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Passive breakups of isolated drops and one-dimensional assemblies of drops in
microfluidic geometries: experiments and models

Louis Salkin, Alexandre Schmit, Laurent Courbin,∗ and Pascal Panizza†
IPR, UMR CNRS 6251, Campus Beaulieu, Université Rennes 1, 35042 Rennes, France

(Dated: October 15, 2013)

Using two different geometries, rectangular obstacles and asymmetric loops, we investigate the
breakup dynamics of deformable objects such as drops and bubbles confined in microfluidic devices.
We thoroughly study two distinct flow configurations that depend on whether object-to-object
hydrodynamic interactions are allowed. When such interactions are introduced, we find that the
volumes of the daughter objects created after breakup solely depend on the geometrical features of
the devices and is not affected by the hydrodynamic and physicochemical variables; these results
are in sharp contrast with those obtained for non-interacting objects. For both configurations,
we provide simple phenomenological models that well capture experimental findings and predict
the evolution of the volumes of the daughter objects with the controlling dimensionless quantities
that are identified. We introduce a mean-field approximation which permits to account for the
interactions between objects during breakup and we discuss its conditions of validity.

PACS numbers: 47.60.Dx 47.55.D- 47.55.df

I. INTRODUCTION

The use of liquid droplets as micron-sized analogs of
test tubes, i.e. as microreactors, is a promising route to-
wards the design of high-throughput microfluidics appli-
cations [1–4] that aim at analyzing faster and at a lower
cost than conventional techniques. This approach known
as digital microfluidics [2, 3] relies on the ability to gen-
erate periodic trains of monodisperse droplets, to han-
dle the drops individually, and to perform and combine
basic operations on these deformable objets, e.g. frag-
mentation, dilution, mixing, and sorting. In contrast to
the classical top-down emulsification techniques for which
large amounts of droplets are handled at the same time,
this technology permits to manipulate individual drops
with a precise control of their size and inner composi-
tion. This original bottom-up approach makes microflu-
idics a powerful tool for material and emulsion sciences [5]
to create new materials, e.g. double emulsions with in-
ner droplets of different compositions [6], multiple emul-
sions [7, 8], Janus [9, 10] or core-shells [11, 12] particles.
The development of applications requires to under-

stand the physics behind the basic operations mentioned
above. In particular, many recent works have focused
on the breakup of drops in confined geometries [13–25].
Indeed, digital microfluidics is a robust tool for high-
throughput biological assays [26], droplet splitting be-
ing employed for instance for on-chip Polymerase Chain
Reaction (PCR) [27] and the screening of compound li-
braries [28]. An external controlling parameter, e.g. an
electric field [24], can be used to break droplets in mi-
crofluidic devices. However, most works rely on passive
(geometry-based) methods that do not require to use an
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external field. The pioneering work on the topic [13] de-
scribes the two main geometry-mediated methods that
can be employed. A train of droplets flowing in a channel
can either reach a junction [13–21], that is, the inlet node
of a loop having generally two arms of different lengths,
or be directed towards a micro-obstacle [13, 22, 23]. All
these works show that breakup only occurs when the
capillary number exceeds a minimum value. Above this
value, all the droplets of a train successively break into
two daughter droplets that flow in each of the gaps of
an obstacle or in the two arms of a loop depending on
the studied geometry. When drops fragment against ob-
stacles, experiments show that the size of the daughter
droplets depends on the governing parameters at play:
the volume and velocity of the drops, the viscosities of
the two immiscible fluids, the surface tension, and the
geometrical parameters [22]. By contrast, when loops
are used, the experimental size ratio of the produced
droplets solely depends on the geometrical features of
the device [13]; using successive loops, this method helps
to increase the production rate of monodisperse emul-
sions [29]. The investigations on geometry-mediated
breakups almost exclusively describe the various hydro-
dynamic regimes that can be observed and experimental
conditions required to witness drop fragmentation [13–
25]. On the other hand, the evolution of the size of the
daughter objects created upon breakup with the govern-
ing parameters has been well studied experimentally but
is still poorly understood. Modeling this size is indeed a
challenging task because of the large number of parame-
ters potentially at play and possible object-to-object in-
teractions which induce time-delayed feedback [30–34];
because of such feedbacks, the breakup of an object may
be influenced by the behavior of the preceding objects.

Here, we aim to address this question working both
with isolated and interacting drops and bubbles using the
two different methods, obstacles and asymmetric loops.
We begin with a brief presentation of results recently
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obtained in the case of isolated drops flowing against ob-
stacles [23]. We describe the basic elements necessary
to develop a model that captures most of experimental
findings, accounts for the four hydrodynamic regimes ob-
served experimentally, and describes the transitions be-
tween these regimes [23]. We then show that this model
can also predict the volumes of the daughter drops or
bubbles produced when breakup occurs. Afterwards, we
perform systematic experiments with rectangular obsta-
cles and asymmetric loops that are very long compared
to the distance between objects. In both cases, we iden-
tify the physical parameters controlling the volume of
the daughter objects. Our experiments show that the set
of governing parameters depends on whether the objects
are isolated or interacting. Building on previous works on
the dynamics of droplet traffic at a junction [35, 36], we
introduce a “mean-field” approximation that allows us to
treat analytically the problem when object-to-object in-
teractions are present. The predictions obtained for the
volume of the created drops after breakup concur very
well with experiments. This model also explains a con-
jectured result reported in [13].

