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Abstract: Proving that an uncertain parametric model is stable amounts to prove
the inclusion of two sets: the set A of all feasible parameters and the set B of all
parameters for which the model is stable. In this paper, a new algorithm, able to
decide whether or not A is included in B, is presented. The method is based on
interval analysis which is a numerical tool able to deal with inequalities in a global
and guaranteed way. Convergence properties of the algorithm are provided. The
algorithm is then applied to the robust stability of a discrete-time model where the
information on the parameters is given through bounded-error data. The behavior of
the algorithm with respect to the number of parameters is illustrated on a continuous-

time model.
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1 Introduction

The parametric approach to robust stability analysis has received a great attention
in the last decade (see, e.g. [3], [4] and the references therein). One of the main
problems considered in this approach is to decide on the stability of an uncertain
parametric model M(p), where the parameter vector p is only known to belong to
some known feasible set A. The model M(p) is assumed to be input-output linear.

Let us denote by

P(p,s) = aa(p)s® + ag-1(p)s ™ + -+ + a1 (p)s + o (p) (1)

its characteristic polynomial. When the functions «;(p),j = 0...d, are affine with
respect to p, and when A is a box or a polytope, extreme point methods (see, e.g. [2]),
based on Kharitonov’s theorem [9] and other extreme-point results such as the Edge
theorem [1], can decide on the stability of M(p) in a guaranteed way. When «o;(p)
is polynomial and when the feasible set A is a box, approaches based on Bernstein
polynomial are available [18] but branch-and-bound methods have to be used to avoid
immoderate pessimism. When «a;(p) is any nonlinear function, interval methods [13]
are able to deal with the stability of M(p) in a guaranteed way. In the context
of parametric models, interval analysis has already been used by [10] to build a
guaranteed optimization algorithm for robust control, by [20] for the characterization
of stability domains and by [11] and [8] to characterize the set of all parametric

controllers that assure some given performances to an uncertain system.

All the methods that have been presented in the literature require a feasible set
A with a simple shape (generally a box or a polytope) that contains the actual
parameter vector in a guaranteed way. Such a feasible set can be computed by using

bounded-error parametric estimation (see, e.g., [19], [15], [16], [12] and the references
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therein). This approach makes it possible to enclose the prior feasible set, i.e., the set
of all parameter vectors that are consistent with bounded-error data, in a guaranteed
way. Now, the prior feasible set can generally be defined by nonlinear inequalities
and dealing with them makes it possible to avoid the pessimism introduced by an
outer approximation . For such sets defined by nonlinear inequalities, classical robust
approach cannot be used in a guaranteed way and a specific methodology has to be

developed..

In this paper, we shall consider the general situation where A is described by a set of
nonlinear inequalities. Since the model is input-output linear, the stability domain
B (set of all p associated with a stable model) can also be defined by nonlinear
inequalities that may be obtained by using the Routh criterion for linear continuous-
time models or the Jury criterion for linear discrete-time models. The problem of
proving the stability of M(p) amounts to prove the inclusion of two inequality sets,
namely A C B. Interval analysis [13] will be shown to be particularly suited to solve

this problem.

Basic notions of interval analysis are introduced in the following section. In Section 3,
a new algorithm capable of proving the inclusion of two inequality sets is presented.
A convergence analysis is provided in Section 4. In Section 5, the algorithm is applied
to the stability analysis of an uncertain discrete-time model where some informations
are available on the parameters through bounded-error data. The complexity of the
algorithm with respect to the number of parameters is illustrated with the robust

stability analysis of an uncertain continuous-time model.



2 Interval analysis

Interval analysis is a numerical tool originally developed to quantify the effect of
finite-precision arithmetic on results obtained by a computer [13]. At present, it is
also used in a finite-dimensional context for global optimization (see e.g. [6]) or to
prove formal inequalities (see e.g. [13]). Interval analysis is based on the notions of

boxes and inclusion functions that are now introduced.

