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Abstract 

The valence states of Mg–Al alloys are compared to those of reference materials (pure Mg 

and Al metals, and intermetallics). Two methods based on x-ray emission spectroscopy are 

proposed to determine the phases and their proportion: first, by analyzing the Al valence 

spectra of the Mg-rich alloys and the Mg valence spectra of the Al-rich alloys; second by 

fitting with a linear combination of the reference spectra the Al spectra of the Al-rich alloys 

and the Mg spectra of the Mg-rich alloys. This enables us to determine that Al and Al3Mg2 are 

present in the 0 – 43.9 wt% Al composition range and Mg and Al12Mg17 are present in the 

62.5 – 100 wt% Al composition range. In the 43.9 – 62.5%Al range, the alloy is single phase 

and an underestimation of the Al content of the alloy can be estimated from the comparison of 

the bandwidth of the alloy spectrum to the bandwidths of the reference spectra. 
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1. Introduction 

Magnesium alloys are of current interest owing to their low density and high 

mechanical properties which make them attractive for the transportation industry. Indeed, 

their use is expected to reduce the weight of vehicles and the fuel consumption, which will 

reduce air pollution and make the use of automobiles more economical. However, magnesium 

has a hexagonal closed-packed structure that impedes its ductility at room temperature and 

this limit its applicability. In order to improve its ductility, new alloys must be developed and 

an understanding of its band structure with alloying is needed in that regard. The main 

alloying element of Mg alloys is aluminum. Also, magnesium is an important alloying 

element of aluminum alloys. Therefore, studying the band structure of Mg–Al alloys is as 

important in a practical perspective as it is in a fundamental point of view. 

We study the emission bands of various dilute Mg alloys and Mg–Al alloys in a large 

range of composition from x-ray emission spectroscopy (XES) at high spectral resolution. In 

this work, we consider as a dilute alloy, a metal with less than 6% of another metal. The 

observed photon energy distribution is the valence density of states weighted by the transition 

probability and convoluted by the natural width of the core level and the instrumental 

function. Since the transition probability is almost constant along the valence band and the 

natural width and the instrumental function are small with respect to the valence bandwidth, 

the observed photon energy distribution describes the occupied valence density of states. 

These valence states are sensitive to the chemical environment of the emitting atoms and then 

the shape of the emission bands changes depending on the neighbors of the Mg or Al emitting 

atoms. 

The emission bands of the alloys are compared to those of references: the pure metals 

and the two Mg–Al intermetallics. The aim of the study is two fold, to measure the effect of 
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alloying on the band structure of Al and Mg and also to see if it is possible to determine the 

composition of an alloy directly from its x-ray emission band or by comparing it to those of 

the references. The effect of a low temperature (400°C) annealing on the emission bands is 

also reported. X-ray diffraction (XRD) and scanning electron microscopy (SEM) are used to 

complement the XES results. 

2. Materials and methods 

2.1. Sample preparation 

For a given alloy, pure rods of the elements were cut and weighed precisely for 

obtaining a given composition. They were put in a separate graphite cubicle that was molten 

in a Lindberg furnace under argon atmosphere at a temperature of 750 ºC. The liquid alloy 

was cast in a copper mold that was water cooled. 

The compositions of the samples were determined by inductively coupled argon 

plasma-atomic emission spectrometry (ICAP-AES). The aimed composition is the actual one 

to within ±2%. The main impurities in the samples are found to be Fe (0.01-0.1%), Zn (0.04-

0.06%) and Si (0.007-0.03%). The other impurities are less than 0.003%. All the given 

concentrations are weight concentrations unless otherwise specified. 

All the alloys were cut and polished down to the 0.1 m level for their observation in 

the scanning electron microscope and their XES analysis. To see if the casting microstructure 

has an effect on the Mg K and Al K emission bands, some alloys were annealed for 6 days 

at 400°C (673 K) in an argon atmosphere. 

