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The different types of instabilities of free cylinders (diameter D, length L) have been studied in a viscous
flow (velocity U) between parallel vertical walls of horizontal width W at a distance H : the influence of
the confinement parameters D/H and L/W has been investigated. As D/H increases, there is a transition
from stable flow to oscillations transverse to the walls and then to a fluttering motion with oscillations of the
angle of the axis with respect to the horizontal. The two types of oscillations may be superimposed in the
transition domain. The frequency f of the transverse oscillations is independent of the lateral confinement
L/W in the range: 0.055 ≤ L/W ≤ 0.94 for a given cylinder velocity Vcx and increases only weakly with
Vcx. These results are accounted for by assuming a 2D local flow over the cylinder with a characteristic
velocity independent of L/W for a given Vcx value. The experimental values of f are also independent of the
transverse confinement D/H . The frequency ff of the fluttering motion is significantly lower than f : ff is
also nearly independent of the cylinder diameter and of the flow velocity but decreases significantly as L/W
increases. The fluttering instability is then rather a 3D phenomenon involving the full length of the cylinder
and the clearance between its ends and the side walls.

I. INTRODUCTION

The transport of elongated particles or microorganisms
by a confined flow is relevant to many industrial appli-
cations and natural phenomena. This is for instance the
case in bioengineering or enhanced oil recovery processes
or in the build-up and structuration of biofilms in flow
channels. We are interested in the present work in the in-
stabilities of the motion of single elongated particles (here
cylinders) free to move in viscous flows. The characteris-
tic dimensions of the particles are comparable to those of
the section of the flow channels so that confinement in-
fluence very strongly their transport and the occurrence
of instabilities. This study is therefore relevant for in-
stance, to the transport of fibers or long bio-particles in
micro-fluidic channels or in porous and fractured media.

Previous studies in such flow configurations dealt fre-
quently with the prediction or measurement of the hy-
drodynamic forces on static cylinders submitted to a flow
between parallel plates or in a rectangular channel1–3. In-
vestigations of moving cylinders in such geometries were
often restricted to stable motions4–8; studies of flow insta-
bilities in these geometries dealt mostly with vortex shed-
ding behind fixed cylinders between parallel walls9–11.
Finally, instabilities occurring during the sedimentation
of different types of objects in a viscous fluid were mostly
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analysed when no confinement effects were present12,13.
Periodic fluttering-like motions have also been studied
on plates falling in air, but also without considering the
effect of confinement14–16.

Regarding the present configuration, two previous pa-
pers reported experiments and 2D numerical simulations
of the motion of a tethered17 or free18 horizontal cylin-
der of diameter D inside a parallelepiped Hele-Shaw cell
where a vertical Poiseuille flow of velocity U is estab-
lished. Transverse oscillations of the cylinder in the aper-
ture H of the cell are observed both when the cylinder
is tethered and when it can move freely across as well
as in the plane of the cell. Moreover, in this latter case,
the cylinder displays, in addition, oscillations of its rolling
angle about its axis and of its vertical position at frequen-
cies respectively equal to and twice that of the transverse
oscillations. An important feature is that, in both cases,
these oscillations have been observed at Reynolds num-
bers Re as low as 20: this is well below the threshold value
generally reported by other authors for vortex shedding
in confined geometries19. This suggests that one deals
with a mechanism different from those associated to the
destabilization of the wake of fixed bodies. The instabil-
ity observed here cannot appear if the cylinder is fixed:
it involves likely a feedback effect originating in the vari-
ations of the pressure and viscous forces induced by the
motion of the cylinder.

In these previous studies the flow was either exactly
(simulations)17 or approximately (experiments)18 two di-
mensional in the whole cell: in the experiments, the
length L of the cylinder was indeed nearly equal to
the width W of the cell (experiments) and only cases
in which the cylinder remained horizontal were studied.
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The present work studies instead the influence of the
length L (< W ) on the instabilities; it also deals both
with oscillations modes transverse to the cell aperture
and with fluttering modes in which the cylinder does not
remain horizontal.

