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Abstract

Recently, Wuet al.1 proposed to investigate charge resonance situations in molecular com-

plexes via a method expressing Configuration Interaction (CI) in a valencebond-like based

multi-configurational basis determined from constrained DFT calculations. We adapt this

method within the Self-Consistent Charge Density Functional Tight Binding (SCC-DFTB)

approach and provide the expressions for the gradient of the energywith respect to the nu-

clear coordinates, allowing for full structural optimization. The method is shown to correct

for the wrong SCC-DFTB behavior of the potential energy surface in thedissociation regions.

We apply this scheme to determine the structural and stability properties of some positively

charged molecular dimers, respectively the benzene dimer cation and the water dimer cation.

The method is shown to yield binding energies in good agreement with experimental data and

high level reference calculations.

∗To whom correspondence should be addressed
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1 Introduction

The description of molecular clusters requires to take intoaccount the various contributions of

the intermolecular energy, including the Pauli repulsion,the Coulomb interaction, and the London

dispersion. The description of the electronic structure ofsingly ionized molecular clusters requires

to consider two further essential contributions, the first one being charge resonance which may

cause the charge to be partially or totally delocalized overthe molecular units, the second one being

the polarization contribution due to the influence of the charge. Both of them yield a stabilization

of the charged species as compared to the analogous neutrals. A proper description requires correct

balance between charge delocalization and polarization forces.

While Density Functional Theory (DFT) is an appealing methodto describe the electronic

properties of clusters up to a few tenths, maybe a few hundreds atoms, at least in single point

calculations, the use of the most common functionals is known to fail to describe properly disper-

sion forces. This is a first handicap to deal with molecular clusters. Search for new functionals

accounting for dispersion2–10 is a very active field, while semi-empirical corrections to standard

DFT calculations are also used11–18. Description of charge resonance in molecular clusters is

another serious problem in standard Density Functional approaches. Using canonical Kohn-Sham

orbitals, one arising problem is the self-interaction of the delocalized charge. This aspect is particu-

larly prevalent at dissociation, for instance in a cationicmolecular complex involving two identical

units, and which should dissociate into one molecular cation and one neutral, whereas in restricted

scheme DFT the charge is asymptotically equally shared by the two units, breaking the energy

additivity and further introducing a spurious Coulomb interaction between the two moieties. Al-

though such an artifact is essential at the dissociation, itis also expected to play a role all over the

potential energy surface, including the equilibrium geometries.

A correct description of dissociation is in principle easily obtained if one uses a multicon-

figurational nature of the wave function. This can be achieved by high level methods like Con-

figuration Interaction (CI) based methods (Multi-Configurational Self-Consistent Field MCSCF,

Multi-Rereference Configuration Interaction MRCI) or Coupled Cluster approaches but at a high
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computational price. Such calculations may provide benchmarks on reasonably small systems (es-

sentially dimers) but rapidly exceed today’s possibilities as soon as the molecular units exceed a

few tens of atoms.

One of the tracks to circumvent the drawbacks of present state DFT in anab initio framework

is to combine CI for describing long range (lr) electron-electron interactions and DFT for the short

range electron-electron interactions (sr). This gave riseto the lr-sr formalism following Savin’s for-

mulation,19–22which make possible combinations of MP2, Coupled Cluster and/or CI approaches

with Density Functional Theory, via a partition of the electron-electron Coulomb interaction. This

formulation is quite attractive, nevertheless its numerical cost is significantly larger than that of a

standard DFT calculation.

On the other hand, charge resonance (or excitation resonance) appears quite simply in valence

bond-like approaches23–26 explicitely taking into account the multiconfigurational nature of the

wavefunction via the definition of a basis in which charge (orexcitation) is localized on a given

fragment of the system. This is the essence of the excitonic models originating from solid states,

but also used in molecular materials and even biological systems. An application to molecular

cluster cations and in particular polycyclic aromatic hydrocarbon (PAH) cluster cations was pub-

lished by Bouvieret al.27 defining a resonance charge model based on frozen molecules,and

parametrized fromab initio CI calculations of dimers. Diatomics-In-Molecule modelingof singly

ionized rare gas clusters can also be expressed in valence bond picture in a basis of atom-localized

hole configurations with no internal geometrical structure,? ? paving the way for extensive simu-

lations of the electronic and dynamical properties of ionized rare gas clusters (see for instance? ?

.

More recently, the concept of using a valence bond configuration description combined with

a DFT framework was proposed by the group of Van Voorhiset al.1,28–30 to investigate charge

delocalization in mixed valence compounds exhibiting possible bi-stability with the perspective of

controlling charge transfer. They developed a method combining constrained DFT with a small CI-

like scheme (CDFT-CI) to deal with charge delocalization in extended systems. This is extremely

3



appealing from the computational point of view, since the size of the CI increases linearly with the

number of fragments, and not as a power of the total number of active electrons in the whole sys-

tem, which is a bottleneck. The Self-Consistent-Charge Density Functional based Tight Binding

(SCC-DFTB)31–34 is an alternative to DFT in the quest of addressing large systems. It is derived

from DFT through several approximations allowing the use ofparametrized tables to avoid the ex-

plicit calculation of overlap and interaction integrals. As SCC-DFTB is derived from DFT it also

inherits its lack in describing charge resonance. Recently,we presented a preliminary transcription

of the CDFT-CI method in SCC-DFTB framework using also approximations to determine the CI

couplings. We provided applications to coronene clusters with constrained geometries, because of

lack of the gradient35.

