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On the survival of a class of subcritical branching

processes in random environment

Vincent Bansaye∗ and Vladimir Vatutin†,

July 15, 2013

Abstract

Let Zn be the number of individuals in a subcritical BPRE evolving
in the environment generated by iid probability distributions. Let X

be the logarithm of the expected offspring size per individual given the
environment. Assuming that the density of X has the form

pX(x) = x
−β−1

l0(x)e
−ρx

for some β > 2, a slowly varying function l0(x) and ρ ∈ (0, 1) , we find the
asymptotic survival probability P (Zn > 0) as n → ∞ and prove a Yaglom
type conditional limit theorem for the process. The survival probability
decreases exponentially with an additional polynomial term related to the
tail of X. The proof relies on a fine study of a random walk (with negative
drift and heavy tails) conditioned to stay positive until time n and to have
a small positive value at time n, with n → ∞.

1 Introduction and main results

We consider the model of branching processes in random environment intro-
duced by Smith and Wilkinson [15]. The formal definition of these processes
looks as follows. LetN be the space of probability measures on N0 = {0, 1, 2, ...}.
Equipped with the metric of total variation N becomes a Polish space. Let e be
a random variable taking values in N. An infinite sequence E = (e1, e2, . . .) of
i.i.d. copies of e is said to form a random environment. A sequence of N0-valued
random variables Z0, Z1, . . . is called a branching process in the random envi-
ronment E , if Z0 is independent of E and, given E , the process Z = (Z0, Z1, . . .)
is a Markov chain with

L (Zn | Zn−1 = zn−1, E = (e1, e2, . . .)) = L
(

ξn1 + · · ·+ ξnzn−1

)
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for every n ≥ 1, zn−1 ∈ N0 and e1, e2, . . . ∈ N, where ξn1, ξn2, . . . are i.i.d.
random variables with distribution en. Thus,

Zn =

Zn−1
∑

i=1

ξni (2)

and, given the environment, Z is an ordinary inhomogeneous Galton-Watson
process. We will denote the corresponding probability measure and expectation
on the underlying probability space by P and E, respectively.

Let

X = log





∑

k≥0

ke ({k})



 , Xn = log





∑

k≥0

ken ({k})



 , n = 1, 2, ...,

be the logarithms of the expected offspring size per individual in the environ-
ments and

S0 = 0, Sn = X1 + · · ·+Xn, n ≥ 1,

be their partial sums.

This paper deals with the subcritical branching processes in random envi-
ronment, i.e., in the sequel we always assume that

E [X ] = −b < 0. (3)

The subcritical branching processes in random environment admit an additional
classification, which is based on the properties of the moment generating func-
tion

ϕ(t) = E
[

etX
]

= E









∑

k≥0

ke ({k})





t

 , t ≥ 0.

Clearly, ϕ′(0) = E [X ]. Let

ρ+ = sup {t ≥ 0 : ϕ(t) < ∞}

and ρmin be the point where ϕ(t) attains its minimal value on the interval
[0, ρ+ ∧ 1]. Then a subcritical branching process in random environment is
called

weakly subcritical if ρmin ∈ (0, ρ+ ∧ 1) ,
intermediately subcritical if ρmin = ρ+ ∧ 1 > 0 and ϕ′(ρmin) = 0,
strongly subcritical if ρmin = ρ+ ∧ 1 and ϕ′(ρmin) < 0.

Note that this classification is slightly different from that given in [8]. Weakly
subcritical and intermediately subcritical branching processes have been studied
in [13, 1, 2, 3] in detail. Let us recall that ϕ′(ρ+∧1) > 0 for the weakly subcritical
case.
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The strongly subcritical case is also well studied for the case ρ+ ≥ 1, i.e., if
ρmin = ρ+∧1 = 1 and ϕ′(1) < 0. In particular, it was shown in [13] and refined
in [5] that if ϕ′(1) = E

[

XeX
]

< 0 and E
[

Z1 log
+ Z1

]

< ∞ then, as n → ∞

P (Zn > 0) ∼ K (E [ξ])
n
, K > 0, (4)

and, in addition,
lim
n→∞

E
[

sZn |Zn > 0
]

= Ψ(s), (5)

where Ψ(s) is the probability generating function of a proper nondegenerate
random variable on Z+. This statement is actually an extension of the classical
result for the ordinary subcritical Galton-Watson branching processes.

Our main concern in this paper is the strongly subcritical branching pro-
cesses in random environment with ρ+ < 1. More precisely, we assume that the
following condition is valid:

Hypothesis A. The distribution of X has density

pX (x) =
l0(x)

xβ+1
e−ρx, (6)

where l0(x) is a function slowly varying at infinity, β > 2, ρ ∈ (0, 1) and, in
addition,

ϕ′(ρ) = E
[

XeρX
]

< 0. (7)

This assumption can be relaxed by assuming that pX(x) is the density of X

for x large enough, or that the tail distribution P(X ∈ [x, x+h)) ∼
∫ x+h

x pX(y)dy
for x → ∞ (uniformly with respect to h ≤ 1).
Clearly, ρ = ρ+ < 1 under Hypothesis A. Observe that the case ρ = ρ+ = 0 not
included in Hypothesis A has been studied in [16] and yields a new type of the
asymptotic behavior of subcritical branching processes in random environment.
Namely, it was established that, as n → ∞

P (Zn > 0) ∼ KP (X > nb) = K
l0(nb)

(nb)
β
, K > 0, (8)

so that the survival probability decays with a polynomial rate only. Moreover,
for any ε > 0, some constant σ > 0 and any x ∈ R

P

(

logZn − logZ[nε] + n (1− ε) b

σ
√
n

≤ x |Zn > 0

)

= P (B1 −Bε ≤ x)

where Bt is a standard Brownian motion. Therefore, given the survival of the
population up to time n, the number of individuals in the process at this mo-
ment tends to infinity as n → ∞ that is not the case for other types of subcritical
processes in random environment.
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The goal of the paper is to investigate the asymptotic behavior of the survival
probability of the process meeting Hypothesis A and to prove a Yaglom-type
conditional limit theorem for the distribution of the number of individuals. To
this aim we additionally assume that the sequence of conditional probability
measures

P
[x] (·) = P (· | X = x)

is well defined for x → ∞ under Hypothesis A. In Section 2, we provide natural
examples when this assumption and Hypothesis B below are valid.

Denote by L = {L} the set of all proper probability measures L(·) of non-
negative random variables. Our next condition concerns the behavior of the
measures P[x] as x → ∞ :

Hypothesis B. There exists a probability measure P
∗ on L such that, as

x → ∞,
P
[x] =⇒ P

∗

where the symbol =⇒ stands for the weak convergence of measures.
Now setting

a = −ϕ′ (ρ)

ϕ (ρ)
> 0,

we are ready to formulate the first main result of the paper.

Theorem 1 If

E [− log (1− e ({0}))] < ∞, E



e−X
∑

k≥1

e ({k})k log k



 < ∞ (9)

and Hypotheses A and B are valid, then there exists a constant C0 > 0 such
that, as n → ∞

P (Zn > 0) ∼ C0ρϕ
n−1 (ρ) eanρP (X > an) ∼ C0ρϕ

n−1 (ρ)
l0(n)

(an)
β+1

. (10)

The explicit form of C0 can be found in Corollary 25. Let us now explain
this asymptotic behavior and give at the same time an idea of the proof. Then
we will provide some classes of processes which satisfy our assumptions.

For the proof, we introduce in the next section a new probability mea-
sure P. Under this new probability measure, S has drift −a < 0 and the
heavy tail distribution of its increments with polynomial decay β.Adding that
E [exp(ρX)] = ϕ (ρ), we will get the survival probability as

ϕn (ρ)E
[

e−ρSnP(Zn > 0|e)
]

) ≈ const× ϕn (ρ)P(Ln ≥ 0, Sn ≤ N)

where Ln is the minimum of the random walk up to time n and N is (large but)
fixed. We then study this random walk with heavy tail to show that

P(Ln ≥ 0, Sn ≤ N) ≈ const×P(X1 ∈ [an−M
√
n, an+M

√
n], Sn ∈ [0, 1])
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for n large enough and conclude using the central limit theorem. The proof
relies on a fine study of the random walk conditioned on {Ln ≥ 0, Sn ≤ N},
which results in the decomposition Theorem 9.

Our second main result is a Yaglom-type conditional limit theorem.

Theorem 2 Under the conditions of Theorem 1,

lim
n→∞

E
[

sZn |Zn > 0
]

= Ω(s),

where Ω(s) is the probability generating function of a proper nondegenerate
random variable on Z+.

We see that, contrary to the case ρmin = ρ+ ∧ 1 = 0 this Yaglom-type
limit theorem has the same form as for the ordinary Galton-Watson subcritical
processes.

2 Examples

We provide here some examples meeting the conditions of Theorem 1. Thus, we
assume that Hypothesis A is valid and we focus on the existence and convergence
of P[x]. Let us first deal with the existence of random reproduction laws e for
which the conditional probability

P
[x] (·) = P (· | X = x)

is well defined.

Example 0. Assume that the environment e takes its values in some set M
of probability measures such that for all µ, ν ∈ M

∑

k≥0

kµ(k) <
∑

k≥0

kν(k) ⇒ µ ≤ ν,

where µ ≤ ν means that ∀l ∈ N, µ[l,∞) ≤ ν[l,∞). We note that Hypothesis A
ensures that P(.|X ∈ [x, x + ǫ)) is well defined. Then, for every F : M → R

+

which is non decreasing in the sense that µ ≤ ν implies F (µ) ≤ F (ν), we get
that the functional

E(F (e)|X ∈ [x, x+ ǫ))

decreases to some limit p(F ) as ǫ → 0. Thus, writing Fl,y(µ) = 1 if µ[l,∞) ≥ y
and 0 otherwise, we can define P

[x] via

P
[x] (e[l,∞) ≥ y) = p(Fl,y)

to get the expected conditional probability.
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Let us now focus on Hypothesis B.

Example 1. Let f(s; e) =
∑

k≥0 e ({k}) sk be the (random) probability gen-
erating function corresponding to the random measure e ∈ N and let (with a
slight abuse of notation) ξ = ξ (e) ≥ 0 be the integer-valued random variable
with probability generating function f(s; e), i.e., f(s; e) = E

[

sξ(e)
]

.
It is not difficult to understand that if E [log f ′(1; e)] < 0 and there exists

a deterministic function g(λ), λ ≥ 0, with g(λ) < 1, λ > 0, and g(0) = 1, such
that, for every ε > 0

lim
y→∞

P

(

e : sup
0≤λ<∞

∣

∣

∣f
(

e−λ/y; e
)

− g(λ)
∣

∣

∣ > ε
∣

∣

∣ f ′(1; e) = y = ex
)

= 0,

then Hypothesis B is satisfied for the respective subcritical branching process.

