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hU n c e r t a i nF a c t o r s errors-in-variables approach, mostly developed in the context of linear estimation, where all components of the regressor vector are assumed to be uncertain. In this paper, we deal with models whose output may be nonlinear in their parameters. It is assumed that the factors characterizing the experimental conditions under which the output data have been collected are uncertain, and that prior bounds are available on their possible values. The simplest example of such a situation is when the model output depends on time and each measurement time t is only assumed to belong to some known interval T ,b u tt h es a m ea p p r o a c ha p p l i e si ft h em e a s u r e m e n t sd e p e n d on a space variable or on values of some input factors. Let t 2 R be the vector of all experimental factors on which the collected output data depend. Our aim is to take into account uncertainty about the values taken by t and to characterize the set of all values of the parameter vector p 2 R that are consistent with the available information. This will be performed in a global and guaranteed way by employing the algorithm SIVIA (Set Inverter Via Interval Analysis) introduced in (Jaulin and Wa l t e r , 1 9 9 3a , 1 9 9 3b ).

Introduction

Bounded-error parametric estimation (or parameter bounding) has received a renewed attention in the last decade, see, e.g.,( W a l t e r ,1 9 9 0 ;C o m b e t t e s ,1 9 9 3 ;D e l l e ret [START_REF] Combettes | The foundations of set theoretic estimation[END_REF]Norton, 1994Norton, , 1995;;[START_REF] Milanese | Estimation theory for nonlinear models and set membership uncertainty[END_REF],1 9 9 6 ;W a l t e ra n dP r o n z a t o ,1 9 9 7 )a n dt h e references therein. Of the reasons for this interest, we shall quote only two. First, the approach can deal with deterministic structural errors, not adequately described by random variables. Second, it is well suited to the guaranteed characterization of parameter uncertainty, a prerequisite for a number of methods in robust control. It is customary to assume that the errors between the model output and output data should lie between some known prior bounds and to try to characterize the set of all values of the parameter vector that are consistent with this hypothesis. Most often, no other type of error is taken into account, with the notable exception of the

Problem statement

The model to be considered is some algorithm to compute the model output y 2 R as a function of p and t.W ea s s u m et h a tt h en -dimensional parameter vector p is consistent with the data collected during the ith elementary experiment (i =1;:::;m) if and only if y (p; t) belongs to Y for some t in T ,w he r eY and T are known sets.

Y and T respectively characterize the uncertainty about the ith output data and associated experimental factors; they may be derived from point measurements and bounds on the acceptable errors on these measurements. Bounded-error estimation then aims at characterizing the posterior feasible set S,d e n e da st h es e to fa l lps consistent with all data and given by S = fp 2 R j8i 2f1;:::; mg; 9t 2T j y (p; t) 2Yg:

(2. and the problem of characterizing S can be solved exactly with the technique described in [START_REF] Cerone | Parameter bounds for models with bounded errors in all variables[END_REF][START_REF] Cerone | Errors-in-variables models in parameter bounding[END_REF]. Ellipsoidal outer approximations of this set can also be computed, see, e.g.,( N or to n,1 9 8 7 ;C lém e n tan dG e n til,1 9 9 0 ;P r on z atoan dW alter, 1994;Veres and Norton, 1996). When the errors on the components of the regressor vector are no longer independent, for instance when dealing with output error models with an autoregressive part, the same approach leads to the construc- As an illustrative test case, consider an estimation problem derived from [START_REF] Milanese | Estimation theory for nonlinear models and set membership uncertainty[END_REF] and [START_REF] Jaulin | Guaranteed nonlinear parameter estimation from bounded-error data via interval analysis[END_REF]. Table 1 gives ten pairs (T ;Y )

tion
of feasible interval data. In [START_REF] Milanese | Estimation theory for nonlinear models and set membership uncertainty[END_REF] and [START_REF] Jaulin | Guaranteed nonlinear parameter estimation from bounded-error data via interval analysis[END_REF], the measurement times were assumed to be known exactly. In contrast, it is assumed here that errors of up to §1 on the measurement times may have taken place.

Possible location for Table 1. Possible location for Figure 1.

The model output is y (p;t)=20exp(¡p t) ¡ 8exp(¡p t):

(2.7)

The set S to be characterized is the set of all values of p =( p ;p ) such that this model output goes through all ten boxes of Figure 1. Treatment of this test case is deferred to Section 6.

