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FUSION COEFFICIENTS AND RANDOM WALKS IN ALCOVES

MANON DEFOSSEUX

Abstract. We point out a connection between fusion coefficients and random
walks in a fixed level alcove associated to the root system of an affine Lie
algebra and use this connection to solve completely the Dirichlet problem
on such an alcove for a large class of simple random walks. We establish
a correspondence between the hypergroup of conjugacy classes of a compact
Lie group and the fusion hypergroup. We prove that a random walk in an
alcove, obtained with the help of fusion coefficients, converges, after a proper
normalization, towards the radial part of a Brownian motion on a compact Lie
group.

1. Introduction

In the early nineties Ph. Biane pointed out relations between representation
theory of semi-simple complex Lie algebras and random walks in a Weyl chamber
associated to a root system of such an algebra (see for instance [2]). Actually,
random walks in a Weyl chamber are obtained considering the hypergroup of char-
acters of a semi-simple complex Lie algebra, with structure constants given by the
Littlewood-Richardson coefficients. A Weyl chamber is a fundamental domain for
the action of a Weyl group associated to a root system. If we consider an affine
Lie algebra, which is an infinite dimensional Kac-Moody algebra, a fundamental
domain for the action of the Weyl group associated to its (infinite) root system is a
collection of level k alcoves, k ∈ N. Thus it is a natural question to ask if random
walks in alcoves are related to representation theory of infinite dimensional Lie al-
gebras. There are several ways to answer. A first one could be to consider tensor
products of highest weight representations of an affine Lie algebra. One would ob-
tain random walks in alcoves with increasing level at each time. This approach has
to be related to the very recent paper [16]. A second one is to consider the so-called
fusion product. In that case, one obtains random walks living in an alcove with
a fixed level. This is this approach that we develop in this paper. Fusion coeffi-
cients can be seen as the structure constants of the hypergroup of the discretized
characters of irreducible representations of a semi-simple Lie algebra (see [21] and
references therein). Following an idea of Ph. Bougerol1 we point out that random
walks in an alcove are related to such an hypergroup. Thus one answers positively
to the question explicitly formulated in [11] : does it exist a link between repre-
sentation theory and random walks in alcoves ? In particular one can completely
solve the discrete Dirichlet problem on an alcove, for a large class of simple random
walks, as P. H. Berard did in [1] in a continuous setting, which is important to
obtain, for instance, precise asymptotic results. Thus we get a very natural new
integrable probabilistic model, i.e a probabilistic object which can ”be viewed as

1Private communication.
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2 MANON DEFOSSEUX

a projection of a much more powerful object whose origins lie in representation
theory” [4]. We obtain in addition a better understanding of some previous results
concerning random walks in alcoves. Actually, the restriction to a classical alcove
of the Markov kernel of most of reflectable random walks considered in [11] is given
by fusion coefficients. This is due to the fact that these reflectable random walks
are mostly related to minuscule representations of classical compact Lie groups and
that in these cases fusion coefficients give the number of walks remaining in an al-
cove. In [11] Grabiner is interested in a class of reflectable walks, for which Gessel
and Zeilberger have shown a Karlin-MacGregor type formula in [10]. In our per-
spective, this formula has to be related to a Karlin-MacGregor type formula which
holds for the so-called fusion coefficients.

A random walk on a Weyl chamber converges after a proper normalization to-
wards a Brownian motion on a Weyl chamber, which can also be realized as the
radial part of a Brownian motion in a semi-simple complex Lie algebra. It is maybe
enlightening to notice that the orbit method of Kirillov provides a kind of interme-
diate between the discrete and the continuous objects. It establishes in particular a
relation between convolution on a Lie algebra and tensor product of its representa-
tions. Taking an appropriate sequence of convolutions on a Lie algebra one obtains
by a classical central limit theorem a chain of correspondences between random
walks in a Weyl chamber, tensor product of representations, convolution on a Lie
algebra and Brownian motion in this Lie algebra. We establish that convolution
on a connected compact Lie group involves fusion product of irreducible represen-
tations. We prove that a random walk obtained considering the fusion hypergroup
converges after a proper normalization towards the radial part of a Brownian mo-
tion in a compact Lie group. Thus, the paper should be read keeping in mind the
following informal chain of correspondences.

Random walk in ∼ Fusion ∼ Random walk in ∼ Brownian motion
an alcove product a compact group in a compact group.

The paper is organized as follows. Basic definitions and notations related to rep-
resentation theory of semi-simple complex Lie algebras are introduced in section
3. The fusion coefficients are defined in section 4. We define in section 5 random
walks in an alcove considering the hypergroup of the so-called discretized characters
of irreducible representations of a semi-simple complex Lie algebra, with structure
constants given by fusion coefficients. Moreover we show how the discretized char-
acters provide a complete solution to a Dirichlet problem in an alcove for a large
class of simple random walks. We indicate precisely in section 6 how most of simple
random walks considered in [11] and [15] appear naturally in this framework. We
explain in section 7 how the fusion product is related to convolution on a compact
Lie group. We established in section 8 a convergence towards the radial part of a
Brownian motion in a compact Lie group.

Note that a discrete Laplacian on Weyl alcoves has been introduced in [18] in a
more general framework of double affine Hecke algebras. The Bethe Ansatz method
is employed to find eigenfunctions, which are proved to be the periodic Macdonald
spherical functions. Even if the underlying Markov processes are the same as ours,
his approach is quite different. We hope that ours, which explicitly involves the
fusion hypergroup, is enlightening in a sense that fusion coefficients are proved to
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play the same role for random walks in an alcove as the Littlewood Richardson
coefficients for random walks in a Weyl chamber.

Acknowlegments: The author would like to thank Ph. Bougerol for having made
her know the fusion product and its beautiful probabilistic interpretation.

2. The case of SU(2)

In order to facilitate the lecture of the paper we first begin to detail how the
simplest example of random walk in an alcove has to be related to fusion coefficients.
Let k ∈ N∗ and T = {0, . . . , k}. We consider the simple random walk (X(n))n≥0

on Z with transition kernel P defined by P(x, y) = 1
21|x−y|=1, for x, y ∈ Z. For

f : T → R, we let ∆f = P f − f . The discrete Dirichlet problem consists in finding
eigenvalues λ and eigenfunctions f defined on T ∪ ∂T satisfying

{

∆f + λf = 0 on T
f = 0 on ∂T,

where ∂T = {−1, k+1}. It is a consequence of the Perron-Frobenius theorem that
the smallest eigenvalue is positive, simple and that the corresponding eigenfunction
can be chosen positive on T . Such a function is said to be a Perron-Frobenius
eigenfunction. The eigenfunctions corresponding to the other eigenvalues change
of sign on T . An easy computation shows that the eigenvalues of the Dirichlet
problem are 1− 1

2χ1(m), for m ∈ {0, . . . , k}, with corresponding eigenfunctions fm
defined by fm(i) = χi(m), i ∈ T ∪ ∂T , where

χi(m) =
sin(π (i+1)(m+1)

k+2 )

sin(πm+1
k+2 )

.

For m = 0, one gets a Perron-Frobenius eigenfunction. Actually the χi’s are the
so-called discretized character of the Lie algebra sl2(C). The fact that they provide
a solution to the Dirichlet problem comes from the fact that here the restriction
of the Markov kernel P to T is the sub-stochastic matrix (12N

j
i1)0≤i,j≤k where the

Nk
i1’s are level k fusion coefficients of type A

(1)
1 . Let us say how the asymptotic

for the number of walks in the alcoves obtained in [15] by Krattenthaler using the
explicit formulas of Grabiner, follows immediately in our framework. Classically,
we define a Markov kernel P̂ letting

P̂(x, y) =
χy(0)

1
2χ1(0)χx(0)

P|T (x, y).