2.2. X-ray diffraction 

The XRD analysis was performed at a wavelength of 0.154 nm using the Cu K 

radiation. XRD was used to determine the phases present in the alloys. 
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2.3. Scanning electron microscopy 

The SEM analysis was performed on the Hitachi SN-3000 using backscattered 

electrons and x-ray microanalysis with an Oxford EDS detector. Quantitative x-ray 

microanalysis was performed using a new intensity ratio method (Gauvin et al., 2006a). This 

new method is based on the ratio of the net x-ray intensity of the Mg K line to the sum of the 

net intensity of the Mg K and the Al K lines. This ratio of net intensities is then related to 

the Mg composition of the alloy with a calibration curve computed with the Monte Carlo Win 

X-ray program (Gauvin et al., 2006b). The Al composition is them obtained by difference. 

The energy of the incident electrons was set to 25 keV. This energy was mainly chosen as a 

compromise between imaging with backscattered electrons and microanalysis. Only the 

overall composition of the alloys has been measured by performing x-ray microanalysis at 

low magnification (x50). 

2.4. X-ray emission spectroscopy 

The XES experiments are performed in home built high resolution x-ray spectrometer 

(Bonnelle et al., 1994) working in the WDS mode. The sample is placed under vacuum and 

excited by an electron beam. Following the ionization of the atoms present in the sample, x-

rays are emitted (Azaroff, 1974; Bonnelle, 1987), then dispersed and detected in a high-

resolution bent crystal spectrometer. We have measured the Al K and Mg K emission 

bands coming from the aluminum and magnesium atoms present in the samples. They 

correspond to the 3p-1s transition (1s ionization threshold at 1560 and 1300 eV for Al and 

Mg, respectively) and describe the occupied valence states having the Al 3p or Mg 3p 

character. 

The advantage of studying these emissions is that the transitions imply valence 

electrons that participate directly to the chemical bond (Vergand et al., 1989; Jonnard et al., 

1998; Jarrige et al., 2002; Jonnard et al., 2004; Kashiwakura & Nakai, 2004). Then, the 
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electronic transitions that take place from the valence band to an inner shell are very sensitive 

to the chemical environment of the emitting atom. In the present work, we compare the 

spectra of the various studied alloys to those of the pure metals (Al and Mg) and their main 

intermetallics (Al3Mg2 and Al12Mg17). Two other advantages come from the involvement of 

an inner shell in the emission process. First, this makes XES characteristics of the emitting 

atom, i.e. if one observes the Mg (Al) emission, there will be no interference from the 

emission coming from the Al (Mg) atoms. Second, this makes XES a local probe, i.e. it is 

sensitive to the first neighbors around the emitting atoms but almost not to the long range 

order. 

The size of the electron beam is about 1 cm
2
. The energy of the incident electrons was 

set to 7 keV in order to probe the bulk of the samples. The analyzed thickness is estimated to 

be about 500 nm. The electron density impinging on the sample is sufficiently low 

(1 mA/cm
2
) to avoid any evolution of the sample under the electron beam. This is confirmed 

by checking that the shape and intensity of the studied emission remain unchanged throughout 

the measurement. For each spectrum, a linear background is subtracted. The maximum of 

each spectrum is also normalized to unity. 

3. Results 

3.1. Pure metals and intermetallics 

We present in Figure 1 the Mg K and Al K emission bands of pure metals and 

intermetallics. They describe, respectively, the distribution of the occupied Mg 3p and Al 3p 

states within the valence band. For each spectrum a discontinuity appears toward the high 

photon energies that marks the position of the Fermi level. It can be seen that the emission 

band of each compound has its own shape and width. This will enables us to determine in the 

alloy samples the contribution of each phase. It is observed that the widths of the Mg 



 

 

 6 

emission band with decreasing Al content. The same effect, but less pronounced, is observed 

for the Al emission band, i.e. the width decreases with the Al content. The presented spectra 

are in agreement with spectra obtained previously on similar apparatus (Neddermeyer, 1972, 

1973; Nemoshkalenko, 1972). 

