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Abstract : Airborne thermal prospecting is based on the principle that there is a 

fundamental difference between the thermal characteristics of buried remains from the 

environment in which they are buried. The French 'Archéodrone' project aims to combine the 

flexibility and low cost of using an airborne drone with the accuracy of the registration of a 

thermal digital camera. This combination allows the use of thermal prospection for 

archaeological detection at low altitude with high-resolution information, from a micro-

regional scale to the site scale. The first results have already allowed us to assess the 

contribution of this technique for the detection of ancient roads, parcel boundaries, site plans 

and underground caves. 
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State of the art and objectives 

Richard Atkinson is usually considered as the first who developed, for the first time in 1946, a 

ground-based non-invasive method to get a detailed map of the archaeological site by the 

study of the electrical resistivity of soil (Atkinson, 1946); although earlier experiments have 

been documented (Bevan 2000) It was followed by the development of techniques such as, 

magnetic mapping and Ground Penetrating Radar. The development of air and space-based 

techniques, such as multispectral satellite remote-sensing or Airborne Laser Scanning, has 

diversified the methods and thus increased the number of tools to visualize archaeological 

remains without direct intervention (Devereux et al., 2005; Bewley et al., 2005; Lasaponara et 

al., 2010). 

Airborne thermal prospecting is one of these non-invasive methods. It is based on the principle 

that there is a fundamental difference between the thermal characteristics of buried remains 
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from the environment in which they are buried (Eppelbaum, 2009). Therefore archaeological 

structures tend to react differently to changes in temperature compared to the surrounding 

sediment (warming or cooling more or less quickly depending on their nature). For example, 

structures built of stone and mortar present a greater thermal inertia than the surrounding 

sediment; conversely, hollow structures (ditches and pits) have a lower thermal inertia, 

allowing their detection on bare soils (Rowlands and Sarris, 2007). On cultivated soils, the 

hydric stress of cereals disturbs their thermal regulation, permitting the detection of remains 

before they are visible on conventional pictures as crop marks (Aqdus et al., 2012) as visible on 

figure 3 for example. 

This detection method has been used in archeology since the 1970s (Bellerby et al., 1990; Ben-

Dor et al., 2001; Berlin et al., 1977; Lundén, 1985; Prakash et al., 1995; Tabbagh, 1977). But the 

use of aircraft or satellite imagery made the method difficult to access due to its cost and lack 

of organizational flexibility: flights must be scheduled several weeks in advance and the 

relatively high flight altitude is only able to detect large structures (abandoned roads and 

parcel boundaries). 

The parallel development of Unmanned Aerial Vehicles (UAV) and miniaturization of sensors 

and data transmission suggests a technological breakthrough in terms of archaeological 

prospection (Bendea et al., 2007; Chiabrando et al., 2011; Eisenbeiss & Zhang, 2006; Eisenbeiss 

et al., 2005; Everaerts, 2008; Hendrickx et al., 2011; Verhoeven, 2009). However, the recent 

development of UAVs has so far benefited archaeological survey by the addition of 

conventional digital cameras, to achieve vertical or oblique aerial photographs, mainly at the 

scale of a site or excavation. 

The French 'Archéodrone' project, developed at the University of Toulouse 2 - Le Mirail 

(France), aims to combine the flexibility and relative low cost of using an airborne drone with 

the accuracy of the registration of a thermal digital camera. Indeed, even if the price of 

acquiring the equipment is quite high (several dozens of thousand Euros), the possibility to 

repeat as many flights as needed makes the methodology affordable compared to the price of 

a single plane or helicopter flight.  This combination allows the use of thermal survey for 

archaeological detection at low altitude, resulting in a higher resolution of information, from a 

micro-regional scale to the site scale, and the possibility to repeat several flights above the 

same area in different air and soil conditions. 

Equipment used 

The UAV used is an octoroctor helicopter (Figure 1) with electric propulsion and a wingspan of 

about 80 cm, with a three-dimensional inertial stabilization system and a GPS for its 

geolocation. It is radio controlled and allows a payload of 3 kg. It is accompanied by a 

telemetry system to display real-time flight data: battery consumption, flight time, altitude, 

distance from the point of takeoff, and GPS status. The same system is used to display a map 

and manage the GPS' points of interest (waypoints). 
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The sensor used is a FLIR T620 thermal digital camera with high sensitivity for the detection of 

temperature changes of about 0.04 °C, on images of 640 x 480 pixels. A radio transmission 

system captures the camera images in real-time  and can track the flight on a LCD screen with 

return video.  