After identifying the different flow regimes, one studies
the influence of the ratio L/W on the instability over the
range 0.055 ≤ L/W ≤ 0.94: as L/W becomes smaller,
the influence of the bypass flow between the ends of the
cylinder and the sides of the cell becomes larger. Of
special interest is the variation of the frequency f with
the velocities Vcx and U of the cylinder and the flow and
the relation between Vcx and U . Then, the influence of
the blockage ratio D/H is investigated over the range
of values: 0.39 ≤ D/H ≤ 0.77. One studies finally the
fluttering motion of the cylinder in the plane of the cell
which appears at large values of D/H and/or L/W : the
motion of the cylinder displays then periodic variations
of the angle of the cylinder with respect to horizontal and
oscillatory displacements parallel to its axis.

II. EXPERIMENTAL SETUP AND PROCEDURE
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Figure 1. Schematic view of the experimental setup.

The experimental setup has been described in detail
in ref. 18. The length Lcell, width W and aperture H of
the Hele-Shaw cell (Fig. 1) are respectively equal to 290,
90 and 2.85mm. The flowing fluid is a water-glycerol
solution of concentration in weight C = 10%. The vis-
cosity and density of the solution at T = 25oC are re-
spectively µ = 1.153mPa.s and ρf = 1021 kg/m3. The
flow rate varies between 0 and 400ml/mn corresponding
to mean velocities −25 ≤ U ≤ 0mm/s (U is negative
for an upward flow velocity since the vertical axis U is
oriented downward). The top part of the cell as a Y-
shape so that the local aperture increases from 2.85 to
6mm over a vertical distance of 48mm. All the experi-
ments are performed using plexiglas cylinders of density
ρs = 1.19 × 103 kg/m3. Their lengths range between 5
and 85mm (0.055 ≤ L/W ≤ 0.94) and their diameter
between 1.1 and 2.2mm, (0.39 ≤ D/H ≤ 0.77).

At the beginning of the experiment the cylinders are
placed horizontally at the top end of the cell and one lets
them drift into the constant aperture region by reducing
the flow rate Q; Q is then adjusted in order to bring
the cylinder at the desired initial location and is kept
constant thereafter during the measurements.

The displacement of the cylinder is monitored by a dig-
ital camera viewing the Hele Shaw cell from the front: its
resolution is 1024× 768 pixels and the frame rate 30 fps.
In order to analyze the motion of the cylinder, its length
is divided into 4 parts: the two outside ones are painted
in black while black staggered stripes parallel to the axis
are painted on the central portions. Processing digitally
the images provides first the location of the ends of the
cylinder by detecting the ends of the outer stripes: from
these data one determines then the coordinates (xc, zc)
of the center of mass of the cylinder and its angle θ with
respect to the horizontal. As observed previously18, os-
cillations of the cylinder transverse to the walls of the cell
are accompanied by oscillations at the same frequency f
of the angle of rotation of the cylinder about its axis: the
variations of this angle are estimated by computing the
transverse displacement of the staggered stripes painted
on the cylinder with respect to those of the ends. The
frequency of the oscillations is, here, deduced from the
variation of this angle with time.

III. DIFFERENT CYLINDER MOTION REGIMES
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Figure 2. Different types of cylinder motions observed as a
function of the ratios D/H and L/W for a plexiglas cylinder
and a water-glycerol solution (C = 10%): straight trajectory
(+); transverse oscillation (�); fluttering+transverse oscilla-
tion (⊠); fluttering (×).

The different types of motion the free cylinder have
been identified for different values of the control param-
eters D, L and U . The diameter and the length of the
cylinder were observed to have the largest influence on
the results: we have therefore displayed in Fig. 2 a map
of the different regimes observed as a function of the di-
mensionless parameters D/H and L/W .
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• For D/H . 0.4, the cylinder follow a straight sta-
ble vertical trajectory with no transverse or side
oscillations.

