N

N

Guaranteed recursive nonlinear state estimation using
interval analysis
Michel Kieffer, Luc Jaulin, Eric Walter

» To cite this version:

Michel Kieffer, Luc Jaulin, Eric Walter. Guaranteed recursive nonlinear state estimation using interval
analysis. IEEE Conference on Decision and Control, Dec 1998, Tampa (Floride), United States.
pp-3966-3971. hal-00844451

HAL Id: hal-00844451
https://hal.science/hal-00844451
Submitted on 15 Jul 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00844451
https://hal.archives-ouvertes.fr

FM08 12:30

Proceedings of the 37th IEEE
Conterence on Decision & Controt
Tampa, Florida USA = December 1998

Guaranteed Recursive Nonlinear State Estimation
Using Interval Analysis

Michel KIEFFER®, Luc JAULIN* and Eric WALTER*!
*Laboratoire des Signaux et Systdmes, CNRS-Supélec
Plateau de Moulon, 91192 Gif-sur-Yvette, France
{kieffer, walter}@lss.supelec.fr
* Laboratoire d’Ingénierie des Systdmes Automatisés, Université d'Angers
2 bd Lavoisier, 49045 Angers, France
jaulin@babinet.univ-angers.fr

Abstract

The problem considered is state estimation in the pres-
ence of unknown state and measurement noise, each
noise component being assumed to belong to some
known interval. In such a bounded-error context, most
available results are for linear models, and the purpose
of the present paper is to deal with the nonlinear case.
Based on interval analysis and the notion of set inver-
sion, a new state estimator is presented, which evalu-
ates a set estimate guaranteed to contain all values of
the state that are consistent with the available observa-
tions, given the noise bounds and a set containing the
initial value of the state. To the best of our knowledge,
it is the first time that such a guaranteed estimator is
made available. The precision of the set estimate can
be improved, at the cost of more computation. The
theoretical properties of the estimator are studied, and
computer implementation has received special atten-
tion. A simple illustrative example is treated.

Keywords: bounded errors, interval analysis,
nonlinear estimation, set estimation, state estimation.

1 Introduction

This paper is concerned with recursive nonlinear state
estimation in the context of bounded state noise and
measurement noise. Unknown and possibly time-
varying parameters can also be considered. The prob-
lem is to characterize the set of all state vectors of
a given model that are compatible with the measured
outputs and assumed error bounds. Usually, the model
is assumed to be linear and ellipsoids are computed
at each step, guaranteed to contain the present state
[13], [14], [10], [4] and [5]. Computation closely paral-
lels Kalman filtering, alternating prediction and cor-

! Corresponding author
0-7803-4394-8/98 $10.00 © 1998 |IEEE

3966

rection phases. For nonlinear models, the problem is
much more difficult, since the set is usually nonconvex
and may even be nonconnected. Our purpose here is
to characterize such a set recursively, thus facilitating
real-time implementation. This characterization will
be performed with the help of interval analysis, by
computing outer approximations by unions of boxes,
or subpaving, with arbitrary precision. Interval tech-
niques have already been applied to building an Inter-
val Kalman Filter 3] for uncertain linear models, but
no guarantee was given that the state would belong to
the evaluated set. In contrast, the technique to be pre-
sented here applies to nonlinear and possibly uncertain
models, and guarantees its results.

In Section 2, an idealized state estimator will be pre-
sented. After a few introductory words on an illus-
trative example, basic interval ideas will be recalled in
Section 3. They will then be used to build an approx-
imate but guaranteed nonlinear state estimator using
subpavings. The correction and prediction steps of this
estimator will be presented in Sections 4 and 5 respec-
tively. Section 6 summarizes the algorithm and applies
it to the illustrative example.

2 State estimation

Consider the nonlinear and possibly time-varying sys-
tem defined by

{

where u;, € R™,x, € R® and y, € RP are respec-
tively the input, state, and output vectors. The ini-
tial state X is assumed to belong to some prior com-
pact set Ap C R*. {v} and {wx} are unknown state
and measurement noise sequences, assumed to belong
to the known intervals sequences {[v].} and {[w].}.
fi. and hy are known functions (or finite algorithms).

