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In this paper, we present a non-standard fibre amplifier specially designed to amplify scar modes of a multimode chaotic optical fibre. More

precisely, we introduce Ytterbium in the optical fibre as a gain medium localised on the maximum of intensity of the scar modes. After

briefly recalling the relevance of a chaotic optical fibre as a device to visualise quantum chaos, we describe the amplification process of

scars. We present some numerical results that demonstrate the selective amplification of scar modes, with an amplification rate proportional

to the overlap between these modes and the gain area. [DOI: 10.2971/jeos.2009.09020]
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1 INTRODUCTION

For now a few years, a lot of applications in optics have taken

advantage of wave chaos. The interest is principally based on

some essential properties of the intensity distribution of the

modes in two dimensional chaotic cavities [1]. The intensity

of generic modes is statistically uniformly distributed over the

cavity. For some applications described below, this uniformity

constitutes an important advantage. However, some modes,

called scars, don’t follow this generic behaviour. They localise

the maximum of their intensity along particular directions of

the cavity. These properties may also have some applications,

as shown in the following.

With the constant need of higher compactness of compo-

nents for integrated photonic circuits, microcavity lasers have

known, for the past few years, active development [2]. These

investigations are not only guided by applications, but also by

the perspective of fundamental physics [3, 4]. Different mate-

rials can be used as microcavities. For instance, one can find

polymer microlasers [5] that allow electrical injection, lithium

niobate resonators that highlight photorefractive properties

[6], and many others. One of the common goals of those in-

vestigations is to improve the efficiency of the lasing modes,

as well as to control their directionality, or their quality fac-

tor. To meet the latter requirements, the geometry of the mi-

crocavities has been modified, in order to make them chaotic

[7, 8]. The lasing modes of such cavities are mostly whispering

gallery modes that have generally the lowest lasing threshold

[3]. Modes that build on periodic orbits of the cavity (scars)

are also extremely attractive. These specific modes have the

best directionality [9].

Wave chaos also may suggest very interesting solutions, in

guided optics. Indeed, many applications in optical commu-

nication require the use of double clad fibres (DCF) [10]. DCF

used as amplifiers ensure a high coupling between a high

power multimode pump, propagating in a large cross section

inner cladding, and a single-mode signal, propagating in a

rare-earth doped core. The important parameter in DCF am-

plifiers is the overlap integral between the pump field inten-

sity distribution and the doped area. Each mode is considered

to be absorbed proportionally to the overlap of the pump field

with the gain medium. It has been shown [11] that the more

uniform the distribution of intensity is, the more the absorp-

tion is effective. It is well-known that the modes intensity dis-

tribution strongly depends on the shape of the inner cladding.

The use of a chaotic geometry for the inner cladding [12, 13]

allows to achieve an optimised absorption, since the generic

modes of such a chaotic cladding have an uniform spatial dis-

tribution of intensity. Thus, in integrated optics as well as in

guided optics, wave chaos has proved to be a very power-

ful tool. Integrated optics takes advantage of very specific and

non standard modes of a chaotic cavity, whereas guided optics

takes advantage of the (speckle) modes that follow the generic

behaviour of such cavities.

In previous works, we showed that multimode optical fibres

are particularly well adapted for fundamental investigations
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in the domain of wave chaos [12], in particular to obtain and

analyse scar modes in an optical fibre [14]. In this paper, we

claim to go towards the control of wave chaos manifestations

by the introduction of gain in the optical fibre. As a selec-

tive excitation is practically not feasible, we present an orig-

inal way to achieve a selective amplification of scar modes,

inspired by the fact that our device is perfectly adapted to op-

tical amplification. More precisely, we propose to enhance scar

modes by positioning a gain medium, all along the fibre, in

the vicinity of the maximum of intensity of a family of scars.

In this paper, we present some numerical results, based on re-

alistic parameters, that demonstrate both how scar modes can

be enhanced, and the feasibility of the experiment.

2 MODEL FOR THE WAVE PROPAGATION
IN A CHAOTIC OPTICAL FIBRE

In this section, we consider a passive highly multimode

step-index fibre, with respective indices of the core and the

cladding, nco = 1.451 and ncl = 1.41. The transverse cross

section of the fibre is a disk of radius R truncated at a distance

Rc = R/2 from the centre, as shown in Figure 1.

nco = 1.451

R
Rc

ncl = 1.41

FIG. 1 Sketch of the transverse cross section of the D-shaped multimode fibre studied

in this paper.

