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Abstract

In the context of bounded-error estimation, it is customary to assume that
the error between the model output and output data should lie between some
known prior bounds. In this paper, it is also assumed that the factors charac-
terizing the experiments that have been carried out (e.g., measurement times)
are uncertain, with known prior bounds. An algorithm based on interval analy-
sis is used to characterize the set of all values of the parameter vector to be
estimated that are consistent with these hypotheses. This is performed in a
guaranteed way, even when the model output is a nonlinear function of the

parameters and factors characterizing the experiments.
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1. Introduction

Bounded-error parametric estimation (or parameter bounding) has received a renewed
attention in the last decade, see, e.g., (Walter, 1990; Combettes, 1993; Deller et al.,
1993; Norton, 1994, 1995; Milanese et al., 1996; Walter and Pronzato, 1997) and the
references therein. Of the reasons for this interest, we shall quote only two. First,
the approach can deal with deterministic structural errors, not adequately described
by random variables. Second, it is well suited to the guaranteed characterization of
parameter uncertainty, a prerequisite for a number of methods in robust control. It
is customary to assume that the errors between the model output and output data
should lie between some known prior bounds and to try to characterize the set of
all values of the parameter vector that are consistent with this hypothesis. Most

often, no other type of error is taken into account, with the notable exception of the



errors-in-variables approach, mostly developed in the context of linear estimation,
where all components of the regressor vector are assumed to be uncertain. In this
paper, we deal with models whose output may be nonlinear in their parameters. It is
assumed that the factors characterizing the experimental conditions under which the
output data have been collected are uncertain, and that prior bounds are available
on their possible values. The simplest example of such a situation is when the model
output depends on time and each measurement time ¢; is only assumed to belong to
some known interval T}, but the same approach applies if the measurements depend
on a space variable or on values of some input factors. Let t € R™ be the vector of
all experimental factors on which the collected output data depend. Our aim is to
take into account uncertainty about the values taken by t and to characterize the set
of all values of the parameter vector p € R™ that are consistent with the available
information. This will be performed in a global and guaranteed way by employing
the algorithm SIVIA (Set Inverter Via Interval Analysis) introduced in (Jaulin and
Walter, 1993a, 1993b). In the context of uncertain experimental factors, proving that
a given box in parameter space is inside or outside the solution set (a task that is
at the core of SIVIA) will require specific developments. The paper is organized as
follows. The next section states the problem to be considered in mathematical terms.
A new version of SIVIA adapted to the present context is described in Section 3.
It involves two routines INSIDE and OUTSIDE, which are based on tools briefly
presented in Section 4. The convergence of the algorithm is analyzed in Section 5

before reporting the results obtained on a test case in Section 6.



2. Problem statement

The model to be considered is some algorithm to compute the model output y,, € R™
as a function of p and t. We assume that the n,-dimensional parameter vector p is
consistent with the data collected during the ith elementary experiment (i = 1, ..., m)
if and only if y,,(p, t) belongs to ); for some t in 7;, where ); and 7; are known sets.
YV; and 7; respectively characterize the uncertainty about the ith output data and
associated experimental factors; they may be derived from point measurements and
bounds on the acceptable errors on these measurements. Bounded-error estimation
then aims at characterizing the posterior feasible set S, defined as the set of all p’s

consistent with all data and given by

S={pecRm

Vie{l,.., m},3t € T, | ym(p,t) € Vi}. (2.1)

Characterizing S can be cast into the framework of errors-in-variable estimation,
to which relatively little attention has been paid in the literature about parameter

bounding. When the model output is linear in p, it can be written as

ym(P,t) = R(t)p, (2.2)

where the matrix of regressors R/(t) is independent of p. If, moreover, y,, is scalar and
R(t) = t7, i.e., each component of the regressor vector corresponds to an uncertain

experimental factor, then

Ym(P,t) = t"p, (2.3)

and the problem of characterizing S can be solved exactly with the technique de-

scribed in (Cerone, 1991, 1996). Ellipsoidal outer approximations of this set can also