Set inverter

The algorithm SIVIA presented here is adapted from (Jaulin and Walter, 1993a) to allow the use of more elaborate subroutines in order to decide whether a given box is included in or excluded from the feasible region, as required by the present context.

To des crib e it, a fe w d enitions are need ed. A box or vector interval X of R is the Cartesian product of n scalar intervals:

X = £ x ;x ¤ £¢¢¢£ £ x ;x ¤ = X £¢¢¢£X . (3.1)
The set of all boxes of R is denoted by IR .I nt h es e q u e l ,i n t e r v a l sa r ew r i t t e nw i t h italic upper-case letters, boxes with bold upper-case letters, and vectors with bold lower-case letters. The width w(X) of a box X is the length of its largest side(s). To bisect abo xX means to cut it along a symmetry plane normal to a side of maximum length. This generates two boxes X and X such that X = X [ X .Astack of boxes is a last-in-rst-out list of boxes. The principle of the algorithm is to partition some prior box of interest (or prior feasible set) into three sets of nonoverlapping boxes, namely those that have been proved to be included in S,th os eth ath a v ebe en proved not to intersect it and those for which nothing could be proved and that are deemed small enough not to be analyzed any further. A basic tool for this purpose is interval analysis, very briey presented in Section 4.

SIVIA calls two subroutines: INSIDE, which attempts to prove that boxes belong to S,a n dO U T S I D E ,w h i c ha t t e m p t st op r o v et h a tbo x e sh a v eav o i di n t e r s e c t i o nw i t h S.U p o nc o m p l e t i o n ,S I V I Ah a sg e n e r a t e dt w os u b p a v i n g s( l i s t so fn o n o v e r l a p p i n g boxes). The rst one S (") contains all boxes that have been proved to belong to S,a n dt h es e c o n do n e¢S(") all boxes for which nothing could be proved. Both subpavings depend on a positive real " representing the required accuracy of the characterization. These subpavings provide the following bracketing of the solution set:

S (") ½S½S (") [ ¢S("): (3.2)
The dependency in " will be omitted whenever possible. SIVIA can be summarized An intuitive and partial justication for this strategy is as follows: the smaller (e (center(P);t )) is, the more likely it is that je (P;t )j•e ; or equivalently that y (P;t ) ½ Y ; will be satised.

Remark 1. This strategy is not necessarily successful. Assume, for instance, that For i := 1 to m do

Step 1 Stack := fT g;

Step 2 Unstack into T ;

Step 3 If it can be proved that y (P;T) \ Y = ;,g ot oS t e p6 ;

Step 4 If w(T ) <w(P),n e x ti;

Step 5 Bisect T and stack the two resulting intervals;

Step 6 If stack 6 = ;,g ot oS t e p2 ;

Step 7 Return P \S = ;;

EndFor;

Return ("Failed"). 

Interval analysis

Interval analysis is a numerical tool originally developed to quantify the e¤ect of nite-precision oating-point arithmetic on results obtained from a computer [START_REF] Moore | Identication of parameter bounds for ARMAX models from records with bounded noise[END_REF]. At present, it is also used, e.g.,t o n dall solutions of a set on nonlinear equations in several indeterminates [START_REF] Hansen | Global Optimization Using Interval Analysis[END_REF] 

8X 2 IR ;f (X) ½ F (X); (4.1) Since f is continuous, the set f (X)=ff (x) j x 2 Xg is a sub-interval of F (X).
In what follows, the inclusion function F will be said to be convergent if, for any sequence of boxes X(k) of IR that converges to a real vector x,t h es e q u e n c eo f intervals F (X(k)) converges to the real scalar f(x).T h e i n c l u s i o n f u n c t i o n F is inclusion monotonic if for any X and Y in IR ,

X ½ Y ) F (X) ½ F (Y): (4.2)
These notions of inclusion monotonicity and convergence are only needed to ensure the convergence of the algorithm to be presented. The computation of a convergent and inclusion-monotonic inclusion function associated with any continuous function dened by an explicit formal expression or by a nite algorithm is in principle very simple [START_REF] Moore | Identication of parameter bounds for ARMAX models from records with bounded noise[END_REF], and routinely performed by widely available software, see, e.g., [START_REF] Hammer | C++ Toolbox For Veried Computing[END_REF]. Note, however, that rounding errors only make it possible to obtain a guaranteed approximation of such an inclusion function in practice. (4.4)