2.1 Modal decomposit ion

2.1.1 Analogy between Helmholtz and Schrödinger equations

We denote by z the position along the axis of the fibre, and

by r the position in the transverse plane. The optical index is

invariant along z : n(r, z) = n(r). Weak guidance legitimates

the scalar approximation [15]. Thus, the electromagnetic field

ψs(r, z) propagating in the truncated fibre obeys the scalar

three-dimensional Helmholtz stationary equation

(∆⊥ + ∂zz)ψs(r, z) + n2(r)k2
0ψs(r, z) = 0 (1)

where ∆⊥ is the transverse Laplacian and k0 = 2π/λs is the

vacuum signal wave number. Considering the expression of

the field ψs(r, z)

ψs(r, z) =
∫

dβφ(r; β)eiβz (2)

Eq. (1) can be reduced to

∆⊥φ(r; β) + [n2(r)k2
0 − β2]φ(r; β) = 0 (3)

Let n2
clk

2
0 = β2

cl and n2
cok2

0 = β2
co. For β2

cl ≤ β2 ≤ β2
co, Eq. (3) is

solved at discrete values βn, called the propagation constants

of the guided modes. Eq. (3) can be rewritten as an eigenvalue

equation

[

−
1

2
∆⊥ +

β2
co − n2(r)k2

0

2

]

φ(r; β) =
β2

co − β2

2
φ(r; β) (4)

that gives
[

−
1

2
∆⊥ + V(r)

]

φ = Eφ (5)

with V(r) =
β2

co−n2(r)k2
0

2 and E, the eigenenergy, which takes

on discrete values En, related to the βn’s through β2
n = β2

co −

2En. Eqs. (3) and (5) are formally equivalent, and show the

analogy between the three-dimensional Helmholtz stationary

equation and the stationary Schrödinger equation.

The average number of modes N(β) up to a given value of β

in such a fibre is approximatively given by [12]

N(β) =
S

4π
(β2

co − β2) (6)

For a given polarisation and for λs = 1064 nm, the total num-

ber of modes is roughly given by N(βcl) (≃ 3500).

2.1.2 Paraxial approximation

In the paraxial approximation, valid for the first hundreds

guided modes [12], one can derive the Schrödinger equation

in fictitious time z :

iβco∂z ϕ(r, z) =

[

−
1

2
∆⊥ + V(r)

]

ϕ(r, z) (7)

The chaotic optical fibre then allows a direct visualisation of a

quantum wave evolution.

2.2 Modes of a chaotic optical f ibre

In this section, we recall some of the principal properties of the

modes in a chaotic cavity. This will constitute an introduction

for the following parts.

2.2.1 From WKB approximation to periodic orbits theory

In the semiclassical approach, the most commonly used ap-

proximation is the WKB (Wentzel-Kramers-Brillouin) approx-

imation. WKB approximation consists in writing the wave

function as an exponential function in which the amplitude

and the phase are slowly varying. The integrals involved in

the calculation of the phase are easily performed when the

motion can be describe in terms of action-angle variables. This

description is fully valid for integrable systems. In such sys-

tems, there are at least as many constants of motion as degrees

of freedom. For instance, in the two-dimensional circular bil-

liard, the two constants of motion are the energy and the an-

gular momentum with respect to the centre of the circle. Fig-

ure 2(a) presents a typical trajectory for which the motion is

confined between inner and outer radii. The outer radius is

the circular boundary of the billiard, and the inner radius is

defined as a caustic, that surrounds a non visited region. As

soon as there are fewer constants of motion than degrees of
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(a)
(b)

FIG. 2 Two examples of a single ray trajectory in 2-dimensional billiards : (a) in a

circular billiard, (b) in a chaotic D-shaped billiard

freedom, the system is no more integrable, and the WKB ap-

proximation fails [16]. This is the case for chaotic billiards, in

which the energy is the only constant of motion. In such sys-

tems, rays’ dynamics is obviously drastically different. This

is exemplified in Figure 2(b) for a truncated circle hereafter

called the D-shaped billiard. This geometry induces chaotic

dynamics, and to understand the waves behaviour in such a

billiard, an other approach has to be used.