As T is supposed to be bounded, there exists a unique P̂-invariant probability
measure on each communication class of P̂ and the solution of the Dirichlet problem
leads in particular to an estimation of the number of walks with initial state x,
remaining in T and ending at y after n steps for large n. Actually one can show
that the measure π defined on T by

π(i) =
2

2 + k
sin2(π

i+ 1

k + 2
),

i ∈ T , is a P̂-invariant probability measure. As the simple random walk is irre-
ducible with period equals 2, one obtains the following estimation for large n

P 2n+r
|T (x, y) ∼ 4

2 + k
(
1

2
χ1(0))

2n+r sin(π
x+ 1

k + 2
) sin(π

y + 1

k + 2
),
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where r = 0 when y − x ∈ 2Z and r = 1 otherwise.

3. Basic notations and definitions

Let K be a simple, connected and compact Lie group with Lie algebra k and
complexified Lie algebra g. We choose a maximal torus T of K and denote by t its
Lie algebra. We consider the set of real roots

R = {α ∈ t∗ : ∃X ∈ g \ {0}, ∀H ∈ t, [H,X ] = iα(H)X}.
We choose the set Σ of simple roots of R and denote by R+ the set of positive roots.
The half sum of positive roots is denoted by ρ. The dual coxeter number denoted
by h∨ is equal to 1 + ρ(θ∨), where θ is the highest root. Letting for α ∈ R,

gα = {X ∈ g : ∀H ∈ t, [H,X ] = iα(H)X},
the coroot α∨ of α is defined to be the only vector of t in [gα, g−α] such that
α(α∨) = 2. We denote respectively by Q and Q∨ the root and the coroot lattice.
The weight lattice {λ ∈ t∗ : λ(α∨) ∈ Z} is denoted by P . We equip k with a
K-invariant inner product (.|.), normalized such that (θ∨|θ∨) = 2. The linear
isomorphism

ν : k → k∗,

h 7→ (h|.)
identifies k and k∗. We still denote by (.|.) the induced inner product on k∗. Note
that the normalization implies ν(θ∨) = θ. The irreducible representations of g

are parametrized by the set of dominant weights P+ = P ∩ C, where C is the
Weyl chamber {λ ∈ t∗ : 〈λ, α∨〉 ≥ 0 for all α ∈ Σ}. Let Vλ be the irreducible
representation of g with highest weight λ ∈ P+ and chλ be the character of this
representation. It is defined by

chλ =
∑

β∈P

Kβ
λe

β,

where eβ is defined on t by eβ(x) = e2iπβ(x), for x ∈ t, and Kβ
λ is the dimension of

the β-weight space of Vλ. We denote by dim(λ) the dimension of the representation
Vλ, i.e. dim(λ) = chλ(0). We have the following Weyl dimension formula (see for
instance [12]).

dim(λ) =
∏

α∈R+

(α+ ρ, λ)

(ρ, α)
.

The Weyl character formula states that for any x ∈ t,

chλ(x) =
1

∏

α∈R+
(1− e−2iπα(x))

∑

w∈W

det(w)e2iπ〈w.(λ+ρ)−ρ,x〉,

where W is the Weyl group i.e. the subgroup of GL(t∗) generated by fundamental
reflections sα, α ∈ Σ, defined by sα(β) = β − β(α∨)α, β ∈ t∗. When λ is not
dominant, we let chλ = det(w) chµ if w(µ + ρ) = λ + ρ for µ a dominant weight.
The Weyl character formula remains obviously true for a non-dominant weight.

The Littlewood-Richardson coefficients Mβ
λ,γ , for λ, γ, β ∈ P+, are defined to be

the unique integers such that for every x ∈ t

chλ(x)chγ(x) =
∑

β∈P+

Mβ
λ,γchβ(x).(1)
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4. Fusion coefficients

For every y ∈ t∗, we write ty for the translation defined on t∗ by ty(x) = x+ y,
x ∈ t∗. For k ∈ N∗, we consider the group Wk generated by W and the translation
t(k+h∨)θ. ActuallyWk is the semi-direct productW ⋉T(k+h∨)M , whereM = ν(Q∨)
and T(k+h∨)M = {t(k+h∨)x : x ∈ M}. Thus for w ∈ Wk, one can define det(w) as
the determinant of the linear component of w. The fundamental domain for the
action of Wk on t∗ is

Ak = {λ ∈ t∗ : λ(α∨
i ) ≥ 0 and λ(θ∨) ≤ k + h∨}.

Let us introduce the subset P k
+ of P+ defined by

P k
+ = {λ ∈ P+ : λ(θ∨) ≤ k},

and the subset Ck of C defined by

Ck = {λ ∈ C : λ(θ∨) ≤ k}.

P k
+ is called the level k alcove. The level k fusion coefficients Nβ

λ,γ , for λ, γ, β ∈ P k
+,

are defined to be the unique non negative integers such that

∀σ ∈ P k
+, χλ(σ)χγ(σ) =

∑

β∈Pk
+

Nβ
λ,γχβ(σ).(2)

where χλ is the level k discretized character, which is defined by

χλ(σ) = chλ
(

− ν−1(
σ + ρ

k + h∨
)
)

, σ ∈ P k
+.

The Weyl character formula shows that for any λ ∈ P and w ∈ Wk

χw(λ+ρ)−ρ = det(w)χλ,(3)

which implies in particular that χλ = 0 if (λ+ ρ) is on a wall {x ∈ t∗ : x(α∨) = 0}
for some α ∈ Σ, or on the wall {x ∈ t∗ : x(θ∨) = k + h∨}. Unicity of the fusion
coefficients follows from the fact - proved for instance in [13] - that the vectors
{(χβ(σ))σ∈Pk

+
, β ∈ P k

+} are orthogonal with respect to the measure defined in

proposition 5.6. The non negativity of the fusion coefficients is not clear from this
definition, which is the one given in [13]. Nevertheless, fusion coefficients can be
seen as multiplicities in the decomposition of some ”modified products” of repre-
sentations : the truncated Kronecker product, appearing in the framework of rep-
resentations of quantum groups, and the fusion product, defined in the framework
of representations of affine Lie algebras. In these frameworks, the non negativity of
the fusion coefficients follows from the definition (see for instance [9]). Moreover,
they are proved to satisfy the following inequality, which we’ll be useful for the last
section. For any λ, γ, β ∈ P k

+,

Nβ
λ,γ ≤Mβ

λ,γ .(4)

It follows for instance from identities (16.44) and (16.90) in [6]. Note that we have
also the following inequality

Mβ
λ,γ ≤ Kβ−λ

γ .

It follows for instance from the Littelmann path model for tensor product of irre-
ducible representations (see [17]).
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5. Markov chains on an alcove

Let γ ∈ P k
+. From a probabilistic point of view, discretized characters provide,

by definition of the fusion coefficients, a basis of eigenvectors of the sub-stochastic
matrix

(
1

dim(γ)
Nβ

λ,γ)λ,β∈Pk
+
.

Actually for σ ∈ P k
+,

1
dim(γ)χγ(σ) is an eigenvalue with a corresponding eigenvector

(χβ(σ))β∈Pk
+
. For λ ∈ P k

+, χλ(0) is a non negative real number. Actually we have

the following formula (see for instance [13]).

χλ(0) =
∏

α∈R+

sin
(

π (λ+ρ|α)
k+h∨

)

sin
(

π (ρ|α)
k+h∨

)
.(5)

The quantity χλ(0) is the so-called asymptotic dimension, which appears naturally
in the framework of highest weight representations of affine Lie algebras. Let γ ∈
P k
+. We define a Markov kernel qγ on P k

+ by letting

qγ(λ, β) = Nβ
λ,γ

χβ(0)

χλ(0)χγ(0)
, for λ, β ∈ P k

+.(6)

In other words qγ is defined by the formula

χλ(σ)

χλ(0)

χγ(σ)

χγ(0)
=

∑

β∈Pk
+

qγ(λ, β)
χβ(σ)

χβ(0)
, λ, σ ∈ P k

+.(7)

Definition 5.1. For γ ∈ P k
+, a random walk in the level k alcove, with increment

γ, is defined as a Markov process in P k
+, with Markov kernel qγ.

