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IDENTIFICATION OF LINEAR
SYSTEMS USING MA AND ARMA
MODEL IN DIOID

F. Gallot, J.L. Boimond, L. Hardouin

L.I.S.A., 62 Avenue Notre Dame du Lac,
49000 ANGERS. FRANCE
Faz : 02 {1 36 57 35 - e-mail :{gallot,
boimond, herdouin/@istia. univ-angers.fr

Abstract: The behavior of timed event graphs can linearly be described by max
algebra. The impulse response of such systems can be decocmposed into a finite
sum of simple elements {elementary systems which present some analogies with
the classical first order systems in conventionnal linear system theory). This paper
deals with two identification methods of several simple elements. The identification
methods performances and the complexity of their algorithms are compared.
Copyright ©1998 IFAC

Résumé : Le comportement des graphes d’événements temporisé peut se décrire
de maniere linéaire dans I'aigébre {max, —). La réponse impulsicnnelle de ces
systémes peut se décomposer en une somme finie d’éléments simples (systémes
éiémemntaires présentant des similitudes avec les systémes linéaires conventionnels
du premier ordre). Ce papier sintresse & lidentification de plusieurs éléments
simples en employant deux méthodes diffrentes. Les performances de ces méthodes
ainst que la complexité de leurs algorithmes sont comparées.

Keywords: Discrete-event systems. Identification, Dioid, Linear systems, Timed

even: graphs.

1. INTRODUCTION

The time behavior of Timed Event Graphs (TEG) (a sub-
class of Petri nets involving synchronisation) is described
by linear equations in dicids which allows analogies with
the conventionnal linear system theory. This algebraic
approach has been used to study performance evaluation
(Baccelli et al, 1992), (Cohen et al., 1989) or control
design (Boimond, 1993), (Boimond and Ferrier, 1996),
(Hardouin et al., 1997) which need to have a mathemazical
model. :

Most works on modelling deal with the model minimal
realisation (Olsder, 1987), (Schutter,- 1996). This paper
does not care about this problem. We are interested in

developing a simple method to compute the parameters
of the transfer relation, i.e., the coefficients of its impulse
response, using its inpuz-eutput behavior. The modelling
method is based on the decomposition property of a linear
system into a finite sum of simple elements (under the
form ¢y™(7+¥)"*) which is reminiscent with decomposition
of a linear system into a sum of first order systems in
conventional linear system theory.

Identification methods of one simple element expressed
as an ARMA model have been proposed in {Gallot et
al., 1997b) and {Gallov et al, 1997a). In this paper. we
propose an approach based on a MA model. Estimation
performances of both approches are compared. Moreover,
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we extend our methods to the simultaneous identification
of several simple elements.

The paper is organised as follows: in section 2. we remind
elementary notions on dioid and particularly on the max-
plus algebra. We show in section 3 the possible represen-
tation of a TEG by linear equations over Rmez = {R U
ixc, maz, +}. Notions on transfer relation will be
defined as well. The fourth section deals with the two
identification methods of one simple element and their
extensions to the simultaneous identification of several
simple elements. A short example is given in section 5.

2. DIOIDS
2.1 Definitions

A dioid (D, ®, ®) is a semiring in which & is idempotent
(Va. a ® a = a), neutral elements of &, @ are noted £
and e respectively. Moreover, thanks to the idempotency
of @. D is endowed with an order relation defined by
a<boagb=0b.

If D is closed for infinite sums and if multipiication dis-
tributes over infinite sums too then D is said complete.
Then the sum of all elements of D, denoted T, is absorbing
for the addition.

If D is complete then a lower bound {> £) can be defined
for any subset C of D. Let us define a A b the lower bound
of C = {a.b}. Wehavea>boa=cBbe&b=aAb

A mapping f from an ordered set D into an ordered set C is
_isotone (resp. antitone) if Ya,b€ D, a = b= fla) = F(b)

(resp. f(a) % £(b)).

2.2 The linear equation t =az B b

Theorem 1. ((Cohen et al.. 1989)). The least solution of

r=azCbis given by = a*b with a* = @, a™.