2.2.2 Generic modes of a chaotic billiard : speckle (ergodic)
modes

In 1971, Gutzwiller introduced an entirely new approach,

based on the knowledge of the unstable periodic orbits (PO)

of the system [17]. His main result is the famous trace formula

that exhibits a strong correspondence between the position of

the resonances in the spectrum of a chaotic cavity and the POs.

POs are trajectories that come back to their initial condition af-

ter a number n of bounces on the boundary of the billiard. In a

chaotic billiard the number of POs grows exponentially with

their length [18] and each PO is strongly unstable. It means

that a ray launched in the near vicinity of a PO will diverge in

an exponential way. This instability is the origin of the extreme

sensitivity to initial conditions that characterises chaotic sys-

tems. Due to the above correspondence, a typical mode may

be considered as built upon a whole set of POs. Thus, in any

surface element, one can derive a local expression of the trans-

verse field ψs(r), resulting from the superposition of a large

number of plane waves of random directions and amplitudes,

but with a fixed transverse wave number as shown by Berry

in [19, 20]:

ψs(r) =
N

∑
n=0

bn exp (−iκn.r) + c.c (8)

where bn is the amplitude and κn the wave vector of the plane

wave n. That is

ψs(r) =
N

∑
n=0

an cos (κn.r + χn) (9)

with || κn ||= κ and κn = (κ cos αn, κ sin αn), in which the an-

gles αn and χn are random variables. This expression defines

a typical eigenmode of the chaotic structure, of energy E = κ2

2

with κ2 = β2
co − β2

n. Eq. (9) leads to a speckle-like pattern, as

shown in Figure 3 : the intensity of a so-called speckle mode is

statistically uniformly distributed over the whole billiard. The

FIG. 3 A typical ergodic eigenmode (squared amplitude), in the D-shaped billiard.

mode presented in Figure 3 results from the Plane Wave Decom-

position Method (PWDM) [21] that allows to calculate modes of

a closed two-dimensional structure, with Dirichlet boundary

conditions.

2.2.3 Scar modes of a chaotic billiard

The speckle-like behaviour of modes is generic in a chaotic

billiard. However, by calculating all the modes of a chaotic

billiard with the PWDM, some of them seem not to follow the

generic behaviour described above. They are called scars be-

cause they present a high localisation of the intensity in the

vicinity of some unstable POs of the billiard in the real space.

Moreover, in the Fourier space, the directions of the POs are

clearly emphasised. Some scar modes are shown in Figure 4.

Numbers of explanations have been proposed, based on dif-

ferent approaches for this non-generic behaviour [20]–[22]. In

this paper, we will not propose a theoretical analysis of the

existence of scars, but rather focus on the 2-bounce PO and

the scars that localise their intensities along it. The stability of

a PO depends on the behaviour of the so-called monodromy

matrix [23]. The latter is, in general, a chain of 2 × 2 matrices,

alternatively associated to the propagation in straight lines be-

tween two reflections, and to the reflection itself at the bound-

ary. This is analogous to the transfer matrix of optical ele-

ments, in optics. The eigenvalues of this matrix are related

to the stability of the PO. In the case of our chaotic billiard,

the largest eigenvalue takes the form eλLq in which Lq is the

length of the orbit q. For a given typical instability rate λ, the

longer the orbit is, the more unstable it is. Thus the 2-bounce

PO is one of the least unstable POs, and this turns out to be

crucial in order to enhance the 2-bounce PO scars.

(a) (b) (c)

2−PO

3−PO

6−PO

FIG. 4 Squared amplitudes of Scars of the D-shaped fibre, localising their intensities

along the periodic orbits with 2, 3 and 6 bounces.
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"mirror"

"mirror"

2-bounce PO

Self-focal point

FIG. 5 Schematic representation of the transverse cross section of the D-shaped optical

fibre as a Fabry-Perot resonator.

We now give some ideas to understand the presence of these

scar modes by comparing the D-shaped billiard with an un-

stable Fabry-Perot resonator, made of a plane mirror and a

concave mirror (Figure 5). From this analogy, the scars of the

2-bounce PO can be associated to the transverse modes of

the resonator. Let L be the length of the 2-bounce PO. Af-

ter a round trip through the lossless resonator, the cumulated

phase is given by κL − ∆φ − π/2 where ∆φ is a phase shift

due to the reflection on non-metallic boundaries, and π/2 is a

phase shift due to a particular point of the 2-bounce PO, the

self-focal point. Rays launched from this point along the 2-

bounce PO, come back to focus on that point after 2 bounces.