Note that from Table 1 and( The algorithm GOP1 (1-dimensional Global OPtimizer), to be presented now, locates a global minimizer of a function f : R 7 ! R over an interval T in a guaranteed way. It is assumed that f is twice di¤erentiable over T and that its second derivative is nonzero at the minimum. GOP1 is a very simple algorithm, su¢cient for showing the feasibility of the approach advocated here, but that could not compete with sophisticated interval-based algorithms such as Hansens [START_REF] Hansen | Global Optimization Using Interval Analysis[END_REF], which can deal with a larger class of problems and larger dimensions. GOP1 calls a classical dichotomy routine, able to locate the global minimizer of any inverse-unimodal function over an interval in a guaranteed way. We assume that convergent inclusion functions F; F ;F are available for f and its rst two derivatives f and f . f( • t) is the lowest value of f known at present, and • t is the corresponding argument. Interval inequalities should be understood as: X>a, x >aand X<a, x <a.

GOP1

Inputs: function f : R 7 ! R;p r i o ri n t e r v a lo fi n t e r e s tT ;

Initialization: T := T ; • t := center(T ); Stack = ;;

Step 1 If F (T ) >f( • t),g ot oS t e p5 ;

Step 2 If (0 = 2 F (T ) or F (T ) < 0), then { • t :=arg min (f );g ot oS t e p5 } ;

Step 3 If F (T ) > 0,t h e n f • t = Dichotomy(f; T); • :=arg min (f );g ot oS t e p5 } ;

Step 4 Bisect T and stack the two resulting intervals;

Step 5 If Stack 6 = ; then {unstack into T ;g ot oS t e p1 } ;

Step 6 Return • t and f ( • t). The next section will study the convergence of the resulting algorithm when the required accuracy " tends to zero.

Convergence analysis

The algorithm presented in Section 3 generates a bracketing of S in the sense of (3.2).

Recall that ¢S(") contains all parameter vectors for which no conclusion could be reached as to their feasibility. The purpose of this section is to study the properties of ¢S(") when " tends to zero. Dene S = fp j8i 2f1;:::;mg; 9t 2 T such that je (p;t)j <e g: thus follows from that for F (P;T): F (P;t) will be said to be convergent if for all sequences of boxes P(k) 2 IR converging to the vector p and for all sequences of reals t(k) converging to the real t,t h ei n t e r v a ls e q u e n c eF (P(k);t(k)) converges to the real f (p;t).N o t et h a ti fF (P;T) is a convergent inclusion function, F (P;t) is also convergent.

Proof

The proof is by contradiction. Assume that 9">0; 9p 2 R j 8P 2 Cube(p); 9t 2 T ;w(Z(P;t)) ¸": Let fP(k);k 2 Ng be a sequence of . Q is therefore included in P.S i n c eq 2 P, e (q;t) 2 E (P;t),a n dL e m m a4i m p l i e s je (q;t)j < je (p;t)j + " :

(5.6)

Taking (3.3) into account, we get je (q; • t (q))j < je (q;t)j:

(5.7)

Let e (P;t) be the upper bound of the interval jE (P;t)j.A c c o r d i n gt oL e m m a4 , the two following inequalities are satised je (p; • t (q))j < je (q; • t (q))j + " ;

(5.8) e (P; • t (q)) < je (p; • t (q))j + " :

(5.9)

Since Q ½ P and jE (P;tj is inclusion monotonic, e (Q; • t (q)) <e (P; • t (q)):

(5.10)

Adding inequalities (5.6)-(5.10) under (5.5), we get e (Q; • t (q)) < je (p;t)j +3" = e : Therefore jE (Q; • t (q))j = jY (Q; • t (q))¡center(Y )j <e ;which implies that 

Y (Q; • t (q)) ½ Y . } Proof of

Conclusions

In the context of bounded-error estimation, the actual values of experimental factors may also be uncertain. To take this into account, we have assumed that the output data and these experimental factors are only known to belong to some given intervals. The problem considered was the guaranteed characterization of the set of all parameter vectors of a given model structure that are consistent with this hypothesis.