2.3 Residuation

A complete description of the Residuation theory can be
found in (Blyth and Janowitz, 1972).

Theorem 2. {(Baccelli et al., 1992), § 4.4.2). Let f be an
isotone mapping from the complete dioid D into the com-
plete dioid . The following three statments are equiva-
lent:

e For all b € C, there exists a greatest subsolution o
the equation f{z) =b.
e f(z) =z and f is lower semi-continuous, i.e.,

P o= B fla.

ze€XCD zEXTD

o There exists an isotone mapping f* from C into D
such that: fo f! < Ip (identity of C); ffo f = Ip
(identity of D).

When f satisfies these properties. it is said o be residu-
ated and f* is called its residual.

This theorem can be applied to the mapping t —alz in
a complete dioid. The residual mapping will be denoted

y—aky =2

Starting from a “scalar” dioid D, consider m x n matrices
with encriesin D. The set of m x n matrices is also a dioid
denoted D™*",

Theorem 3. ((Baccelli ez al.. 1992), § 4.6.2). Let 4 € D7
and B € D™XP, the greatest subsolution of equation
AX = B is noted C = A\B:
m
ng = /\[_-ikgﬁBkj), i=1lton,j=1ltop
k=1

2.4 An ezample: the dioid Rmoz

The algebraic structure (RU {—o0}, ®, ®) with maz and
— as ® and © respectively. is called the maz-plus algebro
(noted Rz ). The set (R U {~o0} U {+cc}, &, 2] is the

complete dioid denoted Rpmqez. By convention, we have
(=06)—(—oc) = —oc. The element +co is also denoted T

Let r € & The r*h power of z € Ry is noted 257 or
more simply z” and corresponds 10 r X T in conventionnal
algebra. If a,b are finite values, then bya = ¢ =a~b. If
a.b,¢e.d € Rmgz. we have the following basic properties:

anb a b
=— A= (1}
c e ¢
£ c
L= (2
b~ ab 2)
{a Ab)e=(ac) A (be) (3
(Ae) @ (Abx) 2 Al @b) t4)
i k !

where A represents the min operator.

The proofs of egs. (1), (2} and (3) are given in (Baccelli

et al. 1992), § 4.3 and 4.4, A direct consequence of

eq. 13) is: {Aai) @ (Abk) 2 Alar @ (Abe)). Moreover
! P 1 k

%

VI, Abr = by, hence we have, by isotony of the law 2.

!
Alar @ (Abe)) < Alar @ by), which leads to eq. (4).
¢ k 1

3. LINEAR DESCRIPTION OF TEG

Event graphs are a particular class of Petri nets in which
each place has exactly one upsiream and one downstream
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transition. In a TEG, a delay is associated with each place.
This delay is the time a token must stay in the place before
contributing to the enabling of the downstream transition.

For a transition labelled z, we define the nondecreasing
mapping called dater k — z(k) where z(k) is the date at
which the transition z has been fired for the £** time.

We intreduce now the v-transform of a dater (analogous
tv the z-transform in conventional linear svstem theory),
which can be interpreted as a backward shift onemwr
formally, vv(#) = v(k - 1). We note V(7) = Do ~*
the + sransform of dater v.

TEG are described in Rma: ik (dlmd of formal series of ~
with power in Z and coefficients in Ronaz) by the follocx ing
standard state equations:

{X( )= X (3 BU(Y)
Y(v) = CX(~)

where A. B, C are marrices.

From theorem 1, we deduce the transfer relation:

Yiv) = ClA)BU(~) = H(y) Ulw)
where H{~v) is called the impulse response of the system
obtained with U'(~) = e (transition u is infinitely fred az
tme 0).

Moreover, the impulse response H{v) can always be ex-
pressed as a finite sum of simple elements (see {Gallot et
al.. 1997a) and (Gallot et al, 1997))):

D vy (5)

i=1to!

Hiy) =

A more detailed description on series can be found in
(Baccelli et al, 1992), (Gaubert, 1992). (Hardouin et
al.. 1997).

