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Proving that an uncertain parametric model is stable amounts to prove the inclusion of two sets: the set A of all feasible parameters and the set B of all parameters for which the model is stable. In this paper, a new algorithm, able to decide whether or not A is included in B, is presented. The method is based on interval analysis which is a numerical tool able to deal with inequalities in a global and guaranteed way. Convergence properties of the algorithm are provided. The algorithm is then applied to the robust stability of a discrete-time model where the information on the parameters is given through bounded-error data. The behavior of the algorithm with respect to the number of parameters is illustrated on a continuoustime model.

1I n t r o d u c t i o n

The parametric approach to robust stability analysis has received a great attention in the last decade (see, e.g. [START_REF] Barmish | New Tools for Robustness of Linear Systems[END_REF], [START_REF] Bhattacharyya | Robust Control, The Parametric Approach[END_REF] and the references therein). One of the main problems considered in this approach is to decide on the stability of an uncertain parametric model M(p); where the parameter vector p is only known to belong to some known feasible set A.T h em o d e lM(p) is assumed to be input-output linear.

Let us denote by P (p;s)=® (p)s + ® (p)s + ¢¢¢+ ® (p)s + ® (p) [START_REF] Barlett | Root locations of an entire polytope of polynomial: It su±ces to check the edges[END_REF] its characteristic polynomial. When the functions ® (p);j =0 :::d; are a±ne with respect to p; and when A is a box or a polytope, extreme point methods (see, e.g. [START_REF] Barmish | A survey of extreme point results for robustness control systems[END_REF]), based on Kharitonov's theorem [START_REF] Kharitonov | Asymptotic stability of an equilibrium position of a family of systems of linear di®erential equations[END_REF] and other extreme-point results such as the Edge theorem [START_REF] Barlett | Root locations of an entire polytope of polynomial: It su±ces to check the edges[END_REF], can decide on the stability of M(p) in a guaranteed way. When ® (p) is polynomial and when the feasible set A is a box, approaches based on Bernstein polynomial are available [START_REF] Vicino | Computation of nonconservative stability perturbation bounds for systems with nonlinearly correlated uncertainties[END_REF] but branch-and-bound methods have to be used to avoid immoderate pessimism. When ® (p) is any nonlinear function, interval methods [START_REF] Moore | Methods and Applications of Interval Analysis ,S I A M[END_REF] are able to deal with the stability of M(p) in a guaranteed way. In the context of parametric models, interval analysis has already been used by [START_REF] Kolev | An interval ¯rst-order method for robustness analysis[END_REF] to build a guaranteed optimization algorithm for robust control, by [START_REF] Walter | Guaranteed characterization of stability domains via set inversion[END_REF] for the characterization of stability domains and by [START_REF] Malan | Robust stability and design of control systems using interval arithmetic[END_REF] and [START_REF] Jaulin | Guaranteed tuning, with application to robust control and motion planning[END_REF] to characterize the set of all parametric controllers that assure some given performances to an uncertain system.

All the methods that have been presented in the literature require a feasible set A with a simple shape (generally a box or a polytope) that contains the actual parameter vector in a guaranteed way. Such a feasible set can be computed by using bounded-error parametric estimation (see, e.g., [START_REF] Walter | Special issue on parameter identi¯cation with error bound[END_REF], [START_REF] Norton | Special issue on bounded-error estimation, 1[END_REF], [START_REF] Norton | Special issue on bounded-error estimation, 2[END_REF], [START_REF]Bounding Approaches to System Identi¯cation[END_REF] and the references therein): This approach makes it possible to enclose the prior feasible set, i.e., the set of all parameter vectors that are consistent with bounded-error data, in a guaranteed way. Now, the prior feasible set can generally be de¯ned by nonlinear inequalities and dealing with them makes it possible to avoid the pessimism introduced by an outer approximation . For such sets de¯ned by nonlinear inequalities, classical robust approach cannot be used in a guaranteed way and a speci¯c methodology has to be developed..