Anewalgorithm,basedonin terv alanalysis,hasbeenproposedforthispurpose.F or the sake of simplicity, it has been described in the particular case where there is a single experimental factor. Even in this simple case, we know of no other method that allows a guaranteed characterization of the posterior feasible set for the parameters in this nonlinear context. The fundamental notion of inclusion function allows the approach to deal with a huge class of problems. Convergence analysis shows that in almost any situation, the set of feasible parameter vector can be characterized with an accuracy that is only limited by the e¤ect of rounding. The main limitation of the approach is that its complexity is exponential with the dimension of parameter space. The approach readily generalizes to problems involving q experimental factors and r outputs. The posterior feasible set is then dened by S = fp 2 R j8i 2f1;:::;mg; 9t 2 T ½ R j y (p; t) 2 Y ½ R g ; (7.1) and vector inclusion functions and a global optimization algorithm for multivariable functions must be employed. The algorithm used in this paper has voluntarily been kept simple, so as to facilitate convergence analysis, and there is ample room for further improvements of its e¢ciency. 
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Tabl e 1: Feas i ble inte rval s for col l ec te d d ata i n th e te st case. Table 1 i T Y

  1) Characterizing S can be cast into the framework of errors-in-variable estimation, to which relatively little attention has been paid in the literature about parameter bounding. When the model output is linear in p,i tc a nb ew r i t t e na s y (p; t)=R(t)p; (2.2) where the matrix of regressors R(t) is independent of p.I f ,m o r e o v e r ,y is scalar and R(t)=t ,i . e . ,e a c hc o m p o n e n to ft h er e g r e s s o rv e c t o rc o r r e s p o n d st oa nu n c e r t a i n experimental factor, then y (p; t)=t p;(2.3)

  of sets that can only be guaranteed to contain S.W es h a l lh e r ec o n s i d e rt h e more general situation where y (p; t) may be nonlinear in p and t.T ot h eb e s to f our knowledge, it is the rst attempt to provide guaranteed and accurate results in such a nonlinear context. (Estimating parameters in nonlinear models with errors in variables has been considered in the context of least squares for many years, see, e.g.,(Sc h w etlic kandTiller,1985 ),b uttheresultsar eob tainedb ylocalm ethodsand thus not guaranteed.) For the sake of simplicity, we shall assume that (i) there is only one experimental factor, which we shall denote by t and call time, although it may have some other meaning; (ii) the system to be considered has only one scalar output at any given time; (iii) the feasible sets T and Y are intervals, denoted by T and Y ; and (iv) the model output y (p;t) is continuous in p and t.T h eg u a r a n t e e d characterization of S,n o wd e n e db y S = fp j8i 2f1;:::;mg; 9t 2 T j y (p;t) 2 Y g; (2.4) remains a nontrivial problem since deciding whether a given vector p belongs to S is already complicated. Dene the ith error function by e (p;t)=y (p;t) ¡ center(Y );t 2 T : (2.5) If e denotes the radius of Y ,t h epo s t e r i o rf e a s i b l es e tc a na l s ob ed e n e db y S = fp j8i 2f1;:::;mg; 9t 2 T such that je (p;t)j•e g: (2.6)

Figure 1

 1 Figure 1 presents the resulting data. Gray boxes indicate the uncertainties associated with each pair of output and time data.

  box of interest P ;r e q u i r e da c c u r a c y"; Initialization: Stack = fP g; S := ;;¢ S := ;; Repeat Unstack into P; If (INSIDE(P)r e t u r n s P ½S") ,t h e nfS := S [ Pg; else if OUTSIDE(P)r e p o r t sf a i l u r e , If w(P) >",t h e nfbisect P;s t a c kt h et w or e s u l t i n gb o x e s g; else ¢S := ¢S[P; Until Stack = ;; Output: S ; ¢S. The subroutine INSIDE aims at proving that a box P belongs to the posterior feasible set S.I no u rp r e s e n tc o n t e x to fu n c e r t a i nm e a s u r e m e n tt i m e s ,I N S I D Ea t t e m p t st o nd m reals t 2 T ;i2f 1;::: ; mg such that y (P;t ) ½ Y .F o rag i v e nP; the strategy chosen, illustrated by Figure 2, is to take t as • t (center(P)),w h e r e • t (