We now give two more natural examples for which Hypothesis B holds true
and note that mixing two classes describing in these examples would provide a
more general family which satisfies Hypothesis B.

Let Nf ⊂ N be the set of probability measures on N0 such that

e = e (t, y) ∈ Nf ⇐⇒ f (s; e) = 1− t+
t

1 + yt−1 (1− s)

where t ∈ (0, 1] and y ∈ (0,∞) , and let Lg ⊂ L be the set of probability
measures L = L(t, y) on [0,∞) such that

L = L (t, y) ∈ Nf ⇐⇒ g(t, λ) =

∫

e−λyL(t, dy) = 1− t+
t2

t+ λ
.

Let, further, B = B1 × B2⊂(0, 1] × (0,∞) be a Borel set. We write

e = e (t, y) ∈ T (B) ⊆Nf if (t, y) ∈ B

and
L = L(t, y) ∈ T (B1) ⊆ Lg if t ∈ B1.

Let (θ, ζ) be a pair of random variables with values in (0, 1]× (0,∞) such that
for a measure P∗ (·) with support on (0, 1] and any Borel set B1 ⊆ (0, 1]

lim
x→∞

P (θ ∈ B1|ζ = x) = P∗ (θ ∈ B1)

exists.

Example 2. Assume that the support of the probability measure P is con-
centrated on the set Nf only and the random environment e is specified by the
relation

e =e (θ, ζ) ⇐⇒ f (s; e) = 1− θ +
θ2

θ + ζ (1− s)
.
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Clearly, log f ′ (1; e) = log ζ. Thus,

P (e (θ, ζ) ∈ T (B)) = P (f (s; e) : (θ, ζ) ∈ B)

and if B = B1 × {x} then

lim
x→∞

P

(

f
(

e−λζ−1

; e
)

: (θ, ζ) ∈ B|ζ = ex
)

= P∗ (θ ∈ B1)

= P
∗ (g(λ; θ) : θ ∈ B1) = P

∗ (L(θ; y) ∈ T (B1)) .

Note that if P (θ = 1|ζ = x) = 1 for all sufficiently large x we get a particular
case of Example 1.

Example 3. If the support of the environment is concentrated on such prob-
ability measures e ∈ N that, for any ε > 0

lim
y→∞

P

(

e :

∣

∣

∣

∣

ξ(e)

f ′(1; e)
− 1

∣

∣

∣

∣

> ε
∣

∣

∣
f ′(1; e) = eX = y

)

= 0 (11)

and the density of the random variable X = log f ′(1; e) is positive for all suffi-
ciently large x then g(λ) = e−λ. Condition (11) is satisfied if, for instance,

lim
y→∞

P

(

e :
V arξ(e)

(f ′(1; e))2
> ε

∣

∣

∣ f ′(1; e) = y

)

= 0.

3 Preliminaries

3.1 Change of probability measure

A classical technique of studying subcritical branching processes in random en-
vironment is similar to that one used to investigate standard random walks
satisfying the Cramer condition. Namely, denote by Fn the σ−algebra gener-
ated by the tuple (e1, e2, ..., en;Z0, Z1, ..., Zn) and let P

(n) be the restriction of
P to Fn. Setting

m = ϕ (ρ) = E
[

eρX
]

,

we introduce another probability measure P by the following change of measure

dP(n) = m−neρSndP(n), n = 1, 2, ... (12)

or, what is the same, for any random variable Yn measurable with respect to
Fn we let

E [Yn] = m−n
E
[

Yne
ρSn
]

. (13)

By (7),
E [X ] = m−1

E
[

XeρX
]

= ϕ′ (ρ) /ϕ (ρ) = −a < 0. (14)
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Applying a Tauberian theorem we get

A(x) = P (X > x) =
E
[

I {X > x} eρX
]

m
=

1

m

∫ ∞

x

eρypX(y)dy

=
1

m

∫ ∞

x

l0(y)dy

yβ+1
∼ 1

mβ

l0(x)

xβ
=

l(x)

xβ
, (15)

where l(x) is a function slowly varying at infinity. Thus, the random variable
X under the measure P does not satisfy the Cramer condition and has finite
variance.

Note that Hypothesis A implies the following property for the distribution
function A(x) : for any fixed ∆ > 0

A(x+∆)−A(x) = −∆βA(x)

x
(1 + o(1)) (16)

as x → ∞.

LetΦ = {Φ} be the metric space of the Laplace transforms Φ(λ) =
∫∞
0

e−λuL(du),
λ ∈ [0,∞), of the laws from L endowed with the metric

d(Φ1,Φ2) = sup
2−1≤λ≤2

|Φ1(λ)− Φ2(λ)|.

Since the Laplace transform of the distribution of a nonnegative random vari-
able is completely determined by its values on any interval of the positive half-
line, convergence Φn → Φ as n → ∞ in metric d is equivalent to weak conver-
gence Ln

w→ L of the respective probability measures.
From now on, to avoid confusions we agree to use P and E for the symbols of
probability and expectation in the case when the respective distributions are
not associated with the measures P or P.
Let F= {f(s)} be the set of all probability generating functions of integer-valued
random variables η ≥ 0, i.e. f(s) = E [sη] and let Φ(f) ⊂ Φ be the closure (in
metric d) of the set of all Laplace transforms of the form

Φ(λ; f) = f (exp {−λ/f ′(1)}) , f ∈ F.

The probability measure P on N generates a natural probability measure on
the metric space Φ(f) which we denote by the same symbol P.
Introduce a sequence of probability measures on Φ(f) by the equality

P[x] (·) = P (· | f ′(1; e) = ex) .

With this new probability measure, Hypothesis B is now equivalent to

Hypothesis B’. There exists a measure P∗ (·) on Φ(f) (with the support
on Φ(λ) : Φ(0) = 1, Φ(λ) < 1, λ > 0) such that, as x → ∞

P[x] =⇒ P∗.
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In the other words, Hypothesis B’ means that there exists a (random) a.s.
continuous on [0,∞) function g(·) with values in Φ(f) such that, for every con-
tinuous bounded functional H on Φ(f)

lim
x→∞

E[x] [H(Φ)] = E∗ [H(g)] .

Since, for any fixed λ ≥ 0 the functional Hλ(Φ) = Φ(λ) is continuous on Φ(f),
we have for y = ex

lim
y→∞

E
[

f(e−λ/y; e) | f ′(1; e) = y
]

= E∗ [g(λ)] , λ ∈ [0,∞) (17)

and E∗ [g(0)] = 1,E∗ [g(λ)] < 1 if λ > 0. The prelimiting functions at the
left-hand side of (17) have the form

E
[

f(e−λ/y; e) | f ′(1; e) = y
]

= E
[

e−λξ(e)/y | f ′(1; e) = y
]

and, therefore, are the Laplace transforms of the distributions of some random
variables. Hence, by the continuity theorem for Laplace transforms there exists
a proper nonnegative random variable θ such that

lim
y→∞

E
[

f(e−λ/y; e)| f ′(1; e) = y
]

= E∗ [e−λθ
]

, λ ∈ [0,∞).

Let now

h(s) = E [sυ] =

∞
∑

k=0

hks
k, h(1) = 1

be the (deterministic) probability generating function of the nonnegative integer-
valued random variable υ. Since, for any fixed λ ≥ 0 the functional Hλ,h(Φ) =
h (Φ(λ)) is continuous on Φ(f), we have

lim
y→∞

E
[

h
(

f(e−λ/y; e)
)

| f ′(1; e) = y
]

= E∗ [h (g(λ))] , λ ∈ [0,∞). (18)

Further, denoting by ξi(e), i = 1, 2, ... independent copies of ξ(e) we get

E
[

h
(

f(e−λ/y; e)
)

| f ′(1; e) = y
]

=
∞
∑

k=0

hkE
[

fk(e−λ/y; e) | f ′(1; e) = y
]

=

∞
∑

k=0

hkE

[

exp

{

−λ

y

k
∑

i=1

ξi(e)

}

∣

∣

∣ f ′(1; e) = y

]

= E

[

exp

{

−λ

y
Ξ

}

∣

∣

∣ f ′(1; e) = y

]

where

Ξ(e) =
υ
∑

i=1

ξi(e).

9



Thus, similarly to the previous arguments there exists a proper random variable
Θ such that

lim
y→∞

E

[

exp

{

−λ

y
Ξ(e)

}

∣

∣

∣
f ′(1; e) = y

]

= E∗ [e−λΘ
]

, λ ∈ [0,∞). (19)

The prelimiting and limiting functions in (19) are monotone and continuous
on [0,∞). Therefore, convergence in (19) (as well as in (18)) is uniform in
λ ∈ [0,∞).

3.2 Some classical results on random walks

Our arguments essentially use a number of statements from the theory of random
walks, that are included into this section.
In the sequel we shall meet the situations in which the random walk starts from
any point x ∈ R. In such cases we write for probabilities as usual Px (·) . We
use for brevity P instead of P0.
Let us introduce two important random variables

Mn = max(S1, . . . , Sn) , Ln = min(S1, . . . , Sn)

and two right-continuous functions U : R → R0 = {x ≥ 0} and V : R → R0

given by

U(x) = 1 +

∞
∑

k=1

P (−Sk ≤ x,Mk < 0) , x ≥ 0 ,

V (x) = 1 +
∞
∑

k=1

P (−Sk > x,Lk ≥ 0) , x ≤ 0,

and 0 elsewhere. In particular U(0) = V (0) = 1. It is well-known that U(x) =
O(x) for x → ∞. Moreover, V (−x) is uniformly bounded in x in view of
EX < 0.

We define

τn = min {0 ≤ k ≤ n : Sk = min(0, Ln)} , τ = min {k > 0 : Sk < 0}

and let

D =

∞
∑

k=1

1

k
P (Sk ≥ 0) .

Now we list a number of known statements for convenience of references. The
first lemma is directly taken from [9], Theorems 8.2.4, page 376 and 8.2.18,
page 389.
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Lemma 3 Under conditions (14) and (15), as n → ∞

P (Ln ≥ 0) = P (τ > n) ∼ eDP (X > an) (20)

and for any fixed x > 0

lim
n→∞

P (Ln ≥ −x)

P (τ > n)
= U(x). (21)

The following statement is an easy corollary of Theorem 4.7.1 (page 218) of
monograph [9].

Lemma 4 Let X be a non-lattice random variable with E [X ] = −a < 0 whose
distribution satisfies condition (16). If S̃n = X1 + · · ·+Xn + an, then for any
∆ > 0 uniformly in x ≥ n2/3,

P
(

S̃n ∈ [x, x +∆)
)

=
∆βnA(x)

x
(1 + o(1)).