4. IDENTIFICATION
4.1 Motivation

Svstems (production lines for instance) are supposed rep-
resented by linear equations over R,... We propose 10
transpose a classical method used in conventional linear
systems theory into the max-plus algebra. We suppose
that the structure of the model is known (n;, v; of simple
elements are fixed) and we estimate its paramesers (¢;, 7;}
in order to minimize the error criterion. This method is
well known as the model method (Fig. 1).

A quadratic criterion is used to compute the model param-
eters in the least square method (Ljung, 1987). We define
an analogous crizerion in order to identify the searched
parameters when the model is given under an ARMA or

uik) . k)
Svitem -

lmor
cietien

wodd  —tmk

-y -
X *
\ " Critetion
tininizatiopn

'
'

PR |

Fig. 1. Identification method.

a MA equation.

In the following, to clearly describe the proposed identi-
fication methods. we suppose that the first non nul value
(# —o0) of u is u(0).

1.2 Input influence

From identification point of view, it is obvious that the
estimation quality of the model depends on the inpur
behavior. For example, the drastic case u(k) = T. vk does
not allow computing the right parameters since y(k) =
T, V¥k. In the opposite, the input u(k) = e, ¥k > 0 is
such that output behaves as an impulse response. In other
words. it makes appear all the impulse response parame-
ters on the output, which allows an exact identification.
An interesting limiv to define is the greatest input U'(-)
such shac the output of the system behaves as an impulse
response, or formally H(v) ® U(v) = H(v). The greatest
solution U'(~v) = H(v){H(v) of this relation is given by
theorem 2

The computation of H(v)}H(v) is not possible since the
system impulse response H () is unknown. However. we
can compute an approach limit by replacing H(~) by a
supposed initially known model.

4.3 [dentification of one simple element

A system represented by a TEG can alwayvs be written
as a finite sum of simple elements (see eq. (5)). Before
dealing with the simultanecus identification of several
simple elements, we propose toc compute the parameters ¢
and 7 {v and n given) of one simple element through two
identification methods.

Let us consider the output Yo () of a simple element (the

modei) to an input U'(v):
Yol() = 84" (77")" U (). (6)
Developing the (#~")" term, we obtain:

Yriv) = 00" @ trvi™ 2ir24 ™0 @ U
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which corresponds in Rmax to the following MA equation:

ynlk) = tu(k —n) @ trulk —n-v)

struk—-n—-)® ..

(7

Applving theorem 1 to eq. (6), we obtain the least solution:
You(y) =ty" U(y) © 77" Yo ()
which leads in Ryay to the particular ARMA equation:

ymik) = tulk—n) @7 ym(k - v). (&)

By analogy with the identification method dased on the
prediction error of the conventional linear system theory,
we consider the gap besween the system output y and the
model output ¥, av event k, le.,

Er(k) = y(k) = ym (k) (9)

1.3.1. Identification using the ARMA equation We are
interested in the error Er(k) (eq. (9)) when ynlk) is
computed from the simple element ARMA model (eq. (8)).
Let us replace £ T. Yym BY fors Tars Yar respectively and
consider the model yar (k) = &} O, with &7 = lu(k -
n) Yerlk —v)] the regressive vecwr at event k where Yar
is the modei output, u the input and @a,- = ta,-
the estimated parameters vector.

‘n:r‘

For the set of measured data up to event N (N 2 n), we
obtain the matrix expression:

Er=Y — (M 380,),

with Er = [Er(n)...Er(N)]T the prediction errors vector,
(V)T the measured system outputs and

Y = yln).y .
M = ®,...85:T the model regressive vectors marrix.

We consider the criterion J defined as:

with Er(l) = 0.

N
=3 @Er(l)
l=n

A basic resuit of the Residuation theory (Cuninghame-

Green, 1979) shows that M 1Y, the greatest solution of

inequation M ® @ur X Y, minimizes criterion J.