m

  =1and e (p; t )=e x p ( ¡pt ); with T =[ 0 :5; 1], P =[ ¡1; 3] and e =2 : Here • t (center(P )) = 1; and je (P; 1)j =[ e x p ( ¡3); exp(1)]; the upper bound of which is larger than e ; so P is not proved to be feasible. On the other hand, taking t =0 :5 would make it possible to prove that P is feasible, as je (P; 0:5)j =[ e x p ( ¡1:5); exp(0:5)]; the upper bound of which is smaller than e .T h ea c t u a l justication for the strategy advocated in this paper is therefore the possibility to prove convergence when it is used. INSIDE requires an algorithm for computing • t (p) in a guaranteed way and su¢cient conditions to prove that, for a given box P and a given real t, y (P;t) belongs to Y . We s h a l l s e e i n S e c t i o n 4 t h at s u ch a n a l go r i t h m c an b e p r ov i d e d by i nte r va l a n a l y s i s . INSIDE can be summarized as follows: INSIDE Input: P; For i := 1 to m do Compute • t := • t (center(P)); If it can be proved that y (P; • t) ½ Y then next i; else return (Failed); EndFor; Return ("P ½S"). The subroutine OUTSIDE aims at proving that a box P does not intersect S.I n our present context of uncertain measurement times, OUTSIDE attempts to take advantage of the following implication 9 i 2f1;:::;mgjy (P;T ) \ Y = ; ) P \S = ;: (3.4) It can be summarized as follows: OUTSIDE Input: P;

  For each i 2f 1;:::;mg,O U T S I D Et r i e st op a r t i t i o nT into subintervals such that y (P;T) \ Y = ; for any subinterval T of T .I f , f o r a t l e a s t o n e i,O U T S I D E succeeds, then P \S = ;.A l ls u b -i n t e r v a l so fT still to be studied are stored in as t a c k . A tS t e p3 ,O U T S I D Eu s e si n t e r v a la n a l y s i s ,s e eS e c t i o n4 ,t op r o v et h a t y (P;T) \ Y = ;.T h et e s ta tS t e p4i si n t r o d u c e dt oa v o i ds p l i t t i n gT ad innitum and to introduce some relation with the splitting policy followed for P by SIVIA. Remark 2. INSIDE and OUTSIDE have voluntarily been kept simple to facilitate convergence analysis. Their performance can be improved by adding new tests. For instance, in the for loop of OUTSIDE, if y (center(P); center(T )) 2 Y ,t h e n OUTSIDE will necessarily fail to prove that y (P;T) \ Y = ;.B e t w e e nS t e p s3a n d 4o fO U T S I D E ,w em a yt h u sa d dt h ef o l l o w i n gs t e p : Step 3 If y (center(P); center(T )) 2 Y then next i.

  , to locate all global optimizers of am u l t i m o d a lc o s tf u n c t i o n( H a n s e n ,1 9 9 2 )a n dt op r o v ef o r m a li n e q u a l i t i e s( M o o r e , 1979). As mentioned in Section 3, INSIDE and OUTSIDE will use interval analysis to provide ² (IA1) a global optimization algorithm for computing • t (center(P)), ² (IA2) su¢cient conditions for proving that y (P;t) ½ Y and ² (IA3) su¢cient conditions for proving that y (P;T) \ Y = ;. Afundamentalnotionisthatofaninclusionfunction.Consideracontinuousfunction f mapping R into R.A ni n t e r v a l -v a l u e df u n c t i o nF ,d e n e df r o mIR into IR,i s an inclusion function of f if:

Example 1 .

 1 An inclusion function for the model output given by (2.7) is Y (P;T)=20exp(¡P ¤ T ) ¡ 8exp(¡P ¤ T ):

  4.4), Y (P;T ) \ Y =[ 1 2 :2; 19:9] \ [¡0:95; 1:15] = ;. Therefore, all parameter vectors p in the box [0; 0:1] £ [1; 1:1] are unfeasible.