• For higher ratios 0.4 . D/H . 0.6, it displays
transverse oscillations. When the length L becomes
of the order of W (L/W & 0.9), a fluttering mo-
tion is superimposed onto the transverse oscilla-
tions (D/H = 0.53): it corresponds to a periodic
variation of the angle θ with the horizontal with a
frequency significantly lower than that of the trans-
verse oscillations.

• For D/H & 0.6 a fluttering motion without trans-
verse oscillation generally occurs except for L/W =
0.61, D/H = 0.63 in which case the two types of
oscillations are again superimposed.

In short, increasing the ratio D/H and, therefore, the
transverse confinement results in a transition from stable
flow to transverse oscillations and then to a fluttering
motion: moreover, fluttering appears earlier for strong
longitudinal confinements.

IV. INFLUENCE OF THE CONFINEMENT ON THE
TRANSVERSE OSCILLATIONS

A. Influence of the cylinder length
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Figure 3. Influence of the length L of plexiglas cylinders of
constant diameter D = 1.5mm (D/H = 0.53) on the vari-
ation of cylinder velocity Vcx with the velocity U of a flow
of water with 10% glycerol. Symbols: experimental data;
straight lines: linear regressions over these data (excluding
point U = 0). L/W = 0.055 (♦), 0.11 (+), 0.22 (⊗), 0.33
(⊕), 0.44 (⊞), 0.61 (©), 0.67 (2), 0.77 (×), 0.89 (∗) and 0.94
(⊠). Inset: variation as a function of the cylinder length L
of the slope α of the linear regressions (⊲) and of the velocity
|Vr| (⊳).

The influence of the lateral confinement parameter
L/W on the transverse oscillations has first been stud-
ied: experiments have been performed for free cylinders

of diameter D = 1.5mm (D/H = 0.53) and L varying
between 5 and 85mm (0.055 ≤ L/W ≤ 0.94).

A first important characteristic is the variation of the
velocity Vcx of the cylinder as a function of that of the
flow (U) which is here oriented upward and, therefore,
negative. The main graph in Fig. 3 shows that Vcx varies
linearly with U (data points corresponding to U = 0
are however above the linear trend). For the curves of
Fig. 3 corresponding to L/W ≤ 0.77, only transverse
oscillations occur: the axis of the cylinder remains hori-
zontal and no flutter is visible. For L/W = 0.89 (∗) and
L/W = 0.94 (⊠), the cylinder both flutters and oscillates
transversally.

The straight lines on the main graph of Fig. 3 corre-
spond to a linear regression on the data according to the
equation:

Vcx = α(U − Vr); (1)

The variations with L/W of the slope α = dVcx/dU of
the regression lines and of Vr are plotted in the inset: α
depends only weakly on L, even when fluttering occurs
(⊲ symbols) and its values are all in the range 1.4± 0.1.
From Eq:1, Vr (< 0) is the velocity of the upward flow
at which the cylinder remains at a constant average ver-
tical position18; more generally Vr can be considered as
a relative velocity of the fluid and the cylinder: the fact
that it remains constant for a free cylinder as Vcx sug-
gests that the drag force on the cylinder is determined
by Vr and remains constant as Vcx varies for a given free
cylinder in order to balance its weight. In contrast to α,
|Vr| decreases as L increases (⊳ symbols): the limit of Vr

as L → W corresponds to the value Vr2D for a 2D con-
figuration with, here: Vr2D = −9mm.s−1. The slope of
the variation of |Vr| with L/W is almost constant except
at the lowest values for which it increases sharply.

Fig. 4, displays the variation of the frequency f with
the cylinder velocity Vcx for the different lengths L: one
observes then an excellent collapse of the different curves
onto a common weakly increasing trend, with, for Vcx =
0, a frequency f = 3.3 ± 0.1Hz. The data points are
much more dispersed when f is plotted as a function of
U (see inset).