II. SET-UP

We carry out experiments with microfluidic devices,
fabricated in poly-dimethylsiloxane (PDMS) using soft
lithography techniques [37]. The microchannels have a
rectangular cross-section hw with an height h=45 μm
and a width w=130 μm (see Fig. 1). A periodic train
(frequency f) of monodisperse droplets (or bubbles) is
generated using a flow focusing method [38]. In the case
of drops, we use syringe pumps (PHD 2000, Harvard Ap-
paratus) to inject the dispersed (an aqueous solution)
and continuous (an oil) phases at controlled flow rates
which are adjusted independently until a steady flow of
monodisperse drops with a desired size Ld=150−900 μm
is obtained. Typical values of the flow rates for the
dispersed and continuous phases are qw=5 − 200 μl/hr
and qfo=5−500 μl/hr, respectively [Fig. 1(a)]. We em-
ploy a similar procedure to generate monodisperse trains
of bubbles, besides the injection of the dispersed phase
(nitrogen gas) that is performed at constant pressure,
50−700 mbar, using a microfluidic flow control system
(MFCS-FLEX, Fluigent). The train is directed towards
a linear obstacle of length L=200−800 μm and a width
30 μm that is parallel to the walls of the channel but is
off-centered so that objects may flow in two gaps (1) and
(2) having different widths w1 and w2<w1 respectively,
with W=w2/w1=0.4−0.9 characterizing the asymmetry
of the obstacle [see Fig. 1(b)]. We only consider situ-
ations for which Ld is larger than w so that the drops
(or bubbles) adopt a shape that resembles a pancake; in
what follows, we refer to these large objects as “slugs”.
An additional injection of the continuous phase at a
constant flow rate qdo=0−1000 μl/hr performed far up-
stream from the obstacle permits to vary the velocity
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FIG. 1. (a) Schematic of the microfluidic device upstream of
the obstacle and photographs showing the two main modules
used to create periodic trains of monodisperse slugs. Defined
are the oil flow rates in the production and dilution modules,
qfo and qdo , and the flow rate of the slugs phase qw. (b) (i)
Schematic of the flow-geometry nearby the obstacle defining
the geometrical parameters h, L, w, w1, and w2. (ii) and (iii)
Photographs defining the hydrodynamics and physicochemi-
cal variables γ, ηc, ηd, λ, v, and Ld. Scale bar: 100 μm.

of the slugs v and the distance between slugs λ while
maintaining their size, thus their volume Ω=qw/f , un-
changed [32]. In our experiments, the Reynolds and
the capillary numbers are small and span the ranges
10−3−10−1 and 10−3−10−2, respectively. Images of the
flow are recorded close to the obstacle with a high-speed
camera (Phantom V7, Vision Research) working at typ-
ical frame rates of 500−5000 frames/s. The motion of
the slugs as well as their size are obtained from image
analysis using a custom-written software developed with
MATLAB. The liquid-liquid systems are water-glucose
mixtures (viscosity ηd=1 to 7 mPa.s) dispersed in either
hexadecane (viscosity ηc=3 mPa.s) or a viscous silicone
oil (ηc=50 mPa.s). The dispersed phase contains 15 g/L
of a surfactant (Sodium Dodecyl Sulfate, Sigma). The
gas-liquid system is a nitrogen gas in hexadecane. For
each system, we measure the surface tension γ between
dispersed and continuous phases with pendant drop (or
bubble) tensiometry.
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III. FRAGMENTATION OF ISOLATED DROPS
AND BUBBLES

A. Experiments: hydrodynamic regimes

We begin by studying the fragmentation of isolated
drops and bubbles against a rectangular obstacle. This
situation is obtained when the slugs are sufficiently far
apart so that whenever the front edge of a slug meets the
obstacle, the two gaps (1) and (2) are only filled with the
continuous phase. In such a configuration, the fragmen-
tation of a slug does not affect the breakup dynamics of
the following slug and a drop or bubble can therefore be
considered as non-interacting, i.e. isolated. This situa-
tion is obtained experimentally when λ�L.
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FIG. 2. (a)-(d) Four different hydrodynamic regimes are ob-
served when isolated slugs of the same size flow against an
obstacle at different speeds; adapted from [23]. The position
of an interface in the (i)-th gap, i=1 or 2, is defined by �i(t);
the slug meets the obstacle at a time t=0. Scale bar: 100 μm.

For ηd>ηc and a fixed value of Ld, we observe the be-
havior of isolated slugs flowing against the same rectan-
gular obstacle at different velocities v. We obtain four
different hydrodynamic regimes (Fig. 2). A slug may or
may not break against the obstacle, these regimes occur-
ring with [Figs. 2(b)-(c)] or without [Figs. 2(a)-(d)] the
retraction of two-fluid interface in the narrow gap (2).
More specifically, for small enough speeds [see Figs. 2(a)-
(b)], a slug does not not break and flows through the large
gap (1). When the speed is sufficiently large, breakup oc-
curs with or without the retraction of an interface in the
gap (2) [see Figs. 2(c)-(d)]. In a recent study [23], we have
systematically studied the occurrence of these regimes as
a function the governing parameters shown in Fig. 1(b).
This earlier work reports a theoretical framework which
well describes experimental findings in terms of the seven
dimensionless quantities controlling the dynamics. This
model also provides diagrams mapping the four hydrody-
namic regimes found experimentally. In the next section,
we give the basic elements necessary to derive this model.