The condition of resonance reads

κL− ∆φ − π/2 = 2πp (10)

where p is an integer. From this condition of constructive in-

terference on the transverse wave number κ, and for differ-

ent values of the integer p, one can get the modes of the D-

shaped billiard that correspond to this quantisation. It appears

that these wave numbers correspond to the 2-bounce PO scar

modes.

3 AMPLIFICATION

The spatial structure of scar modes and their regular repar-

tition in the spectrum make them particularly interesting ob-

jects for some applications. From a fundamental point of view,

the manipulation of these specific objects is also a real chal-

lenge. Thus, we strive to enhance these objects among all the

modes. A single mode excitation is practically impossible in

a highly multimode fibre [14]. Therefore, we propose to am-

plify this family of modes selectively. Indeed, their particular

structure (spatial and phase space localisation of the intensity)

in contrast with the other modes, makes these modes particu-

larly suited for amplification. We propose a way of selecting a

family of scar modes by a precise control of the amplification

mechanism.

3.1 Differential amplif icat ion

A gain medium is introduced in the optical fibre in order to

perform an amplification process. This technique is similar to

R/2 R/2

FIG. 6 Two scar modes : the maximum of intensity of these modes is localised on the

same area, at the half-radius from the centre of the truncated circle (opposite side

from the truncation)

Core

Gain region z

gai
n

R/2

FIG. 7 The D-shaped optical fibre with gain localised on the maximum of intensity of

scars, along the propagation length

the one commonly used in DCF amplifiers [10, 24], but has

to be adapted in an unusual way. The main adaptation is that

the signal to amplify should propagate in the whole D-shaped

area, that is, for an amplifier, in the inner-cladding. Thus, the

signal and the pump both propagate in the inner-cladding. In

the following, we call the D-shaped fibre the core of the fibre,

and the doped core the doped region. Indeed, it is worth not-

ing that the difference between optical indices of the core and

the doped region has to be low enough in order to avoid any

guided mode in the latter. In the introduction, we mentioned

the need of an optimised overlap between the pump intensity

distribution and the doped region. The question is also rele-

vant for the signal. To selectively amplify scar modes among

all the excited modes, a differential amplification should be per-

formed: (a) The scar modes we consider localise their inten-

sities along the 2-bounce PO, suggesting to position the gain

area along this direction. Then, in the semiclassical limit, a ray

launched along the 2-bounce PO will pass through the gain

medium more often than other trajectories. Thus, the modes

that build on these trajectories might be amplified more effi-

ciently than the others. This analysis is validated by inspecting

the Husimi representation of the modes and will be published

elsewhere. (b) On the other hand, the overlap between the gain

region and the maximum of intensity of scars is a crucial point.

This idea is based on recent studies made in the domain of

random lasers. Information related to random lasers can be

found in [25, 26] and we here briefly recall some important

results for our purpose. Disordered media associated to ran-

dom lasers present strongly localised modes. By introducing

09020- 4
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a gain medium on the maximum of intensity of these modes,

a lasing effect is observed on the localised modes of the pas-

sive linear system. We try to apply this result to amplify scar

modes. All scar modes of the 2-bounce PO present a maxi-

mum of intensity in the vicinity of R/2, as shown in Figure 6.

This position is not quite surprising, since it is the focal point

of a concave mirror of radius R. Therefore, it seems natural to

localise the gain medium by centring it around the focal point,

as presented in Figure 7.

3.2 Amplif icat ion scheme

The fibre is doped with Ytterbium. The wavelengths for the

pump and the signal are respectively λp = 980 nm and

λs = 1064 nm. 980 nm corresponds to the maximum of ab-

sorption of Yb. The spectra of emission and absorption of Yb

are presented in Figure 8. Usually, in order to facilitate Ytter-

Pump

Signal

0,5

1

1,5

2

2,5

3

C
ro

ss
 S

ec
ti

o
n
 (

p
m

^
2
)

emission

absorption

900

Wavelength (nm)

950 1000 1050 1100
0

FIG. 8 Spectrum of absorption (green line) and emission (red line) of Ytterbium. The

signal and pump wavelengths are specified.

bium incorporation in the optical fibre, Aluminium is also in-

troduced. The effect of Aluminium is mainly to increase the

optical index mismatch between the core and the doped area.

