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Synthesis of Greatest Linear Feedback for Timed
Event Graphs in Dioid

Bertrand Cottenceau, Laurent Hardouin, Jean-Louis Boimond
and Jean-Louis Ferrier

Abstract— This paper deals with the synthesis of greatest lin-
ear causal feedback for Discrete Event Systems whose behavior
is described in dioid. Such a feedback delays as far as possible
the input of the system while keeping the same transfer rela-
tion between the input and the output. When a feedback exists
in the system, we show how to compute a greater one without
decreasing the system’s performance.

Keywords— Discrete Event Systems,
Graphs, Feedback Synthesis, Kanban.

Dioid, Timed Event

I. INTRODUCTION

It is well known that the dynamical behavior of Timed Event
Graphs (TEG) (a subclass of timed Petri nets which can be
used to model deterministic discrete event systems subject to
saturation and synchronization phenomena) can be described
by a linear model in dioid ([1], [2]). In this context, an element
H € D™*™ of a matrix dioid can represent the transfer rela-
tion between input transitions U € D" and output transitions
Y € D" ie., Y = H®U. This paper deals with the synthe-
sis of a linear feedback F' € D™*™ such that the process input
becomes V = U@ F®Y (fig. 1). It has been shown in [1]

U \% Y
— H
E -
Fig. 1. System with an output feedback F

and [8] that such a feedback allows stabilizing the system (i.e.,
keeps bounded the number of tokens in the associated TEG).
However, this feedback creates new circuits besides the existing
ones, therefore the throughput may only decrease. In [1] and
[8], it has been stated that any structurally controllable (re-
spectively observable) system, i.e., that any internal transition
of the TEG can be reached by a directed path from at least
one input transition (respectively is the origin of at least one
directed path to some output transition), can be stabilized by a
feedback which does not damage the throughput of the system
H. To ensure this condition, it suffices to place enough tokens
in the initial marking of places located on feedback arcs. The
minimal number of tokens which allows achieving the objective
can be obtained by considering the resource optimization prob-
lem which can be reduced to linear programs (as shown in [7]).
The purpose of the synthesis given subsequently is slightly dif-
ferent, it is to compute the greatest causal feedback in order to
delay as far as possible the input of tokens in the system while
keeping the same dynamical behavior H; from a manufactur-
ing point of view, this means to reduce the work-in-process by
keeping the performance of this production system. In a sec-
ond step, this principle will be applied to pull flow systems, i.e.,
systems with a pull control mechanism. In a pull control mech-
anism, a demand for a finished part of a system activates the

Laboratoire d’Ingénierie des Systéemes Automatisés, 62, avenue Notre-Dame
du lac, 49000 ANGERS, FRANCE, Tel: (33) 2 41 36 57 33, Fax: (33) 2 41
36 57 35. E-mail: [bertrand.cottenceau, laurent.hardouin, jean-louis.boimond,
jean-louis.ferrier]@istia.univ-angers.fr

release of a new part into that system. These systems involve
clearly a feedback to carry the information from the output to
the input. An example of such a system is the Kanban Control
System (see [4],[5]). Our purpose is then to replace the exist-
ing feedback by the greatest feedback which conserves the same
transfer relation as the original system. Most of the results are
based on residuation theory and star properties in dioid recalled
in section II. The feedback computation is presented in section
IIT and, finally, two examples illustrate the results in section IV.

IT. Dioidp M%Z[[y,d]]

Let us recall that a dioid is an idempotent semiring (D, ®, ®)
(the neutral elements of the operators @, ® are denoted respec-
tively ¢ and e). Due to idempotency property, an order re-
lation, denoted >, can be associated with @& and defined by
arb < a®db=a (i.e, a®bis equal to the least upper
bound of a and b). Such an algebraic structure is very efficient
to modelize TEG. The dioid considered in this paper is denoted
M2y, 6]] and is formally the quotient dioid of B[[~, 4]], set of
formal power series in two variables (vy,d) with Boolean coef-
ficients and with exponents in Z, by the equivalence relation
TRy <= ~ (67 )z = (67 )*y (with * the Kleene star

operator defined as a* = @ a*) (see [1],[2] for an exhaustive
k>0

presentation). It must be noted that equalities are of course
not formal equalities but that they express equivalences in the
quotient structure (e.g., e = %% = 4" = (671)* = ~4*(671)%).
M%Z[[y,8]] is complete with a bottom element ¢ = v~
and a top element T = 4 °°§t>. Let us consider a repre-
sentative s = @ f(ni,t;)y" 6% in B[y, §]] of an element be-
iEN

longing to M37[[y,d]]. The support of s is then defined as
{(ni,ti)|f(ni,t;) # €} and the valuation (resp. degree) of this
element as the lower bound (resp. upper bound) of its support.
In M7 ([, 8]], owing to its quotient structure, it is meaningless
to speak of the degree in =y or of the valuation in ¢ of one of its
elements. Therefore, the valuation (resp. degree) of an element
will be its valuation (resp. degree) in 7 (resp. d).