In this paper, we shall consider the general situation where A is described by a set of nonlinear inequalities. Since the model is input-output linear, the stability domain B (set of all p associated with a stable model) can also be de¯ned by nonlinear inequalities that may be obtained by using the Routh criterion for linear continuoustime models or the Jury criterion for linear discrete-time models. The problem of proving the stability of M(p) amounts to prove the inclusion of two inequality sets, namely A ½ B. Interval analysis [START_REF] Moore | Methods and Applications of Interval Analysis ,S I A M[END_REF] will be shown to be particularly suited to solve this problem.

Basic notions of interval analysis are introduced in the following section. In Section 3, a new algorithm capable of proving the inclusion of two inequality sets is presented.

A convergence analysis is provided in Section 4. In Section 5, the algorithm is applied to the stability analysis of an uncertain discrete-time model where some informations are available on the parameters through bounded-error data. The complexity of the algorithm with respect to the number of parameters is illustrated with the robust stability analysis of an uncertain continuous-time model.

2I n t e r v a l a n a l y s i s

Interval analysis is a numerical tool originally developed to quantify the e®ect of ¯nite-precision arithmetic on results obtained by a computer [START_REF] Moore | Methods and Applications of Interval Analysis ,S I A M[END_REF]. At present, it is also used in a ¯nite-dimensional context for global optimization (see e.g. [START_REF] Hansen | Global Optimization Using Interval Analysis,M a r c e lD e k k e r[END_REF]) or to prove formal inequalities (see e.g. [START_REF] Moore | Methods and Applications of Interval Analysis ,S I A M[END_REF]). Interval analysis is based on the notions of boxes and inclusion functions that are now introduced.

A box or vector interval X of R is the Cartesian product of n intervals:

X = x ;x £¢¢¢£ x ;x = X £¢¢¢£X : (2) 
In the sequel, intervals are written with upper-case letters, boxes with bold upper- 

8X 2 IR ; f(X) ½ F(X); (3) 
Let w(X)b et h ew i d t ho ft h eb o xX, i.e. the length of its largest side(s). F is

convergent if, for any sequence of boxes X(k)o fIR , lim w(X(k)) = 0 =) lim w(F(X(k)) = 0 (4)
The computation of a convergent inclusion function associated with any continuous function, de¯ned by an explicit formal expression, is simple (see, e.g. [START_REF] Moore | Methods and Applications of Interval Analysis ,S I A M[END_REF]) and routinely performed by commercially available languages such as C-XSC [START_REF] Hammer | C++ Toolbox For Ver-i¯ed Computing[END_REF].

3P r o v i n g s e t i n c l u s i o n

Let A and B be two compact (closed and bounded) sets of R included in a box X .

The problem to be solved is that of deciding whether A ½ B.S e t sA and B are assumed to be de¯ned by ¯nite sets of inequalities:

A = fx 2 R j f(x) • 0g; B = fx 2 R j g(x) • 0g; (5) 
where f and g are continuous functions. The inequalities have to be understood componentwise. In what follows, R and R denote the sets ] ¡1 ; 0] and ] ¡ 1; 0[ , respectively, where q is the appropriate dimension. If f and g denote the reciprocal function (in a set-theoretic sense) of f and g,t h e n ,

A = fx 2 R j f(x) 2 R g = f (R ); B = fx 2 R j g(x) 2 R g = g (R ): (6) 
A possible approach that could be considered for proving that A ½ B is to bracket A and B between two subpavings (i.e., union of boxes), using set-inversion approaches [START_REF] Moore | Parameter set for bounded-error data[END_REF], [START_REF] Jaulin | Set inversion via interval analysis[END_REF]. Proving the inclusion then becomes trivial. We shall here consider a more e±cient approach that avoid, an unnecessary in-depth characterization of sets A and

B.

Av e c t o rx is said to be bad if x 2 A and x = 2 B. If a bad vector exists, A 6 ½B.