Toward the high photon energies, it is observed for the pure metals that the 

background intensity is lower than that toward the low energies. This is due to the self-

absorption effect : indeed above the Fermi level exists a strong density of unoccupied states, 

leading to a strong jump of the absorption coefficient. Thus, when the energy of the emitted 

photon is higher than the absorption edge (about 1560 and 1300 eV for Al and Mg 

respectively), a large part of the intensity is absorbed within the sample. This explains why 

the background is lower at high photon energy than at low photon energy (Bonnelle, 1987). 

The jump in the region of the Mg (Al) 1s absorption edge is stronger when the Mg (Al) 

content is higher within the sample. 

3.2. Dilute Mg alloys 

The Mg K and Al K emission bands of various Mg dilute alloys are presented in the 

figure 2. For MgLi (6% Li) the Mg K emission is very close to that of pure Mg. The same is 

true for the spectrum of the MgAlZn (3% Al, 1% Zn) alloy except in the region 1290-1295 eV 

where some extra intensity is observed. This is probably due to an oxidation of the sample 

because this photon energy range corresponds to the maximum of the Mg K band from MgO 

(figure 2a). The MgO spectrum is obtained from a single crystal cleaved along the (100) 

plane. This is also confirmed by observing the chemical state of the Al atoms in the 

superficial zone of this sample, i.e. by using low energy electrons of 2.5 keV probing the first 

70 nm of the sample. In this case the Al K emissions shows the feature characteristic of 

oxidized Al. This is not observed for the other samples. 
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Concerning the Al K emission bands of MgAl (3% Al) and MgAlZn (1% Al, 

1% Zn), a strong decrease of the bandwidth is observed (Figure 2b) as expected from the 

evolution of the bandwidth with the Al content in the reference spectra. In these cases, the 

quality of the spectra is poorer because of the low counting statistics due to the small number 

of Al atoms in these samples. 

3.3. AlMg alloys 

Figure 3 shows the Mg K and Al K emission bands of the Mg–Al alloys compared 

to those of the pure metals. As expected from the analysis of the reference spectra (Figure 1) 

the bandwidth decreases with the Al content of the alloy. It is observed that the band shape is 

close to that of the pure Mg (Al) when the Mg (Al) concentration is high in the alloy. When 

the Al concentration decreases (Fig. 3c), the shape of the top of the Al K emission becomes 

similar to that of the intermetallics. The self-absorption effect of the Mg (Al) band is stronger 

when the Mg (Al) content is higher. 

There is no significant evolution of their spectrum shape with the annealing despite a 

refinement of their grain size after the annealing. This is true for the other alloy compositions. 

Three samples have been analyzed by SEM: Al85Mg15, Al50Mg50 and Al30Mg70. The 

corresponding images are presented in Figure 4. It is observed that the Al-rich and Mg-rich 

alloys are two-phase whereas the Al50Mg50 sample is made of a single phase. An energy 

dispersive spectrometry analysis was performed to determine the mean weight composition of 

the samples. For the studied samples, the overall composition is in agreement with the one 

expected from the preparation. Formally, the quantitative analysis method that was used is 

valid for homogeneous materials only and since figure 4 shows that many alloys have two 

phases, the overall compositions are an approximation in these cases and the agreement could 

be fortuitous. 
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4. Discussion 

4.1. Dilute Mg alloys 

The shape of the Mg K band of the dilute alloys is very close that of pure Mg 

(Figure 2a). This shows that the majority of Mg atoms are not disturbed by the foreign atoms 

(Li, Al or Zn) due to the low concentration. Because in the dilute Mg alloy the Al atoms are 

mostly surrounded by Mg atoms (and not by Al atoms as in Al metal) and because the shape 

of an emission band is sensitive to the chemical state of the emitting atom, the shape of the 

Al K emission of Al within the Mg alloy is different from that of Al within Al metal. In this 

case, the Al 3p states strongly interact with the Mg 3p states leading to an Al K spectrum of 

the dilute alloy looking like the Mg K spectrum of Mg metal. 

