degrees of freedom, the molecular extension and shapeng#ube size of the core unit and the

organization of the whole cluster.
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e Pour I'eau : Decrire notre choix de remplissage electromig80O-OH

e Pourl'eau : dans la litterature la valeur de la charge sur H8@nhee en DOHF et excitation

seulement ?

e Pour le sandwich stacked la courbe ne correspond pas auxvala tableau !!!! refaire

avec la meme dispersion
e parler des comparaison avec la SIC DFT (pienazcek)
e pour le water H30-OH charge localization Cheng donne lesuvalROHF ....
e faire le calcul H30-OH avec le 0.5 pr le OH
e mettre 1 ref ancienne pour le coupled perurbed equations
e formule du homo a approx
e figure 3 ecrire SCC-DFTB
e ecrire les gradient dans la conclusion

e gradient complet + colle a I'experience
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