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Abstract

This paper is devoted to the proof of a global existence result for the water waves
equation with smooth, small, and decaying at infinity Cauchy data. We obtain more-
over an asymptotic description in physical coordinates of the solution, which shows that
modified scattering holds.

The proof is based on a bootstrap argument involving L? and L>™ estimates. The
L? bounds are proved in the companion paper [5] of this article. They rely on a normal
forms paradifferential method allowing one to obtain energy estimates on the Eulerian
formulation of the water waves equation. We give here the proof of the uniform bounds,
interpreting the equation in a semi-classical way, and combining Klainerman vector fields
with the description of the solution in terms of semi-classical lagrangian distributions.
This, together with the L? estimates of [5], allows us to deduce our main global existence
result.

Introduction

1 Main result

Consider an homogeneous and incompressible fluid in a gravity field, occupying a time-
dependent domain with a free surface. We assume that the motion is the same in every
vertical section and consider the two-dimensional motion in one such section. At time t, the



fluid domain, denoted by €Q(t), is therefore a two-dimensional domain. We assume that its
boundary is a free surface described by the equation y = n(t, x), so that

Q) ={(z,y) eRxRyy<n(tz)}.

The velocity field is assumed to satisfy the incompressible Euler equations. Moreover, the fluid
motion is assumed to have been generated from rest by conservative forces and is therefore
irrotational in character. It follows that the velocity field v: Q@ — R? is given by v = V, ;¢
for some velocity potential ¢: 2 — R satisfying

1
(1) Doy =0, Oip+ 5 [Vayo"+ P +gy=0,

where g is the modulus of the acceleration of gravity (¢ > 0) and where P is the pressure
term. Hereafter, the units of length and time are chosen so that g = 1.

The problem is then given by two boundary conditions on the free surface:

@) { on = +/1+ (0,m)? ¢ on 09,

P=0 on 0},

where 9, is the outward normal derivative of €2, so that \/1 + (9;1)? Opp = Oy — (91)0r .
The former condition expresses that the velocity of the free surface coincides with the one of
the fluid particles. The latter condition is a balance of forces across the free surface.

Following Zakharov [68] and Craig and Sulem [27], we work with the trace of ¢ at the free
boundary

P(t,x) == o(t,x,n(t, x)).

To form a system of two evolution equations for 7 and %, one introduces the Dirichlet-
Neumann operator G(7) that relates ¢ to the normal derivative 9,,¢ of the potential by

(G(T/)w)(tv ‘T) =V 1+ (a:cn)2 8n¢‘y=17(t,m)-

(This definition is made precise in the first section of the companion paper [5]. See propo-
sition 1.2 below). Then (7,1) solves (see [27]) the so-called Craig-Sulem—-Zakharov system

om = G(n),

1 2
o +n+ 5(3x1/1) ETENCE D)

(3) 2
(G + (2em)(029))” = 0.

In [4], it is proved that if (n,1) is a classical solution of (3), such that (n,1) belongs to
CY([0,T); H5(R)) for some T' > 0 and s > 3/2, then one can define a velocity potential ¢ and
a pressure P satisfying (1) and (2). Thus it is sufficient to solve the Craig-Sulem—Zakharov
formulation of the water waves equations.

Our main result is stated in full generality in the first section of this paper. A weaker statement
is the following:



Main result. For small enough initial data of size ¢ < 1, sufficiently decaying ot infinity, the

1
Cauchy problem for (3) is globally in time well-posed. Moreover, u = |D,|2 1+ in admits the
following asymptotic expansion as t goes to +o0o: There is a continuous function a: R — C,
depending of € but bounded uniformly in e, such that

) exp (5 ie? a(e/t))

€
u(t,iﬂ):\ﬁg<t Alz/t] * 64 |x/tP

10g(t)> FetE R p(t, @)
where kK is some positive number and p is a function uniformly bounded for t > 1, ¢ €]0, gg].

As an example of small enough initial data sufficiently decaying at infinity, consider

(4) Nli=1 =eno, Pl=1 = exo,

with 79, o in C§°(R). Then there exists a unique solution (7,) in C*°([1, +ool; H*(R)) of
(3). In fact, in Theorem 1.4 we allow v to be merely in some homogeneous Sobolev space.

The strategy of the proof will be explained in the following sections of this introduction. We
discuss at the end of this paragraph some related previous works.

For the equations obtained by neglecting the nonlinear terms, the computation of the asymp-
totic behavior of the solutions was performed by Cauchy [17] who computed the phase of
oscillations. The reader is referred to [31] and [30] for many historical comments on Cauchy’s
memoir.