When an element of M3 [[7,4d]] is used to code a set of infor-
mation concerning a transition of a TEG, then a monomial y*§*
may be interpreted as : the k'* event occurs at least at date t.
Let us recall that an element h € M§7[[v, d]] is said to be causal
either if (h = ) or (val(h) > 0 and h > ~"*'(")) i e., such that
it characterizes anticipation neither on time domain nor on the
event domain. The algebraic tools used in the next sections are
recalled below.

Theorem 1 (see [2]) In a dioid D, the fixed-point equation
r = ar & b admits the least solution z = a™b.

Proposition 1: Let matrix A € D™*™, then

ATA™ = A™A".

Proof: Due to product associativity (i.e., AFA™ =
A™AR) then A*A™ = AP QAAT B A’A" D = A™(E®AD
A%...) = A™A* (where E is the identity matrix). [ ]

Definition 1 (Residuation) A mapping f : C — D where C,D
are ordered sets, is residuated if for all y € D, the least upper
bound of the subset {z € C|f(z) < y} exists and belongs to this
subset. It is then denoted f*(y). The mapping f* : D — C is
called the residual of f. By definition, f[f*(y)] <y, Vy € D.

Property 1: Let f : C — D a residuated mapping. If there
exists  such that f(z) =y, then f(f*(y)) =y.

Remark 1: More generally, with f isotone, if there exists z
such that f(r) = y and & is the greatest subsolution to f(z) < vy,
then f(Z) = y.

Theorem 2 ([2]) In a dioid D, each inequality a ® < b and
r ®a = b always admit a greatest solution denoted respectively



z =adband x = bfa , x € D. Mappings z — adz and z — zfa
are the residuals of z =+ a ® z and r = z ® a.

Theorem 3 ([6]) Let £ an ordered complete set and F a com-
plete subset of £ with the bottom element of £, denoted e¢.
Injection i : F — £,z +— x is residuated. Its residual is denoted
prr = i* and satisfies:

(i) pryopry=prg,
(ii) prr < Ide,
(iit) € F <= pre(z)==.
Application 1: Let Caus(M§7[[v,d]]) the set of causal ele-
ments of M{7[[v,d]], namely:
Caus(MZ 1y, 3]) = {o € MEE[[, )] | & = < or (val(z) >
0 and v'*® < g)}.
Injection 4 : Caus(M§y ([, d]]) = MY, 8]], = — =z is resid-
uated and its residual is denoted prc,.
Clearly, prc,.(z) is the greatest element of Caus(M{Z[[v,d]])
smaller than or equal to = € M{7[[v,d]]:

prCaus(@ f(nh tl)’ynl 5ti) = @ g(n“ tl)’ynl ot
1EN 1EN

f(nizti) if (niati) > (an) )

where g(ni, i) = { € otherwise

Remark 2: the notion of projection in causal set will be sim-
ply extended to the matrix dioid case in the next sections. In
other words, if M € D™*™ | prc,. (M) will be defined as follows

Preass(M)ij = preays(Mij) i=1,--- ;mandj=1,--- ,n.

III. GREATEST LINEAR FEEDBACK SYNTHESIS
A. Feedback computation

A system modelized by a TEG and assumed to be structurally
controllable and observable may be described by a transfer re-
lation H, then

Y=HeU. (1)

Our purpose is to synthesize the greatest linear feedback F' in
order to keep the open-loop transfer relation H. This feed-
back allows delaying as far as possible the input of parts, i.e.
reducing the work-in-process, by keeping exactly the same pro-
duction performances. According to fig. 1 and theorem 1, the
transfer relation of the closed-loop system is (HF)*H (since
Y = HU @ FY) = (HF)*HU). Hence, we first propose
to find the greatest feedback F' such that (HF)*H = H =
(HF)"HU = HU VYU. As said before, by considering the opti-
mization resource problem, a feedback F' keeping the open-loop
throughput is given in [7]. In the second step, we focus on
finding the greatest linear causal feedback denoted E,, ie.,

B = @D{F € Caus(M (17, ) |(HF) H = H),
Lemma 1: The greatest solution to (Hz)*H < H is given by
F = H\H{H.