We compute (3)0,. = M}Y using theorem J:

Reu I
Oar; I{;\l j\?,:' g (I’I!_; j=12,
or equivalencly:
K v ]
[£ar LN ufi-n) |
Gur = | = (10)
LF ()

LOT /\

i Yar{l - v) _g

Practical computation of ©,, is given by the following
recursive algorithm:

Algorithm 1

Ou = =0 +0oc]”,
[n—1}
FORI=nwN
FORi=nwl-v, {{-v2n) )
Yor(@) = uli—n) yorli- )‘ Qyr
i ) (=
EXND
Our = Bar Afull = n)Xy(l)  yurll — v) xy (D)’
) {l-1} (N
END
eur = Yar
N

where the estimation O, = [f;, 7,,]" is obtained using
0} (O
the svstem outputs y{(n)....,¥(l). The input u being such
that u(j) = —oo for j < 0, we have y,(j) = —o¢ for
1)
Jj<n

Remark 4. By construction the series @, [ =n o N, is

42}
\rl

decreasing.

Because at each step | {I 2 n + 2v), the computation
of yor!{l — v) needs to calculate, using eq. (8), Yuril —
; } g €9 : Yari
1) o)

2u), .

Loy &

Yarll —wv) with v = [£=2) (2! is the truncated
t[l

part of z), the complexity of this algorithm is O(V*). In

order to reduce the complexity to O(N), the following

algorithm proposes to only evaluate the previous model

output as it is usually done in conventionnal linear systems

theory:

Algorithm 2
> cop

Oy = 7 +o0l',

in—=1;

FORI=ntwoN
Yorll =¥} = top ull == V) @ Tur Yor (1 - 20)
i (-1 (=1} (=13
Osr = Qor A full = m)RY(D) garll = ) 30D
i -1} n

END

Our =

ar
(N

with y,-(J) = —o0 for j < n.
)

Remark 5. If the regressive vector at event k is such that
@] = u(k—n) ylk-v)|, where y is the system output.
we obtain a worse estimated parameter vector (see (Gallot
et al.. 19970). (Gallot et al., 1997a)).

4.3.2. Identification using the MA eguation The error
Er(k) (eq. (9)) is now calculated using the MA form of

the model (eq. (7)). We replace ¢, 7, ¥m BY tima, Tina
and Yme resoecnvelv and consider yma(k) = ‘\IJJL —
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with Az = Tma  fmafrne  Ema?s, ...)7 theestimated
parameters vector and U7 = [u(k-n) u(k—n—v) u(k—
n —2r) ...l the regressive vector at event k.

For the set of measured data up to event N (N 2 n), we
-

obtain the marrix expression:
Er=Y - (M ®A.),

with M’ = '0,... ¥y]" the measured regressive vector

Inatrix.

. EE v ~ N . . 1.
The minimization of ), Er(k) is a linear program-
ming probiem when the input is an impulse ({Galiot et
al.. 1997a)).

fon AL, the residuation theory
allows us vo minimize Ji(¥ma) = k_ Er(k) for any
input. fm, is the greatest parameter such thar y({} >
tmett(l = n), Wl € € in, Nj. Under this assumption, the

resulting model is a,Iwa,ys causal.

:Eﬂrz

Fixing t,,

Proposition §. The estimated parameter frna Which min-
imizes criterion Jy(fme) = @k_ Er(k) (Erik) = 0, ¥k)
with tm, = £, is given by:

P N 9:‘
!
= AT el (11)
i=1 \y=p tma u(l —n —iv)
where p= (=2
Proof The problem is to obtain 7,,, such thar:
(1} = fpaul(l~n n) @ tmaTmatu(l —n — V)&.... Vg in, N
With fm, fixed. Then, the expression of y(l) becomes:
y() = tmaFmau(l = n = )@
brnatmaull =R =20)& ..., YVl € [n. N} (32)

The residua.tion uheor_v leads 1o the greatest vector which
sacisfies all the following equalities:

( /\ tmatt{l = n — v) 3y (l) ]

{=n

N
22
‘mas = /\

maul-—'n—Zu sy(D)

imatt(l — n — pv) {y(l)