The next statement will be used several times in which i) does not require a
proof and ii) is a special case of Theorem 1 in [10].

Lemma 5 Let (rn) be a regularly varying sequence with
∑∞

k=0 rk < ∞.
i) If δn ∼ drn, ηn ∼ ern, then

∑n
i=0 δiηn−i ∼ crn with c = d

∑∞
k=0 ηk +

e
∑∞

k=0 δk as n → ∞.
ii) If

∑∞
k=0 αkt

k = exp
(
∑∞

k=0 rkt
k
)

for |t| < 1, then αn ∼ crn with c =
∑∞

k=0 αk as n → ∞.

Introduce the notation

K1 (λ) =
1

λ
exp

{ ∞
∑

n=1

1

n
E
[

eλSn ;Sn < 0
]

}

=
1

λ

(

1 +
∞
∑

n=1

E
[

eλSn ;Mn < 0
]

)

=

∫ ∞

0

e−λxU(x)dx, (22)

K2 (λ) =
1

λ
exp

{ ∞
∑

n=1

1

n
E
[

e−λSn ;Sn ≥ 0
]

}

=
1

λ

(

1 +
∞
∑

n=1

E
[

e−λSn ;Ln ≥ 0
]

)

=

∫ ∞

0

e−λzV (−z)dz, (23)

and let

bn = β
P (X > an)

an
.

Note that the intermediate equalities in (22) and (23) are simply versions of
the Baxter identities (see, for instance, Chapter XVIII.3 in [12] or Chapter 8.9
in [7]).
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3.3 Asymptotic behavior of the distribution of (S
n
, L

n
)

Basing on the three previous lemmas, we prove the following statement.

Lemma 6 Assume that E [X ] < 0 and that A(x) meets condition (16). Then,
for any λ > 0 as n → ∞

E
[

eλSn ; τn = n
]

= E
[

eλSn ;Mn < 0
]

∼ K1 (λ) bn (24)

and
E
[

e−λSn ; τ > n
]

= E
[

e−λSn ;Ln ≥ 0
]

∼ K2 (λ) bn. (25)

Proof. We prove (25) only. Statement (24) (proved in [16] under a bit stronger
conditions) may be checked in a similar way. First we evaluate the quantity

E
[

e−λSn ;Sn ≥ 0
]

= E
[

e−λSn ; 0 ≤ Sn < λ−1 (β + 2) logn
]

+O
(

n−β−2
)

. (26)

Clearly, for any ∆ > 0

∑

0≤k≤(β+2)λ−1∆−1 logn

e−λ(k+1)∆P
(

k∆+ an ≤ S̃n ≤ (k + 1)∆ + an
)

≤ E
[

e−λSn ; 0 ≤ Sn < λ−1 (β + 2) logn
]

≤
∑

0≤k≤(β+2)λ−1∆−1 logn

e−λk∆P
(

k∆+ an ≤ S̃n ≤ (k + 1)∆+ an
)

.

Recall that by Lemma 4 in the range of k under consideration

P
(

k∆+ an ≤ S̃n ≤ (k + 1)∆+ an
)

=
∆βn

(k∆+ an)
A (k∆+ an) (1 + o(1))

=
∆β

a
A (an) (1 + o(1)),

where o(1) is uniform in 0 ≤ k ≤ (β + 2)λ−1∆−1 logn. Now passing to the
limit as n → ∞ we get

∆

∞
∑

k=0

e−λ(k+1)∆ ≤ lim inf
n→∞

aE
[

e−λSn ; 0 ≤ Sn < λ−1 (β + 2) logn
]

βA (an)

≤ lim sup
n→∞

aE
[

e−λSn ; 0 ≤ Sn < λ−1 (β + 2) logn
]

βA (an)

≤ ∆

∞
∑

k=0

e−λk∆.

Letting ∆ → 0+, we see that

lim
n→∞

aE
[

e−λSn ; 0 ≤ Sn < λ−1 (β + 2) logn
]

βA (an)
= λ−1.

12



Combining this with (26) we conclude that, as n → ∞

E
[

e−λSn ;Sn ≥ 0
]

∼ β

aλ
A (an) (1 + o(1)) ∼ β

aλ
P(X > an). (27)

We know by the Baxter identity (see, for instance, Chapter 8.9 in [7]) that for
λ > 0 and t ∈ [0, 1]

1 +

∞
∑

n=1

tnE
[

e−λSn ;Ln ≥ 0
]

= exp

{ ∞
∑

n=1

tn

n
E
[

e−λSn ;Sn ≥ 0
]

}

.

From (27) and Lemma 5 we get for n → ∞,

E
[

e−λSn ;Ln ≥ 0
]

∼ K2 (λ)
βP(X > an)

an
,

where K2 (λ) is specified by (23). This gives statement (25) of the lemma.

The important proposition below is a consequence of Lemmas 5 and 6.

Lemma 7 For x ≥ 0, λ > 0 we have as n → ∞ :

E−x[e
λSn ; Mn < 0] ∼ bnV (−x)

∫ ∞

0

e−λzU(z) dz, (28)

Ex[e
−λSn ; Ln ≥ 0] ∼ bnU(x)

∫ ∞

0

e−λzV (−z) dz. (29)

Proof. This proof follows the line for proving Proposition 2.1 in [2]. By the
continuity theorem for Laplace transforms the last two lemmas give for any
x ∈ [0,∞) and λ > 0

b−1
n E[eλSn ;Mn < 0 , Sn > −x] →

∫ x

0

e−λzU(z) dz, (30)

b−1
n E[e−λSn ;Ln ≥ 0 , Sn < x] →

∫ x

0

e−λzV (−z) dz. (31)

Further, using duality we have

E[eλSn ;Mn < x] =

n−1
∑

i=0

E[eλSn ;S0, . . . , Si ≤ Si < x , Si > Si+1, . . . , Sn]

+ E[eλSn ;S0, . . . , Sn ≤ Sn < x]

=

n−1
∑

i=0

E[eλSi ;Li ≥ 0, Si < x] · E[eλSn−i;Mn−i < 0]

+E[eλSn ;Ln ≥ 0, Sn < x].

13



This formula together with (24), (31), the left continuity of V (−z) for z > 0
implying V (0) = V (0−) = 1, and the equations

1 +

∞
∑

k=1

E[eλSk ;Lk ≥ 0, Sk < x]

= 1 +

∫

(0,x)

eλz dV (−z) = eλxV (−x)− λ

∫ x

0

eλzV (−z) dz ,

1 +

∞
∑

k=1

E[eλSk ;Mk < 0] = λ

∫ ∞

0

e−λzU(z) dz

yield by Lemma 5 i) that for λ > 0 and x > 0

b−1
n E[eλSn ;Mn < x] → V (−x)eλx

∫ ∞

0

e−λzU(z) dz,

which gives (28) by multiplying by exp(−λx). Using similar arguments one can
get (29).

The continuity theorem for Laplace transforms and (28) and (29) imply the
next statement.

Corollary 8 For any x ≥ 0 and T > −x, as n → ∞,

P (Sn < T,Ln ≥ −x) ∼ bnU(x)

∫ x+T

0

V (−z) dz (32)

and for any x ≥ 0 and T < x, as n → ∞,

P (Sn > T,Mn < x) ∼ bnV (−x)

∫ x−T

0

U(z) dz . (33)

Proof. By (29) and the continuity theorem for Laplace transforms for any
x ≥ 0 and y > x we have

Ex[e
−λSn ; Sn < y,Ln ≥ 0] ∼ bnU(x)

∫ y

0

e−λzV (−z) dz

giving

Px (Sn < y,Ln ≥ 0) ∼ bnU(x)

∫ y

0

V (−z) dz

or

P (Sn < y − x, Ln ≥ −x) ∼ bnU(x)

∫ y

0

V (−z) dz

proving (32).
The asymptotic representation (33) may be proved by the same arguments.
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4 Conditioning the random walk on its mini-

mum and the final value

In this section it will be convenient to write 1n for the n−dimensional vector
all whose coordinates are equal to 1 and set Sj,n = (Sj , Sj+1, · · · , Sn) if j ≤ n
with Sn = S0,n and Sn,0 = (Sn, Sn−1, · · · , S0). Similar notation will be used for
nonrandom vectors. Say, sn,0 = (sn, sn−1, · · · , s0).

We know from the previous results the asymptotic behavior of the proba-
bility of the event {Sn < T,Ln ≥ −x} as n → ∞. In this section we would
like to clarify the form of the trajectories giving the main contribution to the
probability of this event. It is the key to understand the ingredients providing
the survival of the branching process in random environment since it captures
the associated environments.

Our aim is to demonstrate that if the event {Sn < T,Ln ≥ −x} occurs then
the trajectory of the random walk on [0, n] has a big jump of the order an +
O (

√
n), such a jump is unique and happens at the beginning of the trajectory.

Using this fact we also describe the full trajectory of the random walk. We note
that Durrett [11] has obtained scaled limit results of such a negative random
walk with heavy tails but conditionally on the minimum value only. Here the
additional condition on the final value modifies the size of the big jump and we
can provide a non scaled decomposition of the asymptotic conditional path.

More precisely, we prove the following result, which will come from a se-
quence of lemmas.

Theorem 9 For all x > 0 and T ∈ R there exists a sequence of number πj =
πj(x) > 0,

∑

j≥0 πj = 1, such that for each j the following properties hold :
(i) limn→∞ P (Xj ≥ an/2|Ln ≥ −x, Sn ≤ T ) = πj ;
(ii) For each measurable and bounded function F : Rj → R and each family

of measurable uniformly bounded functions Fn : Rn+1 → R such that

lim
ε→0

sup
n∈N,sn∈Rn+1

|Fn(sn + ǫ1n+1)− Fn(sn)| = 0, (34)

we have as n → ∞

E [F (Sj−1)Fn−j(Sj,n)|Ln ≥ −x, Sn ≤ T, Xj ≥ an/2]

−E [F (Sj−1)|Lj−1 ≥ −x]Eµ

[

Fn−j(S
′
n−j,0)|L′

∞ ≥ −x
]

→ 0,

where S′ is a random walk with step −X and positive drift, L′
∞ is its global

minimum and µ is a probability measure given by :

µ(dy) = dy1y∈[−x,T ]Py(L
′
∞ ≥ −x)θ−1, θ =

∫ T

−x

dyPy(L
′
∞ ≥ −x). (35)

This theorem yields the decomposition of the trajectory of (Si : i ≤ n) con-
ditioned by its minimum Ln and final value Sn. It says that conditionally on
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Ln ≥ −x and Sn = s, S jumps with probability πj at some (finite) time j.
Before this time, S is simply conditioned to be larger than −x. After this time,
reversing the trajectory yields a random walk S′ (with positive drift) condi-
tioned to be larger than −x. The size of the jump at time j links the value Sj−1

to S′
n−j−1 = s+a(n−j−1)+

√
nWn, where, thanks to the central limit theorem,

Wn converges in distribution, as n → ∞ to a Gaussian random variable Thus
this big jumps is of order an+Wn

√
n, as stated below. The proof is defered to

Section 4.2.