Proof: By considering the Kleene star operator, we obtain
the following equivalence

H<H
HxH < H
(Hr)'H < H <— <H

Clearly, H < H is satisfied Vz. By applying the residuation
theory, the greatest solution of HxH < H is F' = HYH{¢H.
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Then the solution set L = {z|(Hz)*H < H} is bounded by F,
i.e.,Vz € L, x < F. Furthermore F' € L. Indeed, (HF)H < H,
then by recalling that the law ® is isotone : (HEF)(HF)H <
(HFYH < H and Vn, (HF)"H < (HF)"'H < --- < H.
Subsequently, H & @ (HF)"H = (HF)*H < H, F is then
the greatest elementnii'I L. |

Corollary 1: F = HXH¢H is the greatest solution to the
equation (Hz)*"H = H.

Proof: The matrix € is solution to this equation. There-
fore, according to property 1 and remark 1, F' is solution too
and the greatest one. |

Proposition 2: The greatest linear and causal feedback allow-
ing keeping the open-loop behavior is given by :

F. = preas (F) = @Dz € Caus(Mi7[[7,4]]) | (He) H = H}.

Proof: From theorem 3 (ii) and its application, we have

F. = pre,s(H\H§H) < F. Therefore, (HE.)"H < (HF)*H <
H. However, (HE.)* > E because of Kleene star definition,
eventually H < (HF.)*H < (HF)*H < H, then (HE.)"H =
H. Tt is clear from theorem 3 that it cannot exist a causal
element greater than F, and smaller than F. |
Remark 3: Let us note that it would be an interesting exten-
sion of this work to address the problem of feedback synthesis in
order to obtain a closed-loop behavior, say G (reference model),

different from the open-loop one, namely H (obviously such that
G = H).

B. Pull flow systems

In this section, we will focus on particular systems with pull
flow control. In these systems, an existing causal feedback F'
allows releasing firing of input transitions, which can be repre-
sented by the block-diagram shown in fig. 2 where Y. represents
the customer’s demand and U the stock of unprocessed parts.
Our purpose is to replace F' by the greatest causal feedback
F,, > F which keeps the same dynamical behavior and delays
as far as possible the input of unprocessed parts. The transfer

Yc

) v

— H }

Fig. 2. System with pull flow control mechanism

relation of such a system is
Y =(HF)'Y.® (HF)"HU (2)

S represents the dynamical behavior of the finished parts (i.e.,
the dates at which the finished parts are put in the downstream
stock ). Its behavior is described by

S = (HF)*HFY.® (HF)"HU

Classically, F is computed in order to minimize a cost function
depending on the holding and backordering inventory. In a pull
flow system, S is more representative of the system behavior
than Y. Indeed, there is a marge between customer’s demand
and finished parts that we must conserve. Therefore, our pur-
pose is to find a causal feedback F),. greater than or equal to
F allowing keeping the same behavior for S in regards to Y..
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This means to reduce as far as possible the work-in-process by
keeping the same stock of finished part, then by satisfying the
same customer’s demand. Formally, we will search the greatest
E,. such that (HE,,)*HEF,, = (HF)*HF.
Remark 4: the same work may be done by taking account of
output behavior instead of S behavior.
Lemma 2: The greatest solution to (Hz)*Hx < (HF)*HF
is given by
F,=H\((HF)"HF).
Proof: By considering the same arguments as in lemma 1,
we have

Hz < (HF)*HF

(Hz) He < (HF)'HF «— { (H2)? X (HF)"HF (3

The greatest solution of Hr < (HF)*HF is given using resid-

uation theory by F, = H\((HF)*HF). We deduce that the
solution set L = {z|(Hz)"Hz = (HF)*HF} is bounded by F,.
Furthermore, we show that F, € L. Indeed, assuming that
(HF,)" 2 (HF)"(HF)",

) (HF)"H (HX\((HF)"HF))

)V (HF)"(HF)"HF

(since A*A™ = A™ A" (proposition 1)

and A(A§(AX)) = AX)

(HF)*(HF)"*!

(by applying proposition 1 and A*A" = A")

(HE)™ =2 (

< (HF
(HE,)"** < (HF

(HE,)"*

PN

Moreover, for n = 0, we have HF, < (HF)*(HF), then Vi > 1,
(HF,)" < (HF)*(HF)'. By summing these inequalities for all
i, we have @ (HF,)' < @ (HF)*(HF)’, that can be rewritten
i>1 i>1

(HE,)*HE, < (HF)*HF, i.e., F, € L, hence it is the greatest
solution of (3) since it belongs to L and it is its upper bound.
|

Corollary 2: F, = H\((HF)*HF) is the greatest solution to

(Hz)*Hx = (HF)"HF. (4)

Proof: 1t suffices to remark that F' is a solution to equation

(4). Therefore, according to property 1 and remark 1, F} is the
greatest solution to (4). [ ]

Proposition 8: The greatest linear and causal feedback allow-
ing keeping the behavior of S in the pull control system is given
by

Fpe = preaus(Fp)- (5)

Proof: We will show here that this greatest causal feedback

conserves the same transfer relation as the one obtained with

F,ie S = (HF)*HFY.® (HF)"HU = (HF,,)*HE,.Y. ®
(HF,,)*HU. Hence, we will proceed in two steps.