The definition of the Markov kernel qγ implies that for σ ∈ P k
+,

χγ(σ)
χγ(0)

is an eigen-

value of qγ , with a corresponding eigenvector (
χβ(σ)
χβ(0)

)β∈Pk
+
. Thus for any positive

integer n, one has for λ, σ ∈ P k
+

χλ(σ)

χλ(0)

χn
γ (σ)

χn
γ (0)

=
∑

β∈Pk
+

qnγ (λ, β)
χβ(σ)

χβ(0)
,

which is equivalent to say that for any λ, β ∈ P k
+,

qnγ (λ, β) = Nβ
λ,γ,n

χβ(0)

χλ(0)χn
γ (0)

,

where the coefficients Nβ
λ,γ,n, for λ, γ, β ∈ P k

+, are the unique integers satisfying

χλχ
n
γ (σ) =

∑

β∈Pk
+

Nβ
λ,γ,nχβ(σ),

for any σ ∈ P k
+. We denote by Kβ

γ,n the dimension of the β-weight space of V ⊗n
γ ,

i.e.

chnγ =
∑

β∈P

Kβ
γ,ne

β .(8)
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Let us consider a random walk on the weight lattice P , whose transition kernel pγ
is defined by

pγ(λ, β) =
Kβ−λ

γ

dim(γ)
, λ, β ∈ P.

We consider the subset Sγ of P of weights of Vγ , i.e. Sγ = {β ∈ P : Kβ
γ > 0}. In the

case when γ is minuscule Sγ is {w(γ) : w ∈ W} and the random walk is a simple
random walk with uniformly distributed steps on Sγ . The following proposition
states that in that case fusion coefficients give the number of ways for the walk to
go from a point to another, remaining in P k

+.

Proposition 5.2. Let β, λ ∈ P k
+ and γ be a minuscule weight in P k

+. Then for any

n ∈ N
∗, Nβ

λ,γ,n is the number of walks with steps in Sγ , initial state λ, remaining

in P k
+ and ending at β after n steps.

Proof. The following formula is known as the Brauer-Klimyk rule. It is an imme-
diate consequence of the Weyl character formula. For λ, γ ∈ P+ it says that

chλchγ =
∑

β∈P

Kβ
γ chλ+β .

The highest weight γ being minuscule β(θ∨) ∈ {0,−1, 1} for every β such that
Kβ

γ > 0. Thus (λ + β)(θ∨) ∈ {k, k − 1, k + 1} and (λ + β)(α∨) ≥ −1 for every
α ∈ Σ. As χβ = 0 when (β + ρ)(θ∨) = k + h∨ or (β + ρ)(α∨) = 0 for some simple
root α, we obtain that

χλχγ =
∑

β:λ+β∈Pk
+

Kβ
γχλ+β =

∑

β:β∈Pk
+

Kβ−λ
γ χβ .

As γ is minuscule Kβ
γ ∈ {0, 1}. Thus

Nβ
λ,γ =

{

1 if β ∈ P k
+ and Kβ−λ

γ > 0
0 otherwise,

which implies the proposition. �

Proposition 5.2 implies that when γ is minuscule, the sub-stochastic matrix

(
1

dim(γ)
Nβ

λ,γ)λ,β∈Pk
+

is the restriction of pγ to the alcove P k
+. As noticed after identity (3), the discretized

characters are null on the boundary of the bounded domain {λ ∈ P : λ+ ρ ∈ Ak},
which is {λ ∈ P : λ + ρ ∈ Ak} \ P k

+. Thus one obtains, when γ is minuscule, the
following important corollary.

Corollary 5.3. Let us consider for γ ∈ P k
+ a discrete Dirichlet problem, which

consists in finding eigenvalues λ and eigenfunctions f defined on {x ∈ P : x+ ρ ∈
Ak}, satisfying

{

∆γf(x) + λf(x) = 0 if x ∈ P k
+

f(x) = 0 if x /∈ P k
+,

where ∆γf = pγf − f . If γ is minuscule then
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(1) for σ ∈ P k
+,

1− 1

dim(γ)
χγ(σ),

is an eigenvalue, with a corresponding eigenfunction fσ defined by

fσ(β) = χβ(σ), β ∈ P k
+,

(2) the eigenfunction f0 is a Perron-Frobenius eigenfunction. In particular, the
random walk in a level k alcove with increment γ is a Doob-transformed
transition kernel of pγ.

Proposition 5.2 remains true in the framework of Littelmann paths. In that
framework, it includes the case of standard representation of type B. In the follow-
ing a path π defined on [0, T ], for T ∈ R∗

+, is a continuous function from [0, T ] to t∗

such that π(0) = 0. If π is a path defined on [0, T ] we write π ∈ C (resp. π ∈ Ck) if
π(t) ∈ C (resp. π(t) ∈ Ck) for every t ∈ [0, T ]. For two paths π1 and π2 respectively
defined on [0, T1] and [0, T2], we write π1 ∗π2 for the usual concatenation of π1 and
π2. Note that π1 ∗ π2 is a path defined on [0, T1 + T2]. For λ ∈ P+, we denote
by πλ the dominant path defined on [0, 1] by πλ(t) = tλ, t ∈ [0, 1] and by Bπλ
the Littelmann module generated by πλ. More details about the Littelmann paths
model for representation theory of Kac-Moody algebras can be found in [17]. The
important fact for us is that for any dominant λ and γ one has

chλ chγ =
∑

π∈Bπγ :πλ∗π∈C
chλ+π(1) .

Let us recall that a weight γ ∈ P+ is said to be quasi-minuscule if Sγ = {w(γ) :
w ∈ W} ∪ {0}.
Proposition 5.4. Let β, λ ∈ P k

+ and γ be a minuscule weight or a quasi-minuscule
weight such that β(θ∨) ∈ {0,−1, 1} for every weights β of the representation Vγ .

Then for any n ∈ N, Nβ
λ,γ,n is the number of paths in Bπλ ∗ (Bπγ)∗n ending on β

and remaining in Ck.

Proof. Littelmann theory implies that

χλχγ =
∑

π∈Bπγ :πλ∗π∈C
χλ+π(1).

When γ is a minuscule weight, the Littelmann module Bπγ is {πβ : β ∈ Wγ}.
When γ is quasi-minuscule every paths π in the Littelmann module Bπγ are of the
form πβ for β ∈ Wγ or are defined by π(t) = −αt1t≤ 1

2
+ α(t − 1)1t> 1

2
, t ∈ [0, 1],

for α ∈ Σ. Thus, if π ∈ Bπγ one has for every t ∈ [0, 1], (πλ(1) + π(t))(θ∨) ≤
k + 1. If (λ + π(1))(θ∨) = k + 1 then χλ+π(1) = 0. As α(θ∨) ≥ 1 for all α ∈ Σ,
(λ+ π(1))(θ∨) ≤ k implies (λ+ π(t))(θ∨) ≤ k for every t ∈ [0, 1]. One obtains,

χλχγ =
∑

π∈Bπγ :πλ∗π∈Ck

χλ+π(1).

�

The first formula of the following proposition is well known for n = 1. It is
a consequence of the Kac-Walton formula (see [19]). For n ∈ N∗, proposition 5.2
implies that when γ is minuscule, it turns to be the Karlin-MacGregor type formula
obtained for affine Weyl group by Gessel and Zeilberger in [10] in the framework of
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reflectable walks. The second formula can be found as an exercise in chapter 13 of
[13].

Proposition 5.5. Let λ, γ, β be dominant weights in the alcove P k
+. Then

(1) Nβ
λ,γ,n =

∑

w∈Wk
det(w)K

w(β+ρ)−(λ+ρ)
γ,n ,

(2) Nβ
λ,γ = Nλ

β,tγ , where
tγ is the highest weight of the dual representation V ∗

γ .