X1 = fi (xp,0p,ve), k

=0,1,...
¥i = hy (%) + Wy,

(1)

The problem to be considered is the recursive estima-
tion of the smallest set A} guaranteed to contain all
values of x, compatible with the information available
at time [, i.e., with I; = {Xu, {uk, y&, (V] , [w]k}i___o} .
Note that the more general problem of joint state and
parameter estimation can easily be treated in this con-
text.

Let A; be a set containing all values of x; compatible
with Z, and A4 be the set of all values of the state
that are reachable from some x; in &) with input u;
and state noise v; € [v),

Xy = £ (X, u, [V])) = {f (x,m,vi) Ix € A, vi € [v),).

Moreover, let V41 be the set of all admissible values of
the output, when its measured value is y;+;

Vitr = Y41 — [Wis1] = {¥i41 — Wi |W1+1 €W},

and let A7, be the set of all values of x which could
have led to an observation y € Y4,

X =h V) = (X € R [y (%) € Vg 3

A set containing all values of x; compatible with 74,
is then given by Ay = Al NAPS,;. As X contains all
possible values of the initial state vector xp, one may
thus, at least theoretically, recursively evaluate a set A}
containing all possible values of the state vector at each
step {. These ideas are summarized in the following
idealized algorithm:

Forl=0to L, do

1. Prediction: Ay = £ (A7, uy, [v]).
2. Correction: Xry1 = by (Vigr) N Aoy

Proposition 2.1 &}, as computed by the idealized al-
gorithm, is the smallest set guaranteed to contain x;
that can be computed from 7.

Proof: See [9]. m

Except in very particular cases, it is not possible to
evaluate the sets At4., A, and Aj4y exactly. Qur pur-
pose will therefore be to get a guaranteed outer approx-
imation of Aj;:, as accurate as possible. Before pre-
senting the basic blocks of an algorithm for this task,
a simple illustrative example will be introduced.

Bouncing-ball example: Consider an ideal ball of
radius = bouncing on the floor. The motion is as-
sumed to be one-dimensional, and the state of the ball
is characterized by its height z; and speed zy = ;.
Our purpose is to evaluate the state x = (z,,z2)" of
the ball dropped with an initial state xo only known

3967

to belong to Ap from noisy discrete-time measure-
ments of its height, according to yx = hx (Xz) + w =
[1 0]xg + wi, with wy belonging to some known inter-
val. Since no friction is considered, and the ball is as-
sumed incompressible, the motion is straightforwardly
described by (£; = za,22 = —g) during the fall, and
by (z; — z1,z2 = —z2) when the ball hits the floor.
By exact discretization, a finite algorithm f evaluating
Xi+1 for a given x; is easily constructed.

3 Intervals and subpavings

The prediction and correction steps of the idealized al-
gorithm can be implemented in an approximate but
guaranteed way using interval computation and sub-
pavings, which provide a powerful tool for the descrip-
tion of sets. The aim of this section is to recall the ba-
sic notions of interval arithmetic that are necessary to
build subpavings. For a more detailed presentation of
interval arithmetic, see, e.g., [11] or [6]. A scalar inter-
val [z] is a closed, connected and bounded subset of R.
It may be characterized by its lower bound z and upper
bound Z. Thus, {z] = {z € Rlz <z < E}. An impor-
tant characteristic of [z] is its width w([z]) = T—z. An
n-dimensional box (or vector interval) {x] is the Carte-
sian product of n scalar intervals [z;]. The width of [x]
is w ([x]) = max;=y,....n w ([zi]).

Interval arithmetic provides an extension to intervals of
the usual arithmetical operations on reals {+, —, x, /}
through the generic formula o € {4, —, %, /}, [z]o[y] =
{zoy|z €[z] and y € [y]}. All these operations are
inclusion monotonic [11]: if [2') C [z] and [¢'] C [y],
then [z'] o [y']"C [z] o [y). This means that uncertainty
on their results cannot deteriorate if the uncertainty
on their arguments is improved, which suggests algo-
rithms where intervals are split into subintervals to in-
crease precision. Extension to vector and matrix in-
tervals, necessary for state estimation, can be found in
[11] and [6].