We explain now the above result, namely that, for free
cylinders, the frequency f is independent of L/W when
the velocity Vcx is kept constant. When L → W (like
in Ref. 18), flow is two dimensional with a zero bypass
flow between the ends of the cylinder and the side walls.
The balance, per unit length, between the weight of the
cylinder and the vertical hydrodynamic force is then3:

λp2D µU − λs2D µVcx = −(ρs − ρf )Ag (2)

(A is the cylinder section). Eq. (2) can then be rewritten
in the form similar to Eq. (1):

Vcx =
λp2D

λs2D

U +
(ρs − ρf )Ag

λs2D µ
= α2D(U − Vr2D), (3)

in which Vr2D and α2D are constant with U . Vr2D and
α2D will be equal to the limits of Vr and α when L/W →
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Figure 4. Experimental variation of the transverse oscilla-
tion frequency f as a function of the cylinder velocity Vcx for
plexiglas cylinders of different dimensionless lengths L/W and
constant dimensionless diameter D/H = 0.53. Inset : same
frequency data as in the main graph plotted as a function of
the mean flow velocity U . In both graphs, the symbols are
the same as in Fig. 3.

1 with, for D/H = 0.53, from the inset of Fig. 3: |Vr2D| =
9mm.s−1 and α2D = 1.4

In the general case L < W , the local flow in the part
of the aperture occupied by the cylinder is still assumed
to be two dimensional: more precisely, one assumes that
the velocity component vz is negligible and that vx(x, y)
and vy(x, y) are independent of z along the length L of
the cylinder. The results to be discussed below suggest
that this assumption is valid for L/D & 7.

The balance of forces per unit length on the cylinder
should then be the same as for L = W : Eqs. 2 and 3
remain then valid with the same parameters λs2D and
λp2D (or Vr2D and α2D) provided U is replaced by a
local velocity Uloc constant along the length L. Then:

Vcx =
λp2D

λs2D

Uloc+
(ρs − ρf )Ag

λs2D µ
= α2D(Uloc−Vr2D). (4)

Uloc is related to Vcx and Vr2D by Eq. (4) and is, there-
fore, independent of L/W . Since the velocities Uloc and
Vcx determine completely the local flow on the cylinder
and, therefore, the frequency f , the latter will also be
independent of L/W : this explains the excellent coinci-
dence of the curves of Fig. 4.

In order to understand the relation between Vr and
L/W displayed in the inset of Fig. 3, one estimates first
the difference Uloc − U . The flow in each clearance of
width (L − W )/2 between the ends of the cylinder and
the sides of the cell (Fig. 1) is, like around the cylin-
der, assumed to be viscous and two dimensional: the
corresponding velocity Ua averaged over the aperture H
is then constant with z along its width W − L. Ap-
plying mass conservation, U , Ua and Uloc satisfy U =
(Uloc L+ Ua (W − L))/W . Moreover, the constant value
of α, in particular as L → W allows one to take α = α2D.

Combining these two latter results with Eqs. (1) and (4)
leads then to:

Vr − Vr2D = U − Uloc =
W − L

W
(Ua − Uloc) (5)

Taking for simplicity Vcx = 0, momentum conserva-
tion requires that the force due to the pressure drop ∆p
between the upstream and downstream sides of the cylin-
der balances its effective weight per unit length. Then:
∆pH = (ρs − ρf )Ag so that ∆p is independent of L/W .
Assuming a transverse pressure equilibrium, the pressure
drop across the clearance between the cylinder and the
walls must also be ∆p. Under the above assumptions of
a 2D viscous flow, the velocity Ua is proportional to ∆p
with a coefficient independent of the width W − L. Like
∆p, Ua is then constant with L/W and Eq. (5) predicts
the linear variation of Vr with L/W observed experimen-
tally. Still for Vcx = 0 and D/H = 0.53 one has, from
Eq. (4): Uloc = Vr2D = −9mm.s−1 (see above for the
determination of Vr2D). Taking L = 0 in Eq. (5) leads
then to: Ua = Vr(L/W → 0) = −27mm.s−1.