Proof. The proof rests on theWeyl character formula. We let ∆(x) =
∑

w∈W det(w)ew(x)

for any x ∈ t∗. We have

∆(λ+ ρ)chnγ =
∑

w∈W,β∈P

det(w)Kβ
γ,ne

w(λ+ρ)+β

=
∑

w∈W,β∈P

det(w)Kβ
γ,ne

w(λ+ρ+β)

=
∑

β∈P

Kβ
γ,n∆(λ+ β + ρ).

The Weyl character formula implies

chλch
n
γ =

∑

β∈P

Kβ
γ,nchλ+β ,

which is an extension of the Brauer-Klimyk rule. For β ∈ P , it exists w ∈Wk such
that w(λ + β + ρ) ∈ Ak. If w(λ + β + ρ)− ρ /∈ P+ then w(λ + β + ρ) is on a wall
{x ∈ t∗ : sα(x) = x} for some α ∈ Σ and χλ+β = 0. If w(λ + β + ρ)(θ∨) = k + h∨

then w(λ+β+ρ) = t(k+h∨)θsθ(w(λ+β+ρ)) and χλ+β = 0. If it exists two distinct

w1, w2 ∈Wk such that w1(λ+β+ρ) = w2(λ+β+ρ) ∈ Ak then w−1
2 w1(λ+β+ρ) =

λ + β + ρ and χλ+β = 0. Finally if χλ+β 6= 0 it exists a single w ∈ Wk such that
w(λ+ β + ρ)− ρ ∈ P k

+ and we get that

χλχ
n
γ =

∑

β∈Pk
+

∑

w∈Wk

det(w)Kw(β+ρ)−(λ+ρ)
γ,n χβ ,

which proves the first identity. Let us prove the second one. The affine Weyl group
being the semi-direct product T(k+h∨)M ⋉W , the first identity for n = 1 implies

Nβ
λ,γ =

∑

x∈M,w∈W

det(w)K
t(k+h∨)xw(β+ρ)−(λ+ρ)
γ

=
∑

x∈M,w∈W

det(w)K
w(β+ρ)−t−(k+h∨)x(λ+ρ)
γ

=
∑

x∈M,w∈W

det(w)K
β+ρ−wt(k+h∨)x(λ+ρ)
γ

=
∑

w∈Wk

det(w)K
w(λ+ρ)−(β+ρ)
tγ

= Nλ
β,tγ .

�

In the following proposition |P/(k+ h∨)M | is the cardinal of the quotient space
P/(k + h∨)M .
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Proposition 5.6. The measure π defined on P k
+ by

π(λ) =
1

|P/(k + h∨)M |
∏

α∈R+

4 sin2(
π

k + h∨
(λ + ρ|α))

for any λ ∈ P k
+, is a qγ-invariant probability measure.

Proof. Let us consider the measure µ defined on P k
+ by µ(λ) = χ2

λ(0), λ ∈ P k
+,

which is proportional to the measure π. Let us show that µ is qγ-invariant. We
have

∑

λ∈Pk
+

Nβ
γ,λχλ =

∑

λ∈Pk
+

Nλ
tγ,βχλ

= χβχtγ ,

Thus

πqγ(β) = χ2
β(0)

χtγ(0)

χγ(0)
.

As the longest element of W send ρ onto −ρ, χtγ(0) = χγ(0), and µ is qγ-invariant.
For a proof of the fact the π is a probability measure, see for instance theorem 13.8
in [13]. �

Note that the probability measure π is not qγ-reversible in general. It is the case
when Vγ and its dual representation V ∗

γ are isomorphic.
Classical results on convergence of Markov chain toward the invariant probability

measure provides asymptotic approximation of the fusion coefficients. We let for
λ ∈ P ,

s(λ) =
∏

α∈R+

sin(
π

k + h∨
(λ+ ρ|α)).

Note that the Markov kernel qγ is not necessary irreducible and aperiodic. As all
Markov chains that we’ll consider in section 6 are irreducible, we suppose that qγ
is irreducible in the following proposition.

Proposition 5.7. Suppose that qγ is irreducible with period d ≥ 1. Let λ and β be
dominant weights in the alcove P k

+. Let r be an integer in {0, . . . , d− 1} defined by

m = r mod (d) for some integer m such that Nβ
λ,γ,m > 0. Then,

(1) k 6= r mod (d) implies Nβ
λ,γ,k = 0,

(2) Nβ
λ,γ,nd+r ∼

n→+∞
dχnd+r

γ (0)

|P/(k+h∨)M|s(λ)s(β).

Proof. The application x 7→ χx(0) is non negative on P k
+. For x, y ∈ P k

+ and n ∈ N,
we have the following equivalence

qnγ (x, y) > 0 ⇐⇒ Ny
x,γ,n > 0.

Thus the first assertion comes from usual properties of periodic Markov chains.
As π is a qγ-invariant probability measure, classical results on finite state space
periodic Markov chains also implies

lim
n→+∞

χβ(0)

χλ(0)χ
nd+r
γ (0)

Nβ
λ,γ,nd+r = dπ(β),

which is equivalent to the second assertion. �
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Proposition 5.8. Let β, λ, γ ∈ P k
+. Suppose that γ be a minuscule weight or

a quasi-minuscule weight such that µ(θ∨) ∈ {0,−1, 1} for every weight µ of the
representation Vγ . Suppose that qγ is irreducible with period d. Then for every
β ∈ P k

+, the number of paths of Bπλ ∗ (Bπγ)∗nd+r ending on β and remaining in

P k
+ is equivalent to

dχnd+r
γ (0)

|P/(k + h∨)M |s(λ)s(β),

where r is an integer in {0, . . . , d− 1} defined by m = r mod (d) for some integer

m such that Nβ
λ,γ,m > 0.

6. Applications

In this section we explicit which fusion products have to be considered to recover
reflectable random walks studied in [11]. Moreover, we explain how to get without
no additional work the asymptotics obtained by Krattenthaler in [15] for the number
of walks between two points remaining in an alcove. Actually our model for the
type B with standard steps differs slightly from the one considered by Grabiner.
Moreover our models don’t include random walks with diagonal steps in an alcove
of type C studied in [11].

The results presented in this section only use the knowledge of the Perron-
Frobenius eigenfunction given by the corollary 5.3. It would be interested to con-
sider whole the solution of the Dirichlet problem in order to study more precisely
asymptotic behaviors of the conditioned chain.

Let e1, . . . , en be the standard basis of Rn which is endowed with the standard
euclidean structure denote by (., .). The inner product identifies Rn and its dual.
In the following we consider a random walk (X(k))k≥1 on Rn with standard pos-
itive steps : its steps are uniformly distributed on the set {e1, . . . , en}, a random
walk (Y (k))k≥1 on Rn with standard steps : its steps are uniformly distributed on
the set {±e1, . . . ,±en} and a random walk (Z(k))k≥1, whose steps are uniformly
distributed on the set of diagonal steps { 1

2 (±e1 ± · · · ± en)}. The Markov kernels
of (Y (k))k≥1 and (Z(k))k≥1 are respectively denoted by S and D.

6.1. Alcove of type A. When K is the unitary group SU(n), we have R = {ei −
ej, i 6= j}, Σ = {ei−ei+1, i = 1, . . . , n−1}, P+ = {λ ∈ R

n :
∑n

i=1 λi = 0, λi−λi+1 ∈
N}, θ∨ = e1 − en, P

k
+ = {λ ∈ P+ : λ1 − λn ≤ k}, ρ = 1

2

∑n
i=1(n − 2i + 1)ei and

h∨ = n.
Positive standard steps. The random walk (X(k))k≥0 can be decomposed into a
deterministic walk and a random walk on the hyperplane H = {x ∈ Rn :

∑n
i=1 xi =

0} as follows.