Let f be a real function of a real variable, defined on
D C R The definition of this function is extended to
intervals [z] C D as follows: f([z]) = {f(z)|z € [z]}.
It is straightforward to extend any monotonous real
function to interval arguments. Interval counterparts
to simple non-monoctonic functions such as sine or co-
sine are less trivial to obtain, but exact image intervals
can still be computed by simple algorithms [6]. In gen-
eral, however, it is not possible exactly to characterize
the image set, which is not even necessarily an inter-
val. The fundamental notion of an inclusion function
makes it possible to compute an interval guaranteed
to contain this image set. An inclusion function asso-
ciated with f will be denoted by fj;; for any [z] C D, it
should satisfy f ([z]) € fj ([z]) . In addition to being in-

clusion monotonic, it is desirable that f;) ([z]) converge
to f ([x]) when w([z]) tends to zero. When f; ([z]) pos-
sesses this property, it is said to be convergent. Among
the infinitely many inclusion functions associated with
any given real function f, it is of interest to get one that
is as accurate as possible. Various techniques are avail-
able to obtain efficient inclusion functions, especially
when the width of [z] is small enough [11].

3.1 Describing sets using subpavings

An n-dimensional subpaving X is a union of non-
overlapping boxes of R". The set of all subpavings
of R is denoted by K (R"). To characterize the pre-
cision with which a subpaving may approximate a
compact subset of R®, it is necessary to introduce
a distance between such subsets. Let A and B be
compact subsets of R® and x be a vector of R".
We shall use the Hausdorff distance based on the
infinity norm: d(.A,B) = max{dy (A, B),do (B, A)},
where dp(A,B) = g}:_a‘icdg (a,B), with dp(x,B) =

Eleigdm(x,b) and do (x,b) = i:f?,?:’.‘:,n{lxi—bi!}-

Hausdorff distences such as d(.,.} are metrics for the
set of compact subsets of R" [2]. Any compact subset of
R™ can be represented with any desired precision using
subpavings. (see [9] for more details). As subpavings
consist of boxes, it is now possible to extend interval
operations to subpavings. The way subpavings will be
described will have a direct impact on the complexity
of these operations.

To illustrate how subpavings will be represented, con-
sider the two-dimensional example of Figure 1. The
compact set A" (in black), included in the box [xp] =

[0,8)?, is represented by the subpaving X (in grey).

Figure 1: Set A’ (in black) described using the subpaving
& (in grey).
The subboxes of X , as described by Figure 1, can be
enumerated in a list
£ ={[0,2] x [0,4],[4,6] x [2,4],[4,6] x [4,8]} .

As all these boxes are obtained from [xg] by a succes-
sion of bisections and selections, one may alternatively

3968

store the initial box together with the history of these
operations. It is then necessary to introduce a notation
to describe how boxes are bisected and selected. If [x]

is an n-dimensional box and if m ([ﬂ'.‘]]) = (E? + E.-T_) /2
denotes the midpoint of [z];, then

Li[x) = (faly s ooy s [as,m (o)) (ol 1l
Byl = (faly »onllyy s [(121;) 57] s ol 5o Lol

will respectively be called the left and right sub-
bozes resulting from the bisection of [x] across its
jth dimension. Recursively using the way boxes
are bisected and selected, one may write the list £
as L= {L1L2L1 [Xo] y RngLgRl [Xol 3 LleRl [xol} .
This description is obviously not unique. For instance,
RyL,Ly (%] = LaRyLj[%q]- This ambiguity can be
avoided by agreeing on some canonical bisection rule.
The canonical rule used in this paper is to cut ev-
ery box [x] € R™ across its main dimension, defined
as j = inf{i=1,..,n | w([z];) = w([x])}, but other
canonical rules are easy to construct.

A subpaving will be called regular if it can be obtained
by applying the canonical rule. For regular subpavings,
the cut direction can easily be retrieved, so indexing L
and R is no longer necessary and £ can be written as
{LLL [xp], RLLR [xo], LRR [x0]}-

Given that most interval algorithms include a bisection
process dividing a parent box into two children, it is of
interest to consider X as an ordered binary-tree [1], i.e.,
a finite set of nodes, which either is empty or consists
of one node, the root of the tree, and two disjoint or-
dered binary trees, the left and right subtrees. For X
of Figure 1, this binary tree is represented by Figure 2.

Figure 2: Tree representation of X of Figure 1.