B. Modeling the flow

1. Transport of slugs

Building on previous models describing the transport
of slugs in microfluidic conducts at low Reynolds and
capillary numbers [20, 22, 23], we assume that v varies
as v= q

hw with q=qw+qfo+qdo the total flow rate, and that
Darcy’s laws describe the flows of both the continuous
phase and the slugs phase with an effective viscosity
ηs(h,w, ηd, ηc) for the slugs. This phenomenological ef-
fective viscosity accounts for additional viscous dissipa-
tion inside the slug, in the thin films of continuous phase
between the slug and the channel walls, floor, and ceil-
ing, and in the corners of the rectangular geometry. The
pressure drop Δp over a portion � of a slug then reads

Δp= ηs�
h3wf(

w
h )q, where f(wh )≈12

(
1− 0.63

(
w
h

)−1
)−1

in

the situation (h<w) considered here [39]. Due to the
curved two-fluid interfaces, there are also pressure drops
across the front and rear edges of the slug, which we
write approximately as Δpcurv=ε 2γw (1 + w

h ), with ε=1 or
−1 depending on whether the front or the rear edge of
the slug is considered. Because of its spatial periodicity,
we model the flow over a length λ, within two distinct
regions of lengths Ld and λ − Ld corresponding respec-
tively to the slug and the space between slugs (see Fig. 3).
In the situation depicted in Fig. 3, the contribution to
the total pressure drop of the curved rear and front slug
edges cancel out [40] so that the pressure drop over λ is

Δpλ=
ηcλ
h3wf(

w
h )[1 + ΔηLd

λ ]q, with the viscosity contrast

Δη= ηs−ηc

ηc
.

flow

λ

Ld

ηsηc

γ
Δpcurv(ε=−1) Δpcurv(ε=+1)

Δpλ =
q

h3w
f(wh )[ ηc(λ− Ld) + ηsLd ]

FIG. 3. Photograph of the flow describing the modeling of
the pressure drops in our study. Slugs of size Ld separated
by a distance λ flow in a rectangular channel of width w and
height h. The pressure drop over the length indicated by the
white arrow is the sum of Δpλ corresponding to the flow of the
continuous phase and slugs, and the additional pressure drop
across the front and rear edges of the slug due to the curved
two-fluid interfaces Δpcurv=ε 2γ

w
(1 + w

h
); ε=1 (front edge)or

ε=−1 (rear edge). This model assumes that the continuous
phase and slugs flow at the same speed.

It is worthwhile mentioning that in the case of a long
channel of length � � λ the pressure drop is Δp� �

λΔPλ
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so that the hydrodynamic resistance of the channel reads
Δp
q � ηc�

h3wf(wh )[1+ΔηLd

λ ]� ηc

h3wf(
w
h )(�+nLr) where n� �

λ

is the number of slugs in the channel and Lr=LdΔη has
the dimension of a length. This phenomenological model
neglecting the dependance of the hydrodynamic resis-
tance on the recirculation around the caps of the slugs,
predicts that the hydrodynamic resistance of a channel
filled with slugs varies linearly with the number of slugs
it contains, with Lr an excess length added by each slug
to the channel in terms of hydrodynamic resistance. The
existence of such a resistive length is also predicted in
the case of the transport of spherical drops in microflu-
idic conduct at low capillary and Reynolds numbers us-
ing a slightly different phenomenological approach [41]
validated by experiments for both spherical drops and
slugs [32, 35, 41–43]. Interestingly, our simple model for
the hydrodynamic resistance of a microchannel filled with
slugs also predicts that the effective length Lr=LdΔη can
be negative when Δη<0. This prediction could inspire
further experimental investigations of droplet traffic for
fluid-fluid systems having negative viscosity contrasts.

2. Fragmentation against a rectangular obstacle

Here, we briefly present the model reported in [23] that
allows for a rationalization of the experiments discussed
in the section IIIA. We will then show that this model
also predicts the volumes of the daughter drops or bub-
bles that are created when breakup occurs.

Our model is based on the basic physical arguments
discussed in section III B 1. The dynamics start at a time
t=0 when an isolated slug meets the obstacle. Since our
experiments are carried out at constant flow rates, a two-
fluid interface always enters the large gap (1) and begins
to move forward at a speed v1(t)=d�1/dt up to a distance
�1=X1L [see Fig. 2(d) defining �1]. Similarly, in regimes
for which a two-fluid interface propagates in the narrow
gap, the velocity and location of this interface in gap
(2) are v2(t)=d�2/dt and �2=X2L, respectively [Fig. 2(d)
defines �2]. In our model, the pressure drop Δpcurv ac-
counts for the presence of curved interfaces. However,
this simple model is derived considering flat interfaces.
Our experiments show that the velocity of the slug v re-
mains constant after collision until the rear edge of the
slug reaches the obstacle. Therefore, since we consider
slugs having flat interfaces, we assume that this event oc-
curs at a time tf=

Ld−cw
v ; c is a free parameter O(1) that

depends on the dimensionless parameters of the cross-
section of the channel, i.e. w

h ,
w2

h , and w2

Wh . We next

work with the dimensionless time T= t
tf
.

Break-up occurs provided that a two-fluid interface has
invaded gap (2) and has not completely withdrawn from
this gap at T=1. The dynamics of the two-fluid inter-
faces in both gaps are controlled by a set of two coupled
first-order ordinary differential equations [23]. The first
equation is given by the conservation of the total flow

rate:

dX1

dT
+W

dX2

dT
=

(Ld − cw)w

Lw1

= α. (1a)

The equality of pressure drops over both gaps gives the
second equation:

(1 + ΔηX1)
dX1

dT
− FW (1 + ΔηX2)

dX2

dT
= α

C�

C (1b)

for X1 ≤ 1 and X2 ≤ 1;

(1+Δη)
dX1

dT
−FW (1+ΔηX2)

dX2

dT
= α

C�

C
1 + w2

h

1−W
(1c)

for X1 > 1 and X2 ≤ 1. F=f
(
w2

h

)
/
[
Wf

(
w2

Wh

)]
and

C= ηcv
γ is the capillary number. Other dimensionless

quantities are C�=2Z 1−W
W with Z=(f

(
w2

Wh

)
h−2wL)−1.