X(k) = X(k)− X̄(k)e + X̄(k)e,

where e =
∑n

i=1 ei and X̄(k) = 1
n

∑n
i=1Xi(k). The random walk (X̄(k))k≥0 is a

deterministic random walk and (X(k)−X̄(k)e)k≥0 is a random walk with uniformly
distributed steps on {e1 − 1

ne, . . . , en − 1
ne}, which is the set of weights of the

standard representation of type An. Let us denote by P its Markov kernel. The
standard representation is a minuscule representation. Thus by proposition 5.2, for
γ = e1 − 1

ne, the Markov Kernel qγ defined by (7) is

qγ(x, y) =
χy(0)

χx(0)χγ(0)
nP|Pk

+
(x, y), x, y ∈ H,
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where

χx(0) =
∏

1≤i<j≤n

sin(π
xi−xj+j−i)

k+n )

sin(π j−i)
k+n )

, x ∈ H.(9)

The weights lattice is generated by e1 − 1
ne, . . . , en − 1

ne. The Markov kernel qγ is

irreducible with period equals to n. Let x and y be in P k
+. If y−x =

∑n
i=1 ni(ei− 1

ne)
then Pm

|Pk
+
(x, y) > 0, where m =

∑

i ni. We define the integer r ∈ {0, . . . , n− 1} by

m = r mod (n). Thus proposition 5.7 implies the following asymptotic for large
t ∈ N.

Proposition 6.1. For large t ∈ N, x, y ∈ P k
+, the number of walks with steps in

{e1 − 1
ne, . . . , en − 1

ne}, going from x to y and remaining in P k
+, after tn+ r steps,

is equivalent (up to a multiplicative constant which doesn’t depend on (x, y)) to

n
∏

i=2

sintn+r(π i
n+k )

sintn+r(π i−1
n+k )

∏

1≤i<j≤n

sin(π
xi − xj + j − i

k + n
) sin(π

yi − yj + j − i

k + n
).

Diagonal steps. The random walk (Z(k))k≥0 can be decomposed as the previous
one.

Z(k) = Z(k)− Z̄(k)e+ Z̄(k)e.

For m ∈ {0, . . . , n}, the m-th exterior power of standard representation is a minus-
cule representation with highest weight

∑m
i=1 ei−m

n e and weights ei1+· · ·+eim−m
n e

for 1 ≤ i1 < · · · < im ≤ n. One notices that the random walk (Z(k)− Z̄(k))k≥0 has
uniformly distributed steps on the set of weights of the m-th exterior power of the
standard representations for m = 0, . . . , n. If we denote by R its Markov kernel and

consider the fusion coefficients Nβ
λ,γm

where γm =
∑m

i=1 ei − k
ne, λ, β ∈ P k

+, propo-

sition 5.2 implies that
∑n

m=0N
β
λ,γm

= 2nR|Pk
+
(λ, β). Thus one defines a Markov

chain on P k
+ letting

q(x, y) =
χy(0)

χx(0)
∑n

i=0 χγi
(0)

2nR|P+
k
(x, y), x, y ∈ H,

where χx is given by (9). This chain is irreducible and aperiodic. Thus proposition
5.7 implies the following one.

Proposition 6.2. For large t ∈ N, x, y ∈ P k
+, the number of walks with steps in

{ei1 + · · ·+ eim − m
n e, 1 ≤ i1 < · · · < im ≤ n, m ∈ {0, . . . , n}}, with initial state x,

ending at y after t steps, remaining in P k
+, is equivalent to

[

n
∑

m=0

m
∏

i=1

n
∏

j=m+1

sin(π 1+j−i
k+n )

sin(π j−i
k+n )

]t ∏

1≤i<j≤n

sin(π
xi − xj + j − i)

k + n
) sin(π

yi − yj + j − i)

k + n
)

6.2. Alcove of type C. When K is the symplectic group Sp(n), we have R =

{ 1√
2
(±ei ± ej),±

√
2ei}, Σ = { 1√

2
(e1 − e2), . . . ,

1√
2
(en−1 − en),

√
2en}, P+ = {λ ∈

Rn :
√
2λn ∈ N,

√
2(λi − λi+1) ∈ N}, θ∨ =

√
2e1, P

k
+ = {λ ∈ P+ :

√
2λ1 ≤ k},

ρ =
√
2
2

∑

i(n− i + 1)ei and h
∨ = n+ 1.
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Standard steps. The random walk (Y (k))k≥0 has uniformly distributed steps on
{±e1, . . . ,±en}, which is the set of weights of the standard representation of type
Cn. This standard representation is a minuscule representation. Thus by propo-
sition 5.2, for γ = e1, the Markov Kernel qγ defined by (7) is in this case defined
by

qγ(x, y) =
χy(0)

χx(0)χγ(0)
2nS|Pk

+
(x, y), x, y ∈ R

n,

where χx(0) equals

∏

1≤i<j≤n

sin(π
1√
2
(xi−xj)+

1
2 (j−i))

k+n+1 )

sin(π
1
2 (j−i)

k+n+1 )

sin(π
1√
2
(xi+xj)+

1
2 (2n+2−j−i))

k+n+1 )

sin(π
1
2 (2n+2−j−i))

k+n+1 )

n
∏

i=1

sin(π
√
2xi+n−i+1
k+n+1 )

sin(π n−i+1
k+n+1 )

.

Moreover, the chain is irreducible with period 2. Thus one obtains the following
proposition.

Proposition 6.3. Let x, y ∈ P k
+. We write y − x =

∑n
i=1 niei and define r by

∑

i ni = r mod (2). Then the number of standard walks from x to y remaining in

P k
+ after 2t+ r steps for large t, is equivalent to

[ sin(π
√
2+n

k+n+1 )

sin(π n
k+n+1 )

n
∏

i=2

sin(π i−
√
2+1

2k+2n+2 )

sin(π i−1
2k+2n+2 )

sin(π
√
2+2n+1−i
2k+2n+2 )

sin(π 2n+1−i
2k+2n+2 )

]2t+r

×
∏

1≤i<j≤n

sin(π

1√
2
(xi − xj) +

1
2 (j − i))

k + n+ 1
) sin(π

1√
2
(xi + xj) +

1
2 (2n+ 2− j − i))

k + n+ 1
)

×
n
∏

i=1

sin(π

√
2xi + n− i+ 1

k + n+ 1
)

∏

1≤i<j≤n

sin(π

1√
2
(yi − yj) +

1
2 (j − i))

k + n+ 1
)

×
∏

1≤i<j≤n

sin(π

1√
2
(yi + yj) +

1
2 (2n+ 2− j − i))

k + n+ 1
)

n
∏

i=1

sin(π

√
2yi + n− i+ 1

k + n+ 1
).

Alcove of type D. When K is the orthogonal group SO(2n), we have R = {±ei±
ej}, Σ = {e1 − e2, . . . , en−1 − en, en−1 + en}, P+ = {λ ∈ Rn : λn−1 + λn ∈
N, λi − λi+1 ∈ N, i ∈ {1, . . . , n− 1}}, θ∨ = e1 + e2, P

k
+ = {λ ∈ P+ : λ1 + λ2 ≤ k},

ρ =
∑n

i=1(n− i)ei and h
∨ = 2n− 2.

Standard steps. The set of standard steps {±e1, . . . ,±en} is also the set of weights
of the standard representation of type Dn, which is a minuscule representation with
highest weight e1.