Many results have been obtained in the study of the Cauchy problem for the water waves
equations, starting from the pioneering work of Nalimov [54] who proved that the Cauchy
problem is well-posed locally in time, in the framework of Sobolev spaces, under an additional
smallness assumption on the data. We also refer the reader to Shinbrot [59], Yoshihara [67]
and Craig [23]. Without smallness assumptions on the data, the well-posedness of the Cauchy
problem was first proved by Wu for the case without surface tension (see [63, 64]) and by
Beyer-Giinther in [11] in the case with surface tension. Several extensions of their results have
been obtained and we refer the reader to Cérdoba, Cérdoba and Gancedo [20], Coutand-
Shkoller [22], Lannes [48, 49, 47], Linblad [50], Masmoudi-Rousset [52] and Shatah-Zeng
[57, 58] for recent results on the Cauchy problem for the gravity water waves equation.

Our proof of global existence is based on the analysis of the Eulerian formulation of the
water waves equations by means of microlocal analysis. In particular, the energy estimates
discussed in [5] are influenced by the papers by Lannes [48] and Iooss-Plotnikov [43] and
follow the paradifferential analysis introduced in [6] and further developed in [2, 1].

It is worth recalling that the only known coercive quantity for (3) is the hamiltonian, which
reads (see [68, 27])

(5) M= % /n2 du + % /w(n)w da.

We refer to the paper by Benjamin and Olver [10] for considerations on the conservation laws
of the water waves equations. One can compare the hamiltonian with the critical threshold



given by the scaling invariance of the equations. Recall (see [10, 18]) that if (1, ) solves (3),
then the functions (1, 1)) defined by

(6) m(t z) =272 (M, N%2),  a(t,z) = A3 (M, A%x) (A >0)

are also solutions of (3). In particular, one notices that the critical space for the scaling
corresponds to 79 in H*/?(R). Since the hamiltonian (5) only controls the L?(R)-norm of 1,
one sees that the hamiltonian is highly supercritical for the water waves equation and hence
one cannot use it directly to prove global well-posedness of the Cauchy problem.

Given € > 0, consider the solutions to the water waves system (3) with initial data satisfying
(4). In her breakthrough result [65], Wu proved that the maximal time of existence 77 is larger
or equal to e/¢ for d = 1. Then Germain-Masmoudi-Shatah [35] and Wu [66] have shown
that the Cauchy problem for three-dimensional waves is globally in time well-posed for € small
enough (with linear scattering in Germain-Masmoudi-Shatah and no assumption about the

1
decay to 0 at spatial infinity of |D,|2 ¢ in Wu). Germain—-Masmoudi-Shatah recently proved
global existence for pure capillary waves in dimension d = 2 in [34].

There is at least one other case where the global existence of solutions is now understood,
namely for the equations with viscosity (see [9], [36] and the references therein). Then global
well-posedness is obtained by using the dissipation of energy. Without viscosity, the analysis
of global well-posedness is based on dispersive estimates. Our approach follows a variant
of the vector fields method introduced by Klainerman in [45, 44] to study the wave and
Klein-Gordon equations (see the book by Hérmander in [38] or the Bourbaki seminar by
Lannes [46] for an introduction to this method). More precisely, as it is discussed later in this
introduction, we shall follow the approach introduced in [32] for the analysis of the Klein-
Gordon equation in space dimension one, to cope with the fact that solutions of the equation
do not scatter. Results for one dimensional Schrédinger equations, that display the same non
scattering behavior, have been proved by Hayashi and Naumkin [37], and global existence for
a simplified model of the water waves equation studied by Ionescu and Pusateri in [41].

Let us discuss two other questions related to our analysis : the possible emergence of singu-
larities in finite time and the existence of solitary waves.

An important question is to determine whether the lifespan could be finite. Castro, Cérdoba,
Fefferman, Gancedo and Gdémez-Serrano conjecture (see [15]) that blow-up in finite time is
possible for some initial data. It is conjectured in [15] that there exists at least one water-wave
solution such that, at time 0, the fluid interface is a graph, at a later time ¢; > 0 the fluid
interface is not a graph, and, at a later time to > t1, the fluid self-intersects. Notice that,
according to this conjecture, one does not expect global well-posedness for arbitrarily large
initial data. Ome can quote several results supporting this conjecture (see [14, 16, 21]). In
[14] (see also [21]), the authors prove the following result: there exists an initial data such the
free surface is a self-intersecting curve, and such that solving backward in time the Cauchy
problem, one obtains for small enough negative times a non self-intersecting curve of R2. On
the other hand, it was conjectured that there is no blow-up in finite time for small enough,
sufficiently decaying initial data (see the survey paper by Craig and Wayne [29]).