This set of equations is written is terms of the seven
dimensionless quantities controlling the breakup dynam-
ics (W,Z,wh ,

w2

h ,C,Ld

L ,Δη). The first four quantities are
associated with the geometry of the channel whereas C,
Ld

L , and Δη depend on the hydrodynamic parameters and
fluid properties. Not surprisingly, C, which compares the
magnitude of viscous and capillary stresses, appears to be
a governing quantity as seen in other problems addressing
the breakup of drops or bubbles [13, 20, 22, 44]. This the-
oretical framework captures experimental observations
and transitions between hydrodynamic regimes discussed
in section IIIA and reported in Salkin et al. [23].

C. Size distribution after breakup

A slug breaks whenever it has entered the narrow gap
and X2(T=1)>0. Using this condition for breakup and
solving numerically the set of eqns (1) allows us to deter-
mine the volume of the daughter slugs Ωi � wihLXi(1)
produced in gap (i) with i=1 or 2. Varying the size and
velocity of a slug, the fluid viscosities, the surface ten-
sion, and the geometrical features of the obstacle, we
next compare the predicted volumes Ωi with experimen-
tal measurements. Despite the apparent complexity of
a problem with a large number of governing parameters
[see Fig. 1(b)], in what follows, we show that our sim-
ple model based on strong approximations can predict
the daughter slugs size distribution using only two free
parameters, the effective viscosity ηs and the numerical
constant c introduced because we consider flat interfaces
rather than curved. The results presented below from
Fig. 4 through Fig. 6 are discussed in terms of φ2=

Ω2

Ω the
ratio of the volume Ω2 over the volume of the initial slug
Ω studied as a function of C. As shown in these figures,
the numerical simulations provide a good qualitative de-
scription of our experimental findings as it captures well
the variations of the volume fraction φ2 when experimen-
tal parameters are varied. In addition, the values taken
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by the free parameters to determine the best fits to the
experimental volume of the daughter slugs are consis-
tent with the free parameters determined in our previous
work [23] by fitting the analytical expressions of the tran-
sitions separating the four hydrodynamic regimes in the
(C, Ld) plane to the experimental data; these regimes are
briefly discussed in section III A.

Cbr
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FIG. 4. Evolution as a function of C of the volume fraction
φ2 for different water-glucose mixtures in hexadecane: (◦)
ηd=1 mPa s, (�) ηd=2.7 mPa s, and (�) ηd=7.2 mPa s. The
photographs define Ω and Ω2. Inset: Magnification at low φ2

and C defining the minimum capillary number for breakup to
occur, Cbr. The dimensionless quantities are W=0.4, w

h
=2.7,

w2
h
=0.57, Z=2.8 × 10−3. The lines are predictions of the

model. The two free parameters are c=0.5 and (dotted line)
Δη=3, (dashed line) Δη=5, and (solid line) Δη=10.

We begin by studying the evolution of φ2 with C for
different liquid-liquid systems, i.e. for different viscos-
ity contrasts. Figure 4 show that above a critical value
Cbr of C a slug breaks into two daughter slugs (see in-
set of Fig. 4 defining Cbr for a set of data) in accordance
with our previous observations [23]. Additionally, when
C>Cbr, φ2 is a monotonically increasing function of C
which indicates that Ω2 becomes larger as C increases.
When breakup occurs, for a given capillary number, φ2

strongly increases with the viscosity contrast. Experi-
ments also show that Cbr becomes smaller when the vis-
cosity contrast is increased. This result indicates that,
for Δη>0 and a given continuous phase, the minimum
capillary number to break a slug against a rectangular
micro-obstacle is smaller for a high-viscosity fluid slug
compared to a low-viscosity one. This behavior is sur-
prising as it differs from what is usually observed in bulk
for an isolated drop submitted to a flow [44]; it clearly
shows that the physics of drop fragmentation is highly
sensitive to confinement [45]. The model captures well
all experimental observations discussed above (Fig. 4).
We next investigate the effect of the slug size on the

fragmentation process. Figure 5 shows the evolution of

Ld=L = 0:6

Ld=L = 1
0

0.05

0.1

0.15

0 1 2 3 4

103 C

φ
2

FIG. 5. Variations of φ2 as a function of C for a water-glucose
mixture in hexadecane (ηd=7.2 mPa s) and two values of Ld/L
respectively smaller and larger than Lcr

d /L: (◦) Ld/L=0.6
and (•) Ld/L=1; in these experiments, Lcr

d /L=0.74. The
dimensionless quantities are W=0.4, w

h
=2.7, w2

h
=0.57, and

Z=2.8 × 10−3. The lines are predictions of the model calcu-
lated using the two free parameters c=0.5 and Δη=10.