be computed, see, e.g., (Norton, 1987; Clément and Gentil, 1990; Pronzato and Wal-
ter, 1994; Veres and Norton, 1996). When the errors on the components of the
regressor vector are no longer independent, for instance when dealing with output
error models with an autoregressive part, the same approach leads to the construc-
tion of sets that can only be guaranteed to contain S. We shall here consider the
more general situation where y,,(p,t) may be nonlinear in p and t. To the best of
our knowledge, it is the first attempt to provide guaranteed and accurate results in
such a nonlinear context. (Estimating parameters in nonlinear models with errors
in variables has been considered in the context of least squares for many years, see,
e.g., (Schwetlick and Tiller, 1985), but the results are obtained by local methods and
thus not guaranteed.) For the sake of simplicity, we shall assume that (i) there is
only one experimental factor, which we shall denote by ¢ and call time, although it
may have some other meaning; (ii) the system to be considered has only one scalar
output at any given time; (iii) the feasible sets 7; and ); are intervals, denoted by T;
and Y;, and (iv) the model output y,,(p,t) is continuous in p and t. The guaranteed

characterization of S, now defined by

S={p|Vie{l,..m},3t T, ynlp,t) € Yi}, (2.4)

remains a nontrivial problem since deciding whether a given vector p belongs to S is

already complicated. Define the ith error function by

ei(p,t) = ym(p,t) — center(Y;), t € T;. (2.5)

If e*** denotes the radius of Y;, the posterior feasible set can also be defined by

S={p|Vie{l,..,m},3t € T; such that |e;(p,t)| < e"**}. (2.6)



As an illustrative test case, consider an estimation problem derived from (Milanese
and Vicino, 1991) and (Jaulin and Walter, 1993b). Table 1 gives ten pairs (7},Y;)
of feasible interval data. In (Milanese and Vicino, 1991) and (Jaulin and Walter,
1993b), the measurement times were assumed to be known exactly. In contrast, it
is assumed here that errors of up to +1 on the measurement times may have taken

place.

Possible location for Table 1.

Figure 1 presents the resulting data. Gray boxes indicate the uncertainties associated

with each pair of output and time data.

Possible location for Figure 1.

The model output is

Ym (P, t) = 20 exp(—p1t) — 8exp(—pat). (2.7)

The set S to be characterized is the set of all values of p = (py, p2)? such that this
model output goes through all ten boxes of Figure 1. Treatment of this test case is

deferred to Section 6.

3. Set inverter

The algorithm SIVIA presented here is adapted from (Jaulin and Walter, 1993a) to

allow the use of more elaborate subroutines in order to decide whether a given box is
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included in or excluded from the feasible region, as required by the present context.
To describe it, a few definitions are needed. A box or vector interval X of R™ is the
Cartesian product of n scalar intervals:

X =[ap,af] x - x [z, 2] = X1 x - x X, (3.1)

n»rn

The set of all boxes of R" is denoted by IR"™. In the sequel, intervals are written with
italic upper-case letters, boxes with bold upper-case letters, and vectors with bold
lower-case letters. The width w(X) of a box X is the length of its largest side(s). To
bisect a box X means to cut it along a symmetry plane normal to a side of maximum
length. This generates two boxes X; and X, such that X = X; U X,. A stack of
bozes is a last-in-first-out list of boxes. The principle of the algorithm is to partition
some prior box of interest (or prior feasible set) into three sets of nonoverlapping
boxes, namely those that have been proved to be included in S, those that have been
proved not to intersect it and those for which nothing could be proved and that are
deemed small enough not to be analyzed any further. A basic tool for this purpose

is interval analysis, very briefly presented in Section 4.

SIVIA calls two subroutines: INSIDE, which attempts to prove that boxes belong to
S, and OUTSIDE, which attempts to prove that boxes have a void intersection with
S. Upon completion, SIVIA has generated two subpavings (lists of nonoverlapping
boxes). The first one S (g) contains all boxes that have been proved to belong to
S, and the second one AS(e) all boxes for which nothing could be proved. Both
subpavings depend on a positive real ¢ representing the required accuracy of the
characterization. These subpavings provide the following bracketing of the solution

set:

S (e)cSCS (e)UAS(e). (3.2)



The dependency in € will be omitted whenever possible. SIVIA can be summarized

as follows:

SIVIA
Input: prior box of interest Py; required accuracy &;
Initialization: Stack = {Py}; S~ :=0; AS :=0);
Repeat
Unstack into P;
If (INSIDE(P) returns "P C §”), then {S§~ := S~ UP},
else if OUTSIDE(P) reports failure,
If w(P) > ¢, then {bisect P; stack the two resulting boxes},
else AS := ASUP;
Until Stack = 0;
Output: S, AS.