Our main result precludes the existence of solitary waves sufficiently small and sufficiently
decaying at infinity. In this direction, notice that Sun [61] has shown that in infinitely deep



water, no two-dimensional solitary water waves exist. For further comments and references
on solitary waves, we refer the reader to [25] as well as to [13, 39, 53] for recent results.

We refer the reader to [2, 3, 19] for the study of other dispersive properties of the water waves
equations (Strichartz estimates and smoothing effect of surface tension).

Finally, let us mention that Ionescu and Pusateri [40] independently obtained a global exis-
tence result very similar to the one we get here. The main difference is that they assume less
decay on the initial data, and get asymptotics not for the solution in physical space, with
control of the remainders in L™, but for its space Fourier transform, with remainders in L?.
These asymptotics, as well as ours, show that solutions do not scatter. To get asymptotics
with remainders estimated in L°°, we shall commute iterated vector field Z = t9; + 2x0,
to the water waves equations. This introduces several new difficulties and requires that the
initial data be sufficiently decaying at infinity.

2 General strategy of proof

Let us describe our general strategy, the difficulties one has to cope with, and the ideas used
to overcome them. The general framework we use is the one of Klainerman vector fields.
Consider as a (much) simplified model an equation of the form

(Dy — P(Dy))u = N(u)

Ul¢=1 = eup,

(7)

where Dy = %%, P(&) is a real valued symbol (for the linearized water waves equation,

P(€) would be |£]'/?), and N(u) is a nonlinearity vanishing at least at order two at zero.
Recall that a Klainerman vector field for D, — P(D,,) is a space-time vector field Z such that
[Z, D, — P(D,)] is zero (or a multiple of D; — P(D,)). For the water waves system, Z will be
t0; + 220, or D,. In that way, (D; — P(D,))Z*u = Z*N(u) for any k, and since P(€) is real
valued, an easy energy inequality shows that

(8) 1Z%u(t, e < 1Z27u(1, )] 2 +/1 1Z*N (u) (7, )l 2 dr,

for any ¢ > 1. Assume first that N(u) is cubic, so that

9)  NZ*N@Wl2 < Clulliwl| Zulz +C Y 1ZMullp | 2% ul| e[| 250l 2

ki+ko+ks<k
k1,k2<k3<k-1

Assuming an a priori L™ bound, one can deduce from (8) an L? estimate. More precisely,
introduce the following property, where s is a large even integer:

For t in some interval [1,T[, |lu(t, )|~ = O(e/Vt)
() y
and for k=0,...,5/2, || Z*u(t, )|z~ = O(gt‘%*’%)7



where 5;6 are small positive numbers. Plugging these a priori bounds in (8), (9), we get

t dr
1Z%u(t, )|z < [1Z%u(L, )]l 2 +C€2/1 1Z5u(r, )| 2 -

(10)
¢ 268!, —1
+052/ 125 e, || o
1

Gronwall inequality implies then that
(B) ”Zku(tv ')”L2 = O(Et6k)7 k <s,
for some small 6, > 0 (J;, > Ce? and &, > 25;/2).

The proof of global existence is done classically using a bootstrap argument allowing one to
to show that if (4) and (B) are assumed to hold on some interval, they actually hold on the
same interval with smaller constants in the estimates.

We have outlined above the way of obtaining (B), assuming (A) for a solution of the model
equation (7). In this subsection of the introduction, we shall explain, in a non technical way,
the new difficulties that have to be solved to prove (B) for the water waves equation. Actually,
the proof of a long time energy inequality for system (3) faces two serious obstacles, that we
describe now.

e Apparent loss of derivatives in energy inequalities

This difficulty already arises for local existence results, and was solved initially by Nalimov [54]
and Wu [63, 64]. For long time existence problems, Wu [66] uses arguments combining
the Eulerian and Lagrangian formulations of the system. The approach followed in our
companion paper [5] is purely Eulerian. We explain the idea on the model obtained from
(3) paralinearizing the equations and keeping only the quadratic terms. If we denote U =

[|Dz|q/2¢], such a model may be written as
o, U =TyU

where T4 is the paradifferential operator with symbol A, and where A(U, z,¢) is a matrix of
symbols A(U,z,§) = Aog(U,x,&) + A1 (U, , ), with

iy 1/2 _
a2y = [0 I ,Al(U,a:,S):(\DxW)\f\[Ol ﬂ.

