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SUBMITTED TO IEEE TRANSACTIONS ON AUTOMATIC CONTROL 1Synthesis of Greatest Linear Feedback for TimedEvent Graphs in DioidBertrand Cottenceau, Laurent Hardouin, Jean-Louis Boimondand Jean-Louis FerrierAbstract|This paper deals with the synthesis of greatest lin-ear causal feedback for Discrete Event Systems whose behavioris described in dioid. Such a feedback delays as far as possiblethe input of the system while keeping the same transfer rela-tion between the input and the output. When a feedback existsin the system, we show how to compute a greater one withoutdecreasing the system's performance.Keywords| Discrete Event Systems, Dioid, Timed EventGraphs, Feedback Synthesis, Kanban.I. IntroductionIt is well known that the dynamical behavior of Timed EventGraphs (TEG) (a subclass of timed Petri nets which can beused to model deterministic discrete event systems subject tosaturation and synchronization phenomena) can be describedby a linear model in dioid ([1], [2]). In this context, an elementH 2 Dm�n of a matrix dioid can represent the transfer rela-tion between input transitions U 2 Dn and output transitionsY 2 Dm, i:e:; Y = H 
 U . This paper deals with the synthe-sis of a linear feedback F 2 Dn�m such that the process inputbecomes V = U � F 
 Y (�g. 1). It has been shown in [1]
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Fig. 1. System with an output feedback Fand [8] that such a feedback allows stabilizing the system (i:e:,keeps bounded the number of tokens in the associated TEG).However, this feedback creates new circuits besides the existingones, therefore the throughput may only decrease. In [1] and[8], it has been stated that any structurally controllable (re-spectively observable) system, i.e., that any internal transitionof the TEG can be reached by a directed path from at leastone input transition (respectively is the origin of at least onedirected path to some output transition), can be stabilized by afeedback which does not damage the throughput of the systemH. To ensure this condition, it su�ces to place enough tokensin the initial marking of places located on feedback arcs. Theminimal number of tokens which allows achieving the objectivecan be obtained by considering the resource optimization prob-lem which can be reduced to linear programs (as shown in [7]).The purpose of the synthesis given subsequently is slightly dif-ferent, it is to compute the greatest causal feedback in order todelay as far as possible the input of tokens in the system whilekeeping the same dynamical behavior H; from a manufactur-ing point of view, this means to reduce the work-in-process bykeeping the performance of this production system. In a sec-ond step, this principle will be applied to pull 
ow systems, i.e.,systems with a pull control mechanism. In a pull control mech-anism, a demand for a �nished part of a system activates theLaboratoire d'Ing�enierie des Syst�emes Automatis�es, 62, avenue Notre-Damedu lac, 49000 ANGERS, FRANCE, Tel: (33) 2 41 36 57 33, Fax: (33) 2 4136 57 35. E-mail: [bertrand.cottenceau, laurent.hardouin, jean-louis.boimond,jean-louis.ferrier]@istia.univ-angers.fr

release of a new part into that system. These systems involveclearly a feedback to carry the information from the output tothe input. An example of such a system is the Kanban ControlSystem (see [4],[5]). Our purpose is then to replace the exist-ing feedback by the greatest feedback which conserves the sametransfer relation as the original system. Most of the results arebased on residuation theory and star properties in dioid recalledin section II. The feedback computation is presented in sectionIII and, �nally, two examples illustrate the results in section IV.II. Dioid Maxin [[
; �]]Let us recall that a dioid is an idempotent semiring (D;�;
)(the neutral elements of the operators �;
 are denoted respec-tively " and e). Due to idempotency property, an order re-lation, denoted �, can be associated with � and de�ned bya � b () a � b = a (i.e., a � b is equal to the least upperbound of a and b). Such an algebraic structure is very e�cientto modelize TEG. The dioid considered in this paper is denotedMaxin [[
; �]] and is formally the quotient dioid of B [[
; �]], set offormal power series in two variables (
; �) with Boolean coef-�cients and with exponents in Z, by the equivalence relationxRy () 
�(��1)�x = 
�(��1)�y (with � the Kleene staroperator de�ned as a� = Lk�0 ak) (see [1],[2] for an exhaustivepresentation). It must be noted that equalities are of coursenot formal equalities but that they express equivalences in thequotient structure (e:g:; e = 