The subroutine INSIDE aims at proving that a box P belongs to the posterior feasible
set S. In our present context of uncertain measurement times, INSIDE attempts to
find m reals t; € T}, i € {1,... , m} such that y,,(P,t;) C Y;. For a given P, the
strategy chosen, illustrated by Figure 2, is to take t; as #;(center(P)), where #;(-) is
defined by

t;(p) = arg min (e;(p,t))>. (3.3)
teT;

Possible location of Figure 2.

An intuitive and partial justification for this strategy is as follows: the smaller
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(e;(center(P),t;))? is, the more likely it is that |e;(P,t;)] < e or equivalently
that y.,(P,t;) C Y;, will be satisfied.

Remark 1. This strategy is not necessarily successful. Assume, for instance, that
m = 1 and ey(p,t;) = exp(—pt1), with T} = [0.5,1], P = [—1,3] and e[ = 2.
Here t,(center(P)) = 1, and |e;(P,1)] = [exp(—3),exp(1)], the upper bound of
which is larger than e™*, so P is not proved to be feasible. On the other hand,
taking t; = 0.5 would make it possible to prove that P is feasible, as |e;(P,0.5)]
= [exp(—1.5),exp(0.5)], the upper bound of which is smaller than . The actual
justification for the strategy advocated in this paper is therefore the possibility to

prove convergence when it is used.

INSIDE requires an algorithm for computing #;(p) in a guaranteed way and sufficient
conditions to prove that, for a given box P and a given real ¢, y,,(P,t) belongs to Y;.
We shall see in Section 4 that such an algorithm can be provided by interval analysis.

INSIDE can be summarized as follows:

INSIDE
Input: P;
For ¢ :=1 to m do
Compute  := £; (center(P));
If it can be proved that y,,(P,#) C Y; then next i,
else return ("Failed”);
EndFor;
Return ("P C §”).

The subroutine OUTSIDE aims at proving that a box P does not intersect S. In

9



our present context of uncertain measurement times, OUTSIDE attempts to take

advantage of the following implication

Jie{l,.om} |ymP,T)NY; =0 =PNS =0 (3.4)

It can be summarized as follows:

OUTSIDE
Input: P;
For ¢ :=1 to m do
Step 1 Stack = {T};
Step 2 Unstack into T
Step 3 If it can be proved that y,,(P,T)NY; = (), go to Step 6;
Step 4 If w(T) < w(P), next ;
Step 5 Bisect T and stack the two resulting intervals;
Step 6 If stack # (), go to Step 2;
Step 7 Return "PNS = 07;
EndFor;
Return (”Failed”).

For each ¢ € {1,...,m}, OUTSIDE tries to partition 7; into subintervals such that
ym(P,T) NY; = () for any subinterval T' of T;. If, for at least one ¢, OUTSIDE
succeeds, then P NS = (). All sub-intervals of T; still to be studied are stored in
a stack. At Step 3, OUTSIDE uses interval analysis, see Section 4, to prove that
ym(P,T)NY; = 0. The test at Step 4 is introduced to avoid splitting 7" ad infinitum
and to introduce some relation with the splitting policy followed for P by SIVIA.

10



Remark 2. INSIDE and OUTSIDE have voluntarily been kept simple to facili-
tate convergence analysis. Their performance can be improved by adding new tests.
For instance, in the for loop of OUTSIDE, if y,,(center(P), center(T)) € Y;, then
OUTSIDE will necessarily fail to prove that y,,(P,T)NY; = (). Between Steps 3 and
4 of OUTSIDE, we may thus add the following step:

Step 3pis  If ym(center(P), center(T)) € Y; then next i.