B. Influence of the diameter on the transverse oscillations
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Figure 5. Experimental variation of the transverse oscilla-
tion frequency as a function of the mean flow velocity U for
plexiglas cylinders of different diameter to aperture ratios:
D/H = 0.46 (▽, H), 0.53 (©, •), 0.56 (△, N), 0.63 (1). Open
symbols: L/W = 0.61; black symbols: L/W = 0.22. Flowing
fluid: water-glycerol solution (C = 10%). Inset: variation of
the slope α and the velocity Vr with the diameter D. Data
points corresponding to D/W = 0.39 (stable regime), 0.7 and
0.77 (pure fluttering regime) have been added for comparison.

The influence of the transverse confinement parameter
D/H on the transverse oscillations has been investigated
by using several cylinders with different diameters and
for two different lateral confinements (L/W = 0.61 and
L/W = 0.22): the values of D/H belonged to the in-
terval 0.39 ≤ D/H ≤ 0.77. Transverse oscillations were
observed in the range 0.46 ≤ D/H ≤ 0.63.
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The inset of Fig. 5 displays the variation of the param-
eters α and Vr with D/H : data points corresponding
to pure fluttering (D/H = 0.7 and 0.77) or to stable
(D/H = 0.39) regimes have also been included in this
graph. The experimental value of α is independent of
D/H with α = 1.34 ± 0.1 for both transverse confine-
ment ratios Lc/W ; moreover, the transition to the stable
or fluttering regimes does not result in any variation of
α.

The velocity Vr decreases smoothly by 30% as D/H
varies from 0.39 to 0.77 for L/W = 0.61 and increases by
15% as D/H varies from 0.39 to 0.63 for L/W = 0.22:
like for α, there is no visible influence of the transition
from a flow regime to another.

The variation of the oscillation frequency with the
cylinder velocity Vcx is plotted in the main graph of Fig. 5
for these same cylinders. All data points correspond to
pure transverse oscillations except for L/W = 0.61 and
D/H = 0.63 (Fig. 2): in this latter case, transverse os-
cillations and fluttering occur simultaneously. The fre-
quency f is also remarkably independent of the ratio
D/H for all values of D/H , except for the smallest diam-
eter D/H = 0.46 and for L/W = 0.61: in this particular
case, the common trend of variation of f with Vcx is only
followed for Vcx > 0. but the values of f are higher for
Vcx ≤ 0. No special feature of the variations is observ-
able when fluttering is superimposed onto transverse os-
cillations. The curves corresponding to the two different
values of L/W (0.22 and 0.61) also coincide which gener-
alizes the results obtained for D/H = 0.53 and displayed
in Fig. 4.

V. FLUTTERING OSCILLATIONS OF THE CYLINDER

The fluttering instability is characterized by oscilla-
tions of the angle θ of the axis of the cylinder with
respect to the horizontal (Fig. 6a) and dashed line in
Fig. 6b. These angular oscillations are accompanied by
synchronous variations of the lateral displacement δzc of
the center of mass (continuous line): the angle |θ| reaches
an extremal value shortly after the end of the cylinder is
closest to one of the sides of the cell.

The fluttering motion also induces fluctuations of the
vertical velocity vx of the cylinder. These variations are
visualized in the figure (dotted line) from the deviation
δxc of the vertical coordinate from the linear trend which
would correspond to a constant velocity: δxc oscillates
at twice the fluttering frequency indicating that negative
and positive deviations of the angle θ have the same influ-
ence on the velocity. In the transverse oscillations regime,
vertical oscillations at a frequency 2f have also been ob-
served although, in this case, the cylinder remained hor-
izontal18.