Because of the A; contribution, which is self-adjoint, the eigenvalues of A(U,x,&) are not
purely imaginary. For large |¢|, there is one eigenvalue with positive real part, which shows
that one cannot expect for the solution of 9,U = TAU energy inequalities without derivative
losses. A way to circumvent this difficulty is well known, and consists in using the “good
unknown” of Alinhac [7]. For our quadratic model, this just means introducing as a new

unknown U = [| Dx\nl/zw]’ where w = ¢ — Tip, |47 is the (quadratic approximation of the)
good unknown. In that way, ignoring again remainders and terms which are at least cubic,



one gets for U an evolution equation o,U = T Aoﬁ . Since Ay is anti-self-adjoint, one gets L?

or Sobolev energy inequalities for U. In particular, if for some s, H\Dxll/ 20llas + |l as s
under control, and if one has also an auxiliary bound for |||D.| | =, one gets an estimate

for ||| Da "2l o172 + [Inllars
e Quadratic terms in the nonlinearity

In the model equation (7) discussed above, we considered a cubic nonlinearity: this played
an essential role to make appear in the first integral in the right hand side of (10) the almost
integrable factor 1/7. For a quadratic nonlinearity, we would have had instead a 1/+/7-factor,

which would have given in (B), through Gronwall, a O(e*V?)-bound, instead of O(et%). The
way to overcome such a difficulty is well known since the work of Shatah [56] devoted to
the non-linear Klein-Gordon equation: it is to use a normal forms method to eliminate the
quadratic part of the nonlinearity, up to terms that do not contribute to the Sobolev energy
inequality.

In practice, one looks for a local diffeomorphism at 0 in H®, for s large enough, so that the
Sobolev energy inequality written for the equation obtained by conjugation by this diffeomor-
phim be of the form (10). Nonlinear changes of unknowns, reducing the water waves system
to a cubic equation, have been known for quite a time (see Craig [24] or Iooss and Plotnikov
[42, Lemma 1]). However, these transformations were losing derivatives, as a consequence of
the quasi-linear character of the problem. Nevertheless, one can construct a bona fide change
of unknown, without derivatives losses, if one notices that it is not necessary to eliminate the
whole quadratic part of the nonlinearity, but only the part of it that would bring non zero
contributions in a Sobolev energy inequality. This is what we do in our companion paper [5].
Let us also mention that the analysis of normal forms for the water waves system is motivated
by physical considerations, such as the derivations of various equations in asymptotic regimes
(see [28, 26, 55, 62]).

Our proof of L?-estimates of type (B), assuming that a priori inequalities of type (A) hold,
is performed in [5] using the ideas that we just outlined. Of course, the models we have
discussed so far do not make justice to the full complexity of the water waves system. In
particular, the good unknown w is given by a more involved formula than the one indicated
above, and one also needs to define precisely the Dirichlet-Neumann operator. The latter is
done in [5]. We recall in section 1 below the main properties of the operator G(n) when n
belongs to a space of the form C7(R) N L?(R) with v > 2, and is small enough. Once G(n)y
has been defined, one can introduce functions of (,1), B = (9y¢)|y=n, V = (029)|y=y, where
¢ is the harmonic potential solving (1). Explicit expressions of these quantities are given by

G () + (02n)(9:9)
2

B =
1+ (9x1)

, V=0, — BOyn.

The good unknown for the water waves equation is given by w = ¢ — Tpn. Following the
analysis in [1, 2, 6], we prove in [5] an expression for G(n)y in terms of w:

G(T/)w = ‘D:c’w - 896(TV77) + F(WWJ;



where F (1)1 is a quadratic smoothing term, that belongs to H5*7~% if 5 is in C7 N H® and

|Dx|1/ 21 belongs to C7~1/2 N H5~1/2, This gives a quite explicit expression for the main
contributions to G(n)y. Moreover, we prove as well tame estimates, that complement similar
results due to Craig, Schanz and Sulem (see [26], [60, Chapter 11] and [8, 43]), and establish
bounds for the approximation of G(n)y (resp. F(n)y) by its Taylor expansion at order two

G<2(n) (resp. F<a(n)1).

3 Klainerman-Sobolev inequalities

As previously mentioned, the proof of global existence relies on a bootstrap argument on
properties (A) and (B). We have indicated in the preceding section how (B) may be deduced
from (A). On the other hand, one has to prove that conversely, (A) and (B) imply that (A)
holds with smaller constants in the inequalities. The first step is to show that if the L2-
estimate (B) holds for k < s, then bounds of the form

(A7) 1 Z%u(t, )| e = O(et™2+0%), k < s — 100

are true, for small positive d,. This is not (A), since the &), may be larger that the &}, of (A),
and since this does not give a uniform bound for ||u(t,-)| ;. But this first information will
allow us to deduce, in the last step of the proof, estimates of the form (A) from (A’) and the
equation.

Let us make a change of variables * — x/t in the water waves system. If u(¢,x) is given
by u(t,x) = (|Dm|1/2¢ +in)(t,z), we define v by u(t,x) = %v(t,x/t). We set h = 1/t and

eventually consider v as a family of functions of x depending on the semi-classical parameter h.
Moreover, for a(z,§) a function satisfying convenient symbol estimates, and (vp,);, a family of
functions on R, we define

Opy,(a)vy = a(x, hD)v, = %/emga(:n, h&)op(§) dE.