In the present paper, we present the general adaptation of the CDFT+CI method to the SCC-

DFTB framework, with the aim of future investigations of charge resonance in molecular clusters

with either large units or large size. This method is called the DFTB-VBCI (Valence Bond CI). In

order to perform geometry optimization, we also derive analytical expressions for the energy gra-

dient with respect to the nuclear coordinates, which we use to achieve full structural optimization

for the benzene dimer and water dimer cations, respectively.

Section 2 is devoted to the presentation of the general methodology and the DFTB-VBCI ap-

proach and the derivation of analytical expressions for thenuclear forces. In section Section 3, we

benchmark the method on benzene and water ionic dimers on thebasis of comparisons with high

level calculations. Outlines and perspectives are given insection Section 4.

2 Methodology

The DFTB-VBCI method is an adaptation of the DFT+CI approach1,28–30 to the SCC-DFTB

scheme with the focus on treating charge resonance in ionized molecular clusters. In that ap-

proach, the wave function of the systemΨ is decomposed on a basis{ΦI} of configurations where

the charge is localized on different fragments of the system. The intuitive decomposition of a
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molecular cluster leads to identify each of theNfrag monomers to a fragment and the wave function

becomes

Ψ =
Nfrag

∑
I

bI ΦI (1)

whereΦI is the configuration where the charge is fully carried by fragmentI . Each charge local-

ized configurationΦI is a single Slater determinant, built from the molecular orbitals (MO) {φ I
i }

resulting from a constrained SCC-DFTB calculation. These VB like configurations then interact

within a small CI-like scheme giving their coefficientsbI in the wave function and the ground state

energy.

In this methodological part, we first briefly recall the SCC-DFTB scheme basics (Section 2.1)

before explaining the derivation of the charge localized configurationsΦI using the constrained

SCC-DFTB (Section 2.2) and the CI-like scheme calculation (Section 2.3). We present then analyt-

ical expressions for the nuclear forces (Section 2.4) and some further approximations to accelerate

the approach (Section 2.5). We adopt different font conventions to distinguish between matrices

expressed on different basis sets. For instance, the Hamiltonian matrix is written asH in the atomic

orbital (AO) basis set;H in the molecular orbital (MO) basis set andH in the determinant basis

set (the basis of the charge-localized configurations.

2.1 DFT and SCC-DFTB

Several reviews on the DFTB and SCC-DFTB method can be found in the litterature.31–34 The

SCC-DFTB differs from the DFT expressed on a local basis set by the following approximations:

(i) the DFT energy is expanded up to the second order with respect to charge density fluctuations

around a given reference density (ii) all three center interaction integrals are neglected (iii) the MO

are expressed in a minimal atomic basis set

φi = ∑
µ

ciµϕµ (2)
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(iv) the short distance repulsive potential is expressed asa function of two body interactions (v)

the second order term in the DFT energy expansion is expressed as a function of atomic Mulliken

charges and aΓ matrix. With these approximations, the total SCC-DFTB energyreads

ESCC−DFTB =
atoms

∑
α ,β 6=α

Erep
αβ +∑

i
ni〈φi|Ĥ

0|φi〉+
1
2

atoms

∑
α ,β

Γαβ qαqβ (3)

whereĤ0 is the Kohn-Sham operator at the reference density andErep
αβ is the repulsive potential

between atomsα andβ . The matrix elements ofH0 are expressed in the atomic basis set,Γαβ

andErep
αβ are interpolated from two body DFT calculations.ni are the atomic orbital occupation

numbers andqα are the atomic Mulliken charges. The energy minimization isobtained by solving

self-consistently the secular equation

∑
ν

ciν(Hµν − εiSµν) = 0 ∀µ, i (4)

S is the atomic basis overlap matrix and the Hamiltonian matrix readsH = H0 +H1 with

H1
µ∈α ;ν∈β =

1
2

Sµν
atoms

∑
ξ

(Γαξ +Γξ β )qξ (5)

whereµ ∈ α means that the atomic orbitalµ belongs to atomα.

2.2 Constrained SCC-DFTB

Similarly to the constrained DFT28, the MOs{φ I
i }, used to build the configurationΦI , are obtained

from a minimization of the SCC-DFTB energy with the constraints that the charge is carried by

fragmentI and that the orbitals are orthonormalized. The corresponding Lagrangian is

L = ESCC−DFTB({φ I
i })+∑

i j
ΛI

i j

(

〈φ I
i |φ I

j 〉−δi j
)

+V I

(

∑
i

ni〈φ I
i |P̂

I |φ I
i 〉−NI

)