Corollary 10 Let κ = inf{n ≥ 0 : Xj ≥ an/2}. Under P, conditionally on
Ln ≥ −x and Sn ≤ T , κ converges in distribution to a proper random variable
whose distribution (πj : j ≥ 0) is specified by

πj = πj(x) =
P(Lj ≥ x)

∑

k≥0 P(Lk ≥ x)

and
Xκ − an√

n

converges in distribution to a centered Gaussian law with variance σ2 = V ar(X).

Proof. The expression of qj can be found in STEP 4 of the proof of the Theorem
9, see (38). The second part of the corollary is an application of the second part
of this theorem with

F (s0, · · · , sj) = 1, Fn(s1, ..., sn+1) = g((s1 − an)/
√
n)

for g uniformly continuous and bounded if one takes into account the positivity
of the drift of S′ allowing to neglect the condition L′

∞ ≥ −x and to use the
central limit theorem.

4.1 Proof of the conditional description of the random

walk

In this and subsequent sections we agree to denote by C,C1, C2, ... positive
constants which may be different in different formulas or even within one and
the same complicated expression.

Our first result shows that the random walk may stay over a fixed level for
a long time only if it has at least one big jump. Let

Bj (y) = {Xj + a ≤ y}, B(n) (y) = ∩n
j=1Bj (y) .

Lemma 11 If E [X ] = −a < 0 and condition (16) is valid then there exists
δ0 ∈ (0, 1/4) such that for all δ ∈ (0, δ0), k ∈ Z, and an/2− u ≥ M

Pu( max
1≤j≤n

Xj ≤ δan, Sn ≥ k) ≤ εM (k)n−β−1, where εM (k) ↓M→∞ 0.

16



Proof. Set Yn = (Sn + an) /σ where σ2 = V ar(X) and S0 = 0. It follows
from Theorem 4.1.2 and Corollary 4.1.3 (i) in [9] (see also estimate (4.7.7) in
the mentioned book) that if r > 2 and δ > 0 are fixed then for x ≥ n2/3 and all
sufficiently large n

P(B(n)
(

xσr−1
)

, Yn ≥ x) ≤
[

nP(X + a ≥ σxr−1)
]r−δ

.

Since l(x) in (15) is slowly varying, x−1/4l(x) → 0 as x → ∞. Hence we get for
all sufficiently large n and β > 2

[

nP(X + a ≥ σxr−1)
]r−δ ≤ C

(

nl(x)

xβ

)r−δ

≤ C
( n

xβ−1/4

)r−δ

≤ C

(

1

n1/6

)r−δ

.

We fix now r > 2, δ0 < 1/4 with rδ0 = 1/2 so that (r − δ) /6 > β + 1 for all
δ ∈ (0, δ0). As a result we obtain that there exists γ > 0 such that

Pu(B(n)
(

xσr−1
)

, Sn ≥ xσ − an+ u) ≤ Cn−β−1−γ

for all x ≥ n2/3 where now S0 = u. Setting xσ = rδ0an we get

Pu(B(n) (δ0an) , Sn ≥ −an/2 + u) ≤ Cn−β−1−γ .

Therefore, for every k ∈ Z

Pu( max
1≤j≤n

Xj ≤ δ0an; Sn ≥ k) ≤ Cn−β−1−γ (36)

for all an/2 − u ≥ M → ∞. Since the left-hand side is decreasing when δ0 ↓ 0
the desired statement follows.

We know by (32) that for any fixed N and l ≥ −N

P (Ln ≥ −N, Sn ∈ [l, l+ 1)) ∼ bnU(N)

∫ N+l+1

N+l

V (−z) dz, n → ∞.

Hence, applying Lemma 11 with u = 0 we conclude that, as n → ∞

P (Ln ≥ −N, Sn ∈ [l, l+ 1)) ∼ P
(

Ln ≥ −N, Sn ∈ [l, l+ 1); B̄(n) (δ0an)
)

,

meaning that for the event {Ln ≥ −N, Sn ∈ [l, l+ 1)} to occur it is necessary
to have at least one jump exceeding δ0an. The next statement shows that, in
fact, there is exactly one such big jump on the interval [0, n] that gives the
contribution of order bn to (32) and the jump occurs at the beginning of the
interval.

Lemma 12 Under conditions E [X ] = −a < 0 and (16) for any fixed l and
δ > 0

lim
J→∞

lim sup
n→∞

b−1
n P

(

Ln ≥ −N, max
J≤j≤n

Xj ≥ δan, Sn ∈ [l, l+ 1)

)

= 0.
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Proof. Write for brevity Sn ∈ [l) if Sn ∈ [l, l+ 1). Then

P (Ln ≥ −N,Xj ≥ δan, Sn ∈ [l))

≤
∫ ∞

−N

P (Sj−1 ∈ ds, Lj−1 ≥ −N)×
∫ ∞

δan

P (Xj ∈ dt)P (Sn−j ∈ [l − t− s), Ln−j ≥ −t− s−N)

≤
∫ ∞

−N

P (Sj−1 ∈ ds, Lj−1 ≥ −N)

∫ ∞

δan

P (Xj ∈ dt)P (Sn−j ∈ [l − t− s)) .

By condition (16),

P (Xj ∈ [t)) ≤ C
P (X > t)

t
, t > 0.

This estimate and its monotonicity in t gives
∫ ∞

−N

P (Sj−1 ∈ ds;Lj−1 ≥ −N)

∫ ∞

δan

P (Xj ∈ dt)P (Sn−j ∈ [l − t− s))

≤ C1
P (X ≥ δan)

n

∫ ∞

−N

P (Sj−1 ∈ ds;Lj−1 ≥ −N)

∫ ∞

δan

P (Sn−j ∈ [l − t− s)) dt.

Now
∫ ∞

δan

P (Sn−j ∈ [l − t− s)) dt ≤
∫ ∞

−∞
dt

∫ l−t−s+1

l−t−s

P (Sn−j ∈ dw)

=

∫ ∞

−∞
P (Sn−j ∈ dw)

∫ l−s−w+1

l−s−w

dt = 1.

Thus,

P (Ln ≥ −N,Xj ≥ δan, Sn ∈ [l))

≤ C
P (X > an)

n

∫ ∞

−N

P (Sj−1 ∈ ds, Lj−1 ≥ −N)

= C
P (X > an)

n
P (Lj−1 ≥ −N) = C1bnP (Lj−1 ≥ −N) .

By (21) the series
∑

j≥1 P (Lj−1 ≥ −N) converges meaning that a big jump may
occur at the beginning only. Moreover, it is unique on account of the estimate

P (Xi ≥ δan,Xj ≥ δan) = O
(

l2(n)n−2β
)

= o (bn)

for all i 6= j with max (i, j) ≤ J and β > 2.

The next lemma gives an additional information about the properties of the
random walk in the presence of a big jump. Let

Rδ (M,K) =
{

δan ≤ X1 ≤ an−M
√
n, |Sn| ≤ K

}

and
R (M,K) =

{

X1 ≥ an+M
√
n, |Sn| ≤ K

}

.
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Lemma 13 Under conditions E [X ] = −a < 0 and (16) for any δ ∈ (0, 1) and
each fixed K,

lim
M→∞

lim sup
n→∞

b−1
n P (Rδ (M,K) ∪R (M,K)) = 0.

Proof. Similarly to the previous lemma we have

P (Rδ (M,K)) =

∫ an−M
√
n

δan

P (Sn−1 ∈ [−K − x,K − x])P (X1 ∈ dx)

≤ C
P (X > δan)

δan

∫ an−M
√
n

δan

P (Sn−1 ∈ [−2K − x, 2K − x]) dx

= C
P (X > δan)

δan

∫ an−M
√
n

δan

dx

∫ 2K−x

−2K−x

P (Sn−1 ∈ dv)

≤ 4KC
P (X > δan)

δan

∫ 2K−δan

−2K−an+M
√
n

P (Sn−1 ∈ dv)

≤ 4KC
P (X > δan)

δan
P
(

Sn−1 ≥ −2K − an+M
√
n
)

and

P (R (M,K)) =

∫ ∞

an+M
√
n

P (Sn−1 ∈ [−K − x,K − x])P (X1 ∈ dx)

≤ C
P (X > an)

an

∫ ∞

an+M
√
n

P (Sn−1 ∈ [−2K − x, 2K − x]) dx

≤ 4KC
P (X > an)

an
P
(

Sn−1 ≤ 2K − an−M
√
n
)

.

Since lim supn→∞ P (|Sn−1 + an| ≥ M
√
n) decreases to 0 as M → ∞ by the

central limit theorem, the desired statement follows.

4.2 Proof of Theorem 9

We start by the following important statement.

Lemma 14 Let Fn be a bounded family of uniformly equicontinuous functionsas
defined in Theorem 9 by (34). Then the family of functions

gn(s) =
√
nEs [Fn(Sn);Ln ≥ −x, Sn ≤ T ] , n = 1, 2, ...,

is uniformly equicontinuous and uniformly bounded in s ∈ R.

Proof. First, the fact that the family of functions Fn is bounded by C combined
with the Stone local limit theorem for iid random variables having finite variance
allows us to bound gn by

C
√
nPs(Sn ∈ [−x, T ]) = C

√
nP(Sn ∈ [−x− s, T − s]) ≤ C1 < ∞.
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Second,

|gn(s+ ǫ)− gn(s)|
=

√
n|Es [Fn(Sn + ǫ1n+1);Ln + ǫ ≥ −x, Sn + ǫ ≤ T ]

−Es [Fn(Sn);Ln ≥ −x, Sn ≤ T ] |
≤ √

n|Es [Fn(Sn + ǫ1n+1)− Fn(Sn);Ln + ǫ ≥ −x, Sn + ǫ ≤ T ] |
+
√
n|Es [Fn(Sn);Ln + ǫ ≥ −x, Sn + ǫ ≤ T ]

−Es [Fn(Sn);Ln ≥ −x, Sn ≤ T ] |
≤ HǫC +

√
n|Ps(Ln + ǫ ≥ −x, Sn + ǫ ≤ T )−Ps(Ln ≥ −x, Sn ≤ T )|,

where Hǫ → 0 as ǫ → 0 again by the assumptions on Fn and the Stone local
limit theorem. Let us prove now that the last term is small. Indeed,

√
n|Ps(Ln + ǫ ≥ −x, Sn + ǫ ≤ T )−Ps(Ln ≥ −x, Sn ≤ T )|

≤ √
n [Ps(Sn ∈ [T − ǫ, T ]) +Ps(Ln ∈ [−x− ǫ,−x[, Sn ≤ T )]

and only the second term raises a difficulty. By the total probability formula
with respect to the (first) time k of the minimum we have

Ps(Ln ∈ [−x− ǫ,−x[, Sn ≤ T )

= P(Ln + s+ x ∈ [−ǫ, 0[, Sn ≤ T − s)

=

n
∑

k=0

P(S1 > Sk, · · · , Sk−1 > Sk, Sk + s+ x ∈ [−ǫ, 0),

Sk+1 ≥ Sk, · · · , Sn ≥ Sk, Sn ≤ T − s)

≤
n−[

√
n]−1

∑

k=0

P(Sk + s+ x ∈ [−ǫ, 0))P(Sk+1 ≥ Sk, · · · , Sn ≥ Sk)

+

n
∑

k=n−[
√
n]

P(S1 > Sk, · · · , Sk−1 > Sk, Sk + s+ x ∈ [−ǫ, 0))

×P(Sk+1 ≥ Sk, · · · , Sn ≥ Sk).