Then the water waves system is equivalent to the equation
(11) (D1 — Opy (x€ +1€]'/%))v = VAQu(V) + h [CO(V) - %v} + ARV,

where we used the following notations

e )y (resp. Cy) is a nonlocal quadratic (resp. cublc) form of V' = (v, ) that may be written
as a linear combination of expressions Oph(bo)[H] 1 Opy,(bj)vs], € = 2 (resp. £ = 3), where
be(§) are homogeneous functions of degree dy > 0 with Eo dy = 3/2 (resp. Zo dy =5/2) and
vy =v,v_ = T.

e R(V) is a remainder, made of the contributions vanishing at least at order four at V' = 0.

To simplify the exposition in this introduction, we shall assume that v satisfies ¢(hD)v = v
for some C§°(R—{0})-function ¢, equal to one on a large enough compact subset of of R—{0}.



Such a property is not satisfied by solutions of (11), but one can essentially reduce to such a
situation performing a dyadic decomposition v =) jen w(277hD)v.

The Klainerman vector field associated to the linearization of the water waves equation may
be written, in the new coordinates that we are using, as Z = t0; +x0,. Remembering h = 1/t
and expressing 0y from Z in equation (11), we get

(12) Opy, (22¢ + €]"*)v = —VhQo(V) + h %v —iZv — Co(V)| — KHER(V).

Since we factored out the expected decay in 1/4/¢, our goal is to deduce from assumptions
(A) and (B) estimates of the form || Z*v]|p = O(eh~%) for k < s — 100.

Proposition. Assume that fort in some interval [Ty, T| (i.e. for h in some interval W', ho]),
one has estimates (A) and (B):

(13) HZkaLoo = O(eh‘gl,c), k<s/2, HZkaLz = O(z—:h_‘s’“), k<s.

Denote A = {(x,dw(z));x € R*} where w(zx) = 1/(4|z|). Then, if yp is smooth, supported
close to A and equal to one on a neighborhood of A, and if v{ = 1—~ya, we have for k < s—100

(14) sz Op, (Vi)vll 2 = O(eh%_%),
(15) |(hDy — dw) Z* Opp,(a)v| 12 = O(Ehl—%%
(16) 1250l = O(ch5%).

Idea of proof. One applies k vector fields Z to (12) and uses their commutation properties to
the linearized equation. In that way, taking into account the assumptions, one gets

(17) Opy, (22€ + [€]?) 750 = Op2 (eh2 %)

for some small d; > 0. One remarks that 2z§ + £ ]1/ 2 vanishes exactly on A. Consequently,

this symbol is elliptic on the support of 7§, and this allows one to get (14) by ellipticity.
To prove the second inequality, one uses the fact that,
(18) Opy, (22€ + |€]7) ZF Opy(7a)v = —VE Opy (14) Z5 Qo (V) + O (eh'~%).

We may decompose v = vp + vae where vy = Opp,(ya)v and vae = Opp(7v§)v. We may
write Z8Qo(V) — Z¥Qo(va, D) = B(va, Z*vpc) + -+ where B is the polar form of Q.
By (14), ||Z*vpc|| 2 = O(eh%_%), and by assumption ||vp|p~ = O(g). It follows that

HB(?}A, ZFupe) 2 = O(Eh%_%). The other contributions to Z*Qo(V) — Z*Qqo(vy,vs) may
be estimated in a similar way, up to extra contributions, that we do not write explicitly in this




outline, and that may be absorbed in the left hand side of (16) at the end of the reasoning.
The right hand side of (18) may thus be written

(19) —VhOp,(1A)Z*Qo(Va) + Opa (sh!~%),

where Vj = (vp,0p). One notices then that since vp (resp. U4) is microlocally supported close
to A (resp. —A), Qo(Vy) is microlocally supported close to the union of 2A, OA and —2A, so
far away from the support of the cut-off yo (where (A = {(z, ldw(x)); z € R*}).

Consequently, the first term in (19) vanishes, and we get
Opy, (226 + [£]'/?) 2% Opy, (ya)v = Oz (eh'%%).

Since 2z + [€ |1/ 2 and € — dw(x) have the same zero set, namely A, one deduces (15) from
this estimate using symbolic calculus.

Finally, to obtain (16), we write
125 oAl = [/ ZFun e < Clle™/* ZFun [ L2 Du(e /200 )| 2.

The last factor is h='/2||(hD, — dw)ZkvA||1L/22, which is O(y/eh~%/2) by (15). Moreover, (14)

and Sobolev inequality imply that || ZFvpe|/ = O(Eh_%), since we have assumed that v is
spectrally localized for || ~ 1/h. This gives (16).