It is not possible to determine the composition of the dilute alloys from their valence 

band because of the lack of sensitivity of the bandwidth for small concentration changes. 

Then, for the Mg emission, the shape of the band of the alloy is very similar to that of pure 

Mg, and for the Al emission band the statistics is too poor to distinguish too close 

concentrations. 

4.2. AlMg alloys 

4.2.1. Effect of annealing 

The 400°C annealing has no particular effect on the emission bands of the studied 

alloys (not shown). This means that the local arrangement around the Mg or Al does not 

evolve upon this annealing, even if an evolution of the long range order occur by the increase 

of the grain size of the alloys. There is no significant evolution of the short range order that 

could lead to some modification of the shape of the emission bands. In fact the alloys keep 

their electronic structure. 
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4.2.2. Analysis from the bandwidth of the emission band 

Figure 5 presents the evolution of the bandwidths of the Mg and Al emission from the 

Mg–Al alloys as a function of the Al mass concentration within the samples, in comparison to 

those of the pure metals and intermetallics. The bandwidth is determined within ±0.1 eV. The 

bandwidths of the dilute Mg alloys are also indicated. Our measurements of the Al K 

bandwidth follow the same trend than those of Tanaka and Matsumoto (Tanaka & 

Matsumoto, 1974) but are systematically lower. This difference is probably due to a small 

oxidation of the samples (at least of the pure Al) studied by these authors and to the use of a 

spectrometer having a lower spectral resolution than ours. 

In the concentration range between the two intermetallics (43.9–62.5% Al), it is 

observed that the Mg and Al bandwidths of the alloys follow those of the references, but are 

lower than these latter by some tenths of eV. Outside this latter concentration range, the 

bandwidths are found to be almost constant around about 5.6 eV for the Mg emission toward 

the high Al content and 3.6 eV for the Al emission toward the low Al content, values close to 

those of the Mg band of Al3Mg2 and of the Al band of Al12Mg17, respectively (see the 

horizontal lines in Figure 5). If the bandwidth could be directly used to determine the alloy 

concentration, then we would deduce, for the Al85Mg15 sample for example, that this alloy has 

a composition close to that of the Al3Mg2 intermetallics (i.e. 62.5 wt% Al) from its Mg 

emission bandwidth. Of course, this is not the case. In fact, this means that this sample is 

made of two phases : the Al3Mg2 intermetallics and the pure Al. Indeed, when looking at the 

Mg emission band, there can be no interference with the Al spectrum of pure Al (Cf. Section 

2.4) so the Mg alloy bandwidth is that Al3Mg2. Making the same reasoning for the other 

samples, one can deduce that for concentrations from 0 to that of Al12Mg17 (i.e. 43.9% Al) 

there exist both phases : Mg and Al12Mg17; for concentrations from that of Al3Mg2 (i.e. 62.5% 

Al) to 1 there exist both phases : Al and Al3Mg2. This is confirmed by the XRD 
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measurements. As an example, we display in Figure 6 the diffraction patterns of an Al-rich 

and a Mg-rich alloy. 

From the Al and Mg weight fractions of the samples and knowing the involved 

intermetallic compound and pure metal, we calculate for the samples having an Al fraction 

outside the 43.9–62.5% range, the molecular fractions of the intermetallics and the pure metal, 

i.e. the relative contribution of the Al and intermetallics molecules (Al3Mg2 or Al12Mg17), as 

well as the mass fraction of each phase. They are indicated in Table I for the concerned 

samples. From both (intermetallics and metal) calculated molecular fractions, by taking into 

account the stoichiometry, we calculate these contributions normalized with respect to the 

number of Mg or Al atoms. Then, a spectrum of the Al (Mg) band for the Al (Mg)-rich alloys 

is computed as a weighted sum of the Al (Mg) and Al3Mg2 (Al12Mg17) spectra, the weights 

being the previously determined contributions. The width of the computed spectra are 

determined and compared in Table I to the experimental ones of the corresponding alloys. 