Now we use the representation

P(Sk+1 ≥ Sk, · · · , Sn ≥ Sk) = P(Ln−k ≥ 0) ∼ C(n− k + 1)−β

and the Stone local limit theorem according to which (see, for instance, [7],
Section 8.4)

√
2πnP(Sk + s+ x ∈ [−ǫ, 0[) = ǫ exp

{

− (s+ x)
2

2σ2n

}

+ δn,
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where δn → 0 as n → ∞ uniformly in k ∈ [n−√
n, n] and s+ x ∈ R. Hence we

conclude that

√
nPs(Ln ∈ [−x− ǫ,−x[, Sn ≤ T )

≤ (ǫ + δn)C

n−[
√
n]−1

∑

k=0

(n− k + 1)−β + C1

n
∑

k=n−[
√
n]

(n− k + 1)−β

≤ C2

(

ǫ+ δn +
√
n(
√
n)−β

)

≤ C3 (ǫ+ δn) ,

for n large enough, since β > 1. We end up the proof by noting that all these
bounds are uniform with respect to s.

Proof of Theorem 9. We know by Lemmas 11, 12 and 13 that conditionally
on the event {Ln ≥ −x, Sn ≤ T }, there is a (single) big jump, that it size is of
order an with deviation

√
n and that it happens at the beginning. Taking this

into account and setting AM
j = {Xj − an ∈ [−M

√
n,M

√
n]} we get

E [F (Sj−1)Fn−j(Sj,n);Ln ≥ −x, Sn ≤ T ] = εJ,M,nbn +
J
∑

j=0

AM
j,n,

where
lim

J,M→∞
sup
n

|εJ,M,n| = 0

and
AM

j,n = E
[

F (Sj−1)Fn−j(Sj,n);Ln ≥ −x,AM
j , Sn ≤ T

]

.

By the Markov property we have

AM
j,n = E

[

F (Sj−1)1{Lj−1≥−x}H
M
j,n(Sj−1)

]

,

where

HM
j,n(s) = E [1AMEs+X [Fn−j(Sn−j);Ln−j ≥ −x, Sn−j ≤ T ]]

and AM = {X − an ∈ [−M
√
n,M

√
n]}.

STEP 1. We are proceeding by bounded convergence and show first the
simple convergence. Thus, we consider

b−1
n HM

j,n(s) =

∫ M
√
n+an

−M
√
n+an

b−1
n P(X ∈ dy)Es+y [Fn−j(Sn−j);Ln−j ≥ −x, Sn−j ≤ T ]

=
1√
n

∫ M
√
n+an

−M
√
n+an

gj,n(s+ y)µn(dy),

where

µn(dy) = b−1
n P(X ∈ dy), gj,n(s) =

√
nEs [Fn−j(Sn−j);Ln−j ≥ −x, Sn−j ≤ T ] .
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We want to prove that

1√
n

∫ M
√
n+an

−M
√
n+an

gj,n(s+ y)µn(dy)−
1√
n

∫ M
√
n+an

−M
√
n+an

gj,n(s+ y)dy → 0

as n → ∞ by using the local converges of µn to the Lebesgue measure (with
uniformity in y ∈ [an−M

√
n, an+M

√
n] thanks to (15) and (16)) and the

uniform equicontinuity of gj,n (compare with Lemma 14). Let us give the details.
First, by Lemma 14 for any ε > 0 there exists η > 0 such that for all n ≥ n0 =
n0(ε, η) we have

sup
y

sup
u∈[0,η]

|gj,n(y)− gj,n(y + u)| ≤ ǫ.

Let, further, si(= sni ) be a subdivision of [an−M
√
n, an+M

√
n− 1] with step

η. Then, for sufficiently large n ≥ n0,
∣

∣

∣

∣

∣

b−1
n HM

j,n(s)−
1√
n

∑

i

gj,n(si)µn[si, si+1[

∣

∣

∣

∣

∣

≤ 3Mǫ.

Besides, gj,n(y) is bounded by C with respect to the pair n, y by Lemma 14.
Recalling that by (16)

sup
y∈s+an+[−M

√
n,M

√
n]

|µn[y, y + η]− η| ≤ ǫη

for n large enough, we get
∣

∣

∣

∣

∣

b−1
n HM

j,n(s)−
1√
n

∑

i

gj,n(si)η

∣

∣

∣

∣

∣

≤ 3Mǫ+ 2CMǫη
1

η
.

Using again the uniform continuity of gj,n yields for n large enough

∣

∣

∣

∣

∣

1√
n

∑

i

gj,n(si)η − 1√
n

∫ M
√
n+an

−M
√
n+an

gj,n(s+ y)dy

∣

∣

∣

∣

∣

≤ 3ǫM,

resulting in
∣

∣

∣

∣

∣

b−1
n HM

j,n(s)−
1√
n

∫ M
√
n+an

−M
√
n+an

gj,n(s+ y)dy

∣

∣

∣

∣

∣

≤ M(6 + 2C)ǫ

for n large enough.
Clearly, the sequence b−1

n HM
j,n is bounded since both gj,n (see Lemma 14)

and µn([an − M
√
n, an + M

√
n])/

√
n are bounded. This and the dominated

convergence theorem lead to

b−1
n AM

j,n −E

[

F (Sj−1)1{Lj−1≥−x}
1√
n

∫ M
√
n+an

−M
√
n+an

gj,n(Sj−1 + y)dy

]

n→∞−→ 0.

(37)
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STEP2. We can now complete the proof by reversing the random walk after
time j. To this aim set sk = (s0, · · · , sk) and sn,0 = (sn, · · · , s0) and recall that
(see, for instance, Lemma 9 in [14])

ds0Ps0(Sn ∈ dsn) = dsnPsn(S
′
n,0 ∈ dsn,0).

Hence, letting

Bn(sk) = {|s0 − an− s| ≤ M
√
n, sk ∈ [−x, T ], min

0≤i≤k
si ≥ −x}

we get by integration
∫

1Bn(sn−j)Fn−j(sn−j)ds0Ps0(Sn−j ∈ dsn−j)

=

∫

1Bn(sn−j)Fn−j(sn−j)dsn−jPsn−j
(S′

n−j,0 ∈ dsn−j,0).

It follows that

1√
n

∫ M
√
n+an

−M
√
n+an

gj,n(s+ y)dy

=

∫

s′
0
∈[−x,T ]

Es′
0

[

Fn−j(S
′
n−j,0);L

′
n−j ≥ −x;

∣

∣S′
n−j − an− s

∣

∣ ≤ M
√
n
]

ds′0.

Since, as n → ∞

P(
∣

∣S′
n−j − an− s

∣

∣ ≤ M
√
n) → 1

σ
√
2π

∫ M

−M

exp

{

− y2

2σ2

}

dy

for every s ∈ R and S′ has a positive drift, we conclude that

KM (s) = lim sup
n→∞

∣

∣

∣

∣

1√
n

∫ M
√
n+an

−M
√
n+an

gj,n(s+ y)dy

−
∫

s′
0
∈[−x,T ]

Es′
0

[

Fn−j(S
′
n−j,0);L

′
∞ ≥ −x

]

ds′0

∣

∣

∣

∣

goes to 0 as M becomes large. Further, by the bounded convergence and taking
into account the boundness of gj,n, we get (recall (35))

lim sup
n→∞

∣

∣

∣

∣

E

[

F (Sj−1)1{Lj−1≥−x}
1√
n

∫ M
√
n+an

−M
√
n+an

gj,n(Sj−1 + y)dy

]

−E
[

F (Sj−1)1{Lj−1≥−x}θEµ

[

Fn−j(S
′
n−j,0)|L′

∞ ≥ −x
] ]

∣

∣

∣

∣

≤
∣

∣E
[

F (Sj−1)1{Lj−1≥−x}K
M (Sj−1)

]∣

∣

where the right-hand side goes to 0 as M → ∞. Using (35) once again we set

Dj,n = E [F (Sj−1)|Lj−1 ≥ −x]Eµ

[

Fn−j(S
′
n−j)|L′

∞ ≥ −x
]
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and deduce from (37) that the function

RM = lim sup
n→∞

∣

∣b−1
n AM

j,n −P(Lj−1 ≥ −x)θDj,n

∣

∣

goes to zero as M → ∞. Writing

Cj,n = E [F (Sj−1)Fn−j(Sj,n);Ln ≥ −x; Sn ≤ T ; Xj ≥ an/2]

we have

lim sup
n→∞

∣

∣b−1
n Cj,n −P(Lj−1 ≥ −x)θDj,n

∣

∣

≤ lim sup
n→∞

b−1
n P(Xj ≥ an/2, |Xj − an| > M

√
n, Sn ≤ T ) +RM .

Combining the last limit and Lemma 13 ensures that the right-hand side of this
inequality goes to 0 as M → ∞. We conclude

lim
n→∞

(

b−1
n Cj,n −P(Lj−1 ≥ −x)θDj,n

)

= 0.

STEP 4. We apply the limit above to the family of functions F = 1, Fn−j = 1
and get

b−1
n P (Ln ≥ −x, Sn ≤ T, Xj ≥ an/2)

n→∞−→ P(Lj−1 ≥ −x)θ. (38)

Recalling (32) ensures that there exists πj(x) > 0 such that

P (Xj ≥ an/2 | Ln ≥ −x, Sn ≤ T )
n→∞−→ πj(x).

Using Lemmas 11, 12 and 13 shows that there is only one big jump at the
beginning, and it has to be greater than an/2. Thus,

∑

j≥0 πj(x) = 1. Finally,
the proof of the Theorem can be completed by using again the conclusion of
STEP 3.