A is the root of the tree. B and C are respectively
the left and right children of A: they are siblings be-
cause they have the same parent A. A has left and
right subtrees; B has an empty right subtree, both are
nodes, as they have at least one non-empty subtree.
At last, D is a leaf, because it has two empty sub-
trees. This tree is constructed using the list £ of sub-
boxes. The growth of the branches is determined by the
way in which the initial box [xp], corresponding to the
root, is bisected. A node indicates that the associated

subbox has been bisected according to the canonical
bisection rule. A leaf indicates that the correspond-
ing subbox is entirely in the subpaving. For example,
the bold branch of Figure 2 corresponds to the sub-
box RLLR [xq] = [4,6] x [2,4]. The depth of a subbox
corresponds to the number of bisections applied to get
this subbox from the root box. Thus, the depth of the
box [4,6] x [2,4] is 4. A tree (subpaving) is said to
be minimal if it has no siblings leafs (subboxes). Such
siblings leafs should be eliminated, with their parent
node becoming a leaf instead. The notions of binary
trees and regular subpavings are equivalent, so the vo-
cabulary for trees will be used for subpavings. In what
follows, the tree representation will be adopted due to
the natural recursivity of this data structure. But the
equivalence between the tree and its list of boxes has
to be kept in mind.

3.2 Implementing subpavings
All functions and algorithms that will be presented
have been developed in the C-XSC framework [6].

A subpaving will be represented by a C++ class, whose
private members are the classical tree components.

class spaving {
ivector box; [/ box represented by node or leaf
spaving.ptr lchild; // pointer to left subtree
spaving ptr rchild;};// pointer to right subtree

lchild (resp. rchild) points to the left (resp. right)
subtree. A NULL pointer corresponds to an empty sub-
tree, thus leafs are identified by NULL pointers 1child
and rchild. The function box(spaving) gives access
to the box represented by the node; _1child(spaving)
and _rchild (spaving) respectively return the left and
right child subtree.

The headers of some functions manipulating sub-
pavings and used in the algorithms described in this
paper are presented in Appendix A. More details can
be found in [9].

The implementable counterpart of the idealized algo-
rithm also alternates prediction and correction steps.
As the correction step is simpler, it will be presented
first.

4 Correction
This step requires characterizing Aj4 =
{x € Xt | Bay1 (x) € Vit }- This task belongs
to the class of set-inversion problems, formulated
as follows: given two sets X C R*, Y C R™
and a function f:R®™ - R™, characterize the set
£ (V) ={xeX | £(x) € V).

3969

This problem is solved in an approximated but guar-
anteed way using the S1viA (Set Inversion Via Interval
Analysis) algorithm developed by Jaulin and Walter
[7], [8]. This algorithm characterizes f3* () by brack-
eting it between inner and outer subpavings. Its con-
vergence has been studied in [8]. Here, a recursive ver-
sion, evaluating the outer subpaving only, but suitable
for subpaving manipulation will be presented.

Assume that A" and) are respectively enclosed in the
subpavings X and y The aim of SIvIA is to enclose

the solution set & = fél (y) {x eX | f(x) e y},

into a subpaving 8, with the help of an inclusion func-
tion fj) of f. & is thus an approximate but guaranteed
solution set. For this purpose, a recursive structure
will be used to scan all nodes of A'. Let [x] be the box
corresponding to a given node N of X. If fg (x) c ¥,
the subpaving stemming from N is included in the solu-
tion set S and is therefore stored in the subpaving S.H
£ ([x NNY =0, (x]NS = §. Therefore, N and the sub-
pavings stemming from it can be discarded from further
consideration. If the results of the two preceding tests
are negative and if w ([x]) > ¢, the subtrees stemming
from N have to be tested, else the box corresponding
to N is considered small enough to be incorporated in
8. The positive real € is chosen by the user and spec-
ifies the desired accuracy of the description of the set
to be characterized.

The complete C++ code of this recursive version of
Sivia is in Appendix B. Sivia(A, fy, Y, €) returns a

v —_— -1 &%
subpaving containing 3 (y)

5 Prediction

Computing Xt = {fi (x, ¢, V) | x € X4, vi € [v],}
is a problem of direct image evaluation, which is
at the core of interval arithmetic: given two com-
pact sets X C R™ and & € R™ and a function
f:R® — R™, characterize the set & C &p such that
S = {f(x) € & | x € X}. In the special case m = 1, it
has been shown [11], [12] that the approximation could
be made as precise as desired provided that the inclu-
sion function fp is Lipschitz. When m > 1, we shall
now show that it is still possible to approximate the im-
age set with arbitrary precision, under conditions that
depend on whether f can be inverted.