φ2 with C for two different values of Ld/L in the case
of a liquid-liquid system whose viscosity contrast is posi-
tive (ηc=3 mPa s and ηd=7.2 mPa s). For such viscosity
contrasts, we have recently reported the existence of a
critical drop size Lcr

d for which breakup requires a mini-
mum capillary number [23]. When Ld<Lcr

d
, only breakup

regimes occurring without the retraction of a two-fluid
interface in the narrow gap are observed. By contrast,
depending on the value of C, the fragmentation may or
may not occur with such a retraction when Ld>Lcr

d ; a
detailed discussion of these findings is provided in [23].
As shown in Fig. 5, the model describes reasonably well
the variations of φ2 when Ld/L either smaller or larger
than Lcr

d /L. Above Cbr, φ2 monotonically increases with
C and its evolution weakly depends on Ld/L.
Using different devices, we next study the influence

of the obstacle asymmetry W on the evolution of φ2

with C (Fig. 6); note that the results are discussed in
terms of F=f

(
w2

h

)
/
[
Wf

(
w2

Wh

)]
instead of W as w2/h

may vary from a device to another. As mentioned previ-
ously, experiments can be conducted with bubbles rather
than drops. We provide in Fig. 6 a set of results ob-
tained for the gas-liquid system showing that the model
well predicts the volumes of both drops and bubbles. In
other words, this model can predict the volume of daugh-
ter objects for both positive and negative viscosity con-
trasts. Experiments performed with the liquid-liquid sys-
tem show that Cbr increases with F . The volume fraction
φ2 is also sensitive to the obstacle asymmetry: for a given
capillary number, φ2 strongly decreases with F (Fig. 6).
To summarize, working within the limit λ�L, we have

studied the volume of daughter drops or bubbles obtained
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FIG. 6. Evolution of φ2 with C for different values of F . The
solid lines correspond to the model for (closed symbols) slugs
of the water/glucose mixture in hexadecane (ηd=7.2 mPa s)
and (open symbols) bubbles filled with nitrogen gas in hexade-
cane. The shape of the symbols stands for different values of
F as indicated in the figure. The dimensionless quantities are
(◦) W=0.6, w2

h
=0.78, Z=3 × 10−3, Ld/L=0.7, (�) W=0.35,

w2
h
=0.54, Z=3.7×10−3, Ld/L=0.9, and (•)W=0.6, w2

h
=0.83,

Z=3.3×10−3 , Ld/L=0.9. For each experiment, w
h
=3.03. The

free parameters are (◦) c=0.49 and Δη=−0.97, (�) c=0.8 and
Δη=10, and (•) c=0.9 and Δη=10.

after the breakup of isolated slugs against a rectangular
obstacle. Our results show that breakup occurs when the
capillary number C exceeds a minimum value Cbr. When
C≥Cbr, daughter slugs are produced in both gaps and
the volume fraction in the narrow gap φ2 is an increas-
ing function of C. Although, Cbr is a nontrivial function
of the governing parameters of the problem, its varia-
tions can be fully captured using the model described
in [23]. Experiments show that the volume of the daugh-
ter slugs depends on the capillary number, the size of the
initial slug, the viscosity contrast, and the asymmetry of
the obstacle. Using only two free parameters, the model
reported in [23] describes semiquantitatively our experi-
ments. When we compare the viscosity of the dispersed
phase ηd with the values of ηs determined for the fits to
the data in Fig. 4 through Fig. 6, we find that our re-
sults concur with the literature. Indeed, when Δη>0, we
find that ηs>ηc which is consistent with [42]. By con-
trast, ηd<ηs<ηc when Δη<0 which concurs with other
works [43]. In section IV, working within the limit λ�L,
we will investigate the breakup in the presence of slug-
to-slug interactions. When λ∼L, we observe the emer-
gence of complex breakup dynamics that includes peri-
odic fragmentation events; these results will be discussed
elsewhere [46]. Using a mean-field approach, we deter-
mine in the next section the critical value of λ below
which the slugs can no longer be considered as isolated.

D. Long obstacles and large capillary numbers: A
mean-field approximation

We consider configurations for which Ld/L is small
enough to establish a mean-field approximation. In our
model considering flat interfaces, this situation corre-
sponds to small enough ratios Leff

d
/L=(Ld − cw) /L. In

this case, a two-fluid interface is still present in the large
gap when the rear edge of a slug reaches the obstacle, i.e.
X1(T=1)<1, and the dynamics of the two-fluid interfaces
propagating in both gaps are solely governed by eqn (1a)
and eqn (1b). One can then assume that the variations in
time of the pressure drops in both gaps associated with
the flow of the slug and the presence of curved interfaces
remain negligible when compared to the mean values of
the pressure drops. This assumption can be mathemat-
ically expressed as |Δη|Xi � 1 and C � αC�. Hence,
eqn (1b) becomes:

dX1

dT
− FW

dX2

dT
� 0. (2)

Solving the set of eqns (1a) and (2) one easily finds
dX1

dT � αF
(1+F ) and

dX2

dT � α
W (1+F ) . Using these relationships,

one derives expressions for φi=Ωi/Ω in the gap (i) with
i=1 or 2:

φ2 � 1

1 + F
(3a)

and

φ1 � F

1 + F
. (3b)

Using these results, the conditions for the validity of

our approximation read
Leff

d

L <w1(1+F )
wF ,

Leff
d

L �w1(1+F )
wF |Δη| ,

and C�αC�. One can also derive an expression for the
critical distance between slugs λc above which a slug can
be considered as isolated when reaching an obstacle at
T=0. At this time, when λ≥λc both gaps are only filled
with continuous phase, which indicates that the daughter
slug created in the narrow gap after the breakup of the

previous slug at T=−λ−Leff
d

Leff
d

has moved by at least a

dimensionless distance 1 over the duration
λ−Leff

d

Leff
d

. Using

dX2

dT � α
W (1+F ) , when λ=λc, this simple analysis gives:

λc � L
w2(1 + F )

w
+ Leff

d
. (4)

For larger Leff
d , a two-fluid interface may have left the

large gap at T=1. This situation is apparently more
complex since the dynamics of the two-fluid interfaces
are then controlled by the complete set of eqns (1). Nev-

ertheless, when |Δη| � 1 and C � αC�

1+
w2
h

1−W , eqn (1b)

and eqn (1c) both reduce to eqn (2) and a similar analysis
gives the same expressions for φ1, φ2, and λc as deter-
mined when X1(T=1)<1.
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IV. FRAGMENTATION IN THE PRESENCE OF
SLUG-TO-SLUG INTERACTIONS

A. Experiments

We now study the breakup dynamics of one-
dimensional assemblies of slugs for which λ�Li against
obstacles depicted in Fig. 7.