Fig. 7 displays variations of the fluttering frequency ff
as a function of the velocity Vcx or the lateral confinement
L/W for different pairs of values of the ratios L/W and
D/H . As mentioned above, the fluttering instability is

δ
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Figure 6. a) Successive views of the cylinder taken at time
intervals ∆t = 1/3 s in the fluttering regime. b) Variations
as a function of time in the same experiment of the geomet-
rical parameters characterizing the motion of the cylinder in
the fluttering regime; δzc: distance from the vertical axis of
symmetry of the cell (continuous line), δxc: deviation of the
vertical coordinate from a linear variation with time (dot-
ted line), θ: angle of the axis with respect to the horizontal
(dashed line). L/W = 0.22, D/H = 0.63, U = 6.6mm.s1.

observed for large values of D/H ≥ 0.63 either alone
or superimposed onto transverse oscillations (see Fig. 2).
For D/H = 0.53, fluttering is only observed (together
with transverse oscillations) for the largest ratios L/W ≥
0.89.

A first specific feature of this instability is that the
frequency ff is more than 3 times lower than that of
the transverse oscillations; ff decreases significantly with
L/W , e.g. by a factor 3 as L/W increases from 0.22 to
0.9 (main graph of Fig. 7).

The strong influence of L/W on ff suggests that these
oscillations are driven by the dissymmetry between the
bypass flows at the two ends of the cylinders when it
moves laterally (δzc 6= 0): the forces at the two ends
of the cylinder are then unequal, which creates a torque
that rotates it and a lateral force inducing a sideways
motion.

Finally, for a given cylinder, ff is independent of the
velocity Vcx (and on U , too) as can be seen in the up-
per inset of Fig. 7. In this same graph, ones observes
that the frequencies ff corresponding to the same ratio
L/W = 0.61 and to different values of D/H (0.63, 0.7,
0.77) coincide at all velocities ((©), (⊕ and (⊗) sym-
bols). Similarly, in the main graph, for L/W = 0.22, the
values of ff corresponding to D/H = 0.63 and 0.77 are
nearly equal.

Regarding the mean vertical velocity Vcx, the slope
α of the variation with U is practically independent of
L/W (insert at lower left of Fig. 3): the common value
is the same as that found previously in the stable and
transverse oscillation regimes (insert of Fig. 3) Also, like
in the case of transverse oscillations, the velocity |Vr|
decreases significantly as the ratio L/W increases; the
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Figure 7. Experimental variation of the fluttering frequency
ff for a water-glycerol solution (C = 10%) as a function of
the normalised length L/W for plexiglas cylinders. Inset at
lower left: variation of the slope α (⊲) and the velocity Vr

(⊳) with L/W for different diameters (0.53 ≤ D/H ≤ 0.77).
Inset at upper right: variation of ff with Vcx for cylin-
ders with different values of D/H and L/W (f = 0 means:
no oscillation). Dimensionless length and diameter of the
cylinders: D/H = 0.63, L/W = 0.22 (1); D/H = 0.77,
0.22 ≤ L/W ≤ 0.61 (�); D/H = 0.77, L/W = 0.49 (#);
D/H = 0.53, L/W = 0.89 (∗); D/H = 0.53, L/W = 0.94
(⊠); D/H = 0.63, L/W = 0.61 (©); D/H = 0.7, L/W =
0.61 (⊕);D/H = 0.77, L/W = 0.61 (⊗)

value of Vr is also nearly independent of D/H .
At a first glance, these fluttering instabilities have vi-

sual similarities with those observed for falling sheets (or
leaves)14–16: these latter experiments are however real-
ized in unconfined configurations. These instabilities,
which take place in unconfined configurations, take how-
ever place at larger Reynolds numbers: they involve vor-
tex shedding from the edges of the sheets in contrast with
the present ones.