5 The asymptotic behavior of the survival prob-

ability

In this section we use the notation

Ee [·] = E [· | E ] , Pe (·) = P (· | E)

i.e., consider the expectation and probability given the environment E . Our aim
is to prove the following statement.

Lemma 15 If Hypotheses A and B are valid then there exists a constant C0 > 0
such that, as n → ∞

P (Zn > 0) ∼ C0m
nβ

P (X > an)

an
= C0m

nbn. (39)
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We recall from the discussion in Preliminaries that Hypotheses A and B (or
B’) ensure that there exists g(λ) a.s. continuous on [0,∞) with g(0) = 1 and
with E [g(λ)] < 1, λ > 0, such that for every continuous bounded function F
on [0, 1]

lim
y→∞

sup
λ≥0

∣

∣

∣
E
[

F (f(e−λ/y)) | f ′(1) = y
]

−E∗ [F (g(λ))]
∣

∣

∣
= 0. (40)

Making the change of measure in accordance with (12) and (13) we see that
it is necessary to show that, as n → ∞

E
[

Pe (Zn > 0) e−ρSn
]

∼ C0bn. (41)

The proof of this fact is conducted into several steps which we split into
subsections.

5.1 Time of the minimum of S

First, we prove that the contribution to E
[

Pe (Zn > 0) e−ρSn
]

may be of order
bn only if the minimal value of S within the interval [0, n] is attained at the
beginning or at the end of this interval. To this aim we use, as earlier, the
notation τn = min {0 ≤ k ≤ n : Sk = Ln} and show that the following statement
is valid.

Lemma 16 Given Hypotheses A and B we have

lim
M→∞

lim
n→∞

b−1
n E

[

Pe (Zn > 0) e−ρSn ; τn ∈ [M,n−M ]
]

= 0.

Proof. In view of the estimate

Pe (Zn > 0) ≤ min
0≤k≤n

Pe (Zn > 0) ≤ exp

{

min
0≤k≤n

Sk

}

= eSτn

we have

E
[

Pe (Zn > 0) e−ρSn ; τn ∈ [M,n−M ]
]

≤ E
[

eSτn−Sn ; τn ∈ [M,n−M ]
]

=

n−M
∑

k=M

E
[

e(1−ρ)Sk+ρ(Sk−Sn); τn = k
]

=

n−M
∑

k=M

E
[

e(1−ρ)Sk ; τk = k
]

E
[

e−ρSn−k ;Ln−k ≥ 0
]

. (42)
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Hence, using Lemma 6 we get

E
[

Pe (Zn > 0) e−ρSn ; τn ∈ [M,n−M ]
]

≤





[n/2]
∑

k=M

+

n−M
∑

k=[n/2]+1



E
[

e(1−ρ)Sk ; τk = k
]

E
[

e−ρSn−k ;Ln−k ≥ 0
]

≤ C1

n
P
(

X >
an

2

)

[n/2]
∑

k=M

E
[

e(1−ρ)Sk ; τk = k
]

+
C2

n
P
(

X >
an

2

)

[n/2]
∑

k=M

E
[

e−ρSk ;Lk ≥ 0
]

≤ εMbn (43)

where εM → 0 as M → ∞.
The following statement easily follows from (43) by taking M = 0.

Corollary 17 Given Hypotheses A and B there exists C ∈ (0,∞) such that,
for all n = 1, 2, ...

E
[

Pe (Zn > 0) e−ρSn
]

≤ E
[

eSτn−ρSn
]

≤ Cbn.

5.2 Fluctuations of the random walk S

Introduce the event

CN = {−N < Sτn ≤ Sn ≤ N + Sτn < N} .

In particular, given CN
−N < Sn < N.

In what follows we agree to denote by εN , εN,n or εN,K,n functions of the low
indices such that

lim
N→∞

εN = lim
N→∞

lim sup
n→∞

|εN,n| = lim
N→∞

lim sup
K→∞

lim sup
n→∞

|εN,K,n| = 0,

i.e., the lim sup (or lim) are sequentially taken with respect to the indices of
ε··· in the reverse order. Note that the functions are not necessarily the same in
different formulas or even within one and the same complicated expression.

Lemma 18 Given Hypotheses A and B for any fixed k

lim
N→∞

lim sup
n→∞

b−1
n E

[

Pe (Zn > 0) e−ρSn ; τn = k, C̄N
]

= 0

and
lim

N→∞
lim sup
n→∞

b−1
n E

[

Pe (Zn > 0) e−ρSn ; τn = n− k, C̄N
]

= 0.
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Proof. In view of (31)

E
[

Pe (Zn > 0) e−ρSn ; τn = k, Sn − Sτn ≥ N
]

≤ E
[

e(1−ρ)Sτn e−ρ(Sn−Sτn ); τn = k, Sn − Sτn ≥ N
]

≤ E
[

e−ρSn−k ;Ln−k ≥ 0, Sn−k ≥ N
]

≤ εNbn

where εN → 0 as N → ∞ since
∫∞
0 exp(−ρz)V (−z)dz < ∞. Further,

E
[

Pe (Zn > 0) e−ρSn ; τn = k, Sτn ≤ −N
]

≤ E
[

e(1−ρ)Sτn e−ρ(Sn−Sτn ); τn = k, Sτn ≤ −N
]

≤ e−(1−ρ)NE
[

e−ρSn−k ;Ln−k ≥ 0
]

≤ εNbn. (44)

This, in particular, means that

E
[

e(1−ρ)Sτn e−ρ(Sn−Sτn ); τn = k, Sn /∈ (−N,N)
]

= εN,nbn (45)

and

E
[

Pe (Zn > 0) e−ρSn ; τn = k
]

= E
[

Pe (Zn > 0) e−ρSn ; τn = k, Sτn ≥ −N,Sn − Sτn ≤ N
]

+ εN,nbn.

Similarly, by (30)

E
[

Pe (Zn > 0) e−ρSn ; τn = n− k, Sτn ≤ −N
]

≤ E
[

e(1−ρ)Sτn e−ρ(Sn−Sτn ); τn = n− k, Sτn ≤ −N
]

≤ E
[

e(1−ρ)Sn−k ; τn−k = n− k, Sn−k ≤ −N
]

= E
[

e(1−ρ)Sn−k ;Mn−k < 0, Sn−k ≤ −N
]

= εN,nbn

and

E
[

Pe (Zn > 0) e−ρSn ; τn = n− k, Sn − Sτn ≥ N
]

≤ E
[

e(1−ρ)Sτn e−ρ(Sn−Sτn ); τn = n− k, Sn − Sτn ≥ N
]

≤ e−ρNE
[

e(1−ρ)Sn−k ; τn−k = n− k
]

= e−ρNE
[

e(1−ρ)Sn−k ;Mn−k < 0
]

= εN,nbn.

As a result we get

E
[

Pe (Zn > 0) e−ρSn ; τn = n− k
]

= E
[

Pe (Zn > 0) e−ρSn ; τn = n− k, Sτn ≥ −N,Sn − Sτn ≤ N
]

+ εN,nbn.

This completes the proof of the lemma.
Lemmas 16 and 18 easily imply the following statement.

27



Corollary 19 Under Hypotheses A and B

E
[

Pe (Zn > 0) e−ρSn
]

= E
[

Pe (Zn > 0) e−ρSn ; |Sn| < N ; τn ∈ [0,M ] ∪ [n−M,n]
]

+ εN,M,nbn

= E
[

Pe (Zn > 0) e−ρSn ; |Sn| < N
]

+ εN,nbn

= E
[

Pe (Zn > 0) e−ρSn ;Sτn ≥ −N,Sn < N
]

+ ε̃N,nbn (46)

where

lim
N→∞

lim sup
M→∞

lim sup
n→∞

|εN,M,n| = lim
N→∞

lim sup
n→∞

(|εN,n|+ |ε̃N,n|) = 0.

5.3 Asymptotic of the survival probability

In this section we investigate in detail the properties of the survival probability
for the processes meeting Hypotheses A and B. As we know (see (13)) this
probability is expressed as

P (Zn > 0) = mnE
[

Pe (Zn > 0) e−ρSn
]

.

We wish to show that E
[

Pe (Zn > 0) e−ρSn
]

is of order bn as n → ∞.
First we get rid of the trajectories giving the contribution of the order o(bn)

to the quantity in question. Let

DN (j) = {−N < Sτn ≤ Sn < N, Xj ≥ δan} .

Lemma 20 If Hypotheses A and B are valid then there exists δ ∈ (0, 1/4) such
that

E [Pe (Zn > 0) exp(−ρSn)] =

J
∑

j=1

E [Pe (Zn > 0) exp(−ρSn);DN (j)] + εN,J,nbn.

Proof. In view of the inequality

Pe (Zn > 0) exp(−ρSn) ≤ exp(Sτn − ρSn) = exp((1− ρ)Sτn − ρ(Sn − Sτn)) ≤ 1

the statement of the lemma follows from Corollary 19, the estimate

E

[

Pe (Zn > 0) exp(−ρSn);Sτn ≥ −N, max
0≤j≤n

Xj < δan

]

≤ P

(

Sτn ≥ −N, max
0≤j≤n

Xj < δan

)

= εN,nbn, 0 < δ ≤ δ0 ≤ 1/4,

established in Lemma 11, Lemma 12, according to which

E

[

Pe (Zn > 0) exp(−ρSn);Sτn ≥ −N,Sn ≤ N, max
J≤j≤n

Xj ≥ δan

]

≤ P

(

Ln ≥ −N,Sn ≤ N, max
J≤j≤n

Xj ≥ δan

)

= εN,J,nbn,
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and the fact that the probability of the event for the randomwalk {Sj , 0 ≤ j ≤ J}
to have two increments exceeding δan is o (bn).

Now we fix j ∈ [1, J ] and investigate the quantity

E [Pe (Zn > 0) exp(−ρSn);DN (j)] .

First, we check that Sj−1 is bounded on the event we focus on.

Lemma 21 If Hypotheses A and B are valid then, for every fixed j

E [Pe (Zn > 0) exp(−ρSn); |Sj−1| ≥ N,Xj ≥ δan] = εN,nbn.

Proof. First observe that

E [Pe (Zn > 0) exp(−ρSn);Sj−1 ≤ −N,Xj ≥ δan]

≤ E [exp((1 − ρ)Sτn − ρ(Sn − Sτn));Sj−1 ≤ −N,Xj ≥ δan]

≤ E [exp((1 − ρ)Sτn);Sj−1 ≤ −N,Xj ≥ δan]

≤ E [exp(−(1− ρ)N);Xj ≥ δan]

= exp(−(1 − ρ)N)P(X ≥ δan) = εN,nbn.