F=1

L2>L1

¤>1

w1=w2

L2

L1

w1w2

F=1

¤=1

L1=L2

w1>w2

F>1

L2L1

w2w1

(a) (b)

(c) (d)

¸1

¸2

L
1
d

L
2
d

v1 v2

gap (1)

gap (2)

gap (2)

gap (1)

flow 

flow 

F=1
¤>1¤=1

F>1

FIG. 7. Sketch of the long rectangular obstacles (a) and
asymmetric loops (b). The asymmetry is controlled by
F=f

(
w2
h

)
/
[
Wf

(
w2
Wh

)]
and Λ=L2/L1. Photographs show-

ing typical flows of slugs against long rectangular obstacles
(c) and in asymmetric loops (d). Defined are the velocity
vi of the slugs produced in the (i)-th gap (i=1 or 2) after
breakup, their size Li

d, and the distance λi between them.

The two gaps (1) and (2) of the obstacles have
lengths L1 and L2 and widths w1 and w2 (Fig. 7);
Li=103−104 μm with i=1 or 2. These obstacles are ei-

ther long and rectangular [Fig. 7(a)] or can be viewed as
long asymmetric loops [Fig. 7(b)]. F and Λ=L2

L1
char-

acterize the asymmetry: F>1 and Λ=1 for rectangular
obstacles whereas F=1 and Λ>1 in the case of loops.

We work within the limits of long obstacles (λ�Li)
since, for this flow configuration, one may assume that
the temporal fluctuations of the total flow rates in each
gap of an obstacle can be neglected; this will help to
rationalize our results in section IVB. As we wish to
study the volumes of daughter slugs after breakup, we
work with large enough capillary numbers so that all the
slugs of a train break when meeting an obstacle. In this
case, experiments show that whenever the front edge of a
slug meets the obstacle, two fluid-fluid interfaces invade
both gaps, propagating in the gap (i) at a speed vi [see
Fig. 7(c)-(d)]. The rear edge of this slug collides with the
obstacle at a time tf defined in the section III B 2. At tf ,
the slug breaks into two daughters slugs (size Li

d
=vitf)

that flow in the two gaps (see Fig. 7 defining L1
d
and

L2
d). The time between two successive breakup events

being τ= 1
f=

λ
v , the distance between the front edges of

two consecutive slugs flowing in gap (i) is λi=viτ . In
what follows, we study the volume fraction φ2 as a func-
tion of C, Ld, ηd, F , and Λ.
We begin by investigating the breakup dynamics in

rectangular geometries (Λ=1 and F>1). For a given
fluid-fluid system and size of the slug, our experiments
show that φ2 does not depend on C (Fig. 8). Furthermore,
figure 8 shows that φ2 is independent of the viscosity con-
trast for the range of studied capillary numbers.

0

0.1

0.2

0.3

0.4

0 5 10 15 20

= 2.7 mPa s
= 7.2 mPa s´d

= 1 mPa s´d
´d

103 C

φ
2

FIG. 8. Evolution of φ2 with C for a fixed slug size and
geometry (Ld=230±30 μm and F=2.5) and different water-
glucose mixtures in hexadecane, i.e. different values of ηd.

For a given geometry and capillary number, we report
in Fig. 9 the variations of φ2 with the slug size Ld. For
three different values of ηd, experiments show that φ2

remains constant when Ld is varied and roughly equal to
the quarter of the volume of the initial slug.
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= 2.7 mPa s
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= 1 mPa s´d
´d

0
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0.4

100 150 200 250 300 350

Ld (μm)

φ
2

FIG. 9. Variations of φ2 with Ld for three different values of
ηd. The parameter controlling the asymmetry is F=2.5.

By contrast, the response is sensitive to the asymmetry
as φ2 roughly decreases from 0.5 to 0.1 when F is varied
between 1 and 6 (Fig. 10).

= 7.2 mPa s´d

= 1 mPa s´d
= 2.7 mPa s´d

0

0.2

0.4

0.6

0.8

0 10 20 30

  F = 2.5

  F = 6

  F = 1

103 C

φ
2

FIG. 10. Evolution of φ2 as a function of C for different values
of F and ηd as indicated in the figure.

To summarize, the volume fraction φi does not depend
on hydrodynamic parameters and physicochemical prop-
erties and is a decreasing function of the asymmetry of
the obstacle. These results contrast with our findings
for isolated drops discussed in section III C. In the next
section, we will develop a phenomenological model based
on a mean-field approximation to rationalize our exper-
iments. We will show that this model concur well with
experimental results obtained both for rectangular obsta-
cles and asymmetric loops (Fig. 11 and Fig. 12).