4. Interval analysis

Interval analysis is a numerical tool originally developed to quantify the effect of
finite-precision floating-point arithmetic on results obtained from a computer (Moore,
1979). At present, it is also used, e.g., to find all solutions of a set on nonlinear
equations in several indeterminates (Hansen, 1992), to locate all global optimizers of
a multimodal cost function (Hansen, 1992) and to prove formal inequalities (Moore,
1979). As mentioned in Section 3, INSIDE and OUTSIDE will use interval analysis

to provide

e (IA1) a global optimization algorithm for computing #;(center(P)),
e (IA2) sufficient conditions for proving that y,,,(P,t) C Y; and

e (IA3) sufficient conditions for proving that y,,(P,7) NY; = 0.

A fundamental notion is that of an inclusion function. Consider a continuous function

f mapping R” into R. An interval-valued function F', defined from IR" into IR, is
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an inclusion function of f if:

vX e IR", f(X) C F(X), (4.1)

Since f is continuous, the set f(X) = {f(x) | x € X} is a sub-interval of F(X).
In what follows, the inclusion function F' will be said to be convergent if, for any
sequence of boxes X(k) of IR™ that converges to a real vector x, the sequence of
intervals F'(X(k)) converges to the real scalar f(x). The inclusion function F' is

inclusion monotonic if for any X and Y in IR",

XCY=FX)cCFY). (4.2)

These notions of inclusion monotonicity and convergence are only needed to ensure
the convergence of the algorithm to be presented. The computation of a convergent
and inclusion-monotonic inclusion function associated with any continuous function
defined by an explicit formal expression or by a finite algorithm is in principle very
simple (Moore, 1979), and routinely performed by widely available software, see, e.g.,
(Hammer et al., 1995). Note, however, that rounding errors only make it possible to

obtain a guaranteed approximation of such an inclusion function in practice.

Example 1. An inclusion function for the model output given by (2.7) is

Y (P, T) =20exp(—P, xT) — 8exp(— Py + T). (4.3)

12



If, for instance, T' = [2,4], P, = [0,0.1] and P, = [1,1.1], then

Yu(P,T) = 20exp(—[2,4] % [0,0.1]) — 8exp(—[2,4] = [1,1.1])
= 20exp(—[0,0.4]) — 8exp(—[2,4.4])
= 20exp([—0.4,0]) — 8exp([—4.4,—2]) (4.4)
= 20[0.67,1] — 8[0.012, 0.14]
= [13.4,20] — [0.096,1.12] = [12.2,19.9].

Note that from Table 1 and (4.4), Y, (P, Ty) NY, = [12.2,19.9] N [-0.95,1.15] = 0.

Therefore, all parameter vectors p in the box [0,0.1] x [1,1.1] are unfeasible.

The algorithm GOP1 (1-dimensional Global OPtimizer), to be presented now, lo-
cates a global minimizer of a function f : R +— R over an interval Tj in a guaranteed
way. It is assumed that f is twice differentiable over Ty and that its second deriv-
ative is nonzero at the minimum. GOP1 is a very simple algorithm, sufficient for
showing the feasibility of the approach advocated here, but that could not compete
with sophisticated interval-based algorithms such as Hansen’s (Hansen, 1992), which
can deal with a larger class of problems and larger dimensions. GOP1 calls a clas-
sical dichotomy routine, able to locate the global minimizer of any inverse-unimodal
function over an interval in a guaranteed way. We assume that convergent inclusion
functions F, F’, " are available for f and its first two derivatives f’ and f”. f(f) is
the lowest value of f known at present, and f is the corresponding argument. Interval

inequalities should be understood as: X >a < 2~ >aand X <a & 27 < a.
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GOP1

Inputs: function f : R — R; prior interval of interest T;
Initialization: T := Ty; t := center(T); Stack = {);
Step 1 If F(T) > f(f), go to Step 5;
Step 2 If (0 ¢ F'(T') or F"(T) < 0), then

{t :=arg ming; ;- 4+,(f); go to Step 5};
Step 3 If F”(T) > 0, then

{dicho = Dichotomy (f, T); t :=arg ming;,  1(f); go to Step 5};
Step 4 Bisect T' and stack the two resulting intervals;
Step 5 If Stack # () then {unstack into T'; go to Step 1};
Step 6 Return ¢ and f (7).