Further, taking γ ∈ (0, 1) such that γβ > 1, we get

E [exp(Sτn − ρSn);Sj−1 ≥ nγ , Xj ≥ δan] ≤ P(Sj−1 ≥ nγ)P(X ≥ δan)

≤ jP(X ≥ nγ/j)P(X ≥ δan) ∼ jβ+1

nγβ
l(nγ)P(X ≥ δan) = εnbn. (47)

Consider now the situation Sj−1 ∈ [N,nγ ], j ≥ 2 and write

E [exp(Sτn − ρSn);Sj−1 ∈ [N,nγ ], Xj ≥ δan]

=

∫ nγ

N

∫ 0

−∞
P(Sj−1 ∈ dy, Lj−1 ∈ dz)Hn,δ(y, z),

where

Hn,δ(y, z) =

∫ ∞

δan

P(X ∈ dt)

∫ 0

−∞

∫ ∞

v

Py+t(Ln−j ∈ dv, Sn−j ∈ dw)ez∧ve−ρw

=

∫ ∞

δan+y

P(X ∈ dt− y)

∫ 0

−∞

∫ ∞

v

Pt(Ln−j ∈ dv, Sn−j ∈ dw)ez∧ve−ρw.

By our conditions P(X ∈ dt − y) = P(X ∈ dt) (1 + o (1)) uniformly in y ∈
[0, nγ ] and t ≥ δan. Thus, for all sufficiently large n

Hn,δ(y, z) ≤ 2

∫ ∞

δan

P(X ∈ dt)

∫ 0

−∞

∫ ∞

v

Pt(Ln−j ∈ dv, Sn−j ∈ dw)ez∧ve−ρw

≤ 2

∫ ∞

δan

P(X ∈ dt)

∫ 0

−∞

∫ ∞

v

Pt(Ln−j ∈ dv, Sn−j ∈ dw)eve−ρw

= 2

∫ ∞

δan

P(X ∈ dt)Et

[

eSτn−j
−ρSn−j

]

≤ 2E0

[

eSτn−j+1
−ρSn−j+1 ;X1 ≥ δan

]

= 2Hn,δ(0, 0).
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By integrating this inequality we get for sufficiently large n

∫ nγ

N

∫ 0

−∞
P(Sj−1 ∈ dy, Lj−1 ∈ dz)Hn,δ(y, z)

≤ 2

∫ nγ

N

∫ 0

−∞
P(Sj−1 ∈ dy, Lj−1 ∈ dz)Hn,δ(0, 0)

≤ 2P(Sj−1 ≥ N)E0

[

eSτn−j+1
−ρSn−j+1 ;X1 ≥ δan

]

.

Since

b−1
n Hn,δ(0, 0) = bnE

[

eSτn−j+1
−ρSn−j+1 ;X1 ≥ δan

]

≤ b−1
n E

[

eSτn−j+1
−ρSn−j+1

]

= O(1)

as n → ∞ (see Corollary 17) and P(Sj−1 ≥ N) → 0 as N → ∞, we obtain

E [exp(Sτn − ρSn); Sj−1 ∈ [N,nγ ], Xj ≥ δn] = εN,nbn. (48)

Combining (47) and (48) proves the lemma.

Lemma 22 Given Hypotheses A and B we have for each fixed j

E [Pe (Zn > 0) exp(−ρSn); |Sn − Sj−1| > K,Xj ≥ δan] = εK,n(j)bn.

Proof. We know from Lemma 21 that only the values Sj−1 ≤ N for sufficiently
large but fixed N are of importance. Thus, we just need to prove that for
fixed N

E
[

eSτn−ρSn ;Sj−1 ≤ N, |Sn − Sj−1| > K,Xj ≥ δan
]

= εN,K,n(j)bn

where limK→∞ lim supn→∞ |εN,K,n(j)| = 0.To this aim we set Lj,n = min{Sk −
Sj−1 : j − 1 ≤ k ≤ n} and, using the inequality Sτn ≤ Sj−1 + Lj,n, deduce the
estimate

E
[

eSτn−ρSn ;Sj−1 ≤ N, |Sn − Sj−1| > K,Xj ≥ δan
]

≤ E
[

eSj−1+Lj,n−ρ(Sn−Sj−1)−ρSj−1 ;Sj−1 ≤ N, |Sn − Sj−1| > K
]

= E
[

e(1−ρ)Sj−1 ;Sj−1 ≤ N
]

E
[

eLj,n−ρ(Sn−Sj−1); |Sn − Sj−1| > K
]

.

We conclude with E
[

e(1−ρ)Sj−1 ;Sj−1 ≤ N
]

< ∞ and we can now control the
term

E
[

eLj,n−ρ(Sn−Sj−1); |Sn − Sj−1| > K
]

= E
[

eSτn−j+1
−ρSn−j+1 ; |Sn−j+1| > K

]

by εK,nbn. Indeed it is now exactly the term controlled in a similar situation
in (45).

We give the last technical lemma.
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Lemma 23 Assume that g is a random function which satisfies (40). Then for
every (deterministic) probability generating function h (s) and every ε > 0 there
exists κ > 0 such that

∣

∣

∣E [1− h(g(evw))] −E
[

1− h(g(ev
′

w))
]∣

∣

∣ ≤ h′(1)ε

for |v − v′| ≤ κ,w ∈ [0, 2].

Proof. Clearly,
∣

∣

∣E [1− h(g(evw))]−E
[

1− h(g(ev
′

w))
]∣

∣

∣ ≤ h′(1)E
[

|g(ev′

w)− g(evw)|
]

.

We know that 0 ≤ g(λ) ≤ 1 for all λ ∈ [0,∞), g(λ) is nonincreasing with respect
to λ a.s. and has a finite limit as λ → ∞. Therefore, g(λ) is a.s. uniformly
continuous on [0,∞) implying that a.s.

lim
κ→0

sup
|v−v′|≤κ,w∈[0,2]

|g(ev′

w)− g(evw)| = 0.

Hence, by the bounded convergence theorem

sup
|v−v′|≤κ,w∈[0,2]

E
[

|g(ev′

w)− g(evw)|
]

≤ E

[

sup
|v−v′|≤κ,w∈[0,2]

|g(ev′

w)− g(evw)|
]

goes to zero as κ → 0, which ends up the proof.

Introduce a sequence of generating functions

fn(s) = f(s; en) =

∞
∑

k=0

en({k})sk, 0 ≤ s ≤ 1,

specified by the environmental sequence (e1, e2, ..., en, ...) and denote

fi,k = fi+1 ◦ · · · ◦ fk (i < k), fi,k = fi ◦ · · · ◦ fk+1 (i > k), fi,i = Id.

Clearly,
Pe (Zn > 0) = 1− f0,n(0).

Let

Wn,j =
1− fn,j(0)

eSn−Sj
, Gn,j = −Sn − Sj + an

σ
√
n

.

Observe that by monotonicity

lim
n→∞

Wn,j = Wj

and Wj
d
= W, j = 1, 2, ... where P(W ∈ (0, 1]) = 1 in view of conditions (9) and

Theorem 5 in [6] II, while by the central limit theorem

lim
n→∞

Gn,j = G
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where G is a random variable having the standard normal distribution.
Since fj,n is distributed as fn,j, we write

E[Pe (Zn > 0) e−ρSn ;Xj ≥ δan] = E[(1− f0,n(0)) e
−ρSn ;Xj ≥ δan]

= E[(1− f0,j−1(fj(fn,j(0))))e
−ρSn ;Xj ≥ δan]

= E[e−ρSj (1− f0,j−1(fj(fn,j(0)))) e
−ρ(Sn−Sj);Xj ≥ δan]

= E[e−ρSj
(

1− f0,j−1(fj(1− eSn−SjWn,j))
)

e−ρ(Sn−Sj);Xj ≥ δan].

We state now the key result:

Lemma 24 Assume that Hypotheses A and B are valid and let g be the function
satisfying (40). Then, as n → ∞

b−1
n E[(1− f0,n(0)) e

−ρSn ;Xj ≥ δan] → E

[

e−ρSj−1

∫ ∞

−∞
(1− f0,j−1(g(e

vW ))) e−ρvdv

]

where Sj−1 and W are independent and the right-hand side term is finite.

Proof. Fix M and K and for

−M ≤ x ≤ M, −K ≤ v ≤ K, 0 ≤ w ≤ 1

consider the probability

TK,M,n(x, v, w) = b−1
n P(an−M

√
n ≤ X1 ≤ an+x

√
n,−K ≤ Sn ≤ v,Wn,1 ≤ w).

Denote Sn,m = Sn − Sm, 0 ≤ m ≤ n. Clearly,

TK,M,n(x, v, w) = b−1
n

∫ ∞

−∞
P (Sn,1 ∈ dy,Wn,1 ≤ w)

×P
(

X1 ∈
[

an−M
√
n, an+ x

√
n
]

∩ [−K − y, v − y]
)

.

Since pX (an+ t
√
n) ∼ bn for t ∈ [−M,M ] , we have

TK,M,n(x, v, w) = (1 + εn)

∫ ∞

−∞
P (Sn,1 ∈ dy,Wn,1 ≤ w) ×

×
∣

∣

[

an−M
√
n, an+ x

√
n
]

∩ [−K − y, v − y]
∣

∣ .

Further,
[

an−M
√
n, an+ x

√
n
]

∩ [−K − y, v − y] = ∅
if

an−M
√
n > v − y or an+ x

√
n < −K − y,

and
∣

∣

[

an−M
√
n, an+ x

√
n
]

∩ [−K − y, v − y]
∣

∣ = v +K
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if
an−M

√
n ≤ −K − y ≤ v − y ≤ an+ x

√
n

or
v − an− x

√
n ≤ y ≤ −K − an+M

√
n.

Hence it follows that

TK,M,n(x, v, w) = (1 + εn) (v +K)P
(

(Sn,1 + an) ∈
[

v − x
√
n,−K +M

√
n
]

,Wn,1 ≤ w
)

+(1 + εn)∆M,K,n

where

0 ≤ ∆M,K,n ≤ 2KP
(

Sn,1 + an ∈
[

M
√
n− 2K,M

√
n+ 2K

]

,Wn,1 ≤ w
)

+2KP
(

Sn,1 + an ∈
[

−x
√
n− 2K,−x

√
n+ 2K

]

,Wn,1 ≤ w
)

≤ 2KP
(

Sn,1 + an ∈
[

M
√
n− 2K,M

√
n+ 2K

])

+2KP
(

Sn,1 + an ∈
[

−x
√
n− 2K,−x

√
n+ 2K

])

= ε̃n.

Passing to the limit as n → ∞ and using the central limit theorem and mono-
tonicity of Wn,1 in n we get

lim
n→∞

TK,M,n(x, v, w) = (v +K)P (−x ≤ σG ≤ M,W ≤ w) (49)

where, as earlier, G is a random variable having the standard normal distribu-
tion.