0�0 = 
� = (��1)� = 
�(��1)�).Maxin [[
; �]] is complete with a bottom element " = 
+1��1and a top element T = 
�1�+1. Let us consider a repre-sentative s = Li2Nf(ni; ti)
ni�ti in B [[
; �]] of an element be-longing to Maxin [[
; �]]. The support of s is then de�ned asf(ni; ti)jf(ni; ti) 6= "g and the valuation (resp. degree) of thiselement as the lower bound (resp. upper bound) of its support.InMaxin [[
; �]], owing to its quotient structure, it is meaninglessto speak of the degree in 
 or of the valuation in � of one of itselements. Therefore, the valuation (resp. degree) of an elementwill be its valuation (resp. degree) in 
 (resp. �).When an element of Maxin [[
; �]] is used to code a set of infor-mation concerning a transition of a TEG, then a monomial 
k�tmay be interpreted as : the kth event occurs at least at date t.Let us recall that an element h 2Maxin [[
; �]] is said to be causaleither if (h = ") or (val(h) � 0 and h � 
val(h)), i.e., such thatit characterizes anticipation neither on time domain nor on theevent domain. The algebraic tools used in the next sections arerecalled below.Theorem 1 (see [2]) In a dioid D, the �xed-point equationx = ax� b admits the least solution x = a�b.Proposition 1: Let matrix A 2 Dn�n, thenA�Am = AmA�:Proof: Due to product associativity (i.e., AkAm =AmAk), then A�Am = Am�AAm�A2Am�� � � = Am(E�A�A2 � � � ) = AmA� (where E is the identity matrix).De�nition 1 (Residuation) A mapping f : C ! D where C;Dare ordered sets, is residuated if for all y 2 D, the least upperbound of the subset fx 2 Cjf(x) � yg exists and belongs to thissubset. It is then denoted f ](y). The mapping f ] : D ! C iscalled the residual of f . By de�nition, f [f ](y)] � y; 8y 2 D.Property 1: Let f : C ! D a residuated mapping. If thereexists x such that f(x) = y, then f(f ](y)) = y.Remark 1: More generally, with f isotone, if there exists xsuch that f(x) = y and x̂ is the greatest subsolution to f(x) � y,then f(x̂) = y.Theorem 2 ([2]) In a dioid D, each inequality a 
 x � b andx
a � b always admit a greatest solution denoted respectively



2 SUBMITTED TO IEEE TRANSACTIONS ON AUTOMATIC CONTROLx = a �nb and x = b�=a , x 2 D. Mappings x 7! a �nx and x 7! x�=aare the residuals of x 7! a
 x and x 7! x
 a.Theorem 3 ([6]) Let E an ordered complete set and F a com-plete subset of E with the bottom element of E , denoted ".Injection i : F ! E ; x 7! x is residuated. Its residual is denotedprF = i] and satis�es:(i) prF � prF = prF ;(ii) prF � IdE ;(iii) x 2 F () prF (x) = x:Application 1: Let Caus(Maxin [[
; �]]) the set of causal ele-ments of Maxin [[
; �]], namely:Caus(Maxin [[
; �]]) = fx 2 Maxin [[
; �]] j x = " or (val(x) �0 and 
val(x) � x)g:Injection i : Caus(Maxin [[
; �]]) !Maxin [[
; �]]; x 7! x is resid-uated and its residual is denoted prCaus.Clearly, prCaus(x) is the greatest element of Caus(Maxin [[
; �]])smaller than or equal to x 2Maxin [[
; �]]:prCaus(Li2Nf(ni; ti)
ni�ti) = Li2Ng(ni; ti)
ni�tiwhere g(ni; ti) = � f(ni; ti) if (ni; ti) � (0; 0)" otherwise .Remark 2: the notion of projection in causal set will be sim-ply extended to the matrix dioid case in the next sections. Inother words, if M 2 Dm�n, prCaus(M) will be de�ned as followsprCaus(M)ij = prCaus(Mij) i = 1; � � � ;m and j = 1; � � � ; n:III. Greatest linear feedback synthesisA. Feedback computationA systemmodelized by a TEG and assumed to be structurallycontrollable and observable may be described by a transfer re-lation H, then Y = H 
 U: (1)Our purpose is to synthesize the greatest linear feedback F inorder to keep the open-loop transfer relation H. This feed-back allows delaying as far as possible the input of parts, i:e:reducing the work-in-process, by keeping exactly the same pro-duction performances. According to �g. 1 and theorem 1, thetransfer relation of the closed-loop system is (HF )�H (sinceY = H(U � FY ) = (HF )�HU). Hence, we �rst proposeto �nd the greatest feedback F such that (HF )�H = H )(HF )�HU = HU 8U . As said before, by considering the opti-mization resource problem, a feedback F keeping the open-loopthroughput is given in [7]. In the second step, we focus on�nding the greatest linear causal feedback denoted F̂c, i.e.,F̂c =MfF 2 Caus(Maxin [[
; �]])j(HF )�H = Hg:Lemma 1: The greatest solution to (Hx)�H � H is given byF̂ = H �nH�=H:Proof: By considering the Kleene star operator, we obtainthe following equivalence(Hx)�H � H () 8>>><>>>: H � HHxH � H(Hx)2H � H...Clearly, H � H is satis�ed 8x. By applying the residuationtheory, the greatest solution of HxH � H is F̂ = H �nH�=H.