  If the condition F (T ) >f ( • t) in Step 1 is satised, the current interval T cannot contain any global minimizer. If the condition (0 = 2 F (T ) or F (T ) < 0)o fS t e p2i s satised, the global minimizer of f over T is necessarily one of the two extreme values t and t of T .O nS t e p3 ,i ft h ec o n d i t i o nF (T ) > 0 holds, f is convex over T and therefore inverse-unimodal, so dichotomy will be able to locate the global minimizer of f over T in a guaranteed way with arbitrary precision. At the end of Step 4, the stack contains all intervals to which global minimizers may still belong. We now h ave al l t h e t o ol s r e qu i r e d by I NSIDE a n d OUTSIDE th at we r e e nume ra t e d at the beginning of Section 4, namely ² (IA1) a way to compute • t (center(P)) in a guaranteed way by calling GOP1 for f (t)=(e (center(P);t)) and T = T ; where F (P) is an inclusion function for f (p)=y (p;t); ² (IA3) a su¢cient condition for proving that y (P;T) \ Y = ;,n a m e l y Y (P;T) \ Y = ;,w h e r eY (P;T) is an inclusion function for y (p;t).

}Remark 3 .

 3 cases, S is the interior of S.T h et h e o r e mt ob ep r e s e n t e ds h o w s that if " is innitely small, only vectors p that belong to S and are outside S will belong to the uncertainty layer ¢S(").F o rs u c hv e c t o r s ,y (p;t) is consistent with all data boxes and tangent (from the outside) to at least one of them. Theorem 1. If Y (P;T) is an inclusion-monotonic and convergent inclusion function for the model output function y (p;t),S I V I Ag e n e r a t e sS (") and ¢S(") such that (i) p 2 S )9">0 j p 2S ("); (ii) p = 2S )9">0 j p = 2S (") [ ¢S("): (5.2) Proof :P a r t( i ) :I ft h ec o n t r a p o s i t ew e r et r u e ,i.e.,i ft h e r ee x i s t e dp 2 S such that 8">0; p 2 ¢S("),thenforany">0,therewouldexistaboxP with a width smaller than " and containing p such that INSIDE(P)f a i l s . T h i si si m p o s s i b l eb e c a u s eo f the theorem of Section 5.1 below. Part (ii): If the contraposite were true, i.e.,ifthere existed a vector p outside S such that 8">0; p 2S (") [ ¢S("),t h e n8">0, there would exist a box P with a width smaller than " and containing p such that OUTSIDE(P)f a i l s . T h i si si m p o s s i b l eb e c a u s eo ft h et h e o r e mo fS e c t i o n5 . 2b e l o w . 5.1. Inclusion test theorem Theorem 2. (Inclusion test) If p 2 S , 9">0 such that, for any box P with a width smaller than ",I N S I D Ec o n c l u d e sP ½S. } To prove thi s theorem, we shal l us e the t hre e fol l owing l e mmas . In t he sequel , a cube is a box with a nonzero volume, all sides of which have the same length. The set of all cubes with center p is denoted by Cube(p). Lemma 3. Let T be a given interval and Z(P;t) be a convergent inclusion function for the zero function z(p;t) ´0; 8p 2 R ; 8t 2 T .W eh a v e 8">0; 8p 2 R ; 9P 2Cube(p) j8 t 2 T ;w(Z(P;t)) <" (5.3) The interval function F (P;t) is a special case of the classical inclusion function F (P;T); where the width of T is zero. The notion of convergence for F (P;t)

  Cube(p) converging to p.T h e r e e x i s t s a s e q u e n c e o f r e a l ft(k)g2T such that w(Z(P(k);t(k))) ¸".S i n c eT is a compact set, the innite sequence ft(k)g has at least one accumulation point ¹ t.F r o mft(k)g,itisth er e fo r epos si b l et oe x t r a ctasu bsequence ft(k );j 2 Ng with k <k converging to ¹ t .S i n c ew(Z(P(k );t(k ))) ¸"; since P(k ) ! p and since t(k ) ! ¹ t,t h ei n c l u s i o nf u n c t i o nZ(P;t) cannot be convergent. } Let E (P;t) be the inclusion function for e (p;t) dened by E (P;t)= Y (P;t)¡ center(Y ): Since Y (P;t) is inclusion monotonic and convergent, so is E (P;t).

Lemma 4 .