A bozx or vector interval X of R™ is the Cartesian product of n intervals:

X:[:pf,xﬂx---x{x’x*}:Xlx---xXn. (2)

ni»n

In the sequel, intervals are written with upper-case letters, boxes with bold upper-
case letters and vectors with bold lower-case letters. The set of all boxes of R" is
denoted by IR™. A principal plane of X is a symmetry plane of X normal to a side of
maximum length. To bisect a box X means to cut it along one of its principal planes.
A bisection generates two non-overlapping boxes X; and X3 such that X = X; U X,.
Let f be a vector function mapping R"™ into R™. A set-valued function F, defined

from IR" into I R™, is an inclusion function of f if:
VX e IR", f(X)C F(X), (3)

Let w(X) be the width of the box X, i.e. the length of its largest side(s). F is

convergent if, for any sequence of boxes X (k) of IR",

lim w(X(k)) = 0 = lim w(F(X(k)) = 0 (4)

k—oo k—oo

The computation of a convergent inclusion function associated with any continuous
function, defined by an explicit formal expression, is simple (see, e.g. [13]) and

routinely performed by commercially available languages such as C-XSC [5].
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3 Proving set inclusion

Let A and B be two compact (closed and bounded) sets of R™ included in a box Xj.
The problem to be solved is that of deciding whether A C B. Sets A and B are

assumed to be defined by finite sets of inequalities:

A={xe R"|f(x) <0}, 5)
B ={xeR"|g(x) <0},
where f and g are continuous functions. The inequalities have to be understood
componentwise. In what follows, R~ and R™ denote the sets | — 00,0]? and | —

00, 04, respectively, where ¢ is the appropriate dimension. If f~! and g~! denote the

reciprocal function (in a set-theoretic sense) of f and g, then,

A={xeR'f(x)eR }=f"(R"), -
B={xecR"gx)e R} =g '(R).
A possible approach that could be considered for proving that A C B is to bracket A
and B between two subpavings (i.e., union of boxes), using set-inversion approaches

[14], [7]. Proving the inclusion then becomes trivial. We shall here consider a more

efficient approach that avoid, an unnecessary in-depth characterization of sets A and

B.

A vector x is said to be bad if x € A and x ¢ B. If a bad vector exists, A (£B.
A vector that is not bad is said to be good. A box X is bad if it contains at least
one bad vector, otherwise X is good. Note that if X C B, then X is good because it
cannot contain one x such that x ¢ B. In the same manner, if X N A = (), then X
cannot contain one x in A and therefore X is good. The principle of the algorithm to
be presented is to partition the prior box of interest X; into a set of non-overlapping

boxes K, such that any box X in K is good. If it succeeds in performing such a
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partition, and since A and B C Xy, then A C B. Two convergent inclusion functions
F and G for f and g, are assumed to be available. The following theorem provides

three different basic tests for deciding whether a given box X is good or bad.

Theorem 1  If X is a box of R™ the center of which is denoted by X, then

(i) G(X)CR~ = X is good
(i) FX)NR™ =0 = X is good (7)
(i) £(X) e R~ and g(X) ¢ R~ = X is bad

Proof (i) If G(X) C R, then, g(X) C R™. Therefore, g7'(g(X)) C g~ (R™).
Now, X C g 1(g(X))= X c g }(R") i.e. X C B. Hence, X is good. (ii) If
FX)NR =0, f(X)NR = 0. Now, A = f }(R"), therefore f(4) C R".
Consequently, f(X)Nf(A) =0, ie. XN A= 0. Hence, X is good. (iii) If f(X) € R~
and g(X) ¢ R, then X € A and X ¢ B. Therefore X is bad. Hence X is bad. &

In the algorithm to be presented, () is a queue of boxes, i.e. it has a First-In-First-
Out (FIFO) structure. It contains all boxes still to be studied. The initial box X is

assumed to enclose the two compact sets A and B.

Step 0 X :=Xy; Q :=0;

Step 1 If G(X) C R, go to Step 6;

Step2 HFX)NR =0, go to Step 6;

Step 3 X =center(X)

Step 4 If f(X) € R~ and g(X) ¢ R, return " A £ B”;END.

Step 5 Bisect X and push the two resulting boxes at the end of Q;
Step 6 If Q # 0, pull the first box of @) into X and go to Step 1;
Step 7 Return A C B”. END.