A vector that is not bad is said to be good.Ab o xX is bad if it contains at least one bad vector, otherwise X is good. F and G for f and g, are assumed to be available. The following theorem provides three di®erent basic tests for deciding whether a given box X is good or bad. Step 0 X := X ; Q := ;;

Note that if X ½ B,
Theorem 1 If X is a box of R the center of which is denoted by x,t h e n (i) G(X) ½ R ) X is good (ii) F(X) \ R = ; ) X is good (iii) f(x) 2 R and g(x) = 2 R ) X is bad (7)
Proof (i) If G(X) ½ R ,t h e n ,g(X) ½ R .T h e r e f o r e ,g (g(X)) ½ g (R ). Now, X ½ g (g(X)) ) X ½ g (R )i . e . X ½ B.H e n c e , X is good. (ii) If F(X) \ R = ;, f(X) \ R = ;.N o w , A = f (R ), therefore f(A) ½ R . Consequently, f (X) \ f (A)=;, i.
Step 1 If G(X) ½ R ; go to Step 6;

Step 2 If F(X) \ R = ;; go to Step 6;

Step 3 x =center(X)

Step 4 If f(x) 2 R and g(x) = 2 R ; return "A6 ½B";END:

Step 5 Bisect X and push the two resulting boxes at the end of Q;

Step 6 If Q 6 = ;; pull the ¯rst box of Q into X and go to Step 1;

Step 7 Return "A ½ B". END.

AboxX such that neither of the three conditions (i), (ii) and (iii) are satis¯ed is said to be indeterminate. Since the three basic tests are pessimistic, an indeterminate box might be good or bad. Note that an indeterminate box is necessarily bisected by the algorithm.

4C o n v e r g e n c e a n a l y s i s

If we assume that the algorithm ends, then two conclusions may be reached. G(X(k))6 ½ R ;

F(X(k)) \ R 6 = ;; (f (x(k)) = 2 R )o r( g(x(k)) 2 R ): (9) 
Moreover, since (i) w(X(k)) ! 0, (ii) 8k; x 2 X(k)a n d ( G are convergent,the accumulation point x satis¯es:

g(x) = 2 R f(x) 2 R f(x) = 2 R or g(x) 2 R ( 10 
)
Let us denote by A and B the complementary sets of A and B: 

Since (i) g(x) = 2 R , x 2 B [ B , (ii) f(x) 2 R , x 2 A, (iii) f(x) = 2 R , x 2 A [ A ,a n d (iv) g(x) 2 R , x 2 
y(i)=¡ 1 p (y(i ¡ 1) + p y(i ¡ 2) + 2y(i ¡ 3) + y(i ¡ 4)) ; (13) 
where p =(p ;p ) is the parameter vector. This model is taken from Exercise 16.33 of [START_REF] Rivoire | Exercices d'automatique, commande par calculateur et identi¯cation[END_REF] related to Jury criterion. The initial conditions are given by:

y(¡3) = y(¡2) = y(¡1) = y(0) = 1: (14) 
Moreover, ¯ve experimental data have been collected on the system at times i 2 f1; 2; 3; 4; 5g. The associated data vector is y =(¡2; ¡0:8; ¡0:08; 1:55; 0:85) :

It has been obtained by simulation of ( 13 that transforms a problem of stability for a linear discrete-time system into a set of nonlinear inequalities, is now applied to the model [START_REF] Moore | Methods and Applications of Interval Analysis ,S I A M[END_REF]. We obtain that necessary and su±cient conditions for stability are [START_REF] Rivoire | Exercices d'automatique, commande par calculateur et identi¯cation[END_REF]: The uncertain model M(p) is guaranteed to be stable if the set A de¯ned by the inequality ( 17) is included in the set B de¯ned by inequalities derived from ( 16) by using the Routh criterion. On a DX4-100 computer, the algorithm proved the inclusion for n = 1 to 8. The computing times are given by Table 1.