>
b

X

The greatest i, satisfying equation (12) is Fp, =
AL, Fma; {due o the isotony of function z — zb).

or:

) ) )
Trna, = = o
e tma u(l = —iv)

=n

Natations
In the following, the values 4, fime compuced at event k
(k 2 n) will be noted:

k
Ermz — /\ u(‘l - Ii.) biy("')
e =
hom
Ly y
Tine = = X Tma
(&) i=1 t (k)
with:
k
¥ y(l) \
foas = [\ (13)

— tma u{l—n — i)
(&}

Let us recall that fo, = fp, and 7, = /\f:,I Yurlle=s

(k} (k) ik} (1)
v)ay(l)

Proposition 7. The model parameter 7 obtained using the
MA mode! of the simple element is greater or equal to the
one given by the ARMA model, ie., for k > n

%m_ﬂ >.__ f-ar
K k)

Proof
Due to remark 4 and eq. (8), we deduce Yor (i = 1) >
i
t ull—n L. lgln, N}

. —iv) since k >
—1i}

—iv) > (E—)u(i—n

i3

Because the mapping z — = is antitone (see (Max-
Plus, 1991)). eq. (13) becomes:

k
e 2\ =

(k) i=n

(14)

We introduce yur- (I - v), ...

1Yar{l = (1~ 1)r) into eq. (14):
3] 0

& Yar(l — ¥)
'I:Tiﬂ.a- o ( (y[(l)T & ”)(I 5 } ®
T Y -V ar\l — 2V
S (i
Var({ = (= L)1)
H
e )

yar(! - “’)
F”

which can be expressed as {cf. eq. 4):

ke .
& 5 yu‘l
AR

\.__.v_._._/
Tar
)

% y{?;(l -v) K y?r(l - {1 =1)v)
- , )
® [\ ya=ay ©

= i=n
~

Yarll = iv)
a)

i—1 elements
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Eq. (8) implies also that y?\rtj) & ’fm]'\ ?{:z\r(j - v), Yj

which can be written as y!?;.(‘j - v) \%J,.(;j)llt (Tff'-’ vl =

{n....,k}. ¥j. Since I%w‘\is decreasing (remark (:L)j, we

’7'-3,.\ b far, v(z_;} {n,...,k}. Consequently, the

i—1 \;;E!ZIE(IES\;:I)I) eq. (13) verifv the set of inequations
Yar{i=(j=1}¥

have

k i A - » N
A{:n m——' t Tar {:01' ] = 2 o 1. Iﬂe]l eq. (15)
A k)
leads to:
=i 2, 2 =t
"—T‘HCI! Eiar @ ... @Tar = ar
SR ) k) (k)
e
1 times
As Fa = AL, T X Thg, then Tme = AL, ¢ x 7, =
(k) (k) (k) (k3
Aoy Toss
(k)

Since 7., does not depend on ¢, we obtain %, = Top, Yk
L&) (ki k)

|

As for the identification method using ARMA model,

we propose a recursive algorithm to estimate 65, =

‘ T atv each event | (I = n).

:fma 2 ":'ma]

The practical computation of ©,,, is given by the follow-
ing recursive algorithm:

Algorithm 3

tma = +00

=)

Tma = -+ = Tmag = —X
in} L8 )

FORI=n o N
Emn = Ime A ('u(l = i'l) }W(m

) a=1
FORi=1lrto _i—“;’i_
T’(‘i;‘ = =—0C
FORj=ntol=iv, {Z2n~+iv)
(i) = '(i)/\((ff?)au(j —n—iv))ky(7))

lzn+v)

"END
Tme = Tma A (" x T(Z))
) )
EXND
EXD
Oma = itma Tmaj
(N)

The complexity of shis algorithm is O(V?).