The whole equipment was acquired for about 70,000 €. This is a large investment for a 

research team, but we consider this as a low cost method given that this material will be 

usable for several years, several times a day and several days in a row if needed during a 

survey campaign. This should be compared to expensive "one-shot" data acquisition such as 

airborne Lidar or thermography.  

Intervention process 

The intervention process first consists in the definition of flight plans ahead of field data 

acquisition. For this, the Mikrokopter Tool software allows extraction of geographical views at 

the plot scale from web portals like Google Earth or Virtual Earth. It is then possible to 

generate flight plans by creating waypoints to be followed by the UAV in automated flight 

mode guided by GPS. These waypoints can be automatically generated, including regular grids 

which the operator defines the equidistance and altitude. This option is particularly useful 

when it comes to cover an entire plot of land (Figure 2). 

In the field, the operator can choose to perform manual takeoff and landing operations, while 

the flight itself can be automated following the waypoints through GPS guidance. When the 

UAV is stopped on each waypoint, the operator starts data capture, controlling in real-time 

quality and recording thanks to the return video system. 

Post-processing and first results 

In the laboratory, the captured images can be processed to improve the recognition of thermal 

anomalies (stretching and compression of the histogram of the measured values, application 

of different ranges of colors, etc). It is possible to restrict the range of representation of the 

color composition to reduced amplitude of a single degree Celsius, using the FLIR Tools 

software. 

The calibration process of the intervention protocol is still in progress, but the first results have 

already allowed us to assess the contribution of this technique for the detection of ancient 

roads and parcel boundaries (Figure 3). But the experiment in progress promises a high 

potential for detection at the site level of smaller structures, thanks to the low altitude of the 

flights. For example, the first tests performed over the ancient roman town of Saint-Bertrand-

de-Comminges (South of France) revealed evidence of correlation between ancient urban 

plans (streets network, buildings) and linear thermal anomalies (Figure 4).  

The potential is also important regarding the detection of underground cavities whose 

presence is manifested on the surface by different temperature from that of the atmosphere 

and the surface of the soil. We already experienced this detection process of underground 
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cavities on the two prehistoric sites of Kroomdraï and Sterkfontein in the south-African Cradle 

of Humankind (Figure 5). 

The coupling of the thermal camera and the drone is still new. Ongoing tests aim to define an 

intervention protocol to determine what is the optimal flight altitude, time, and ground cover 

for the detection of buried remains based on a small corpus of sites periodically overflown in 

various flight conditions. The flexibility of the machine makes it possible to take the decision to 

fly on the day, and repeat it several times a day over the same plot if necessary. It is already 

obvious that the low altitude of flights permits a gain in resolution to detect archaeological 

buried remains. 
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Figure 1 : Drone Octorotor with FLIR T620 thermal camera onboard 

 

 

Figure 2 : Definition of a flight plan by equidistant waypoints automatically generated at a plot 

scale 
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Figure 3 : On the left hand, the thermal image taken 100 m above the ground shows the cold 

mark (in dark) of a disused path to a farm, now integrated in a plot of land (Odars, France), and 

invisible on a conventional image (right hand). The temperature scale on the left hand image 

indicates that the soil is 2°C cooler where was the path, probably because of the accumulation of 

wetness. 

 

Figure 4 : On the left hand, the thermal image taken 100 m above the ground shows warm marks 

(in light).The circles show where these thermal anomalies are related to buried roman walls, which 

are invisible on the conventional image of the right hand  (Saint-Bertrand-de-Comminges, 

France). 

 

 

Figure 5 : On the left hand, the thermal image taken 50 m above the ground reveals warm marks 

(in light) indicating warm air outbreaks from underground caves (Sterkfontein cave, South Africa). 

The circles highlight the warmest anomalies interpreted as paths to hidden cavities. The 

conventional image (on the right hand) allows no distinction between the different holes. 
 

 

 