 4 For all i 2f1;:::;mg; we have 8" > 0; 8p 2 R ; 9P 2 Cube(p) j8 t 2 T ; jjE (P;t)j¡je (p;t)jj <"(5.4) Proof It is cumbersome but trivial to show that the interval function Z(P;t)= jjE (P;t)j¡je (center(P);t)jj is a convergent inclusion function for the zero function z(p;t) ´0; p 2 R ;t 2 T .F r o mL e m m a3 ,t h e r ee x i s t sP 2 Cube(p) such that 8t 2 T , w(Z(P;t)) <".S i n c e0 2 Z(P;t),w eh a v eZ(P;t) <", i.e., jjE (P;t)j¡ je (p;t)jj <". } Lemma 5. If p 2 S ,t h e n8i 2f 1;:::;mg, 0 such that, for any box Q containing p with a width smaller than ´, Y (Q; • t (center(Q))) ½ Y . } Proof If p 2 S , 8i 2f 1;:::;mg; 9t 2 T such that je (p;t)j <e and therefore. Let P be a box of Cube(p) satisfying (5.4) and Q be a box containing p,withcenterq and width smaller than ´=

  Theorem 2 From 5, p 2 S ,f o ra l li in f1;:::;mg,t h e r e exists ´> 0 such that, for any box Q containing p with a width smaller than ´, Y (Q; • t (center(Q))) ½ Y .T h e r e f o r ea n yb o xP containing p with a width smaller than " =m i n ( ´;´;:::;´) is such that Y (P; • t (center(P))) ½ Y .F o rs u c haP, INSIDE concludes that P ½S. } 5.2. Exclusion test theorem Theorem 6. (Exclusion test) If p = 2S, 9">0 such that for any box P and with a width smaller than ",O U T S I D E ( P)c o n c l u d e st h a tP \S = ;. } Proof The proof is again by contradiction. Let f"(k);k 2 Ng be a sequence of positive reals converging to zero. If Theorem 6 is false, then 8k 2 N; 9P(k) 3 p;w(P(k)) <"(k) such that OUTSIDE fails: (5.11) This means that, for each i,O U T S I D Ej u m p st ot h en e x ti at Step 4. It has thus found an interval T (k) such that w(T (k)) <w(P(k)) and such that the condition at Step 3 is not satised, i.e., 8i; 9T (k) ½ T ;w(T (k)) <w(P(k)) j Y (P(k);T(k)) \ Y 6 = ;: (5.12) Since the sequence fT (k);k 2 Ng is enclosed in the compact set T and has its width converging to zero, it has at least one accumulation point ¹ t,a n dt h e r ee x i s t s as u b s e q u e n c efT (k );j2 N,a n dk <k g containing ¹ t.T h es e q u e n c eo fi n t e rvals Y (P(k );T(k )) thus converges to the real y (p; ¹ t).N o w ,a c c o r d i n gt o( 5 . 1 2 ) , Y (P(k );T(k )) \ Y 6 = ;; which implies y (p; ¹ t) 2 Y .T h e r e f o r ep 2S. } 6. Test case Consider again the test case introduced at the end of Section 2. For " =0 :01 and P =[0; 1:2] £ [0; 0:5],S I V I Ag e n e r a t e st h es u b p a v i n g sr e p r e s e n t e do nF i g u r e3 . T h e dark gray boxes have been proved to be included in S and correspond to S : The light gray boxes have been proved to have an empty intersection with S.N oc o n c l u s i o n has been reached for the black boxes, which belong to the uncertainty layer ¢S. Possible location for Figure 3. Taking ad vantage of Remark 2, this p aving is obtaine d in 38 sec on ds, ins te ad of ab out 8m i n u t e s ,o naP e n t i u m1 3 3 -b a s e dpe r s o n n a lc o m p u t e r .

Figure 1 :

 1 Figure 1: The boxes indicate the uncertainty associated with each output data point and associated measurement time. A parameter vector is feasible if and only if y (p;t) goes through all ten boxes.

Figure 2 :

 2 Figure 2: Illustration of the strategy chosen for INSIDE. The interval y (P; • t (p)) is included in the data interval Y .T h e r e f o r et h ep a r a m e t e rv e c t o rp is consistent with the ith datum.

Figure 3 :

 3 Figure 3: Paving generated by SIVIA to bracket the solution set S for the test case. The frame box is P =[ 0 ; 1:2] £ [0; 0:5].D a r ka n dl i g h tg r a yb o x e sa r ei n s i d ea n d outside S,r e s p e c t i v e l y .¢S is in black.
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