(6)
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whereV I is the Lagrange multiplier ensuring the charge localization constraint,P̂I is the projector

of the density on fragmentI , NI is the number of electrons on fragmentI which defines the charge

localization,Λi j are the Lagrange multipliers ensuring the orbitals orthonormality constraint. Wu

and Van VoorhisWu and Van Voorhis28 discussed the effect of several localizations, based on dif-

ferent charge definitions (Mulliken, Boys, Löwdin), on the constrained energy and finally adopting

the Löwdin approach. We used for the constrained SCC-DFTB the Mulliken charge definition be-

cause (i) the defects of Mulliken charges are less crucial than in DFT due to the use of a minimal

atomic basis set (no diffuse functions) and (ii) in the mostly used version, SCC-DFTB is a Mul-

liken charge based approach and all the matrix elements havebeen parametrized for this charge

defintion. This choice leads to the expression for the constraint

∑
iνµ

nic
I
iνcI

iµPI
νµ = NI (7)

PI being the projection matrix expressed as28

PI
µν =























0 if µ /∈ I andν /∈ I

Sµν if both µ ∈ I andν ∈ I

1
2Sµν for other cases(µ ∈ I or ν ∈ I)

The secular equation (Eq. (4)) should now be solved with theH matrix modified as follows

Hµν = H0
µν +H1

µν +V IPI
µν

Similarly to the constrained DFT, Eq. (4) must now be solved self-consistently over the atomic

charges and contains an unknown Lagrange multiplierV I . To overcome some convergence prob-

lems, we have implemented three ways of solving this equation which can be used alternatively

until one of them converges.

-i- The first one (similar to that of36) consists in solving the secular equation with an inner loop
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to calulate theV I Lagrange multiplier satisfying the constraint keeping fixed chargesqα in the

Hamiltonian. An external loop over the Mulliken charges is performed to reach a self-consistent

solution.

-ii- The second approach consists in inverting the two previous loops, i.e. the inner loop ensur-

ing the self-consistence over the Mulliken charges and the external loop allowing the determination

of the Lagrange multiplierV I .

-iii- The third approach is somewhat different and consistsin three steps. First, a MO guess

is generated for isolated fragments. The full set of MOs is isorthonormalized with a Löwdin

procedure. These MOs do not correspond to an energy minimum and do not satisfy the charge

localization constraint. In the second step, the MOs evolveto change the number of electrons on

fragmentI with the iterative procedure

φ I
i (n+1) = φ I

i (n)+α

(

pI φ I
i (n)+∑

j
φ I

j (n)Λi j

)

∀i (8)

wheren is the iteration step. The third term ensures the orthonormalization constraint. Transposing

this equation in the atomic basis set gives the evolution of the MOs

CI (n+1) = CI (n)+α(S−1PICI (n)+XCI (n)) (9)

whereX = αS−1Λ. At each step, theα coefficient is adapted to increase or decrease the number

of electrons on fragmentI and theX matrix is calculated solving a second order equation equiv-

alent to the Rickaert37 algorithm already implemented for SCC-DFTB Car Parrinello molecular

dynamics38. Once a solution satisfying the density constraint is achieved, the last step consists in

relaxing the MO to minimize the energy, conserving the charge localization and orthonormality

constraints

φ I
i (n+1) = φ I

i (n)+α

(

dE

dφ I∗
i

+∑
j

φ I
j Λi j +V IPI φ I

i

)

(10)
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giving the evolution of the coefficients

CI (n+1) = CI (n)+α(S−1HCI (n)+XCI (n)+V IS−1PICI (n)) (11)

This step requires both the calculation ofX andV I . Starting from a givenV I (the one of the

previous step ifn > 1), CI (n+ 1) is determined, calculating X with the Rickaert algorithm. The

charge carried by fragmentI with these new coefficients is calculated. If this charge is too large

(resp. too small),V I is decreased (resp. increased). The process is repeated until the molecular

charge satisfies the constraint. Finally, the MOs converge to the the charge-localized solution.

2.3 The Configuration Interaction-like scheme

The set of MO{φ I
i } obtained from a constrained SCC-DFTB is used to build the charge-localized

configurationsΦI as single Slater determinants. The coefficientsbI of these configurations in the

total wave functionΨ (see Eq. (1)) are obtained by solving the CI-like scheme



















H11 H12 .. H1n

H21 H22 .. H2n

: : :: :

Hn1 . .. Hnn





































b1

b2

:

bn



















= E



















S1 S12 .. S1n

S21 S2 .. S2n

: : :: :

Sn1 . .. Snn





































b1

b2

:

bn



















(12)

whereSIJ is the two configurations overlap〈ΦI |ΦJ〉 andHII is the energy of the configurationΦI

already calculated with the constrained SCC-DFTB. Following the approach of Wuet al.1,29, the

coupling elementsHIJ are calculated by

HIJ =
1
2
(HII +HJJ+NIV I +NJVJ)SIJ −

1
2
(V I 〈ΦI |P̂I |ΦJ〉+VJ〈ΦI |P̂J|ΦJ〉) (13)

In the case of degenerate systems, one can also include more than one configuration to represent

the charge localization on a given fragment, as it will be shown in the applications of Section 2.4.
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Solving Eq. (12) provides both the ground state of the systemand some excited states generated

via charge resonance. Although these excited states are of interest, for instance in spectroscopy,

we focus in this work on the ground state which corresponds tothe lowest eigenvalueEg.

2.4 Analytical gradient

Calculating derivatives of the energy upon atomic nuclei is required to perform molecular dynamics

or geometry optimization. Their numerical calculation is possible by finite differences but the

number of energy calculations(2× 3Natoms) turns out to be quite large even for small systems.