If the condition F(T) > f(f) in Step 1 is satisfied, the current interval 7' cannot
contain any global minimizer. If the condition (0 ¢ F'(T") or F”(T") < 0) of Step 2 is
satisfied, the global minimizer of f over T is necessarily one of the two extreme values
t~ and ¢t* of T. On Step 3, if the condition F”(T") > 0 holds, f is convex over T and
therefore inverse-unimodal, so dichotomy will be able to locate the global minimizer
of f over T in a guaranteed way with arbitrary precision. At the end of Step 4, the

stack contains all intervals to which global minimizers may still belong.

We now have all the tools required by INSIDE and OUTSIDE that were enumerated

at the beginning of Section 4, namely

e (IA1) a way to compute #;(center(P)) in a guaranteed way by calling GOP1 for
f(t) = (e;(center(P),t))? and T = Tj;

14



e (IA2) a sufficient condition for proving that y,,(P,t) C Y;, namely F(P) C Y,
where F'(P) is an inclusion function for f(p) = ym(p,t);

e (IA3) a sufficient condition for proving that y,(P,7) NY; = ), namely
Y. (P, T)NY; = (), where Y,,,(P,T) is an inclusion function for y,,(p,t).

The next section will study the convergence of the resulting algorithm when the

required accuracy ¢ tends to zero.

5. Convergence analysis

The algorithm presented in Section 3 generates a bracketing of S in the sense of (3.2).
Recall that AS(e) contains all parameter vectors for which no conclusion could be
reached as to their feasibility. The purpose of this section is to study the properties

of AS(e) when ¢ tends to zero. Define
S= {p|Vie{l,..,m}, 3t € T, such that |e;(p,t)| < e"*}. (5.1)

Except in degenerate cases, § is the interior of S. The theorem to be presented shows
that if € is infinitely small, only vectors p that belong to S and are outside § will
belong to the uncertainty layer AS(e). For such vectors, y,,(p,t) is consistent with

all data boxes and tangent (from the outside) to at least one of them.

Theorem 1. IfY,,(P,T) is an inclusion-monotonic and convergent inclusion func-

tion for the model output function y,,(p,t), SIVIA generates S~ (¢) and AS(e) such
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that
(i) peS =J>0|peS (e,

(5.2)
(ii) pgS =J>0|p¢S () UAS(e).

Proof: Part (i): If the contraposite were true, i.e., if there existed p € (% such that
Ve > 0,p € AS(¢), then for any € > 0, there would exist a box P with a width smaller
than ¢ and containing p such that INSIDE(P) fails. This is impossible because of
the theorem of Section 5.1 below. Part (ii): If the contraposite were true, i.e., if there
existed a vector p outside S such that Ve > 0,p € S~ (¢) U AS(e), then Ve > 0,
there would exist a box P with a width smaller than € and containing p such that

OUTSIDE(P) fails. This is impossible because of the theorem of Section 5.2 below.

5.1. Inclusion test theorem

Theorem 2. (Inclusion test) Ifp € §, Je > 0 such that, for any box P containing
p with a width smaller than €, INSIDE concludes P C S. &

To prove this theorem, we shall use the three following lemmas. In the sequel, a cube
is a box with a nonzero volume, all sides of which have the same length. The set of

all cubes with center p is denoted by Cube(p).

Lemma 3. Let Ty be a given interval and Z (P, t) be a convergent inclusion func-

tion for the zero function z(p,t) = 0,Vp € R"™ Vt € Ty. We have

Ve > 0,Vp € R™, 3P €Cube(p) | Vt € Ty, w(Z(P,t)) < e (5.3)

16



Remark 3. The interval function F(P,t) is a special case of the classical inclusion
function F (P, T), where the width of T is zero. The notion of convergence for F (P, t)
thus follows from that for F(P,T): F(P,t) will be said to be convergent if for all
sequences of boxes P(k) € IR™ converging to the vector p and for all sequences of
reals t(k) converging to the real t, the interval sequence F(P(k),t(k)) converges to
the real f(p,t). Note that if F(P,T) is a convergent inclusion function, F(P,t) is

also convergent.