Then the solution set L = fxj(Hx)�H � Hg is bounded by F̂ ,i.e., 8x 2 L; x � F̂ . Furthermore F̂ 2 L. Indeed, (HF̂ )H � H,then by recalling that the law 
 is isotone : (HF̂ )(HF̂ )H �(HF̂ )H � H and 8n; (HF̂ )nH � (HF̂ )n�1H � � � � � H.Subsequently, H � Ln2N�(HF̂ )nH = (HF̂ )�H � H, F̂ is thenthe greatest element of L.Corollary 1: F̂ = H �nH�=H is the greatest solution to theequation (Hx)�H = H.Proof: The matrix " is solution to this equation. There-fore, according to property 1 and remark 1, F̂ is solution tooand the greatest one.Proposition 2: The greatest linear and causal feedback allow-ing keeping the open-loop behavior is given by :F̂c = prCaus(F̂ ) =Mfx 2 Caus(Maxin [[
; �]]) j (Hx)�H = Hg:Proof: From theorem 3 (ii) and its application, we haveF̂c = prCaus(H �nH�=H) � F̂ . Therefore, (HF̂c)�H � (HF̂ )�H �H. However, (HF̂c)� � E because of Kleene star de�nition,eventually H � (HF̂c)�H � (HF̂ )�H � H, then (HF̂c)�H =H. It is clear from theorem 3 that it cannot exist a causalelement greater than F̂c and smaller than F̂ .Remark 3: Let us note that it would be an interesting exten-sion of this work to address the problem of feedback synthesis inorder to obtain a closed-loop behavior, say G (reference model),di�erent from the open-loop one, namelyH (obviously such thatG � H).B. Pull 
ow systemsIn this section, we will focus on particular systems with pull
ow control. In these systems, an existing causal feedback Fallows releasing �ring of input transitions, which can be repre-sented by the block-diagram shown in �g. 2 where Yc representsthe customer's demand and U the stock of unprocessed parts.Our purpose is to replace F by the greatest causal feedbackF̂pc � F which keeps the same dynamical behavior and delaysas far as possible the input of unprocessed parts. The transfer
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Fig. 2. System with pull 
ow control mechanismrelation of such a system isY = (HF )�Yc � (HF )�HU (2)S represents the dynamical behavior of the �nished parts (i.e.,the dates at which the �nished parts are put in the downstreamstock ). Its behavior is described byS = (HF )�HFYc � (HF )�HUClassically, F is computed in order to minimize a cost functiondepending on the holding and backordering inventory. In a pull
ow system, S is more representative of the system behaviorthan Y . Indeed, there is a marge between customer's demandand �nished parts that we must conserve. Therefore, our pur-pose is to �nd a causal feedback F̂pc greater than or equal toF allowing keeping the same behavior for S in regards to Yc.



COTTENCEAU, HARDOUIN, BOIMOND AND FERRIER : SYNTHESIS OF GREATEST LINEAR FEEDBACK FOR TEG IN DIOID 3This means to reduce as far as possible the work-in-process bykeeping the same stock of �nished part, then by satisfying thesame customer's demand. Formally, we will search the greatestF̂pc such that (HF̂pc)�HF̂pc = (HF )�HF:Remark 4: the same work may be done by taking account ofoutput behavior instead of S behavior.Lemma 2: The greatest solution to (Hx)�Hx � (HF )�HFis given by F̂p = H �n ((HF )�HF ) :Proof: By considering the same arguments as in lemma 1,we have(Hx)�Hx � (HF )�HF () 8><>: Hx � (HF )�HF(Hx)2 � (HF )�HF... (3)The greatest solution of Hx � (HF )�HF is given using resid-uation theory by F̂p = H �n((HF )�HF ). We deduce that thesolution set L = fxj(Hx)�Hx � (HF )�HFg is bounded by F̂p.Furthermore, we show that F̂p 2 L. Indeed, assuming that(HF̂p)n � (HF )�(HF )n,(HF̂p)n+1 � (HF )�(HF )nH (H �n((HF )�HF ))(HF̂p)n+1 � (HF )�(HF )n(HF )�HF(since A�Am = AmA� (proposition 1)and A(A �n(AX)) = AX)(HF̂p)n+1 � (HF )�(HF )n+1(by applying proposition 1 and A�A� = A�)Moreover, for n = 0, we have HF̂p � (HF )�(HF ), then 8i � 1,(HF̂p)i � (HF )�(HF )i. By summing these inequalities for alli, we have Li�1(HF̂p)i � Li�1(HF )�(HF )i, that can be rewritten(HF̂p)�HF̂p � (HF )�HF , i.e., F̂p 2 L, hence it is the greatestsolution of (3) since it