In SCC-DFTB, it is convenient to use the derivatives of the matrix elements(H0,S,Γ) which are

known and tabulated. Differentiating Eq. (12) with respectto the nuclear coordinate~Ra of atoma

leads to the force expression

~∇aEg = ∑
IJ

bIbJ

(

~∇aHIJ −Eg
~∇aSIJ

)

(14)

We now present the calculation of the derivatives for the diagonal and off-diagonal elements sepa-

rately. The differentiation operator~∇a is replaced by the symbol∂a to simplify the expressions.

2.4.1 Derivative of the diagonal element

The diagonal elementHII is the energy of the configurationΦI . Differentiating (Eq. Eq. (3)) and

using the eigenvalue equation (Eq. (4)), the molecular charge conservation (Eq. (7)) and orthonor-

mality constraints leads to the analytical

∂aHII = ∂aErep+∑
i

ni ∑
µν

ciνciµ

(

∂aH0
µν +V I ∂aPI

µν +(
H1

µν

Sµν
− εi)∂aSµν

)

+qa∑
b

∂aΓabqb (15)
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2.4.2 Derivative of the off-diagonal elements

The differentiation of the off-diagonal elements is obtained by differentiating Eq. (13) to give

∂aHIJ;I 6=J =
1
2

AIJ +
1
2

AJI

with

AIJ = (∂aHII +NI ∂aV I )SIJ +(HII +NIV I )∂aSIJ

−〈ΦI |PI |ΦJ〉∂aV I −V I ∂a
(

〈ΦI |PI |ΦJ〉
)

(16)

We must now express the derivatives of the Lagrange multipliers∂aV I and∂aVJ, as well as the

overlaps (real overlap and through the projectors) betweenΦI andΦJ. As there is no relationship

between the MO of the two configurations, there is no Hellman-Feynman type simplification for

the derivatives of their overlaps. The derivatives of the orbital coefficients and of the Lagrange

multipliers must be explicitely calculated. The calculation of the derivatives of the coefficients has

already been expressed for DFT (see for instance39) and its expression only differs here through

the term containing the constraint.

For a given configurationΦI , the derivative of the coefficients of the orbitals{φ I
i } can be related

to the orbitals themselves by au matrix

∂acI
iµ = ∑

k

cI
kµuik (17)

The conservation of normalized MO already imposes the form of the diagonal term of theu

matrix

uii = −
1
2∑

µν
cI

iµcI
iν∂aSµν . (18)

For the off-diagonal elementsui j ;i 6= j , differentiating Eq. (4) leads to

ui j =
∂aHi j − ε j∂aSi j

ε j − εi
(19)
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where∂aS and ∂aH are the derivatives of the SCC-DFTB overlap and Hamiltonian matrices

expressed in the molecular orbital basis set

∂aSi j = ∑
µν

cI
iµcI

jν∂aSµν

∂aHi j = ∑
µν

cI
iµcI

jν∂aHµν (20)

In the constrained SCC-DFTB, the Hamiltonian matrix derivative depends -i- on the derivatives of

matricesH0,S,Γ andP -ii- on the derivatives of the coefficients and -iii- on the derivatives of the

Lagrange multipliers. These three contributions are now explicitely separated

∂aHi j = ∂aFi j +∑
kl

Ai j ,klukl +∂aV
I
Pi j (21)

where∂aFi j contains the first contribution

∂aFi j = ∑
µν

cI
iµcI

jν∂aFµν (22)

with

∂aFµ∈α ,ν∈β = ∂aH0
µν +V I ∂aPµν +∂aSµν

H1
µν

Sµν

+ 1
2Sµν ∑ξ

(

(∂aΓαξ +∂aΓξ β )qξ +∑i ni ∑l ∑ω∈ξ (Γαξ +Γξ β )ciωcil ∂aSω l

)

The second term in Eq. (21) accounts for the Hamiltonian dependences on the orbital coeffi-

cients with

Ai j ,kl = ∑
µν

cI
iµcI

jν ∑
ω

∂Hµν

∂cI
kω

cI
lω (23)

and
∂Hµν

∂cI
kω

=
1
2

nkSµν ∑
ξ

∑
λ∈ξ

Sλω(Γαγ +Γβγ +Γαξ +Γβξ )cI
kλ (24)

whereµ ∈ α;ν ∈ β ;ω ∈ γ. In the last term of Eq. (21),Pi j accounts for the Hamiltonian differ-
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entiation upon the Lagrange multiplier

Pi j = ∑
µν

cI
iµcI

jνPµν (25)

Compacting thei j indices in a singlem indice and thekl indices in a singlen indice, we now define

um = ui j

vm =
∂aFi j − ε j∂aSi j

ε j − εi

Bmn =
Ai j ,kl

ε j − εi

wm =
Pi j

ε j − εi

and rewrite Eq. (19)

u = Bu+v+∂aV
Iw

= (1−B)−1v+∂aV
I (1−B)−1w

= u0 +∂aV
I u′ (26)

with u0 = (1−B)−1v andu′ = (1−B)−1w

We now determine∂aV I using the fact thatNI remains constant. Differentiating Eq. (7) leads to