A box X such that neither of the three conditions (i), (ii) and (iii) are satisfied is said
to be indeterminate. Since the three basic tests are pessimistic, an indeterminate box
might be good or bad. Note that an indeterminate box is necessarily bisected by the

algorithm.

4 Convergence analysis

If we assume that the algorithm ends, then two conclusions may be reached. If it
ends at Step 7, then the initial box Xy has been partitioned into a set K of non-
overlapping good boxes, and therefore A C B. If the algorithm stops at Step 4, then
a point X is found such that X € A, and X ¢ B. Thus A £ B.

Let C' = {x € R"| h(x) < 0} where h is assumed to be continuous. The border C°
of C' is the set defined by
C’={xecC|Jic{l,... dimh}|hi(x) =0} (8)

If OC denotes the boundary of C, then OC C CY and, in generic situations, 0C = CV.
For h(x) =(z% + z3) (23 + x5 — 1) where dimh = 1, we have 0 € C” but 0 ¢ 9C. It is
therefore an example of a degenerated situation. A vector that belongs to C?, even

if it is deep inside C, can come out of C' if h is infinitesimally moved.

Theorem 2  Let A° and B° be the borders of A and B. fAC B and ANB° =

0, the algorithm proves the inclusion in a finite time.

Proof The proof is by contradiction. If the algorithm never stops, it generates a

nested sub-sequence of indeterminate boxes X (k) that accumulates over a point X.
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Since X(k) is bisected, it does not satisfy any of the conditions required by Step 1,
Step 2 and Step 4 i.e. X(k) satisfies the three following conditions.
GX(K) LR,
F(X(k))NR™ # 0, (9)
(F(X(k)) ¢ R7) or (g(X(k)) € R7).
Moreover, since (i) w(X(k)) — 0, (ii) Vk, X € X(k) and (iii) F and G are conver-
gent,the accumulation point X satisfies:
g®) ¢R™"
f(x) e R~ (10)
f(x) ¢ R™* or g(X) € R~
Let us denote by A and B the complementary sets of A and B. Since (i) g(X) ¢
R*exeBUB’ (i)f(x)eR &xeA, (ii)fxX¢R*=xecAUA and

(iv) g(X) € R~ < x € B, (10) is equivalent to X € D where:
D=(BuB)NnAn(AuA’uUB). (11)

Using Boolean notation, D = (B + B°)A(A+ A° + B) = (BA + B°A)(A + A° + B)
= BAA+BAA+BAB+B°AA+B°AA°+B°AB. Since AA =0, AA° = A°, BB = (),
BB = B° and A°+A = A, weget D = A’B4+AB°. Now, AC B and ANB° = 0.
Therefore, D is empty and the accumulation point X cannot exist. The algorithm is

thus a finite algorithm. %

Theorem 3 If 3x | x €A — A° and x ¢ B, the algorithm proves that A (£~ B in

a finite time.

Proof Since x €A — A” and x ¢ B, we have
f(x) e R™" and g(x) ¢ R™. (12)
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Note that any box that contains x cannot be eliminated via Step 1 or Step 2. If the
algorithm never stops, the algorithm generates a nested subsequence X (k) of inde-
terminate boxes that contain x. Thus, the sequence X(k) = center(X(k)) converges
to x. Since f and g are continuous, f(X(k)) — f(x) and g(X(k)) — g(x). From (12),
there exists an integer ko such that f(X(ko)) € R~ and g(X(ko)) ¢ R~. For such a
ko, at Step 4, the algorithm returns ”A AZB”. This is in contradiction to the fact

that the algorithm never stops. %

5 Test case

Test case 1: Consider the discrete-time model

y(i) = —pil (y(i — 1) + payli — 2) + 20 — 3) + (i — 4)), (13)

where p = (py, p2)7 is the parameter vector. This model is taken from Exercise 16.33

of [17] related to Jury criterion. The initial conditions are given by:

y(—3) = y(—2) =y(-1) = y(0) = 1. (14)

Moreover, five experimental data have been collected on the system at times i €

{1,2,3,4,5}. The associated data vector is
y* = (=2,-0.8,-0.08,1.55,0.85)". (15)