Proposition 6.4. Let x, y ∈ P k
+. We write y − x =

∑n
i=1 kiei and define r as

previously. Then the number of standard walks from x to y remaining in P k
+ after

2t+ r steps for large t, is equivalent to

[

n
∏

i=2

sin(π i
k+2n−2 )

sin(π i−1
k+2n−2 )

sin(π 2n−i
k+2n−2 )

sin(π 2n−i−1
k+2n−2 )

]2t+r

×
∏

1≤i<j≤n

sin(π
xi − xj + j − i

k + 2n− 2
)

∏

1≤i<j≤n

sin(π
xi + xj + 2n− j − i

k + 2n− 2
)

×
∏

1≤i<j≤n

sin(π
yi − yj + j − i

k + 2n− 2
)

∏

1≤i<j≤n

sin(π
yi + yj + 2n− j − i

k + 2n− 2
)
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Diagonal steps. The two half spin representations of typeDn have respective highest
weight 1

2 (e1 + · · ·+ en) and
1
2 (e1 + · · ·+ en−1 − en). They are minuscule and their

weights are respectively { 1
2

∑

i ǫiei : ǫi ∈ {−1, 1}, ∏i ǫi = 1} and { 1
2

∑

i ǫiei :

ǫi ∈ {−1, 1}, ∏i ǫi = −1} . Thus the set of diagonal steps {± 1
2e1 ± · · · ± 1

2en} is
the disjoint union of sets of weights of the two half spin representations. Similar
arguments as previously show the following proposition.

Proposition 6.5. Let x, y ∈ P k
+. The number of walks with diagonal steps from x

to y remaining in P k
+ after t steps for large t, is equivalent to

[

∏

1≤i<j≤n

sin(π 1+2n−i−j
k+2n−2 )

sin(π 2n−i−j
k+2n−2 )

+
∏

1≤i<j≤n−1

sin(π 1+2n−i−j
k+2n−2 )

sin(π 2n−i−j
k+2n−2 )

n−1
∏

i=1

sin(π 1+n−i
k+2n−2 )

sin(π n−i
k+2n−2 )

]2t+r

×
∏

1≤i<j≤n

sin(π
xi − xj + j − i

k + 2n− 2
)

∏

1≤i<j≤n

sin(π
xi + xj + 2n− j − i

k + 2n− 2
)

×
∏

1≤i<j≤n

sin(π
yi − yj + j − i

k + 2n− 2
)

∏

1≤i<j≤n

sin(π
yi + yj + 2n− j − i

k + 2n− 2
),

where r = 1 if the coordinates of y − x are half integers and r = 0 otherwise.

Alcove of type B. When K is the orthogonal group SO(2n + 1), we have R =
{±ei±ej,±ei}, Σ = {e1−e2, . . . , en−1−en, en}, P = {λ ∈ Rn : λn ∈ N, λi−λi+ 1 ∈
N, i ∈ {1, . . . , n−1}}, θ∨ = e1+e2, P

k
+ = {λ ∈ P+ : λ1+λ2 ≤ k}, ρ =

∑

i(n−i+ 1
2 )ei,

and h∨ = 2n− 1.
Standard steps. The set of weights of the standard representations of type Bn is
{±e1, . . . ,±en, 0}. Let us consider the Littelmann module Bπe1 . We have Bπe1

=

{π±ei , π0} where π0 is defined on [0, 1] by π0(t) = −ten1t≤ 1
2
+ (1 − t)en1t≥ 1

2
,

i.e. π0 is the concatenation of π−e2 and πe2 in the sense of Littelmann. This
standard representation is a quasi-minuscule representation satisfying hypothesis
of proposition 5.4. Its highest weight is e1.

Proposition 6.6. Let x, y ∈ P k
+. For large t the number of paths from πx ∗ (Bπe1)t

ending at y and remaining in P k
+ is equivalent to

[ sin(π
1
2+n

k+2n−1 )

sin(π
n− 1

2

k+2n−1 )

n
∏

i=2

sin(π i
k+2n−1 )

sin(π i−1
k+2n−1 )

sin(π 2n+1−i
k+2n−1 )

sin(π 2n−i
k+2n−1 )

]t

×
∏

1≤i<j≤n

sin(π
xi − xj + j − i

k + 2n− 1
) sin(π

xi + xj + 2n+ 1− i− j

k + 2n− 1
)

n
∏

i=1

sin(π
xi + n− 1

2

k + 2n− 1
)

×
∏

1≤i<j≤n

sin(π
yi − yj + j − i

k + 2n− 1
) sin(π

yi + yj + 2n+ 1− i− j

k + 2n− 1
)

n
∏

i=1

sin(π
yi + n− 1

2

k + 2n− 1
).

Diagonal steps. The spin representation is a minuscule representation with highest
weight 1

2 (e1 + · · · + en). Its weights are { 1
2

∑

i ǫiei : ǫi ∈ {−1, 1}}. Thus the
diagonal steps are the weights of the spin representation and we have the following
asymptotic.
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Proposition 6.7. Let x, y ∈ P k
+. The number of walks with diagonal steps from x

to y remaining in P k
+ after t steps for large t, is equivalent to

[

n
∏

i=1

sin(π n+1−i
k+2n−1 )

sin(π
n−i+ 1

2

k+2n−1 )

∏

1≤i<j≤n

sin(π 2n+2−i−j
k+2n−1 )

sin(π 2n−i−j
k+2n−2 )

]2t+r

×
∏

1≤i<j≤n

sin(π
xi − xj + j − i

k + 2n− 1
) sin(π

xi + xj + 2n+ 1− i− j

k + 2n− 1
)

n
∏

i=1

sin(π
xi + n− 1

2

k + 2n− 1
)

×
∏

1≤i<j≤n

sin(π
yi − yj + j − i

k + 2n− 1
) sin(π

yi + yj + 2n+ 1− i− j

k + 2n− 1
)

n
∏

i=1

sin(π
yi + n− 1

2

k + 2n− 1
),

where r = 1 if the coordinates of y − x are half integers and r = 0 otherwise.

7. Convolution on K and fusion coefficients

In this section K is supposed to be simply connected. The Kirillov orbit method
consists in establishing a correspondence between representations of K and coad-
joint orbits on k∗. For λ ∈ t∗, we denote by O(λ) the orbit of the coadjoint action
of the group K on λ. The fifth rule in the ”User’s guide” of [14] is the following: if
what you want is to describe the decomposition of the tensor product of Vλ ⊗ Vµ
then what you have to do is to take the arithmetic sum O(λ) +O(µ) and split into
coadjoint orbits. In this section, we establish that a similar rule stands for fusion
product and convolution on K. if we denote by O(u) the orbit of the adjoint action
of K on u ∈ K, informally the rule is : if you want to describe the fusion product of
Vλ and Vµ then you have to take the product O(exp(ν−1(λ)))O(exp(ν−1(µ))) and
split into adjoint orbits for the adjoint action of K on itself. Actually the fusion
hypergroup can be seen as an approximation of the hypergroup of conjugacy classes
of K.

For α ∈ Σ the fundamental reflection sα∨ is defined on t by sα∨(x) = x −
α(x)α∨, for x ∈ t. We consider the extended affine Weyl group Ŵ generated by
the reflections sα∨ and the translations tα∨ by α∨, for α ∈ Σ. The fundamental
domain for its action on t is

A = {x ∈ t : αi(x) ≥ 0, θ(x) ≤ 1}.
Notice that

ν(A) = {x ∈ t∗ : (x|αi) ≥ 0, x(θ∨) ≤ 1},
where ν has been defined as the linear isomorphism

ν : k → k∗,

h 7→ (h|.).
We can suppose without loss of generality that K is a subgroup of a unitary group.
The adjoint action of K on itself, which is denoted by Ad, is defined by Ad(k)(u) =
kuk∗, k, u ∈ K. We consider the exponential map exp : k → K defined by exp(x) =
e2πx, where e. is the usual matrix exponential. We denote by Λ the kernel of the
restriction exp|t and by Λ∗ the set of integral weights {λ ∈ t∗ : λ(Λ) ∈ Z}, which
is included in P since α∨ ∈ Λ (see [5]). The application exp(x) 7→ e2iπλ(x) is
well defined, for x ∈ t, when λ ∈ Λ∗. The irreducible representations of K are
parametrized by the set Λ∗

+ = Λ∗ ∩ C. Let ρλ be the irreducible representation
with highest weight λ ∈ Λ∗

+. The character of ρλ is defined as the trace of ρλ(k),
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k ∈ K. We have tr(ρλ(exp(x))) = chλ(x), x ∈ t. The Peter-Weyl theorem ensures
that a probability measure µ on K which is invariant for the adjoint action of K,
is caracterized by the Fourier coefficients

∫

K

tr(ρλ(k
−1))µ(dk), for λ ∈ Λ∗

+,

and that a sequence of Ad(K)-invariant probability measures on K weakly con-
verges towards a measure if and only if the Fourier coefficients converge towards
those of this measure. We denote by K/Ad(K) the quotient spaces of conjugacy
classes. Recall that K/Ad(K) is in one to one correspondence with A when K is
simply connected (see [5]).