When there exist more than one sample for a given concentration, the experimental values are 

the mean of the bandwidth for each sample. It can be seen in Table I that the calculated and 

experimental bandwidths are in relatively good agreement. However, due to the lack of 

precision on the experimental bandwidths, it is not possible to accurately discriminate 

between the various alloys. 

Inside the 43.9–62.5% Al concentration range, the Al and Mg bandwidths vary with 

the composition. This can be explained in two ways: 

- the two intermetallics at least are present and the observed width results from the 

composition of the bandwidths of the various corresponding spectra; 

- there is one compound and the observed width is characteristic of the studied 

composition. 
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Of course, as indicated by the SEM image (Figure 4) the second case takes place with our 

samples. Thus to determine the composition of the alloys one should use Figure 5 as an 

abacus. But because the alloy curves is shifted downward with respect to the reference curves, 

this would lead to an underestimation of the alloy concentration of about 10%. 

4.2.3. Analysis of the fitted emission bands 

In order to determine the phases within the alloys, we propose to fit the alloy spectra 

by a weighted sum (linear combination) of the reference spectra. This is now routinely done 

for the study of complex materials (Kurmaev et al., 1995; Iwami et al. 1997; Galakhov, 2002; 

Jonnard et al.; 2005; Maury et al., 2006a; Maury et al., 2006b; Salou et al., 2008). 

As an example, we present in Figure 7 the fit of the Mg K band of a magnesium-rich 

alloy (Al30Mg70) and that of the Al K band of an aluminium-rich alloy (Al90Mg10). We also 

present on the same figure, the fits for an alloy (Al50Mg50) having an Al content intermediate 

between those of Al3Mg2 and Al12Mg17. The fits are made with the minimal number of 

possible references. We collect in Table II for all the alloy samples and for both emission 

bands the molecular fractions of the various references. When there is more than one analysis 

for a sample, the mean values are indicated in the table. From the different contributions, the 

mass composition deduced from one emission is compared to the one deduced from the other 

emission and to the nominal composition. The Mg emission of the Al90Mg10 alloy is not fitted 

because of the poor statistics of the spectrum. 

Inside the concentration range of the intermetallics (43.9–62.5% Al), the alloy is 

single phase. Thus, it is not possible to fit the spectra of these alloys because the references 

(intermetallics and pure metals) are absent. Outside the concentration range of the 

intermetallics (0–43.9% Al and 62.5–100% Al), as expected from the analysis of the 

bandwidths (Table I), the Mg K band of the Mg-rich alloys can be fitted by a mix of pure 

Mg and Al12Mg17 spectra, and the Al K band of the Al-rich alloys can be fitted by a mix of 
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pure Al and Al3Mg2 spectra. The calculated mass fraction of the samples deduced from the 

relative contributions of the metal and the intermetallics is in agreement with the nominal 

composition within about 5%. This is why the same fit of the Al band is found for the three 

alloys: Al80Mg20, Al85Mg15 and Al90Mg10. 

From the previous analysis based on the bandwidths and from these fits, one would 

expect to find only the Al12Mg17 intermetallics contribution for the fit of the Al K band of 

the Mg-rich alloys and only the Al3Mg2 contribution for the fit of the Mg K band of the Al-

rich alloys. In fact this is not true for two reasons : 

- even if each reference spectrum has its own particular shape, these shapes are 

somewhat sufficiently close so that it is possible to introduce a small fraction of 

another spectrum in a fit without changing the overall agreement; 

- when the concentration of Al (Mg) is low, the counting statistics of the Al (Mg) 

band is poorer than that of the Mg (Al) band, so that it is possible to find more than 

one contribution to the Al (Mg) emission band. 