4 Optimal L* bounds

As seen in the preceding section, one can deduce from the L?-estimates (B) some L>-estimates
(16), which are not the optimal estimates of the form (A) that we need (because the exponents
d;. are larger than 32, and because 0, is positive, while we need a uniform estimate when no
Z field acts on v). In order to get (A), we deduce from the PDE (11) an ODE satisfied by v.

Proposition. Under the conclusions of the preceding proposition, we may write
(20) v =vp 4+ Vh(var + v_op) + h(vsp +v_p 4+ v_3p) + ATy,

where k > 0, g satisfies bounds of the form ||Z%g||p~ = O(eh™%), and ver is microlocally
supported close to LA and is a semi-classical lagrangian distribution along (A, as well as
ZFwyp for k < s/2, in the following sense

(21) 1 Z5 v || e = O(eh™%),
(22) |Opy (e, €)) ZFva | = O(eh? %), £ € {1,-2,2},
(23) 10Dy (ex(w, €)) Z5vpn || 1o = O(eh2~%), € € {~3,~1,3},

if ey vanishes on LA.

10



Remark. Consider a function w = a(z)exp(iw(z)/h). If o is smooth and bounded as well
as its derivatives, we see that (hD, — dw(z))w = Ope(h) i.e. w satisfies the second of the
above conditions with ¢ = 1, where e1(z,&) = £ — dw(z) is an equation of A. The conclusion
of the proposition thus means that vgy enjoys a weak form of such an oscillatory behavior.

The proposition is proved using equation (12). For instance, the bound (22) for vy =
Opy,(ya)v is proved in the same way as (15), with L?-norms replaced by L* ones, using
(16) to estimate the right hand side. In the same way, one defines viop as the cut-off of v

close to £2A. As in the proof of (14), one shows an OLoo(h%_‘S;c) bound for Z*vae, which
implies that the main contribution to Qo(v,?) is Qo(va,va). Localizing (12) close to £2A,
one gets an elliptic equation that allows to determine viop as a quadratic function of va, .
Iterating the argument, one gets the expansion of the proposition. One does not get in the
Vh-terms of the expansion a contribution associated to 0A because Qq(V') may be factored
out by a Fourier multiplier vanishing on the zero section. Consequently, non oscillating terms
form part of the O(h'**) remainder.

Let us use the result of the preceding proposition to obtain an ODE satisfied by wv:

Proposition. The function v satisfies an ODE of the form

Dy = 1(1 — x(h Pz dw|*v — ivVR(1 = x(h~Px)) [@2(33)212 + (19_2(33)172]

2
(24) (1 — x(hB2)) [@s(2)0° + &1 ()]0 20 + Dy (2)[0]*5 + <I>_3(x)173]
+ O(eht"),

where k > 0,8 > 0 are small, ®y are real valued functions of x defined on R* and x is in
C3(R), equal to one close to zero.

To prove the proposition, one plugs expansion (20) in equation (11). The key point is to
use (22), (23) to express all (pseudo-)differential terms from multiplication operators and
remainders. For instance, if b(§) is some symbol, one may write b(§) = b|sn + e, where ¢y
vanishes on (A = {¢ = ¢dw}. Consequently

Opy, (b)vea = b(ldw)ven + Opy(er)ven,

and by (22), when £ = —2,1,2, one gets ||Opy,(eg)venl|z~ = O(eh*=%). Since Qo(va,va) is
made of expressions of type

S = Opy,(bo) [(Opy (b1)va) (Opp, (b2)va )]
(and similar ones replacing vy by U5), one gets, using that U/2X is lagrangian along 2A,
S = b (2dw)by (dw)ba(dw)vi + Opee (K1 7%).

One applies a similar procedure to the other pseudo-differential terms of equation (11), namely

Opy, (z€ + |£|1/2)v and Cy(V'), where v is expressed using (20) in which the vyy are written
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as explicit quadratic or cubic forms in (va, 7). This permits to write all those terms as
polynomial expressions in (vy, va) with z-depending coefficients, up to a remainder vanishing
like h'T* when h goes to zero. Expressing back vs from v, one gets the ODE (24).