2 ¡ p ¡ p 1¡jp j j1 ¡ 2p j¡j1 ¡ p j jp (1 ¡ p )(1 ¡ p ) ¡ (1 ¡ 2p )(2 ¡ p )j¡j(1 ¡ p ) ¡ (1 ¡ 2p ) j • 0 

6C o n c l u s i o n

The information available on an uncertain parametric model, as well as its stability domain, can generally be described by nonlinear inequalities that should be satis¯ed by the parameter vector. The problem of proving the stability of the uncertain model amounts to prove that the feasible set is included in the stability domain. Interval analysis has been used to develop a new algorithm able to prove the inclusion. Its convergence properties have been provided and it has been shown that the algorithm is ¯nite, except for degenerated cases. To illustrate the e±ciency of the method, two test cases have been solved. The ¯rst one deals with a discrete-time parametric model where the information for the parameters is available under the form of bounded-error data. Discrete time models involve stability domains de¯ned by nonsmooth inequalities and the feasible set generatedbyabounded-errorapproachisalsode¯ned by nonlinear inequalities. This test-case is just an illustration of the large class of parametric robust stability problems that can be handled by the method. To the best of our knowledge, no others methods in the literature are able to solve this testcase in a guaranteed way. The second one illustrates the behavior of our algorithm when the number of parameters increases. As expected, the complexity seems to be exponential with respect to the number of parameters. The approach considered in this paper seems therefore to be restricted to problems with reasonable dimensions. 

  case letters and vectors with bold lower-case letters. The set of all boxes of R is denoted by IR .Aprincipal plane of X is a symmetry plane of X normal to a side of maximum length. To bisect abo xX means to cut it along one of its principal planes. Abisectiongeneratest w onon-o v erlappingbo xesX and X such that X = X [ X . Let f be a vector function mapping R into R .As e t -v a l u e df u n c t i o nF,d e n e d from IR into IR ,i sa ninclusion function of f if:

  t h e nX is good because it cannot contain one x such that x = 2 B. In the same manner, if X \ A = ;,t h e nX cannot contain one x in A and therefore X is good. The principle of the algorithm to be presented is to partition the prior box of interest X into a set of non-overlapping boxes K,s u c ht h a ta n yb o xX in K is good. If it succeeds in performing such a partition, and since A and B ½ X ,thenA ½ B. Two convergent inclusion functions

  e. X \ A = ;.H e n c e ,X is good. (iii) If f (x) 2 R and g(x) = 2 R ,t h e nx 2 A and x = 2 B.T h e r e f o r ex is bad. Hence X is bad. } In the algorithm to be presented, Q is a queue of boxes, i.e. it has a First-In-First-Out (FIFO) structure. It contains all boxes still to be studied. The initial box X is assumed to enclose the two compact sets A and B.

  If it ends at Step 7, then the initial box X has been partitioned into a set K of nonoverlapping good boxes, and therefore A ½ B. If the algorithm stops at Step 4, then a point x is found such that x 2 A,a n dx = 2 B.T h u sA 6 ½ B. Let C = fx 2 R j h(x) • 0g where h is assumed to be continuous. The border C of C is the set de¯ned by C = fx 2C j9i 2f1;:::;dim hgjh (x)=0g: (8) If @C denotes the boundary of C,then@C ½ C and, in generic situations, @C = C . For h(x)=(x + x )(x + x ¡ 1) where dim h =1; we have 0 2 C but 0 = 2 @C. It is therefore an example of a degenerated situation. A vector that belongs to C ,e v e n if it is deep inside C,c a nc o m eo u to fC if h is in¯nitesimally moved. Theorem 2 Let A and B be the borders of A and B.I fA ½ B and A\B = ;, the algorithm proves the inclusion in a ¯nite time. Proof The proof is by contradiction. If the algorithm never stops, it generates a nested sub-sequence of indeterminate boxes X(k) that accumulates over a point x. Since X(k) is bisected, it does not satisfy any of the conditions required by Step 1, Step 2 and Step 4 i.e. X(k)s a t i s ē st h et h r e ef o l l o w i n gc o n d i t i o n s .
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 3 B; (10) is equivalent to x 2 D where: D =(B [ B ) \ A \ (A [ A [ B): (11) Using Boolean notation, D =(B + B )A(A + A + B)=(BA + B A)(A + A + B) = BAA+BAA +BAB+B AA+B AA +B AB: Since AA = ;;AA = A ;BB = ;, BB = B ,andA +A = A; we get D = A B+AB .N o w ,A ½ B and A\B = ;. Therefore, D is empty and the accumulation point x cannot exist. The algorithm is thus a ¯nite algorithm. } Theorem If 9x j x 2A ¡ A and x = 2 B,t h ea l g o r i t h mp r o v e st h a tA 6 ½ B in an i t et i m e . Proof Since x 2A ¡ A and x = 2 B,w eh a v e f (x) 2 R and g(x) = 2 R : (12) Note that any box that contains x cannot be eliminated via Step 1 or Step 2. If the algorithm never stops, the algorithm generates a nested subsequence X(k) of indeterminate boxes that contain x.T h u s ,t h es e q u e n c ex(k)=c e n t e r ( X(k)) converges to x. Since f and g are continuous, f(x(k)) ! g(x): From (12), there exists an integer k such that f(x(k )) 2 R and g(x(k )) = 2 R .F o rs u c k "A 6 ½B". This is in contradiction to the fact that the algorithm never stops. } 5T e s t c a s e Te st case 1: Consider the discrete-time model