Thus, in the concentration range outside those of the intermetallics, it is preferable to only 

consider relevant the fit of the Mg K band for the Mg-rich alloys and the fit of the Al K 

band for the Al-rich alloys. 

The Mg and Al L2,3 (3sd – 2p transition) emission bands could have been used for this 

kind of study. Their shape is very different from that of the K bands because they do not 

involve the same valence states. For both K and L emission bands the same kind of evolution 

is observed as with the Al fraction : progressive change of the shape from one composition to 

another and increase of the bandwidth. Thus, the L emission bands could be treated in the 

same way we have done for the K emission bands. In fact the L bands have already been used 

to study the electronic structure of various Al and Mg alloys (Das Gupta & Wood, 1955; Gale 

& Trotter, 1956; Appleton & Curry, 1965; Nemoshkalenko, 1972; Neddermeyer, 1972, 1973; 
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Szasz et al., 1988) as well as quasi-crystals involving Al and Mg atoms (Fournée et al., 1999; 

Belin-Ferré et al., 2000). However, the L emission bands of the light metals are in the ultra-

soft x-ray range and require a grazing incidence x-ray spectrometer in order to obtain the high 

spectral resolution necessary to be sensitive to the chemical state. 

Other emissions from the Mg and Al spectra could also be envisaged, such as the K 

atomic lines. They do not involve valence electrons so their shape is not sensitive to the 

chemical states of the emitting atoms but the position of their maximum is sensitive to it 

(Day, 1963). However the shifts are quite small, a few tenths of eV. Nevertheless these lines 

are very intense and so could be useful to study the electronic structure of dilute alloys 

(Jonnard et al., 2003). 

5. Conclusions 

When the overall concentration of the AlMg alloys is between 0–43.9% Al and 62.5–

100% Al, they are made of Al and Al3Mg2 for the Al-rich alloys and Mg and Al12Mg17 for the 

Mg-rich alloys. It is possible to determine the composition of an Al-rich alloy either from the 

measure of the bandwith of its Mg K emission or from the fit of its Al K emission with the 

Al and Al3Mg2 reference spectra. It is possible to determine the composition of a Mg-rich 

alloy either from the measure of the bandwith of its Al K emission or from the fit of its 

Mg K emission with the Mg and Al12Mg17 reference spectra. The composition can be 

determined within a 5% uncertainty. Inside the concentration range of the intermetallics 

(43.9–62.5% Al), the AlMg alloys are made of one phase. In this case an Al underestimated 

composition can be obtained from the examination of the bandwidths. 
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TABLES 
 

Table I : For the alloys having an Al mass fraction outside the range of the intermetallics (0-

43.9% Al - 62.5-100% Al), molecular fractions (%) and mass fractions (wt%) of the 

intermetallics and the pure metal and full width at half maximum (∆E) of the emission band 

calculated from these contributions compared to the experimental width of the alloy band. If a 

sample is made of x molecules of the phase X and y molecules of the phase Y, then the 

molecular fraction of phase X is x/(x+y) and that of phase Y is y/(x+y). The mass fraction of 

phase X is xMX/(xMX+yMY) and that of phase Y is yMY/(xMX+yMY), where MX and MY are 

respectively the molar weight of X and Y species. In our case X and Y can be Al, Mg, Al3Mg2 

or Al12Mg17. 