∂aNI = ∑
i

ni ∑
µν

(

ciµciν∂aPµν +2∂aciµciνPµν
)

= 0 (27)

which can be expressed with theu matrix

∂aNI = ∑
i

∑
µν

niciµciν∂aPµν +2∑
i j

niui j Pi j = 0 (28)

Using the previous expression foru leads to the following expression for the derivatives of the
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Lagrange multiplier

∂aV
I = −

∑i ∑µν niciµciν∂aPµν +2∑i j niu0
i j Pi j

2∑i j niu′i j Pi j
(29)

H can now be calculated from Eq. (21), as well as theu matrix from Eq. (19) and finally

the derivatives of the coefficients from Eq. (17). TheSIJ derivatives are computed from this MO

coefficients derivatives and the derivatives of the AO overlap matrix. For efficiency, the determi-

nant expansions appearing in the calculation of the derivatives were calculated using the Sherman-

Morrison formula.? A similar approach is applied to the derivatives of the projected overlap matrix

〈ΦI |PI |ΦJ〉.

2.5 Variants of the DFTB-VBCI: the HOMO approximation

We will consider the following approximation to the DFTB-VBCI approach: we assume that, in a

molecular cluster, the MOs of the different charge localized configurations mostly differ through

their Highest Occupied Molecular Orbital (HOMO). The overlaps and projected overlaps between

two configurations can be simplified in

SIJ = 〈ΦI |ΦJ〉 ≃ 〈φ I
HOMO|φ

J
HOMO〉 (30)

〈ΦI |PI |ΦJ〉 ≃ NI 〈φ I
HOMO|φ

J
HOMO〉+ 〈φ I

HOMO|P
I |φJ

HOMO〉

The off-diagonal CI matrix element becomes

HIJ ≃
1
2
(HI +HJ)〈φ I

HOMO|φ
J
HOMO〉 (31)

−
1
2
(V I 〈φ I

HOMO|P
I |φJ

HOMO〉+VJ〈φ I
HOMO|P

J|φJ
HOMO〉)

The advantage of this approach is to avoid any Slater determinant overlap calculation and only the

derivatives of the HOMO coefficients need to be calculated.
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3 Applications

We will now apply the DFTB-VBCI method to the treatment of two prototype cationic molecular

clusters, namely the benzene dimer and the water dimer.

3.1 Benzene Dimer

Several authors have investigated benzene dimer clusters at high levels of theories. Let us cite for

instance MultiReference Configuration Interaction including Single and Double excitations (MR-

CISD40) and Equation-Of-Motion Coupled-Cluster model with Single and Double substitutions

for Ionized systems (EOM-IP-CCSD41,42) discussing the relative energies of characteristic iso-

mers, namely the sandwiches (stacked, parallelx- andy-displaced) and T-shaped configurations

(see Figure 1). Both calculations gave the sandwich paralleldisplaced isomers to be the most

stable structures, about 7-8 kcal mol−1 lower than the T-shaped. Both approaches can describe

in principle correctly the charge resonance states. However MR-CISD may suffer from the lack

of size consistence which could explain that the binding energies (12.3 kcal mol−1 for the dis-

placed sandwich and 5.4 kcal mol−1 for the T-shaped) are significantly smaller than those obtained

with EOM-IP-CCSD (20.2 kcal mol−1 and 12.4 kcal mol−1) whereas the energy difference be-

tween the two isomers is in good agreement (about 7-8 kcal mol−1 respectively)??WARNING

cest du MRCPA size consistent??. TheD6h symmetric stacking is another structure of interest

which is slightly less stable (about 2 kcal mol−1) than the two sandwich displaced isomers. DFT

calculations43–45 performed with the B3LYP functional give reasonable bindingenergies for the

sandwhich structure (17-19 kcal mol−1) but underestimate the energy difference between the two

structures due to an over-stabilization of the T-shaped structure. In the following, we will use the

EOM-IP-CCSD41,42results as references to benchmark our method as they are themost recentab

initio calculations and the corresponding binding energies for the most stable structures around 20

kcal/mol (see Table 1 are in good agreement with the experimental studies providing values in the

15-20 kcal/mol range44,46–51.
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(a) (b)

(c) (d)

Figure 1: Benzene dimer cations optimized at the DFTB-VBCI level. (a) T-shaped, (b) sandwich
stacked, (c)x-displaced and (d)y-displaced isomers.

Following41, we call πa
g andπo

g the degenerate MO in the neutral benzene molecule. In the

ionized monomer, these two levels are degenerate at the neutral geometry but undergo Jahn-Teller

distortion leading to an acute angle configuration (ionization from theπa
g orbital) or an obtuse an-

gle configuration (ionization from theπo
g orbital). We use the qualitative molecular description of

the Dimer Molecular Orbitals Linear Combination from the Fragment Molecular Orbitals (DMO-

LCFMO41), to describe a benzene dimer, composed of two fragments labelled A and B. In this

framework, the constrained state A+B can be obtained either from removing one electron from

the πa
g or from theπo

g orbitals of A. Consequently, we need two configurations to describe the

constrained form A+B. In the case of the symmetricD6h sandwich stacked dimer, these two A+B

configurations are degenerate and are built as follows: we use the constrained SCC-DFTB to min-

imize the electronic energy with an occupation of 1.5 for thetwo highest occupied MOs (HOMO

and HOMO-1) orbitals and 2 for the lower electron energy orbitals. The two A+B configurations

are then built from the obtained MOs as shown on Figure 2. The same procedure is applied to

obtain two AB+ configurations and the CI matrix to be diagonalized is a 4×4 matrix.