Proposition 7.1. Let ξ and γ be in ν(A). Let (ξn)n≥1 and (γn)n≥1 be two se-
quences of elements in P+ such that for every k ∈ N∗, ξk ∈ P k

+, γk ∈ P k
+, and such

that 1
k ξk and 1

kγk respectively converge to ξ and γ, as k tends to +∞. Let us define
the sequence (µk)k≥1 of probability measures on ν(A) by

µk =
∑

β∈Pk
+

qγk
(ξk, β) δ β+ρ

k+h∨
,

where qγk
is the Markov kernel of a random walk in P+

k , defined in definition 5.1,
with increment γk. Then (µk)k≥1 weakly converges toward a measure µ on ν(A),
satisfying

chλ(−ν−1(ξ))

dimλ

chλ(−ν−1(γ))

dimλ
=

∫

ν(A)

chλ(−ν−1(β))

dimλ
µ(dβ),

for every dominant weight λ ∈ Λ+.

Proof. Let λ ∈ Λ+. Note that λ(θ
∨) ≤ k for k sufficiently large. The weyl character

formula implies

χλ(ξk)χλ(γk) = χξk(λ)
χλ(0)

χξk (0)
χγk

(λ)
χλ(0)

χγk
(0)

.

Thus

χλ(ξk)

dim(λ)

χλ(γk)

dim(λ)
=

∑

β∈Pk
+

Nβ
ξk,γk

χβ(0)

χξk(0)χγk
(0)

χλ(0)

dim(λ)

χλ(β)

dim(λ)
.

and

chλ(−ν−1( ξk+ρ
k+h∨ ))

dim(λ)

chλ(−ν−1( γk+ρ
k+h∨ ))

dim(λ)
=

χλ(0)

dim(λ)

∫

ν(A)

chλ(−ν−1(β))

dimλ
µk(dβ).

As χλ(0)
dim(λ) tends to 1 as k goes to infinity, proposition follows.

�

For λ ∈ Λ∗
+ the function ψλ : K → C defined by ψλ(u) = tr(ρλ(u))

dim(λ) , u ∈ K,

satisfies

∀u, v ∈ K,

∫

K

ψλ(kuk
−1v) dk = ψλ(u)ψλ(v),(10)

where dk is the normalized Haar measure on K, i.e. the function ψλ is spherical.
Thus proposition 7.1 establishes a correspondence between fusion coefficients and
convolution on K. We have the following corollary.
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Corollary 7.2. Let ξ and γ be in ν(A). If µ is the limit measure of proposition 7.1
associated to ξ and γ, and u is a random variable distributed according to the nor-
malized Haar measure on K, then the random variable exp(ν−1(ξ))u exp(ν−1(γ))u∗

has the same law as u exp(ν−1(β))u∗, where β is distributed according to µ.

Let (γk)k≥1 be a sequence defined as in proposition 7.1. For k ≥ 1, corollary 7.2
implies that a random walk in P k

+, with increment γk, can be seen as an approxi-
mation of an Ad(K)-invariant random walk in K, with steps uniformly distributed
on O(exp(ν−1(γ))). Notice that Dooley and Wildberger have established a cor-
respondence between convolution on a compact group and convolution on its Lie
algebra, and thus between convolution on a compact group and tensor product
of representations. They called this correspondence the wrapping map. It rests
principally on the fact that Gelfand pairs (K ×K,K) and (K ⋉ k,K) have similar
spherical functions. Nevertheless measures on the group K that they obtain from
the wrapping map are signed measures. It is quite noticing that the measures ob-
tained considering fusion product, instead of tensor product, are positive measures
on K.

Illustration. Let us illustrate corollary 7.2 with the example of K = SU(2). In
that case,

k = {M ∈ M2(C) :M +M∗ = 0},

T = {Tx =

(

e2iπx 0
0 e−2iπx

)

: x ∈ [0, 1]}, t = {Hx =

(

ix 0
0 −ix

)

: x ∈ R}.

There is a single positive root α, which is defined by α(Hx) = 2x, x ∈ R. Thus
α∨ = θ∨ = H1. The normalized inner product is defined by (M |N) = tr(MN∗).

A = {Hx/2 : x ∈ [0, 1]},

exp(A) = {
(

eπix 0
0 e−πix

)

: x ∈ [0, 1]}.

Irreducible representations of SU(2) have highest weight λ such that λ(H1) = n ∈
N. In that case, we write n rather than λ in the level k fusion coefficients., which
are given by

Ns
ij =

{

1 if |i− j| ≤ s ≤ min(i+ j, 2k − i− j), and i+ j + s ∈ 2Z
0 otherwise.

For any X in SU(2) it exists a single x ∈ [0, 1] such that X = k exp(Hx/2)k
−1

for some k ∈ SU(2). Let us call it the radial part of X . Corollary 7.2 implies
that if U is distributed according to the Haar measure on SU(2) the radial part of
UTx/2U

−1Ty/2, for x, y ∈ [0, 1], has a density defined on R by

1

2

π sin(πz)

sin(πx) sin(πy)
1[u,v](z), z ∈ R,

where u = min(|x−y|,min(x+y, 2−(x+y))), v = max(|x−y|,min(x+y, 2−(x+y))).
This result should to be compared with the example of SU(2) given in [7].
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8. Unitary Brownian motion and fusion coefficients

A Brownian motion (bt)t≥0 on K is defined as an Ad(K)-invariant continuous
Lévy process on K whose semi-group (µt)t≥0 satisfies for any λ ∈ Λ+,

∫

K

ψλ(g)µt(dg) = e−ct[||λ+ρ||2−||ρ||2], t ≥ 0,

where c ∈ R∗
+. The radial process (at)t≥0 associated to (bt)t≥0 is defined as the

unique continuous process on A such that for any t ≥ 0 it exists k ∈ K such
that bt = k exp(at)k

∗. Notice that continuity is important for the definition to
make sense. Actually, when K is simply connected, the conjugacy classes are in
one-to-one correspondence with the fundamental domain A and for a given process
(xt)t∈R+ , the associated radial process is defined with no ambiguity. In general, we
know that the map from (K/T,A) to Kr, which sends (gT, v) to g. exp(v).g∗, where
Kr is the set of regular elements of K, is a universal covering. Thus if (xt)t≥0 is a
continuous path such that x ∈ Kr for any t > 0 and x0 = 0, the covering homotopy
property and the fact that the exponential map is a local homeomorphism about
the origin, implies that the radial part of a process (xt)t≥0, such that x0 = 0 and
xt ∈ Kr for all t > 0, is well defined if we impose the continuity of the trajectories.
As a Brownian motion on K lives, except at time 0, in Kr, the associated radial
process on A is well defined.

Let γ be a dominant weight. We consider a sequence

(Λ
(n)
[nt], t ∈ R+)n≥1

of random processes such that for any n, (Λ
(n)
k )k≥1 is a Markov process in P

[
√
n]

+

with Markov kernel defined by (6) with level [
√
n] fusion coefficients and discretized

characters : (Λ
(n)
k )k≥1 is the random walk in P

[
√
n]

+ with increment γ defined in def-
inition 5.1. The following convergence is in the sense of convergence in distribution
in D(R+, t) endowed with the topology of uniform convergence on compact sets.

Theorem 8.1. The sequence ( 1√
n
ν−1(Λ

(n)
[nt]), t ∈ R+)n≥1 of random processes con-

verges towards the radial process associated to a Brownian motion on K.