As soon as the preceding proposition has been established, the proof of optimal L*-estimates
for v is straightforward. Applying a Poincaré normal forms method to (24), one is reduced
to an equivalent ODE of the form

2
D = 50—t Paawl 1+ L] 4 o,

This implies that 0| f |2 is integrable in time, whence a uniform bound for f and explicit
asymptotics when t goes to infinity. Expressing v in terms of f, and writing u(t,z) =
%v(t, x/t), one obtains the uniform O(t~'/2) bound for u given in (A) as well as the asymp-

totics of the statement of the main theorem. Estimates for Z¥u are proved in the same
way.
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1 Statement of the main result

We have already written in the introduction the water waves equations under the form of the
Craig-Sulem-Zakharov system (3). We shall give here the precise definition of the Dirichlet-
Neuman operator that is used in that system, and state some of its properties that are used
in the rest of this paper, as well as in the companion paper [5]. Theses properties, that are
essentially well known, are proved in that reference. Once the Dirichlet-Neuman operator has
been properly defined, we give the precise statement of our global existence result. Next, we
explain the strategy of proof, which relies on a bootstrap argument on some a priori L? and
L™ estimates. The L? bounds are proved in the companion paper [5]. The L* ones, that
represent the main novelty of our method, are established in sections 2 to 6 of the present
paper.

1.1 Dirichlet-Neumann operator

Let n: R — R be a smooth enough function and consider the open set

Q:={(z,y) eERxR;y <n(z)}

It ¢: R — R is another function, and if we call ¢: € — R the unique solution of A¢ = 0
in ) satisfying @|,—,) = ¢ and a convenient vanishing condition at y — —oo, one defines
the Dirichlet-Neumann operator G(n) by

G(T/)w =V 1+ (amn)z 8n¢|y=777

where 0, is the outward normal derivative on 0f2, so that

Gy = (9y9)(x,n(x)) = (92n)(02¢)(x,1(x)).
In this subsection, we recall the estimates obtained in [5] for G(n).

One may reduce the problem to the negative half-space through the change of coordinates
(z,y) — (z,2 = y—n(x)), which sends Q on {(z,2) € R?; z < 0}. Then ¢(z,y) solves A¢p = 0
if and only if ¢(x, z) = ¢(z, z + n(z)) is a solution of Py =0 in z < 0, where

(1.1) P=(1+1?)0%+0? - 210,0. —n"0.

(we denote by 1’ the derivative d,n). The boundary condition becomes ¢(z,0) = ¥ (z) and
G(n) is given by
Gy = [(1+12)d.0 —n'dup] |,y
It is convenient and natural to try to solve the boundary value problem
PQO = 07 QOIZZO = w

when ¢ lies in homogeneous Sobolev spaces. Let us introduce them and fix some notation.

We denote by 8. (R) (resp. S](R)) the quotient space S'(R)/C[X] (resp. S'(R)/C). If S (R)
(resp. S1(R)) is the subspace of S(R) made of the functions orthogonal to any polynomial
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(resp. to the constants), S, (R) (resp. Sj(R)) is the dual of Seo(R) (resp. S1(R)). Since the
Fourier transform realizes an isomorphism from S (R) (resp. Si(R)) to

So(R) = {u € S(R); u™(0) = 0 for any k in N}

(resp. S1(R) = {u € S(R); u(0) = 0}), we get by duality that the Fourier transform defines
an isomorphism from S (R) to (Se(R))’, which is the quotient of S'(R) by the subspace of
distributions supported in {0} (resp. from S;(R) to (S1(R))" = S'(R)/Vect (do)).

Let ¢: R — R be a function defining a Littlewood-Paley decomposition and set for j € Z,
A; = $(277D). Then for any u in S (R), the series > jez Aju converges to u in SL(R)
(for the weak-* topology associated to the natural topology on Soo(R)). Let us recall (an
extension of ) the usual definition of homogeneous Sobolev or Holder spaces.

Definition 1.1. Let s, s be real numbers. One denotes by H 5(R) (resp. C55(R)) the space
of elements u in Si (R) such that there is a sequence (c;)jez in (*(Z) (resp. a constant C > 0)
with for any j in 7Z,

18jull 2 < ¢277 0

(resp. o
[Ajull oo < C277777%7)

where j, = max(j,0). We set H (resp. C*' ) when s = 0.

The series Z;;OS Aju always converges in S’(R) under the preceding assumptions, but the

same is not true for 21 Aju. If u is in H¥*(R) with §' < 1/2 (resp. in C*5(R) with

j=—o00

s’ < 0), then Ej_:l_oo Aju converges normally in L, so in §'(R), and u — > Aju gives

the unique dilation and translation invariant realization of H* (resp. C*"5(R)) as a subspace
of S'(R). One the other hand, if s’ € [1/2,3/2[ (resp. s' € [0,1]), the space H¥ (R) (resp.
C(R)) admits no translation commuting realization as a subspace of S’(R), but the map
U — ng Aju defines a dilation and translation commuting realization of these spaces as
subspaces of S{(R). We refer to Bourdaud [12] for these properties.