B. Interpretation: a mean-field approach

We have investigated the flow of periodic trains made
of monodisperse slugs for which λ�Li working with large
enough capillary numbers so that all slugs of a train
successively break when meeting the obstacle. It is in-
teresting to note that the sole occurrence of breakup
regimes without retraction, although not intuitive for
loops, could have been expected for long obstacles, since
the minimum capillary number to break a slug vary as
1/L for an isolated slug flowing against a rectangular
micro-obstacle [23]. Furthermore, when λ�Li, the num-
ber of daughter slugs present in both gaps is very large
[see Fig. 7(c)-(d)]. We therefore assume that the tempo-
ral fluctuations of the pressure drops resulting from the
entrance of exit of a slug in the gaps are very small com-
pared to the mean values of the pressure drops and can be
neglected. The validity of this mean-field approximation
will be discussed in details in section IVC.
Within this mean-field approach, the total flow rates in

each gap are constant over time. Consequently, all two-
fluid interfaces present in the i-th gap (i=1 or 2) move
at the same constant velocity vi. The size of a daughter
slug flowing through the gap (i) and the distance between
slugs are respectively Li

d
=vitf and λi=viτ as defined in

the previous section. When λ�Li, an estimate of the
pressure drop in the gap (i) is Δp � fi[ηcLi + niL

i
d(ηs −

ηc)]
vi
h2 with ni � Li/λi, the number of slugs present in

this gap and fi=f(wi

h ). The volume conservation of the
“mother” slug reads w1L

1
d
+ w2L

2
d
=wLeff

d
. Using this

equation, the definitions Li
d and λi, and the equality of

the pressure drops over the two gaps, one easily finds:

L1
d

Leff
d

=
λ1

λ
� wFΛ

w1(1 + FΛ)
, (5)

and

L2
d

Leff
d

=
λ2

λ
� w

w2(1 + FΛ)
. (6)

Since the volume and number of the daughter slugs
flowing through the gap (i) are respectively Ωi � hwiL

i
d

and ni � Li/λi, using Ω � hwLeff
d , one predicts:

φ1 � FΛ

1 + FΛ
, (7)

φ2 � 1

1 + FΛ
, (8)

n1 �
L1

λ

w1(1 + FΛ)

wFΛ
, (9)

and

n2 �
L2

λ

w2(1 + FΛ)

w
. (10)
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Consequently, this simple model established within the
limit λ�Li predicts that the volume fraction and num-
ber of daughter slugs solely depend on the parameters
characterizing the asymmetry of an obstacle or a loop.
In other words, these physical quantities are indepen-
dent of the physicochemical and hydrodynamic parame-
ters of the problem. Our experiments presented in sec-
tion IVA concur well with these results. More quantita-
tively, when Λ=1 and F=2.5, the predicted volume frac-
tion of the daughter slug in the narrow gap is φ2�0.28
which correlates with experiments (Fig. 8 and Fig. 9).
These results drastically differ from the breakup dynam-
ics against short rectangular obstacles and underlines
the importance of the condition λ�Li for geometry-
mediated breakups. Within this limit, it is interesting
to note that the volume ratio Ω2

Ω1
of two daughter slugs

reads 1
FΛ . For asymmetric loops, it corresponds to the ra-

tio of the hydrodynamic resistances of the two arms only
filled with continuous phase. Since both arms are filled
with a large number of slugs, this result (Ω2

Ω1
∝ 1

Λ) may
seem counterintuitive, although it was inferred based on
experimental results in [13]. Our simple model provides
theoretical grounds for this intriguing result.
To validate further our theoretical predictions, we work

with asymmetric loops and we compare theoretical pre-
dictions for the number and volume fractions of the pro-
duced daughter for both geometries.
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FIG. 11. Comparison between the experimental and pre-
dicted average numbers of slugs ni obtained the gap (i) af-
ter breakup. Inset: magnification at small number of slugs.
The shapes of the symbols correspond to different liquid-
liquid systems and values of ηd: water-glucose mixtures in
hexadecane with (◦) ηd=1 mPa s, (�) ηd=2.7 mPa s, and
(�) ηd=7.2 mPa s, and water in a viscous silicone oil (•)
ηd=1 mPa s. Colors stands for experiments either carried out
using long obstacles (black) or asymmetric loops (grey).

As shown in Fig. 11, the model well describes the num-
ber of daughter slugs present in both gaps of an obstacle
or in the arms of a loop. Also, when comparing exper-

imental and predicted volume fractions φ1 and φ2, the
mean-field model well captures experiments (Fig. 12).
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FIG. 12. Comparison between experiments and theoretical
predictions of the volume fraction φ1 (left y-axis) and φ2

(right y-axis) of the slugs produced after breakup. The shape
of the symbols and their colors are identical to those of Fig. 11.

C. Validity of the mean-field approach

We now discuss the conditions for the validity of our
mean-field approach. Our first assumption requires that
ni�1 with i=1 or 2. Using eqn (9) and eqn (10), this
condition can be expressed as:

λ � min(λ(1)
c

, λ(2)
c

) (11)

with λ(1)
c

=L1

w1(1+FΛ)
wFΛ and λ(2)

c
=L2

w2(1+FΛ)
w .

The mean-field approximation also requires the
temporal fluctuations of the pressure drop Δp(t)
caused by the entrance, exit, and motion of the slugs
in both gaps to be negligible compared to its mean
value. Following the description of the motion of
slugs in channels having a constant cross-section given
in section III B 1, the pressure drop can be written
Δp(t)= fivi

h2 [ηcLi + (ηs − ηc)L
s
i (t)] + εi(t)

2γ
wi

(
1 + wi

h

)
. In

this expression, Ls
i
(t) is the total length occupied at

t by the slugs in the gap (i) and εi(t) can take three
possible values, 1, 0, or −1 depending on whether at
t, the difference between the number of front and rear
edges of slugs present in this gap is 1, 0, or −1. Since
Li is generally not commensurate with λi, one can write
Ls

i
(t)=NiL

i
d
+ �(t) where Ni=floor(Li

λi
) and �(t) is a

length smaller than Li
d. Ni represents the minimum

number of slugs that can entirely fit in the gap (i)
and �(t) corresponds to the excess length due to the
partial entrance and exit of slugs through this gap at
time t. When λi�Li, Ni � Li

λi
, and using eqn (5)

and eqn (6), the pressure drop can be written Δp(t) �
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fiviηcLi

h2

[(
1 + Δη

Leff
d

λ

)
+Δη �(t)

Li
+ εi(t)

2v
CviZi

(
1 + wi

h

)]

with Zi=(fih
−2wiLi)

−1.