In the other isomers (displaced sandwiches and T-shaped), theπa
g andπo

g orbitals of each frag-

ments are no longer degenerate and one could in principle calculate the energy of these configura-
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Figure 2: Two electronic configurations (right) obtained from constrained SCC-DFTB calculation
with non integer occupation numbers (left).

tions without using fractional occupation numbers. However, we could not obtain a self-consistent

solution of theA+B state (respectivelyAB+) with the constrained SCC-DFTB since theπa
g and

πo
g orbitals on fragment A (respectively on B), although not degenerate remain close in energy.

We therefore decided to keep the procedure used for theD6h stacked sandwich isomer filling the

HOMO and HOMO-1 orbitals with 1.5 electrons. Although the filling of MO is fixed, these MO

relax anyway and are no longer degenerate in the final results, due to the coupling with geometry

relaxation.

3.1.1 Sandwich isomer
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Figure 3: Dissociation potential energy curves of the cationic benzene dimer in the stacked sand-
wich configuration calculated with SCC-DFTB and DFTB-VBCI approaches.

We first discuss the results obtained for the stacked sandwich in theD6h geometry. Figure 3

represents the energy of the dimer corresponding to dissociation along thez-axis, orthogonal to the

planes of the monomers. For this example, the fragments are frozen at the monomer neutral ge-

ometry). The zero energy reference corresponds to the sum ofthe separated fragments calculated

independently namelyE(C6H+
6 )+E(C6H6). The SCC-DFTB dissociation curve reminds the dis-
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Table 1: Binding energies of cationic benzene dimer obtainedat different levels of theory. The
stacked sandwich structure correspond to constrainedD6h optimization whereas the other iso-
mers are fully optimized with its respective method. Refs:aPieniazeket al.Pieniazek et al.41 ;
bPieniazeket al.42 ; cIbrahimet al.44 ; dItagakiet al.43 ; eKryachko45 ; f Miyoshi et al.40

DFTB-VBCI HOMO SCC-DFTB EOM-IP-CCSD DFT CASSCF+MCCP
Approximation SCC-DFTB EOM-IP-CCSD DFT CASSCF+MCCP

Stacked 17.70 17.91 29.53 18.34a 17.4c - 19.1d

Sandwich
x-displaced 20.90 20.43 29.01 19.58b - 12.3f

y-displaced 21.26 20.79 29.21 19.81b 16.57e 10.9f

T-shaped 9.23 16.90 24.68 12.41b 15.7c

sociation curve of H+2 calculated with DFT and can be explained as follows. First, the SCC-DFTB

energy does not converge to the sum of the energies of the fragments at the dissociation limit. At

infinite distance, the charge is equally distributed over the two fragments. As the evolution of the

self-interaction error with the number of electrons on a fragment is unfortunately not constant nor

linear, we have 2×ESCC−DFTB(C6H0.5
6 ) 6= ESCC−DFTB(C6H+

6 )+ ESCC−DFTB(C6H6). At shorter

distances, the energy increases and a barrier is even observed before reaching the minimum which

is here a metastable minimum. The responsible repulsive contribution has a 1/R behavior and

can be attributed to the artificial repulsion of two half charged fragment, which is a different case

of self-interaction than the previous one. Finally, the minimum is much too low in energy (29.5

kcal/mol) as compared to the reference calculations (see Table 1).

As can be seen from Figure 3, the DFTB-VBCI method does not present the wrong behavior

pattern of the SCC-DFTB curve. At the dissociation limit, the energy converges to the sum of

the energies of the fragments. Actually, in Eq. (12) the overlaps and coupling terms vanish and

the energies of the localized configurations are degenerate. These energies are calculated with

the electronic density corresponding to one charged and oneneutral monomer and not that of two

half charged fragments. The Coulombic self-interaction 1/R repulsion also disappears with this

approach as well as the corresponding barrier. Finally, thebinding energy for the stacked sandwich

(17.70 kcal/mol) is strongly smaller than the SCC-DFTB one (29.53 kcal/mol) and gives a much

better agreement with that of EOM-IP-CCSD calculation at 18.34 kcal/mol.
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The dissociation curve obtained applying the HOMO approximation detailed in Section 2.5 is

also plotted on Figure 3. It is almost identical to the DFTB-VBCIcurve with a binding energy of

17.91 kcal/mol vs 17.70 kcal/mol for the DFTB-VBCI.

3.1.2 T-shaped and displaced sandwich

The T-shaped and displaced sandwiches have been optimized without any geometrical constraint.

The binding energies are reported in Table 1. The T-shaped isomer has a binding energy of 9.23

kcal/mol which is slightly smaller than the EOM-IP-CCSD one. Another difference concerns the

charge localization. With EOM-IP-CCSD, the charge is mostly localized on the stem fragment

(88 %) whereas this localization drops to 56 % with the DFTB-VBCI. A possible explanation

for this charge localization discrepancy could be related to lack of stabilization by polarization.