When f is invertible, prediction can again be cast in
the formalism of set inversion, as the problem of find-
ing S = {x € S |f~" (x) € X}. The prior search set
Sp should be taken large enough to be guaranteed to
contain the set of interest. If Sp and A are subpavings
enclosmg So_and X, then S can be approximated by

S. =Sivia(S;, £-1, X, ¢); provided that a conver-

gent inclusion function is available for f~!. Assum-
ing that f is invertible may seem rather strong, but in
many physical cases inverting the dynamic only means
inverting time, so the inverse dynamic is rather simple
to obtain from the direct one.

When f is not invertible, a specific and computation-
ally more demanding procedure is needed. The basic
idea of the direct IMAGE Subraving evaluation proce-
dure (IMAGESP) is to describe the initial set X using a
nonminimal subpaving consisting of p boxes [x]; whose
width is less than €. Then IMAGESP evaluates the im-
age of each of these p boxes using an inclusion function
f;) of f and stores these images in a list £,. One thus
gets p image boxes, each of which contains the true
image set of the associated initial box. The image set
§ is therefore included in the union of all of them. At
last, IMAGESP merges all these image boxes into a sub-
paving to allow further processing.

The complete C++ code of IMAGESP is given in [9].
S = ImaceSP([s]; 1, X, €) returns the image sub-
paving g‘e of the subpaving ¥ by the function £, or
rather the part of it that is included in some prior
search box [s];.

The quality of the estimated image depends of course
on that of the inclusion function f;; of f and on the
precision parameter e. The precision can, at least in
principle, be made arbitrarely good (see [9] for more
details).

An approximate but guaranteed version of the idealized
algorithm can now be proposed.

6 Guaranteed state estimator

Forl=0to L, do

1. Guaranteed prediction If f; is invertible,
then

Xix = Svia(S, 71, X x {w} x [v};, €);

where § = {[s]} is the search subpaving,
consisting of a possibly very large box in
which all states are assumed to stay. Else

Xy = IMAGESP([s], £, % x {u} x [v],, €);

. Guaranteed correction. From :1’_;_:, select all
elements that are compatible with measure-
ments at step 1 + 1

X1 = SVIA(Xy, by, Viga, ©);

Bouncing ball example (continued): Sampling time

3970

was T = 1 s, 7 = 0.2 m and g was taken as 10
m.s~2. The (unknown) true initial state was xo
(!E(),d;[))T = (5, 0)T. 1t was only assumed to belong to
[x0] = [3,6]%[—3, 3]. During motion, state was assumed
to stay within the box [0,8] x [-12,12]. At each time
t = kT, k € L%, the position of the ball was measured,
with the measurement noise wy assumed to belong to
[~0.2,0.2]. The observation equation was yx = zx +wy.
Na state noise was considered. At each step [, the pre-
dicted subpaving A" was evaluated using Stvia, and
is displayec}_gxi Figure 3 in light grey. The corrected
subpaving Aj4, is in dark grey.

8
Na=
P
3 %
§ \ Hi
) [
% i &
& ~
9 %
o & -
-12 Speed 12

Figure 3: Ball motion. Initial state xo = (zo,20)” is in
3,6] x [-3,3].

7 Conclusions

A new recursive nonlinear state estimator has been pre-
sented. At any given time, it returns a set guaranteed
to enclose all values of the state that are consistent with
the information available so far. :

As in classical Kalman filtering, this state estimator al-
ternates prediction and correction. The prediction step
uses either a direct image evaluator (IMAGESP) or a
procedure for the computation of inverse images based
on the algorithm SiviA. IMAGESP divides the boxes of
the original subpaving into smaller boxes and merges
the images of all these boxes into an approximate image
subpaving. SI1VIA proceeds in the opposite direction,
starting from the image set, and is much more efficient
when applicable. From the predicted subpaving thus
obtained, the correction step selects all values of the

state vector that are consistent with the newly avail-
able observations. The state estimator has been ap-
plied to a simple example, nevertheless representative
of some difficulties encountered by classical state esti-
mation algorithms when dealing with hybrid systems.