Proof  The proof is by contradiction. Assume that 3¢ > 0, I3p € R™ |
VP € Cube(p), 3t € To,w(Z(P,t)) > €. Let {P(k),k € N} be a sequence of
Cube(p) converging to p. There exists a sequence of real {¢t(k)} € Ty such that
w(Z(P(k),t(k))) > e. Since Tj is a compact set, the infinite sequence {t(k)} has at
least one accumulation point ¢. From {¢(k)}, it is therefore possible to extract a sub-
sequence {t(k;),j € N} with k; < k;,1 converging to ¢ . Since w(Z(P(k;),t(k;))) > e,
since P(k;) — p and since t(k;) — ¢, the inclusion function Z(P,t) cannot be con-

vergent. %

Let E;(P,t) be the inclusion function for e;(p,t) defined by E;(P,t) =
Y,.(P,t)— center(Y;). Since Y,,(P,t) is inclusion monotonic and convergent, so is

Lemma 4. For alli € {1,...,m}, we have

Ve; > 0,¥p € R™, 3P € Cube(p) | V¢ € T, ||E(P,t)| — lei(p, )| <& (5.4)

17



Proof It is cumbersome but trivial to show that the interval function Z(P,t) =
||E;(P,t)| — |e;(center(P), t)|| is a convergent inclusion function for the zero function
z(p,t) = 0,p € R™,t € T;. From Lemma 3, there exists P € Cube(p) such that
vVt e T, w(Z(P,t)) < &;. Since 0 € Z(P,t), we have Z(P,t) < ¢, i.e., ||E;(P,t)] —
les(p, ?)]| <& &

Lemma 5. Ifp Eg, then Vi € {1,...,m}, In, > 0 such that, for any box Q
containing p with a width smaller than n;, Y,,(Q, ;(center(Q))) C Y;. &

Proof Ifp Eg‘, Vi € {1,...,m},3t € T; such that |e;(p,t)| < e** and therefore,

the number

o= 56— [ei(p, 1) (5.5)

is strictly positive. Let P be a box of Cube(p) satisfying (5.4) and Q be a box
containing p, with center q and width smaller than n, = @. Q is therefore included

in P. Since q € P, ¢;(q,t) € E;(P,t), and Lemma 4 implies

lei(q, )] <ei(p, )] + e (5.6)
Taking (3.3) into account, we get

lei(a, ti(@)] < lei(a,t)l- (5.7)

Let e (P,t) be the upper bound of the interval |E;(P,t)|. According to Lemma 4,

the two following inequalities are satisfied

lei(p. ti(@))] < lei(a,ti(a))] + &, (5.8)

el (P.ti(q)) < le(p,ti(@))] + e (5.9)

18



Since Q C P and |E;(P, | is inclusion monotonic,

e (Q.ti(q)) <ef (P.1i(q)). (5.10)

Adding inequalities (5.6)-(5.10) under (5.5), we get e, (Q,%:(q)) < |e;s(p,t)| + 3&; =
e Therefore |F;(Q,t:(q))| = |Ym(Q, ;(q))—center(Y;)| < e"*® which implies that
Yu(Q,ti(q)) C Vi &

Proof of Theorem 2 From Lemma 5, if p € (%, for all ¢ in {1,...,m}, there
exists 1; > 0 such that, for any box Q containing p with a width smaller than 7,,
Y, (Q, #;(center(Q))) C Y;. Therefore any box P containing p with a width smaller
than & = min(n,ns, ..., M,,) is such that Y, (P,#;(center(P))) C Y;. For such a P,
INSIDE concludes that P C S. &

5.2. Exclusion test theorem

Theorem 6. (Exclusion test) Ifp ¢ S, 3¢ > 0 such that for any box P containing
p and with a width smaller than ¢, OUTSIDE(P ) concludes that P NS = ). &