In DFTB-VBCI, the benzeneπ system can be polarized in the direction parallel to the benzene

ring. However, due to the reduced basis set used, the polarization of theπ system perpendicular

to the benzene ring cannot be accounted for. This lack of polarization could be at the origin of the

destabilization of the configuration where the charge is carried by the stem fragment, leading to an

over-sharing of the charge and an underestimation of the binding energy. Another possibility is the

definition of charges of the charge analysis in theab initio calculation (NBO).

At the SCC-DFTB level, thex- and y- displaced dimers are overstabilized as compared to

reference calculations. Similarly to what is observed for the stacked sandwich dimer the DFTB-

VBCI approach gives considerably improved binding energies (20.90 and 21.26 kcal/mol) in very

good agreements with those of EOM-IP-CCSD (20.14 and 20.18 kcal/mol). These two structures

are almost degenerate, they-displaced being slightly more stable. The energy difference is however

probably much smaller than the expected accuracy of our approach. These are clearly cases in

which quantum vibrational effects should be considered.

Applying the HOMO approximation to the DFTB-VBCI leads to very similar results. The

most stable structures are thex- andy-parallel displaced ones with binding energies which differ

by less than 2.5 % from those of DFTB-VBCI. The T-shaped is found to be less stable than the
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previous isomers but its binding energy is overestimated compared to reference calculations and

DFTB-VBCI, suggesting that the differences between the two configurations can not be reduced

to a change in the HOMO.

3.2 Water dimer cation

The potential energy surface of cationic water dimers has been investigated at at hight level of

theories CCSD(T) ) and EOM-IP-CCSDT52–55. The stable structures belong to two families. In the

first one, the two water monomers are superimposed in an antisymmetric pattern and the charge is

equally distributed over the two units. The second one results from a proton transfer leading to two

non-symmetric units [H3O - OH]+, in which the charge is mostly localized on the H3O fragment.

The structures, found to be minima by Chenget al.54, have been optimized with DFTB-VBCI

method within a conjugated gradient scheme.

(a) (b)

Figure 4: Water dimer cations optimized at the DFTB-VBCI level.(a) [H3O-OH]2 isomer and (b)
antisymmetric or [H2O-H2O]+ isomer.

3.2.1 [H3O - OH]+ structure

Section 3.2 compares the binding energies obtained at the SCC-DFTB level to those resulting from

other calculations. For the [H3O - OH]+, most of the DFT fuctionals (except for the BH&H) give

reasonable results compared to CCSD(T) values. Similarly, the binding energy obtained at the

SCC-DFTB level, without CI correction is close to that of CCSD(T) (46.3 versus 44.6-45.9).

In this system, the DFTB-VBCI considers the interaction between the configurations where

the positive charge is localized either on the H3O or on the OH subfragments. We started the
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Table 2: Binding energies of cationic water dimer obtained atdifferent levels of theory.a Lee and
KimLee and Kim55; b Chenget al.Cheng et al.54; c Barnett and LandmanBarnett and Landman56;
d Sodupeet al.57 MCPF = SCF + electron correlation included with size extensiveModified-
Coupled-Pair Functional;e Gill and Radom58

AntiSymmetric H3O-OH (Cs) H3O-OH (C1)
DFTB-VBCI 35.44 42.31 -

HOMO Approx. 35.74 42.33 -
SCC-DFTB 68 46.3 -

GGC 53.73c 48.66c -
BLYP 58.4a - 49.3a

B3LYP 51.5a - 49.8a

MPW1K 42.9a - 49.9a

BH&HLYP 41.4a - 49.9a

MP2 40.48a / 43.5e 50.9e 46.47a

MP4 41.1e 49.9e -
CCSD(T) 39.53a / 39.59b 46.64b 46.70a / 46.68b

MCPFd 36.1 45.9 45.93d

optimization from the C1 global CCSD(T) minimum. The absence of symmetry of this minimum

leads to non-degenerate HOMOs. For the two charge-localized configurations. The DFTB-VBCI

optimization leads however to a Cs structure. Due to the planar symmetry, degeneracies must

be considered in thedetailler .... ??????????????The weights of the two configurations in

the CI approach indicate that the charge is mostly localized (99.9 %) on the H3O fragment. In

CCSD(T) calculations, the charge is localized also strongly localized on this fragment but only at

%?????????????????????.

We notice that if the DFTB-VBCI minimum (Cs-trans) is different from the C1 minimum

obtained with CCSD(T). In CCSD(T), theCs-trans isomer corresponds to a transition state 0.04

kcal/mol higher in energy than the globalC1 minimum54 (< 0.2 kcal mol−1 for the EOM-IP-

CCSD fitted surface of Kamarchiket al.59, and 0.03 kcal/mol at the SCF+MCPF level57). Such a

small energy difference is far beyond the expected accuracyof the DFTB-VBCI method. The bind-

ing energy ofCs-trans isomer is close (42.7 kcal/mol) to that obtained witha simple SCC-DFTB

calculation (46.3 kcal/mol). This is due to the fact that thecharge is not significantly delocal-

ized between the two fragments and that the SCC-DFTB calculation already attributes most of the
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charge to the H3O fragment. The artificial stabilization by the self-interaction error is therefore

less crucial. This also explains why most of the SCC-DFTB functionals give reasonable results for

this structure.