VI. CONCLUSION

The present experiments demonstrate that the motion
of a buoyant cylinder in a vertical viscous Hele Shaw cell
flow may display oscillatory transverse and/or fluttering
instabilities depending on the value of the two confine-
ment parameters L/W and D/H . For 0.2 ≤ L/W ≤ 0.8,
for instance, one shifts continuously from the stable
regime to the transverse oscillations and then to flut-
tering as D/H increases; at the transition, the two os-
cillatory instabilities may, in addition, be superimposed.
These instabilities are controled by the relative velocity
between the fiber and the fluid. They are observed for
Reynolds numbers (based on the relative velocity) as low
as 20: the mechanisms of the instabilities are thus differ-
ent from those associated to destabilization of the wake
at the rear of a fiber.

In an approximate description, the transverse insta-

bility is considered as a 2D one, corresponding to a lo-
cal relative velocity with the same value Vr2D as for a
cylinder of length L = W (the transverse deviations of
the flow lines are neglected). Vr2D is determined by the
cylinder velocity Vcx and a local flow velocity Uloc. Both
Vr2D and Uloc cannot be determined directly with the
present setup: they can however be assumed to be equal
respectively to the experimental values of Vr and U in
the limiting case L/W → 1. As a result, the frequency f
is independent of L/W for a constant velocity Vcx (but
depends instead on L/W for a constant velocity U); also,
f increases by less than 15% when Vcx varies from 0
to 20mm.s−1 in agreement with the results report in18.
This 2D description is not valid for the shortest cylinders
(L/W = 0.055) of aspect ratio L/D = 1.75.

The above discussion is only valid for free cylinders.
For tethered ones17 for which Vcx = 0, there is no longer
an equilibrium between the hydrodynamic forces on the
cylinder and its weight because of the tension of the sup-
porting threads. In this case, the frequency f depends
both on U and on L/W : f is indeed determined in this
case by the local velocity Uloc. If the fiber and the fluid
have the same density (this situation was considered by
Berthet20), we have Vcx = αU , and a relative velocity
Vr = 0. In this case, fluttering and oscillations in the
gap will not be observed.

Reverting to the free case, the frequency f(Vcx) is also
found experimentally to be independent of the dimen-
sionless diameter D/H : this result is quite surprising
since, a first view, several mechanisms might induce a
variation of f . Due to the lack of dependence of f on
L/W , one can consider this problem for simplicity in the
2D case equivalent to L/W = 1. First, increasing D/H
increases the section and, therefore, the mass of the cylin-
der which should reduce the frequency f . Increasing D
also reduces the clearance H − D and enhances the ve-
locity (and Bernoulli pressure) variations: this should in-
stead increase the value of f . Varying D also influences
the relative velocity Vr2D and, as a result: f . Increasing
D increases first the weight of the cylinder which is the
driving force in Eq. (2); it should also increase the drag
by reducing the clearance between the cylinder and the
front walls. These two effects will respectively tend to
increase and reduce the relative velocity (and therefore
the frequency). 2D numerical simulations should allow
one to determine the relative magnitude of the different
effects and whether they compensate each other.

In contrast, the fluttering instability is strongly related
to the variations of the distances between the ends of
the cylinder and the sides of the cell: understanding it
requires a model at the scale of the full width W of the
Hele Shaw cell.

In spite of these differences, the transverse and flutter-
ing instabilities of free cylinders share several common
properties. Both f and ff depend weakly, or not at all,
on the velocity Vcx for a given cylinder: in both cases,
this results from the fact that, as mentioned above, these
frequencies are determined mainly by a relative velocity
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of the cylinder and the fluid: the latter remains constant
with the flow velocity, again in order to keep the bal-
ance between the hydrodynamic forces and the weight
of the cylinder. Also, f and ff are both independent of
the cylinder diameter: this result involves likely a com-
pensation between different effects and will require 2D
numerical simulations in order to be explained.

Further studies are needed to understand better the
analogies and differences of these two types of instabil-
ities as well as the weak dependence of variables like α
on all the control parameters investigated (D/H , L/W ).
Regarding the fluttering instability, the characteristics of
the fluid are important parameters to be investigated.
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