Fisrtly, from corollary 2, F}, > F. Since prc,, is residual
mapping, it is isotone. Then pre,. (Fp) = pre.(F). Moreover,
F is assumed causal, then according to theorem 3, pre,,(F) =
F. From theorem 3, we deduce that pre,,(F,) < Fj. Then,

Preaus (Fp) is bounded :

F X pregs(Fp) 2 Fp (ie, F 2 By, X Fp).
Therefore, by using isotony of mapping (Hz)*Hz, we deduce
(HFY*HF < (HF,,)*HF,, < (HF,)*HF, = (HF)*HF (see corol. 2).

In other words, this feedback keeps the transfer relation be-
tween Y. and S.

On the other hand, F, is such that (HE,)*H =
(HF)"HF)*H = (HF)"H (i.e., the greatest feedback F, keeps
the transfer relation between U and S). Since F, *= F and
Preaws(F) = F, it may be shown similarly

(Hpreas(Fy))"H = (HF)"H

i.e., the transfer relation between U and S is also kept with
feedback Fj, . |

Remark 5: keeping the behavior of S implies keeping the be-
havior of Y too.

IV. ILLUSTRATIVE EXAMPLES

Example 1: In a first step, we will apply the results con-
cerning the greatest feedback computation (results presented in
I11-A) by considering a similar example as the one presented in
[1] and [8]. The TEG considered is drawn in fig. 3 in solid lines.
Its transfer matrix is H = [6°(7%6%)" 6°(7%6%)*]. According

v2

z@”vﬁo

() L

Fig. 3. MIMO TEG
to corollary 1, the greatest feedback keeping the same transfer
relation is given by

F=H\HJH = [65(4*6%) 6 5(+*6%)]" .

Clearly, this feedback is not causal. So, the greatest causal
feedback which keeps the same output behavior as the open-
loop system (according to proposition 2) is

~ ~ * «1T
Fo = preas(F) = [v'6'(476%)" 46" (7°6%)"] .

Remark 6: Let us note that the initial system becomes stable
with the greatest feedback F, (in doted lines in fig. 3). Accord-
ing to the results given in [1] and [8], it is known that a feedback
”increases” stability since it creates new circuits. An interesting
question is to determine the conditions on system H such that
feedback ﬁ'c stabilizes the system.

Remark 7: Considering the example proposed in [1] and [8]
in which only values differ, we obtain F. = [y(y8)* y(v8)*]"
which is to compare with F = [y 4]7 obtained by the authors.
It must be noted that the main difference between these two
solutions is the dynamic on ﬁ'c.

Ezxample 2: The results about the greatest causal feedback
synthesis for a pull flow system are now applied to the well
known kanban cell (see [3], [6] where a model and a study of
such a system have been given).

Under the assumption that K > n, i.e. there are more kan-
bans (K) than machines (n) in the cell, the transfer relation of
the kanban cell is given by

y=(e®y" 6" (y"6") )ye ® 6" (y"8") u, (see [6] appendix A)



i.e., h = 8 (y"6Y)* and f = 4. According to corollary 2, the
optimal feedback which keeps the behavior unchanged is fp =
BA(RD)RE) = (817" ) A((Y 8 (776) ") 78" (v"3")").
Since (ab*)*ab® = a(a ® b)* (see [6] (4.1.6)), then f, =
(8T (y™6))A(Y* 8T (v* 6 ®4"8")*). Therefore, under the as-
sumption K > n, f, =% (y"8%)*.

Clearly, this feedback is causal. Indeed, the greatest causal
feedback less than or equal to fp is

Fre = Preas(Ffo) =7 (4"6")" = fi.
This new feedback is represented in doted lines on fig. 4.

t (delays)
_*". n (tokens)

K (tokens) T
u “:\ t (delays) y
k»@»k»@»t@» (=l
& Qs

n (tokens) \\l

Fig. 4. Kanban cell of the feedback has been modified

V. CONCLUSION

First, we have presented a method to synthesize the greatest
linear and causal feedback in order to keep the transfer rela-
tion of the open-loop system. Secondly, we have proposed a
method to modify a pull control system in order to delay as
far as possible the input of unprocessed parts without changing
the output in regard to the customer’s demand. Both methods
allow reducing the work-in-process without changing the sys-
tem performance. They are based on residuation theory and
dioid properties. The solutions proposed to solve the two previ-
ous problems are relatively reminiscent with the pole placement
method well known in the conventional linear system theory.
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