  ) for p =2 :5a n dp =1 : Let us denote by y (p)t h ev e c t o ro fa l lm o d e lo u t p u t sh o m o g e n e o u st ot h ed a t av e c t o ry .T o be feasible, p should satisfy j y (p) ¡ y j• e ;i 2f 1; 2; 3; 4; 5g.T h e f e a s i b l e set A(e ) is then de¯ned by a set of nonlinear inequalities f(p) • 0 where its i component is f (p)= j y (p) ¡ y j¡ e .T h eJ u r yc r i t e r i o n ,af o r m a lp r o c e d u r e

  Over the box P =[ 1 0 ; 10 ] £ [¡10 ; 10 ], for e =0 :302, in 7.2 seconds on a DX4-100 computer, the algorithm proves that all feasible models are stable, i.e. it proves that A(0:302) ½ B.2 4 5 5g o o db o x e sh a v eb e e ng e n e r a t e d .F o re =0:303, in 7.3 seconds, the algorithm proves that A(0:303) 6 ½ B.T h e m o d e l a s s o c i a t e d with p =(2:305 1:188) is found to be feasible and unstable. The generated paving around p is represented on Fig. 1. Dark gray boxes are proved to be unfeasible and light gray boxes are proved to be stable. The algorithm ¯nds a bad box, drawn in white. In the black region are located all boxes that have not been studied, but whatever happen in this region cannot change the conclusion. Possible location for Figure 1. Assume now that 20 measurements have been generated (instead of 5). The algorithm proves that A (0:302) ½ B in 6.5 seconds (the subscript for A indicates the number of measurements) instead of 7.2 seconds. The number of boxes is now reduced to 999: more informations are available for p, i.e. A ½ A ; and it is much more easy for our algorithm to prove that A ½ B: Note that since the number of measurements is bigger, the computing time for one box has increased. Te st ca se 2: The aim of this test case is to show the behavior of the algorithm with respect to the dimension of the parameter space. Consider a continuous-time model, the characteristic polynomial of which is given by: P (p;s)=s + p s + ¢¢¢+ p s + p (16) The nominal value p for p is obtained by setting P (p;s)=(s +1) : For exampl e, i f n =3 ; p =( 3 3 1 ) .L e tu sa s s u m et h a tt h ep a r a m e t e rv e c t o rp of the model is known to satisfy kp¡pk¡0:2 • 0( 1 7 )

Figure 1 :

 1 Figure 1: Paving generated, for e =0 :303; in the (p ;p )-space, for proving that the model may be unstable.

TABLE CAPTION Table 1 :

 CAPTION1 Computing time with resp ect to the dimension in Test-case 2.

Table 1

 1