belongs to L and it is its upper bound.Corollary 2: F̂p = H �n((HF )�HF ) is the greatest solution to(Hx)�Hx = (HF )�HF: (4)Proof: It su�ces to remark that F is a solution to equation(4). Therefore, according to property 1 and remark 1, F̂p is thegreatest solution to (4).Proposition 3: The greatest linear and causal feedback allow-ing keeping the behavior of S in the pull control system is givenby F̂pc = prCaus(F̂p): (5)Proof: We will show here that this greatest causal feedbackconserves the same transfer relation as the one obtained withF , i.e. S = (HF )�HFYc � (HF )�HU = (HF̂pc)�HF̂pcYc �(HF̂pc)�HU . Hence, we will proceed in two steps.Fisrtly, from corollary 2, F̂p � F . Since prCaus is residualmapping, it is isotone. Then prCaus(F̂p) � prCaus(F ). Moreover,F is assumed causal, then according to theorem 3, prCaus(F ) =F . From theorem 3, we deduce that prCaus(F̂p) � F̂p. Then,prCaus(F̂p) is bounded :F � prCaus(F̂p) � F̂p (i:e:; F � F̂pc � F̂p):Therefore, by using isotony of mapping (Hx)�Hx, we deduce(HF )�HF � (HF̂pc )�HF̂pc � (HF̂p)�HF̂p = (HF )�HF (see corol. 2):In other words, this feedback keeps the transfer relation be-tween Yc and S.

On the other hand, F̂p is such that (HF̂p)�H =((HF )�HF )�H = (HF )�H (i.e., the greatest feedback F̂p keepsthe transfer relation between U and S). Since F̂p � F andprCaus(F ) = F , it may be shown similarly(HprCaus(F̂p))�H = (HF )�Hi.e., the transfer relation between U and S is also kept withfeedback F̂pc .Remark 5: keeping the behavior of S implies keeping the be-havior of Y too. IV. Illustrative examplesExample 1: In a �rst step, we will apply the results con-cerning the greatest feedback computation (results presented inIII-A) by considering a similar example as the one presented in[1] and [8]. The TEG considered is drawn in �g. 3 in solid lines.Its transfer matrix is H = ��5(
2�3)� �5(
2�3)��. According
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Fig. 3. MIMO TEGto corollary 1, the greatest feedback keeping the same transferrelation is given byF̂ = H �nH�=H = ���5(
2�3)� ��5(
2�3)��T :Clearly, this feedback is not causal. So, the greatest causalfeedback which keeps the same output behavior as the open-loop system (according to proposition 2) isF̂c = prCaus(F̂ ) = �
4�1(
2�3)� 
4�1(
2�3)��T :Remark 6: Let us note that the initial system becomes stablewith the greatest feedback F̂c (in doted lines in �g. 3). Accord-ing to the results given in [1] and [8], it is known that a feedback"increases" stability since it creates new circuits. An interestingquestion is to determine the conditions on system H such thatfeedback F̂c stabilizes the system.Remark 7: Considering the example proposed in [1] and [8]in which only values di�er, we obtain F̂c = [
(
�)� 
(
�)�]Twhich is to compare with F = [
 
]T obtained by the authors.It must be noted that the main di�erence between these twosolutions is the dynamic on F̂c.Example 2: The results about the greatest causal feedbacksynthesis for a pull 
ow system are now applied to the wellknown kanban cell (see [3], [6] where a model and a study ofsuch a system have been given).Under the assumption that K � n, i.e. there are more kan-bans (K) than machines (n) in the cell, the transfer relation ofthe kanban cell is given byy = (e� 
K�t(
n�t)�)yc � �t(
n�t)�u; (see [6] appendix A)
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n�t)� and f = 
K . According to corollary 2, theoptimal feedback which keeps the behavior unchanged is f̂p =h �n((hf)�hf) = (�t(
n�t)�) �n((
K�t(
n�t)�)�
K�t(
n�t)�).Since (ab�)�ab� = a(a � b)� (see [6] (4.1.6)), then f̂p =(�t(
n�t)�) �n(
K�t(
K�t � 
n�t)�): Therefore, under the as-sumption K � n, f̂p = 
K(
n�t)�:Clearly, this feedback is causal. Indeed, the greatest causalfeedback less than or equal to f̂p isf̂pc = prCaus(f̂p) = 
K(
n�t)� = f̂p:This new feedback is represented in doted lines on �g. 4.
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