3.2.2 Antisymmetric structure

It can be seen from Section 3.2 that, at the CCSD(T) level, the antisymmetric isomer is less sta-

ble by 7 kcal/mol than the [H3O - OH]+ isomer. At the DFT level, the binding energy strongly

depends on the choice of the functional. For instance, the [H3O - OH]+ structure is more stable

than [H3O - OH]+ with MPW1K, BH&H and BH&LYP functionals but it is the opposite with the

BLYP, BPW91, HCTH407 and B3LYP functionals. At the SCC-DFTB level, the binding energy

of the OO isomer is strongly overestimated (68 versus 39 for CCSD(T)) making this isomer 22

kcal/mol more stable than the [H3O - OH]+ isomer. The DFTB-VBCI has then a drastic effect,

reducing the binding energy to 38 kcal/mol, a value close to the CCSD(T) ones (35-39 kcal/mol).

In this isomer, the charge is equally distributed between the two equivalent fragment. The over-

stabilization observed at the SCC-DFTB level is attributed tothe self-interaction error due to this

this strong delocalization and corrected by the DFTB-VBCI approach. Finally, we notice that for

both the [H3O - OH]+ and [H2O - H2O ]+ isomers, the binding energies obtained with the HOMO

approximation are very close to that obtained with the full DFTB-VBCI method.

4 Conclusion

An extended method combining a VBCI-like scheme with the SCC-DFTB has been developed.

The method has been implemented together with its analytical gradient to make possible complete

optimization, including namely the intra-molecular and inter-molecular degrees of freedom. We

have benchmarked this approach on ionized dimers of benzeneand water.

In the benzene dimer cation, the self-interaction error is at the origin of an unphysical behavior

of the SCC-DFTB dissociation energy curve. It turns to be fullycorrected with the DFTB-VBCI as
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detailed for the stacked sandwich. This method will allow toperform explorations of potential en-

ergy surfaces by molecular dynamics or Monte Carlo sampling with the focus of studying ionized

dimers dissociation. The binding energies obtained for different isomers with the DFTB-VBCI

compare well with those of high-level calculations as well as experimental data, these standard

energies being strongly overestimated with the SCC-DFTB. We however notice that the main error

for the DFTB-VBCI binding energy concerns the T-shaped structure which is understabilized by

3 kcal/mol. This may be due to the use of point charges and a possible mistreatment of the mul-

tipolar nature of the benzeneπ system interacting with that of the charged top benzene. Further

improvement of the DFTB-VBCI could include such multipolar description of theπ system (see

for instance60) in order to account for this effect but at the price of a larger computational effort to

derive the energy gradient.

The second benchmark system is the ionized water dimer. The two main isomers strongly differ

by a proton transfer. The binding energy of[H3O−OH]+ isomers calculated at the DFT level with

several functionals are in good agreement with reference calculations. This is also the case with

SCC-DFTB and DFTB-VBCI due the localization of the charge on theH3O subfragment reducing

the multiconfigurational nature of the wavefunction and theself-interaction error in standard DFT

based calculations. On the opposite, in the[H2O−H2O]+ isomer the charge is equally carried by

the two fragments and the binding energies obtained at DFT level strongly differ depending on the

choice of the functional. With SCC-DFTB, this structure is overstabilized and becomes artificially

the most stable one. This effect is corrected with the DFTB-VBCIapproach which gives a binding

energy close to that of high level of calculations.

Taking advantage of the SCC-DFTB in terms of computational efficiency, the DFTB-VBCI

will allow to deal with systems larger than dimers. In our previous study, DFTB-VBCI has been

used to characterize binding energies, ionization potentials as well as charge localization in stacked

coronene clusters with frozen intramolecular geometries and equal spacings between the planes of

the units35. This work was however performed before the development of analytical gradients and

it will be of interest to characterize the effects of intra- and inter-molecular relaxation in these
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clusters. It is known that in rare gas clusters He+
n , Ne+

n , Ar+n , Kr+n and Xe+n , the hole tends to

delocalize on few units (from 2 to 4, depending the rare gas) and that the other atoms tend to

organize in crowns around a linear core. It will be intersesting to understand how the internal

degrees of freedom, the molecular extension and shape influence the size of the core unit and the

organization of the whole cluster.
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• Pour l’eau : Decrire notre choix de remplissage electronique H3O-OH

• Pour l’eau : dans la litterature la valeur de la charge sur H3Odonnee en DOHF et excitation

seulement ?

• Pour le sandwich stacked la courbe ne correspond pas aux valeurs du tableau !!!! refaire

avec la meme dispersion

• parler des comparaison avec la SIC DFT (pienazcek)

• pour le water H3O-OH charge localization Cheng donne les valeurs ROHF ....

• faire le calcul H3O-OH avec le 0.5 pr le OH

• mettre 1 ref ancienne pour le coupled perurbed equations

• formule du homo a approx

• figure 3 ecrire SCC-DFTB

• ecrire les gradient dans la conclusion

• gradient complet + colle a l’experience
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