In order to avoid any guided mode in the doped area, no Alu-

minium has been introduced in our optical fibre. One conse-

quence is that the incorporation of Yb is less controlled. The

optical index of the doped region is mainly determined by the

concentration of Yb ([Yb]) introduced. In our case, [Yb] has

to be very low, in comparison to standard Ytterbium-doped-

fibre-amplifiers, and is around 1000 ppm. The difference of

optical indices is then around ∆n ≃ 5 × 10−4. Numerical sim-

ulations showed that no guided mode can persist in this struc-

ture. Moreover, the refractive index changes due to the pump

power [10, 27] involved in the fibre are negligeable, with re-

spect to ∆n.

Ytterbium is a four-level system, but the life-times of the levels

that create non-radiative transitions are neglected here. Start-

ing with this hypothesis, one can write the population evolu-

tion equations, that leads to the equation of evolution of the

pump and signal intensities. Let N1 (N2) be the population

density of the lower (upper) energy level

Nt = N1 + N2 (11)

dN1

dt
= −

σpa Ip

hνp
N1 +

σsa Is

hνs
(ηs N2 − N1) +

N2

tsp
(12)

where Nt is the total population density. Ip is the pump in-

tensity at 980 nm, Is the signal intensity at 1064 nm, σpa (resp.

σsa) the absorption cross section for the pump (resp. the sig-

nal), νp and νs are the frequencies associated to the transitions,

ηs = σse
σsa

with σse the emission cross section for the signal, and

tsp the life-time of the upper level for the spontaneous emis-

sion. In the stationary state, Eq. (12) is

N2(x, y, z) =

Ip

Ip0
+

Is
Is0

1+ηs

1 +
Ip

Ip0
+ Is

Is0

Nt (13)

N1(x, y, z) =
1 +

ηs
Is
Is0

1+ηs

1 +
Ip

Ip0
+ Is

Is0

Nt (14)

where Ip0 (Is0) is the pump (signal) intensity of saturation. The

variation of intensities of the pump and signal are deduced

from the expression of the energies involved in the absorption

and stimulated emission processes. The energy absorbed by

units of time and surface along dz is

− dIp = σpa Ip N1dz (15)

−dIs = σsa Is(N1 − ηs N2)dz (16)

Thus, one can write

dIp

dz
= −σpa N1 Ip(z)

dIs

dz
= σsa(ηs N2 − N1)Is(z) (17)

describing the energy transfer process between the pump and

the signal. For more details, please refer to [28].

3.3 Numerical model of the amplif icat ion

In this part, we describe the model of the amplification pro-

cess, used in the numerical simulations presented below. In

Eqs. (17), the coefficients of absorption αabs = −σpa N1(z) and

amplification αamp = σsa(ηs N2(z) − N1(z)) depend on the

intensities Ip(z) and Is(z). In the numerical simulations, the

length of propagation of both the pump and the signal is dis-

cretised in steps of length ∆z = 5 × 10−6 m. The evolution

of the pump and signal amplitudes is calculated through the

”Beam propagation method” [29, 30]. At each step ∆z, we ac-

count for the amplification (resp. depletion) of the signal (resp.

the pump) by multiplying their amplitudes by eαamp∆z/2 (resp.

eαabs∆z/2).

4 RESULTS

In all the numerical simulations we performed, the param-

eters used are based on the physical characteristics of the

actual optical fibre. The numerical initial condition used for

the pump evolution corresponds to an illumination by a fo-

cussed laser beam, ensuring an optimised coupling with a

large number of speckle modes. The input powers are 6 W

for the pump, and 100 µW for the signal. The cross sections

for the pump and signal wavelengths have the following val-

ues : σpa = 2.65 × 10−24 m2, σsa = 5.56 × 10−26 m2 and

σse = 6.00 × 10−25 m2. The life-time of the upper level for

spontaneous emission is tsp = 10−3 s. The concentration of

Ytterbium given before implies Nt = 1026 m−3.
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To analyse the guided modes present in the propagating sig-

nal we calculate what we call the pseudo-time-frequency spec-

trum C(κ; z) in which z is the pseudo-time [31]. More pre-

cisely, C(κ; z) is obtained by the Fourier transform of the corre-

lation function of the propagating field ψs(r, z) with its initial

condition, along a propagation length Lz

C(κ; z) =
∫ z+(Lz/2)

z−(Lz/2)
dz′

[

∫ ∫

drψ∗
s (r, 0)ψs(r, z′)