It has been obtained by simulation of (13) for p; = 2.5 and p, = 1. Let us denote
by y™(p) the vector of all model outputs homogeneous to the data vector y#. To
be feasible, p should satisfy | y*(p) — i |< €maz,t € {1,2,3,4,5}. The feasible

set A(emaz) is then defined by a set of nonlinear inequalities f(p) < 0 where its i
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component is f;(p) =| y*(p) — i | —€maz. The Jury criterion, a formal procedure
that transforms a problem of stability for a linear discrete-time system into a set of
nonlinear inequalities, is now applied to the model (13). We obtain that necessary

and sufficient conditions for stability are [17]:

2—p1—po
1— | p1 |
1= 2py| = |1 = pi
[p2(1 = p1)(1 = pi) = (L= 2p1)(2 = p1)| = |(1 = p§)* = (1 = 2p1)?|
Over the box Py = [107%,10%] x [—108,108], for €4, = 0.302, in 7.2 seconds on a
DX4-100 computer, the algorithm proves that all feasible models are stable, i.e. it
proves that A(0.302) C B. 2455 good boxes have been generated. For e,,q, = 0.303,
in 7.3 seconds, the algorithm proves that A(0.303) /C B. The model associated
with p = (2.305 1.188)T is found to be feasible and unstable. The generated paving
around p is represented on Fig. 1. Dark gray boxes are proved to be unfeasible
and light gray boxes are proved to be stable. The algorithm finds a bad box, drawn
in white. In the black region are located all boxes that have not been studied, but

whatever happen in this region cannot change the conclusion.

Possible location for Figure 1.

Assume now that 20 measurements have been generated (instead of 5). The algorithm
proves that As(0.302) C B in 6.5 seconds (the subscript for A indicates the number
of measurements) instead of 7.2 seconds. The number of boxes is now reduced to
999: more informations are available for p, i.e. Asy C As, and it is much more easy
for our algorithm to prove that A C B. Note that since the number of measurements

is bigger, the computing time for one box has increased.
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Test case 2: The aim of this test case is to show the behavior of the algorithm with
respect to the dimension of the parameter space. Consider a continuous-time model,

the characteristic polynomial of which is given by:
P(p,s) = 8" 4+ pps" L4 -+ pas+ (16)

The nominal value p for p is obtained by setting P(p,s) = (s + 1)™. For example, if
n=3p= (33 1)". Let us assume that the parameter vector p of the model is

known to satisfy

Ip—pll -02<0 (17)

The uncertain model M(p) is guaranteed to be stable if the set A defined by the
inequality (17) is included in the set B defined by inequalities derived from (16)
by using the Routh criterion. On a DX4-100 computer, the algorithm proved the

inclusion for n =1 to 8. The computing times are given by Table 1.

6 Conclusion

The information available on an uncertain parametric model, as well as its stability
domain, can generally be described by nonlinear inequalities that should be satisfied
by the parameter vector. The problem of proving the stability of the uncertain model
amounts to prove that the feasible set is included in the stability domain. Interval
analysis has been used to develop a new algorithm able to prove the inclusion. Its
convergence properties have been provided and it has been shown that the algorithm
is finite, except for degenerated cases. To illustrate the efficiency of the method, two
test cases have been solved. The first one deals with a discrete-time parametric model

where the information for the parameters is available under the form of bounded-
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error data. Discrete time models involve stability domains defined by nonsmooth
inequalities and the feasible set generated by a bounded-error approach is also defined
by nonlinear inequalities. This test-case is just an illustration of the large class of
parametric robust stability problems that can be handled by the method. To the
best of our knowledge, no others methods in the literature are able to solve this test-
case in a guaranteed way. The second one illustrates the behavior of our algorithm
when the number of parameters increases. As expected, the complexity seems to be
exponential with respect to the number of parameters. The approach considered in

this paper seems therefore to be restricted to problems with reasonable dimensions.
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TABLE CAPTION

Table 1: Computing time with respect to the dimension in Test-case 2.

FIGURE CAPTION

Figure 1: Paving generated, for e,,,, = 0.303, in the (p;, p2)-space, for proving that

the model may be unstable.
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