Neglecting the temporal fluctuations of the pressure
drop compared to its mean value therefore requires the
two following conditions to be satisfied for i=1 and 2:

(a) |Δη|L
i
d

Li
� 1 + Δη

Leff
d

λ ,

(b) 2v
CviZi

(
1 + wi

h

)
� 1 + Δη

Leff
d

λ .

The condition (a) is satisfied when the resistive length
added by one slug to the gap (i) is negligible compared
to the effective resistive length of this gap. The con-
dition (b) is fulfilled when the pressure drop account-
ing for curved interfaces in the gap (i) can be neglected
compared to the pressure drop resulting from the flow of
slugs and continuous phase over this gap. We will next
show that these two conditions, which depend on whether
Δη ≥ 0 or Δη < 0, imply restrictions on λ and C.
For Δη ≥ 0, the condition (a) is fulfilled whenever

eqn (11) is satisfied. Using eqn (5), eqn (6), and v
vi
= λ

λi
,

one easily finds that the condition (b) reads:

C � min(C+
c ,

1 + w2

h

1 + w1

h

C+
c ) (12)

with C+
c = 2w1

w Z1

(
1 + w1

h

)
1+FΛ
FΛ

1

1+Δη
L
eff
d
λ

.

It is interesting to note that the expression of C+
c can

be simplified within the two following limits:

• λ � ΔηLeff
d , C+

c � 2w1

w Z1

(
1 + w1

h

)
1+FΛ
FΛ ,

• λ � ΔηLeff
d

, C+
c
� 2w1

w Z1

(
1 + w1

h

)
1+FΛ
FΛ

λ

ΔηLeff
d

.

To summarize, when Δη ≥ 0, the mean-field approxi-
mation is valid whenever λ and C satisfy both eqn (11)
and eqn (12). Note that when Δη=0, only eqn (12) has
to be fulfilled.

For Δη < 0, the condition (a) becomes −Δη
Li

d

Li
�

1 + Δη
Leff

d

λ . Using eqn (5) and eqn (6), and writing
Li

d

Li

as
Li

d

Leff
d

Leff
d

Li
, one shows that

Li
d

Li
=

Leff
d

λ
(i)
c

. Since λ � λ(i)
c

[see eqn (11)], the condition (a) is fulfilled only when

λ � −ΔηLeff

d
. (13)

Using eqn (13), it is straightforward to show that the
condition (b) can be written as

C � min(C−
c ,

1 + w2

h

1 + w1

h

C−
c ) (14)

with C−
c

= 2w1

w Z1

(
1 + w1

h

)
1+FΛ
FΛ .

To summarize the case Δη < 0, the validity of our
mean-field approximation requires that λ and C satisfy
eqn (11), eqn (13), and eqn (14).
Note that for the the long rectangular obstacles (F>1

and Λ=1) and loops (F=1 and Λ>1) studied here, the
conditions for the capillary number given in eqn (12) and
eqn (14) respectively read:

C � 2
w1

w
Z1

(
1 +

w2

h

) 1 + FΛ

FΛ

1

1 +Δη
Leff

d

λ

(15)

and

C � 2
w1

w
Z1

(
1 +

w2

h

) 1 + FΛ

FΛ
. (16)

V. CONCLUSION

Investigating the fragmentation of isolated slugs (large
drops and bubbles) against rectangular obstacles, we
have shown the existence of a critical capillary number
needed to break a slug; this result concurs with a pre-
vious study [23]. Above this critical capillary number,
a slug breaks into two daughter slugs that flow through
both sides of the obstacle. A thorough study of their
respective volumes has shown a complex dependance on
the numerous parameters of the problem, the volume and
velocity of the initial slug, the viscosity contrast between
dispersed and continuous phases, the surface tension, and
the geometrical features of the obstacle. We show that
a theoretical framework initially introduced in [23] well
describes experimental findings.
Working within the limit of very long obstacles com-

pared to the distance between slugs allows for slug-to-
slug interactions. We show that such interactions drasti-
cally change the flow behavior and the breakup dynam-
ics. Indeed for this flow configuration, the ratio of the
volume of the daughter slugs over the volume of the ini-
tial slug is independent of the hydrodynamic parameters
and physicochemical properties and solely depends on
the geometrical features of the device. Inspired by recent
works on droplet traffic at microfluidic junctions [35, 36],
we introduce a mean-field approximation and build on
the modeling of the breakup dynamics for isolated slugs
to rationalize experiments in the presence of slug-to-slug
interactions. The resulting model well describes both
qualitatively and quantitatively our experimental find-
ings. The predictions of this model for the ratio of
the volumes of the two daughter slugs also provide the-
oretical grounds for an unexplained result reported in
the pioneering work on geometry-mediated breakups in
microfluidic devices [13]. The conditions of validity of
the mean-field approach, i.e the range of applied capil-
lary numbers and distance between slugs, are also dis-
cussed. These results provide an insightful description of
geometrically-mediated breakups of drops and bubbles in
confined environments and could be useful for engineer-
ing bidisperse emulsions and foams [8].
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