]

e−iβ(κ)z′

≃ ∑
n

An(z)δǫ(κn − κ) (18)

in which C(κ; z) is clearly written in a form that exhibits peaks

for transverse wave numbers associated to the eigenmodes of

the fibre. We present the results for a fibre length (≃ 50 m)

for which the maximum of amplification is achieved. Let us

consider a spatially incoherent initial condition for the sig-

nal, resulting from a random superposition of a large number

of plane waves. The wave numbers are randomly distributed

from 0 to κ̃ = κmax/4 (where κmax = β2
co − β2

cl) and the cor-

responding initial spectrum is almost uniform over this range

of wave numbers. The narrow selection of the direction in the

z=5m

z=12.5m

z=40m

Near Field Far Field

FIG. 9 Near field and far field for 3 different lengths of the fibre. The selection of the

2-bounce PO is noticeable, as well in the near field, as in the far field pictures.

vicinity of the PO is obvious in the spatial distribution of the

signal field (Figure 9).

Of course, the near field does not show a single scar mode, as

the initial condition includes a dozen of them, but the local-

isation of the light along the 2-bounce PO is clearly demon-

strated. Moreover, the selection of the direction becomes obvi-

ous if one looks at the far field, as shown in Figure 9.

In Figure 10(a), the evolution of C(κ; z) along the propagation

z is computed with Lz = 1.3 m and with z varying by steps of

0.65 m for z = 0 to 50 m. Figure 10(a) represents the average

spectrum for 10 different inputs. There is a drastic mode selec-

tion along the propagation. Each noticeable peak corresponds

to the transverse wave number of a scar mode. Almost all scar

modes are significantly amplified up to p = 12 (κ12 ≃ κ̃) but

not with the same efficiency. Figure 10(b) represents the evo-

lution along z of the intensity associated to the wave number

of each scar mode in a semi-logarithmic scale. The intensity

evolutions along z follow an exponential law, until the gain

saturation is achieved. This exponential growth is explained

by considering that the spatial distribution of the intensity

of one mode increases uniformly along the propagation. The

amplification rate of each scar mode can be directly deduced

from the slope of the exponential growth in the semi-log rep-

resentation. It becomes obvious that some scars as the scars

of order 1, 3, 4 and 6 have a higher amplification rate than the

scars of order 2 or 5. This differential amplification can be re-

lated to the overlap between the scar modes spatial intensity

distributions and the doped region. This is illustrated in Fig-

ure 11, where the overlap integral between the doped region

and the intensity of the 2-bounce PO scar modes has been plot-

ted. The good agreement between the amplification rates and
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FIG. 10 (a) 2D-Evolution of C(κ; z). Each peak corresponds to a scar mode, denoted

here by their order p. (b) Evolution of the intensities of scar modes along the propa-

gation z.
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FIG. 11 Qualitative comparison of the overlap integral between the intensity of the

calculated scar modes and the doped area, and the amplification rates measured in

Figure 10(b).

the overlap integrals is clearly seen : scars of order p = 1, 3, 4, 6

(and 10) have a good overlap with the gain region, and thus

have a higher amplification coefficient, whereas scars of order

p = 2, 5 (and 7) have a poor overlap, and are not efficiently

amplified.

5 CONCLUSION AND PROSPECTS

The efficiency of the process of amplification of scar modes

has been numerically demonstrated, and we have analysed

the differential amplification of the modes with respect to their

overlap with the position of the gain medium. All the param-

eters used in the numerical simulations are taken from the ac-

tual optical fibre, and the experiment is under progress. We

briefly present the experimental scheme (Figure 12). A YAG-

laser @ 1064 nm (350 mW) and a laser diode @ 980 nm (10 W)

are used, respectively for the signal and the pump. The signal

is expanded and filtered, in order to optimise the illumination

of the fibre input. The output of the laser diode is collimated

and then focussed at the D-shaped fibre input, in order to dis-

tribute the intensity over all the modes of the fibre. The fibre

length is 50 m, and is wrapped around a 30 cm diameter spool.

At the fibre output, a dichroic mirror separates the two wave-

lengths. Different analyses can be performed as, for instance,

FIG. 12 A scheme of the experiment that is under progress.

the visualisation of the near and far fields, or a spectrum anal-

ysis.
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