We denote

tn,j(dx, dv, dw) = b−1
n P(Xj − na ∈ √

ndx, Sn,j ∈ dv,Wn,j ∈ dw)e−ρv

= b−1
n P(X1 − na ∈ √

ndx, Sn−j+1,1 ∈ dv,Wn−j,1 ∈ dw)e−ρv

and let
D (K,M) = {(x, v, w) : |x| ≤ M, |v| ≤ K, 0 ≤ w ≤ 1} .

We know from the above that for each fixed j as n → ∞

tn,j(dx, dv, dw)I {D (K,M)} → e−ρvdvP (σG ∈ dx,W ∈ dw) I {D (K,M)} .

For a deterministic probability generating function h (s) set

Hn (h, x, v, w) = E
[

1− h
(

f
(

exp
{

−evwe−X
}))

|X = na+ x
√
n
]

and introduce the event

Cn,j (x, v, w) =
{

Xj = na+ x
√
n, Sn,j = v,Wn,j = w

}

.

Clearly, for (x, v, w) ∈ D (K,M)

Hn (h, x, v, w) = E
[

1− h
(

fj
(

exp
{

−eSn,jWn,je
−Xj

}))

| Cn,j (x, v, w)
]

.
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The uniform convergence in (18) with respect to any compact set of λ from
[0,∞) ensures that, uniformly for |x| ≤ M , w ∈ [0, 2] and |v| ≤ K we have

|Hn(h, x, v, w) −E [1− h(g(evw)] | ≤ εn.

Let wε = (1 + ε) evw and

Fn,j(h,K,M ; ε) =

∫

D(K,M)

tn,j(dx, dv, dw)Hn(h, x, v, wε).

It follows from the estimates above that
∣

∣

∣

∣

∣

Fn,j(h,K,M ; ε)−
∫

D(K,M)

tn,j(dx, dv, dw)E [1− h(g(evwε)]

∣

∣

∣

∣

∣

≤ εn

∫

D(K,M)

tn,j(dx, dv, dw) ≤ Cεn.

Besides, in view of (49)

lim
n→∞

∫

D(K,M)

tn,j(dx, dv, dw)E [1− h(g(evwε)]

=

∫

D(K,M)

e−ρvE [1− h(g(evwε)] dvP (W ∈ dw, σG ∈ dx)

=

∫ K

−K

e−ρvdv

∫ 1

0

E [1− h(g(evwε)]P (W ∈ dw, σG ∈ [−M,M ])

=: F (h,K,M ; ε).

To proceed further we introduce the event

TN,K,M (j) =
{

|Sj−1| ≤ N, |Sn − Sj−1| ≤ K, |Xj − an| ≤ M
√
n
}

.

By Corollary 19 and Lemmas 13, 21, and 22

E
[

(1− f0,n(0)) e
−ρSn ;Xj ≥ δan

]

= E[(1− f0,n(0)) e
−ρSn ; |Sj−1| ≤ N,Xj ≥ δan] + εN,nbn

= E[(1− f0,n(0)) e
−ρSn ; |Sj−1| ≤ N, |Sn − Sj−1| ≤ K,Xj ≥ δan] + εN,K,nbn

= E[(1− f0,n(0)) e
−ρSn ; TN,K,M (j)] + εN,K,M,nbn (50)

where
lim

N→∞
lim sup
K→∞

lim sup
M→∞

lim sup
n→∞

|εN,K,M,n(j)| = 0. (51)

Thus, to prove the lemma it is sufficient to study only the quantity

E
[

(1− f0,n(0)) e
−ρSn ; TN,K,M (j)

]

= E[[1− f0,j−1(fj(fn,j(0)))]e
−ρSj e−ρ(Sn−Sj); TN,K,M (j)].
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Clearly,
{

Xj ≥ an−M
√
n, |Sn − Sj−1| ≤ K

}

=⇒
{

Sn − Sj ≤ K − an+M
√
n
}

.

This, in view of the inequality

eSn−SjWn,j = 1− fn,j(0) ≤ eSn−Sj

and the representation e−x = 1 − x + o(x), x → 0, means that if the event
TN,K,M (j) occurs then, for any ε > 0 there exists n0 = n0(ε) such that for
all n ≥ n0

e−(1+ε)(1−fn,j(0)) ≤ fn,j(0) ≤ e−(1−fn,j(0)).

Thus,

E[[1− f0,j−1(fj(e
−(1−fn,j(0))))]e−ρSj e−ρ(Sn−Sj); TN,K,M (j)]

≤ b−1
n E

[

(1− f0,n(0)) e
−ρSn ; TN,K,M(j)

]

≤ E[
(

1− f0,j−1(fj(e
−(1+ε)(1−fn,j(0))))

)

e−ρSje−ρ(Sn−Sj); TN,K,M (j)].

Hence, denoting by Fj−1 the σ-algebra generated by the sequence

(f1, ..., fj−1;S1, ..., Sj−1)

and setting

F̂n,j(f0,j−1,K,M ; ε) = E [Fn,j(f0,j−1,K,M ; ε)|Fj−1]

and
F̂ (f0,j−1,K,M ; ε) = E [F (f0,j−1,K,M ; ε)|Fj−1] ,

we get

E
[

e−ρSj−1 F̂n,j(f0,j−1,K,M ; 0); |Sj−1| ≤ N
]

≤ b−1
n E

[

(1− f0,n(0)) e
−ρSn ; TN,K,M (j)

]

≤ E[e−ρSj−1F̂n,j(f0,j−1,K,M ; ε); |Sj−1| ≤ N ].

Now the dominated convergence theorem gives for any fixed ε ∈ [0, 1)

lim
n→∞

E[e−ρSj−1 F̂n,j(f0,j−1,K,M ; ε); |Sj−1| ≤ N ]

= E[e−ρSj−1 lim
n→∞

F̂n,j(f0,j−1,K,M ; ε); |Sj−1| ≤ N ]

= E[e−ρSj−1 F̂ (f0,j−1,K,M ; ε); |Sj−1| ≤ N ].

Hence we deduce that

E
[

e−ρSj−1 F̂ (f0,j−1,K,M ; 0); |Sj−1| ≤ N
]

≤ lim inf
n→∞

b−1
n E

[

(1− f0,n(0)) e
−ρSn ; TN,K,M (j)

]

≤ lim sup
n→∞

b−1
n E

[

(1− f0,n(0)) e
−ρSn ; TN,K,M (j)

]

≤ E[e−ρSj−1 F̂ (f0,j−1,K,M ; ε); |Sj−1| ≤ N ].
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Letting ε ↓ 0 we see that

lim
n→∞

b−1
n E

[

(1− f0,n(0)) e
−ρSn ; TN,K,M(j)

]

= E
[

e−ρSj−1 F̂ (f0,j−1,K,M ; 0); |Sj−1| ≤ N
]

.

Since the right-hand side of this equality is monotone in K,M and N , we con-
clude by letting sequentially M,K and N to infinity and taking into account
the estimates 0 ≤ W ≤ 1 that

lim
M→∞

lim
n→∞

b−1
n E

[

(1− f0,n(0)) e
−ρSn ; TN,K,M (j)

]

= E

[

e−ρSj−1

∫ K

−K

e−ρvdv

∫ 1

0

E [1− f0,j−1(g(e
vw)|Fj−1]P (W ∈ dw) ; |Sj−1| ≤ N

]

and

lim
N→∞

lim
K→∞

lim
M→∞

lim
n→∞

b−1
n E

[

(1− f0,n(0)) e
−ρSn ; TN,K,M (j)

]

= E

[

e−ρSj−1

∫ ∞

−∞
e−ρvdv

∫ 1

0

E [1− f0,j−1(g(e
vw)|Fj−1]P (W ∈ dw)

]

= E

[

e−ρSj−1

∫ ∞

−∞
e−ρv (1− f0,j−1(g(e

vW )) dv

]

.

It remains to check that the right-hand side of this equality is positive and finite.
Positivity follows from conditions (9), since under these conditions W > 0

with probability 1 according to Theorem 5 [6], II. Finiteness is evident, since
E
[

(1− f0,n(0)) e
−ρSn

]

= O (bn) by Corollary 17. This gives the whole result.

Now we have an important corollary, which, in fact, proves Theorem 1 with
the explicit form of the constant C0 mentioned in the statement of the theorem.

Corollary 25 Given Hypotheses A and B,

P (Zn > 0) ∼ C0m
nbn ∼ C0ρm

n−1
P (X > an) eanρ

where

C0 =

∞
∑

j=1

E

[

e−ρSj−1

∫ ∞

−∞
(1− f0,j−1(g(e

vW ))) e−ρvdv

]

=

∞
∑

j=0

(

E
[

eρX
])j
∫ ∞

−∞
E [1− f0,j(g(e

vW ))] e−ρvdv.

Proof. It follows from (46) that for each fixed j

E [(1 − f0,n(0)) exp(−ρSn);DN (j)] = E[(1− f0,n(0)) e
−ρSn ;Xj ≥ δan]+εN,nbn.
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Using this fact and Lemmas 24 and 20 we get

lim
n→∞

m−nb−1
n P (Zn > 0) = lim

n→∞
m−nb−1

n E [(1 − f0,n(0))]

= lim
n→∞

b−1
n E [(1− f0,n(0)) exp(−ρSn)] = C0.

To complete the proof it remains to observe that in view of (15)

bn = β
P (X > an)

an
∼ 1

m

l0(an)

(an)
β+1

=
1

m

l0(an)

(an)
β+1

e−ρaneρan

∼ ρ

m
eρan

∫ ∞

an

pX(x)dx =
ρ

m
eρanP (X > an) .

5.4 Conditional limit theorem

In this section we prove Theorem 2. Let

Wn,j(s) =
1− fn,j(s)

eSn−Sj
, s ∈ [0, 1).

By monotonicity
Wn,j(s)

n→∞−→ Wj(s)

and Wj(s)
d
= W (s), j = 1, 2, ... where P(W (s) ∈ (0, 1]) = 1 thanks to [6] II

Theorem 5.
Similarly to Lemma 24 one can show that, as n → ∞

lim
n→∞

b−1
n E[(1− f0,n(s)) e

−ρSn ]

= lim
n→∞

b−1
n

∞
∑

j=1

E[(1− f0,n(s)) e
−ρSn ;Xj ≥ δan]

= E

[

e−ρSj−1

∫ ∞

−∞
(1− f0,j−1(g(e

vW (s)))) e−ρvdv

]

= Ω0(s).

Hence we get

lim
n→∞

E
[

sZn |Zn > 0
]

= 1− lim
n→∞

E[(1− f0,n(s)) e
−ρSn ]

E[(1− f0,n(0)) e−ρSn ]

= 1− C−1
0 Ω0(s) =: Ω(s).

Theorem 2 is proved.
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