Sample % Mg 

%wgt 

% Al12Mg17 

%wgt 

% Al3Mg2 

%wgt 

% Al 

%wgt 

∆E (eV) 

cal 

∆E (eV) 

exp 

Al15Mg85 98.3 

65.9 

1.7 

34.1 

- - 3.3 3.5 ± 0.1 

Al30Mg70 93.4 

31.7 

6.6 

68.9 

- - 3.7 3.8 ± 0.1 

Al65Mg35 - - 74.3 

93.3 

25.7 

6.7 

5.0 4.7 ± 0.1 

Al70Mg30 - - 45.4 

79.9 

54.6 

20.1 

5.1 5.1 ± 0.1 

Al80Mg20 - - 19.2 

53.3 

80.8 

46.7 

5.2 5.0 ± 0.1 

Al85Mg15 - - 12.2 

40.0 

87.8 

60.0 

5.2 5.2 ± 0.1 

Al90Mg10 - - 7.0 

26.6 

93.0 

73.4 

5.3 5.2 ± 0.1 
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Table II : Molecular fractions (%) of the pure metals and the intermetallics as determined 

from the fit of the Al and Mg K emission bands of the alloys. For each fit, the weight 

composition of the sample is deduced taking only the two phases considered in the fit. The 

relevant fits are indicated in bold style. For instance, for an alloy fitted by a weighted sum 

with a c1 contribution of the Mg spectrum and a c2 contribution of the Al12Mg17 spectrum 

(with c1 + c2 = 1), the molecular fraction of the Mg phase is c1/(c1+c2/17) whereas that of 

the Al12Mg17 phase is (c2/17)/(c1+c2/17). 

 

Samples 

Mg K fit composition Al K fit composition 

% 

Mg 

% 

Al12Mg17 

% 

Al3Mg2 

 % 

Al3Mg2 

% 

Al12Mg17 

% 

Al 

 

Al15Mg85 95.7 4.3 - Al25Mg75 - 37.9 62.1 Al47Mg53 

Al30Mg70 91.5 8.5 - Al32Mg68 - 45.7 54.3 Al46Mg54 

Al65Mg35 12.0 - 88.0 Al61Mg39 85.9 - 14.1 Al64Mg36 

Al70Mg30 - - 100 Al63Mg37 85.9 - 14.1 Al64Mg36 

Al80Mg20 13.3 - 86.7 Al61Mg39 19.0 - 81.0 Al80Mg20 

Al85Mg15 6.0 - 94.0 Al62Mg38 19.0 - 81.0 Al80Mg20 

Al90Mg10 - - -  19.0 - 81.0 Al80Mg20 

 



 

 

 21 

FIGURE LEGENDS 

 

Figure 1 : Mg K (a) and Al K (b) emission bands of pure metals and intermetallics. 

Figure 2 : Mg K (a) and Al K (b) emission bands of various dilute alloys compared to 

those of pure metals and MgO. MgLi : 6% Li; MgAlZn : 1 or 3% Al and 1% Zn; MgAl : 3% 

Al. 

Figure 3 : Mg K (a,b) and Al K (c,d) emission bands the AlMg alloys compared to those of 

the pure metals. 

Figure 4 : Scanning electron microscope image of the Al85Mg15 (a), Al50Mg50 (b) and 

Al30Mg70 (c) alloys taken with backscattered electrons. 

Figure 5 : Full width at half maximum of the Mg K and Al K emission bands as of 

function of the Al mass fraction for the intermetallics and the pure metals (references) and for 

dilute Mg and AlMg alloys. The lines are to guide the eyes. The upper horizontal line is the 

mean of the Mg K bandwidths of alloys between Al70Mg30 and Al90Mg10. The lower 

horizontal line is the mean of the AlK bandwidths of alloys between Al15Mg85 and Al30Mg70. 

Figure 6 : XRD patterns of the Al85Mg15 (a) and Al15Mg85 (b) alloys compared to the 

positions of the peaks of the reference materials: Al, Mg, Al3Mg2 and Al12Mg17. 

Figure 7 : Fits of the Mg K (a,c) and Al K (b,d) emission bands of Al30Mg70 (a), Al90Mg10 

(b) and Al50Mg50 (c,d), by a weighted sum of the reference spectra. 
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