Proof The proof is again by contradiction. Let {e(k),k € N} be a sequence of

positive reals converging to zero. If Theorem 6 is false, then
Vk € N,3P(k) > p,w(P(k)) < e(k) such that OUTSIDE fails. (5.11)

This means that, for each i, OUTSIDE jumps to the next i at Step 4. It has thus
found an interval T'(k) such that w(7T'(k)) < w(P(k)) and such that the condition at
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Step 3 is not satisfied, i.e.,

Vi, 3T(k) € Tp, w(T(k)) < w(P(k)) | Yi(P(k), T(k)) NY; £ 0. (5.12)

Since the sequence {T'(k),k € N} is enclosed in the compact set 7; and has its
width converging to zero, it has at least one accumulation point ¢, and there exists
a subsequence {T'(k;), j € N, and k; < k;;1} containing ¢. The sequence of inter-
vals Yy, (P(k;), T(k;)) thus converges to the real y,,(p,t). Now, according to (5.12),
Y (P(k;), T(k;)) NY; # 0, which implies 4y, (p,t) € Y;. Therefore p € S. o

6. Test case

Consider again the test case introduced at the end of Section 2. For ¢ = 0.01 and
Py =10,1.2] x [0,0.5], SIVIA generates the subpavings represented on Figure 3. The
dark gray boxes have been proved to be included in § and correspond to S~. The light
gray boxes have been proved to have an empty intersection with S. No conclusion

has been reached for the black boxes, which belong to the uncertainty layer AS.

Possible location for Figure 3.

Taking advantage of Remark 2, this paving is obtained in 38 seconds, instead of about

8 minutes, on a Pentium 133-based personnal computer.
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7. Conclusions

In the context of bounded-error estimation, the actual values of experimental factors
may also be uncertain. To take this into account, we have assumed that the output
data and these experimental factors are only known to belong to some given inter-
vals. The problem considered was the guaranteed characterization of the set of all
parameter vectors of a given model structure that are consistent with this hypothesis.
A new algorithm, based on interval analysis, has been proposed for this purpose. For
the sake of simplicity, it has been described in the particular case where there is a
single experimental factor. Even in this simple case, we know of no other method that
allows a guaranteed characterization of the posterior feasible set for the parameters
in this nonlinear context. The fundamental notion of inclusion function allows the
approach to deal with a huge class of problems. Convergence analysis shows that in
almost any situation, the set of feasible parameter vector can be characterized with
an accuracy that is only limited by the effect of rounding. The main limitation of
the approach is that its complexity is exponential with the dimension of parameter
space. The approach readily generalizes to problems involving q experimental factors

and r outputs. The posterior feasible set is then defined by

S={peRm

Vie{l,..,m}, It e T, CR?| y.(p,t) €Y, CR"}, (7.1)

and vector inclusion functions and a global optimization algorithm for multivariable
functions must be employed. The algorithm used in this paper has voluntarily been
kept simple, so as to facilitate convergence analysis, and there is ample room for

further improvements of its efficiency.
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Figure captions

Figure 1: The boxes indicate the uncertainty associated with each output data point
and associated measurement time. A parameter vector is feasible if and only if

Ym (P, t) goes through all ten boxes.

Figure 2: Tllustration of the strategy chosen for INSIDE. The interval y,, (P, #;(p)) is
included in the data interval Y;. Therefore the parameter vector p is consistent with

the ith datum.

Figure 3: Paving generated by SIVIA to bracket the solution set S for the test case.
The frame box is Py = [0,1.2] x [0,0.5]. Dark and light gray boxes are inside and
outside S, respectively. AS is in black.

Table caption

Table 1: Feasible intervals for collected data in the test case.
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Table 1

i T; Y;
1|[-0.25175 | [2.7,12.1]
2| [0.5,2.5] [1.04,7.14]
3| [1.25,3.25] | [-0.13,3.61]
4 [2, 4] [—0.95,1.15]
5 [5,7] [—4.85, —0.29]
6| [8,10] [—5.06, —0.36]
71 [12,14) [—4.1,—0.04]
8| [16,18] [—3.16,0.3]
9| [20,22] [—2.5,0.51]
10| [24,26] [—2,0.67]
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