A key element for a recursive computer implementation
of the estimator was the introduction of subpavings,
which allow the computation of outer approximations
for sets, with any desired precision. Moreover, using
IMAGESP and the subpaving class makes it easy to over-
load the different arithmetic operators and the usual
functions on floating-point numbers to get a subpaving
computation that approximates computation on more
general sets.

The main limitation of such techniques lies in the explo-
sion of complexity with the number of state variables.
This state estimation technique can nevertheless solve
many actual tracking problems. Its application to the
tracking of a mobile robot is currently under develop-
ment.

References

(1] J. Beidler. Data Structures and Algorithms.
Springer-Verlag, New York, 1996.

2] M. Berger. Geometry I and II Springer-Verlag,
Berlin, 1987,

(3] G. Chen, J. Wang, and L. S. Shieh. Interval
Kalman filtering. IEEE Transaction on Aerospace and
Electronic Systems, 33(1):250-258, 1997.

[4) C. Durieu, B. Polyak, and E. Walter. Ellipsoidal
state outer-bounding for mimo systems via analytical
techniques. In IMACS—IEEE-SMC CESA’96 Sym-
posium on Modelling and Simulation, volume 2, pages
843-848, Lille, 1996.

[5) C. Durieu, B. Polyak, and E. Walter. Trace ver-
sus determinant in ellipsoidal outer bounding with ap-
plication to state estimation. In Proc. 18th IFAC World
Congress, volume 1, pages 43-48, San Francisco, 1996.

[6] R. Hammer, M. Hocks, U. Kulish, and D. Ratz.
C++ Toolbox for Verified Computing. Springer Verlag,
Berlin Heidelberg, 1995.

(71 L. Jaulin. Solution globale et garantie de
problémes ensemblistes ; application & 'estimation non
linéaire et d la commande robuste. Thése de doctorat,
Université Paris-Sud, Orsay, 1994.

(8] L. Jaulin and E. Walter. Set inversion via in-
terval analysis for nonlinear bounded-error estimation.
Automatica, 29(4):1053-1064, 1993.

[9] M. Kieffer, L. Jaulin, and E. Walter. Guaran-
teed recursive nonlinear state estimation using interval
analysis. Internal report (long version of this paper),
Laboratoire des Signaux et Systémes, july 1998,

3971

{10] D. Maksarov and J. P. Norton. State bounding
with ellipsoidal set description of the uncertainty. Int.
J. of Control, 65(5):847-866, 1996.

[11] R. E. Moore. Methods and Applications of Inter-
val Analysis. SIAM Publ., Philadelphia, Pennsylvania,
1979.

[12] A. Neumaier. Interval Methods for Systems of
FEquations. Cambridge University Press, London, 1990.

[13] F. C. Schweppe. Recursive state estimation: Un-
known but bounded errors and system inputs. [EEFE
Transactions on Automatic Control, 13(1):22-28, 1968.

(14] F. C. Schweppe. Uncertain Dynamic Systems.
Prentice-Hall, Englewood Cliffs, NJ, 1973.

A Some functions manipulating subpavings

The following functions and operators are used in
SiviaA. To improve readability, the variables and
operators are those used in the text, not always at the
C++ standard.

union operator (spavingd operator U
(spaving x, spaving 55)): returns the minimal
subpaving corresponding to X U ¥
e boz-inclusion test (bool operatorC (ivector [x],
spaving X)): checks whether the interval vector [x]
is included in the subpaving 2.
l-depth ezpansion function (spavingk
expand{spaving X, int D)): creates a nonmini-
mal subpaving whose leafs are all at a specified depth
i. If the original tree X has deeper leafs, these leafs
are removed, else, any leaf at depth k < I, is replaced
by a subtree such that all its leafs are at depth | — k.
e subpaving inclugion test (bool operatorC (spaving
X, spaving f)): checks whether the subpaving X is
included in the subpaving 3.

B Recursive Sivia

The main procedure of SivIA is as follows:

spavingk SIVIA(spaving X, function ptr ff,
spaving ¥, float €)

if isempty(.ﬂ'c") return NULL;

if disjoint(fﬂ(_.box(rf)),y) return NULL;

if (fy(box (X)) C I |[(w(box(X)) < €)
return _Epav}ng(_box(fl);

if isleaf(X) A =expand(X,1);

return (SIVIA(1child(X), f, ¥, o
U Sivia(renild(®), f, ¥, o);