Theorem follows from lemma 8.2 and proposition 8.4.

Lemma 8.2. As n goes to infinity, the sequence

(

exp
[ 1√

n
ν−1(Λ

(n)
[nt])

]

, t ∈ R+

)

n≥1

of K/Ad(K)-valued random processes converges - in the sense of finite dimensional
distributions convergence - towards (exp(at))t≥0, where (at)t≥0 is the radial process
associated to a Brownian motion on K.

Proof. Let σ be a dominant weight in Λ+. It exists an integer n0 such that σ(θ∨) ≤
[
√
n], for all n ≥ n0. For n ≥ n0 and t ≥ 0, one has,

E

[
χ
Λ

(n)

[nt]
(σ)

χ
Λ

(n)

[nt]
(0)

]

=
[χγ(σ)

χγ(0)

][nt]

,
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where the discretized characters are level [
√
n] discretized characters. As for any

λ ∈ P
[
√
n]

+ , the Weyl character formula implies

χλ(σ)

χλ(0)
=

chσ(−ν−1( λ+ρ
[
√
n]+h∨ ))

chσ(0)

chσ(0)

χσ(0)
.

one obtains taking the conjugates,

E

[chσ(ν
−1(

Λ
(n)

[nt]
+ρ

[
√
n]+h∨ ))

chσ(0)

]

=
χσ(0)

chσ(0)

[chσ(ν
−1( γ+ρ

[
√
n]+h∨ ))

chσ(0)

chσ(0)

chσ(ν−1( ρ
[
√
n]+h∨ ))

][nt]

.

The central limit theorem for Ad(K)-invariant random walks on compact Lie groups
(see [20]) implies that the right hand side of the identity converges to

∫

K

ψσ(k)µt(k),

where (µt)t≥0 is the semi-group of a Brownian motion (bt)t≥0 on K. If we denote
by (at)t≥0 the corresponding radial process, one obtains that

lim
n→∞

E(ψσ(exp(ν
−1(

1√
n
Λ
(n)
[nt])))) = E(ψσ(exp(at)).

It implies that in K/Ad(K), exp
[

1√
n
ν−1(Λ

(n)
[nt]

]

converges in distribution towards

exp(at) as n tends to infinity. As the function ψσ satisfies (10), a Lévy process
(kt)t≥0 on K satisfies for s, t ≥ 0

E(ψσ(kt+s)|kr, r ≤ s) = ψσ(ks)E(ψσ(kt)).

Thus the following identity

E

[
χ
Λ

(n)

[n(t+s)]
(σ)

χ
Λ

(n)

[n(t+s)]
(0)

|Λ(n)
[nr], r ≤ s

]

=
χ
Λ

(n)

[ns]

(σ)

χΛ[ns]
(0)

[χγ(σ)

χγ(0)

][n(t+s)]−[ns]

,

proves that for any sequences 0 ≤ t1 < · · · < tm, and σ1, . . . , σm ∈ Λ+

lim
n→∞

E(

m
∏

i=1

ψσi
(exp(ν−1(

1√
n
Λ
(n)
[nti]

))) = E(

m
∏

i=1

ψσi
(exp(ati)),

which implies the lemma. �

When K is simply connected the lemma implies that (ν−1( 1√
n
Λ[nt], t ≥ 0) con-

verges - in the sense of finite dimensional distributions - towards (at)t≥0. We will
show that this convergence holds even when K is not simply connected. For this

we’ll use a tightness result for the sequence of processes ( 1√
n
Λ
(n)
[nt], t ≥ 0).

Let (πi)i∈N∗ be a sequence of i.i.d. random variables such that π1 is uniformly
distributed on the Littelmann module Bπγ . We let π(t) = π1(t) + π2(t) + · · · +
π[t]+1(t− [t]), t ≥ 0. Donsker theorem implies in particular that ( 1√

n
π([nt]), t ≥ 0)

converges in distribution in D(R+, t
∗) endowed with the topology of uniform con-

vergence on compact sets. It has been proved in [3] that it exists a continuous map
Pw0 , where w0 is the longest element of W , defined from D(R+, t

∗) to D(R+, t
∗),

such that the random process (Yk, k ≥ 0) defined by

Yk = Pw0(π)(k), k ≥ 0,
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is a Markov chain living on P+, starting at zero, whose transition kernel sγ is
defined by

sγ(x, y) =
dim(y)

dim(x) dim(γ)
My

xγ , x, y ∈ P+,

where the My
xγ’s are the Litlewood-Richardson defined by (1).

Lemma 8.3. For any T ∈ R∗
+, there exists a constant C such that for any n ∈ N,

and any measurable positive function f : D([0, T ], t∗) → R+,

E(f(Λ
(n)
[nt], t ∈ [0, T ]))) ≤ CE(f(Y[nt], t ∈ [0, T ]))

Proof. Using the inequality (4), one obtains

E(f(Λ
(n)
0 , . . . ,Λ

(n)
[nT ])) ≤ E(f(Y0, . . . , Y[nT ])

|χY[nT ]
(0)|

dim(Y[nT ])

[dim(γ)

χγ(0)

][nT ]
).

As for x ∈ P k
+,

χx(0)

dim(x)
=

∏

α∈R+

sin
(

π (x+ρ|α)
[
√
n]+h∨

)

(x+ρ|α)
[
√
n]+h∨

(ρ|α)
[
√
n]+h∨

sin
(

π (ρ|α)
[
√
n]+h∨

)
,

| χx(0)
dim(x) | is uniformly bounded in x ∈ t∗ and n ∈ N

∗. As
[dim(γ)

χγ(0)

][nT ]
converges when

n goes to infinity, it exists a constant C such that for any x ∈ t∗ and n ∈ N
∗

|χx(0)|
dim x

[dim γ

χγ(0)
][nT ] ≤ C,

which proves the lemma. �

As Pw0 is a continuous map which commutes with the scaling, the sequence of
processes ( 1√

n
Y[nt], t ≥ 0) converges in D(R+, t

∗) endowed with the topology of

uniform convergence on compact sets. Thus it satisfies the tightness property of
the following proposition which is consequently - thanks to the previous lemma -

also proved to be satisfied by the sequence of processes ( 1√
n
Λ
(n)
[nt], t ≥ 0). Thus we

have the following proposition.

Proposition 8.4. For any T, η, ǫ > 0 there exists δ > 0 such that

∀n ∈ N
∗, P( sup

0 ≤ t, t′ ≤ T

|t − t′| ≤ δ

| 1√
n
Λ
(n)
[nt] −

1√
n
Λ
(n)
[nt′]| ≥ η) ≤ ǫ.

Proof of theorem 8.1 Suppose that a subsequence of ( 1√
n
Λ
(n)
[nt], t ≥ 0)n≥0 con-

verges towards a process X . Lemma 8.2 implies that in K/Ad(K), (exp(Xt), t ≥ 0)

has the same finite dimensional distributions as (exp(at), t ≥ 0). As maxk(||Λ(n)
k+1−

Λ
(n)
k ||) is bounded, theorem 10.2 of [8] shows that X has continuous trajectories,

which implies (see discussion above) that (Xt)t≥0 as the same law as (at)t≥0. The

theorem follows, as ( 1√
n
Λ
(n)
[nt], t ≥ 0)n≥0 is tight.



FUSION COEFFICIENTS AND RANDOM WALKS IN ALCOVES 21

References

[1] P. H. Bérard, Spectres et groupes cristallographiques. I. Domaines euclidiens. Invent. Math.,
58(2):179-199, 1980.

[2] Biane, Ph., Minuscule weights and random walks on lattices, Quant. Prob. Rel. Topics 7
51-65, 1992.

[3] Ph. Biane, Ph. Bougerol and N. O’Connell, Littelmann paths and Brownian paths, Duke
Math. J., 130, no. 1, 127-167, 2005.

[4] A. Borodin, V. Gorin, Lectures on integrable probability, arXiv preprint arXiv:1212.3351,
2012
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