4.4 [dentification of several simple elements

We consider the simultaneous identification of the pa-
rameters of .V simple elements (i, Ti)i=i w . With
(Re: Vi)i=1 to & given. The model output is defined by:

which corresponds in Rynas to:
N

ym(k) = @ym;(k)
i=1

where y,, (k) is expressed as the MA equation:
Yma; (k) = tma, ulk = ni) @ tna, Tra, u(k — 00y © .
or by the ARMA equation:
Yari (k) = taru(k = ni) @ Top Yor (K — 01}

As in sec. 4.3, the idenfication methods are still based on
the predictive error Er(k) = y(k) — ym(k).

4.4.1. Identification using the ARMA equation We con-
sider the ARMA model ouput y..(k) = &} O,, with
& =fulk—n1). . culk=ny) Yom(k—1).. Yary (k—
vyj] the regressive vector at event k where y,,. is the
i-th simple element output, u the input and O, =
T the estimated parameters

s el ~ ~ o
- e 1
[tary «--Bary Tary -« Tars)

vector.

Proposition 8. The components of vector C:)a, minimizing
criterion J defined in sec. 4.3.1, are given by:
- N
| /\ y{l)
u(l —n;)

luzry;

f"uf,} _
Tar /‘\

=n

,1=1t0 N (16}

yil)
; Yar; (l = 'U:')

Proof The proofis similar to the one given in sec. 4.3.1H

4.4.2. Identification using the MA equation ~We consider
the mode! ym, (k) = ¥ Ap,, where

a4

A e 7 - H
Ama = {tmay tmay Tme, tmes Tra,

. . 2 s r
tmay tmanTman tmay Trnay - -
the estimated parameters vector and
] - ’ =3
O = wk—n) ulk-nmun) uk-nvd)
u(k = ny) u(k = nyvy) ulk —nyvis) ..

the regressive vector at event £ with the input u.
Proposition 9. The estimated parameters T, j =

1 to .V which minimize the criterion @l::n Er(k) (Er(k) =
0, Vk) with tma, = tor;, are given by:

i ) ”
T = - - JE  —.
b /:\L Eﬁ tma; w{l —nj = iv;) '

M=y
where p; = |

v -

Proof The proof is similar to the one of proposition 6 B
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5. EXAMPLE

We illustrate the two proposed identification methods to
modelise a GET of impulse response Hy={1z3a
v 2T @ 9v") @ 1145(4y )",

Given the inpus sequence u(k) = ~oc for & < 0. u(k) =10
for 0 € ¥ € 9and ulk) = ~ocfork > 9 (truncated
impulsion), we consider a model constitued by 2 simple
elements (N =0, na =3, 1y = = 2

The result obrained respectively by the two mechods are:
éur = [gaﬁ, Earv_‘ 'Fa.r-_ 'F'gr.z;rr = '1 T 2 ] 4
+ 1T _ :’1 ”

‘mazj = f

One = Fmay g LI 4

1':mr:u
which correspond 1o the models (Fig 2 and 3):
Yorly) = 19°(29°)" © Ty (49%)"
Yma(’?) = 1’}'0(.3_3372)‘ o 7.?,3(4,7.'2)-
- - Systein ouput viks

—= Model output yinck)
Time 4

Event

Fig. 2. Identification method using the ARMA model.

- - System ourpur vk}
—_ Modael ouypur vl ky

2 4 & x 1o Even:

Fig. 3. Identification method using the MA model.

Here, both methods lead to the same value of the crizerion
d =0t =2,

6. CONCLUSION

We have proposed two identification methods of one
simple element from the response of a max-plus linear
system. The first one uses the ARMA model whereas the
second one uses the MA model. Moreover, these methods

have been extended to the simultaneous identification of
several simple elements. Both approaches are based on a
basic property of the Residuation theory.

We have shown that the approach based on the MA
model vields a better model output but the complexity
of the algorithm used to compute the model parameters
is O(N3). The algorithm used to compute the parameters
of the ARMA model, is of order O(N?). Tt can be reduced
into an algorithm of order O(N ) but the obtained modei
output is farther from the system outpu.

We are now able to identify several simple elements of a
given structure. We plan t0 use these methods in order
0 modelise a max-plus linear system which will probably
invelve the residuation of the law 3.
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