Recall also that if s is in R (resp. < is in R — N), the usual Sobolev space H(R) (resp.
the space C7(R)) is defined as the space of elements u of S’(R) satisfying, for any j in N,
|Aullr2 < ¢;2775 (vesp. [|Ajullpe < C277%) for some ¢*(N)-sequence (c;j); (resp. some
constant C'), and x(D)u € L? (resp. x(D)u € L*) for some C§°(R)-function y equal to one
on a large enough neighborhood of zero. Moreover, if 7 is in N, we denote by C7(R) the space
of ~ times continuously differentiable functions, which are bounded as well as their derivatives
(endowed with the natural norms).

The main result about the Dirichlet-Neumann operator that we shell use in that paper is the
following proposition, which is proved in the companion paper [5] (see Corollary 1.1.8.):

Proposition 1.2. Let v be a real number, v > 2,v ¢ %N. There is some § > 0 such that,

for any n in L?> N CY(R) satisfying |0 ||cv—1 + Hn’Hgi Hn/H}{/gl < 4§, one may define for i
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in H'Y2(R) the Dirichlet-Neumann operator G(n) as a bounded operator from HY?(R) to
H~'2(R) that satisfies an estimate

(1.2) NGl 12 < C(I7 llev1) || D2 -

In particular, if we define Gy 2(n) = \Dx\_% G(n), we obtain a bounded operator from H'Y?(R)
to L*(R) satisfying

(1.3) 1G22 < C (I ller—) [[|Dal? ] -
Moreover, G(n) satisfies when 1 is in C"%’“’_%(R)

(1.4) 16 Sl < Ol ) IDs 1 ],y

where C(+) is a non decreasing continuous function of its argument.

1-26¢’ 20"

: ‘T]/HH,l HT,/HC*l 18 bounded, then

If we assume moreover that for some 0 < 0" < 6 < 3,

|Dy| 2t G(n) satisfies

1

(1.5) |“Dx‘_2+0 G(T’)wucwf%fe < C(Hn/Hqul) H’Dx’% 1/}”

1.
cr2

1.2 Global existence result

The goal of this paper is to prove global existence of small solutions with decaying Cauchy
data of the Craig-Sulem-Zakharov system. We thus look for a couple of real valued functions
(n,%) defined on R x R satisfying for ¢ > 1 the system

81577 = G(WW),

1.6
o O+ 1+ 500 — g s (GO + Dumd) = 0

with Cauchy data small enough in a convenient space.

The operator G(n) in (1.6) being defined as in the preceding subsection, we set, for 7,
smooth enough and small enough functions

() + Dandu
14 (02m)?

(1.7) By =&

Before stating our global existence result, let us recall a known local existence theorem (see [63,
47, 1]).
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Proposition 1.3. Let v be in ]7/2,+00[\3N, s € N with s > 2y — 1/2. There are 5y > 0,
T > 1 such that for any couple (no, o) in HS(R) X H%’V(R) satisfying

Sl 1
(1.8) Yo = Tnieypeto € H2*(R),  lnollcs + [[[Da]2 vol| .-y < do,

equation (1.6) with Cauchy data n|i=1 = Mo, V|t=1 = Yo has a unique solution (n,1) which is
continuous on [1,T] with values in

(1.9) {{10) € B R) x B3 (R); % — Togppn € H(R) }.

Moreover, if the data are O(g) on the indicated spaces, then T > c/e.

Remarks. e The assumption ¢y € H3 implies that 1 is in 3773 so that Proposition 1.2
shows that G(ng)wo whence B(ng)iy is in C7~! € L. Consequently, by the first half of
(1.8), ]Dx\% W is in H"2 C €772 as our assumption on s implies that s > v+ 1/2. This
gives sense to the second assumption (1.8).

e As already mentioned in the introduction, the difficulty in the analysis of equation (1.6)

1
is that writing energy inequalities on the function (7,|D,|% ¢)) makes appear an apparent
loss of half a derivative. A way to circumvent that difficulty is to bound the energy not

of (n, |Dw|% 1), but of (n, |Dw|% w), where w is the “good unknown” of Alinhac, defined by
w =1 = Tpmyn (see subsection 2 of the introduction). This explains why the regularity
assumption (1.8) on the Cauchy data concerns ¥g — Tg(y,)y,0 and not vy itself. Notice that

this function is in F2+° while o itself, written from g = wo + Tg(y)p, 70 1s only in H %’s_%,
because of the H®-regularity of 7.

e By (1.4) if ¢ is in 2773 and nis in C7, G(n) is in C7~, so B(n)y is also in C7~!
with [[B()Y||qr-1 < C(Hn/Hmﬂ)H\DII% 1/1“0%%. In particular, as a paraproduct with an

L°°-function acts on any Holder space,

y <C(lIn'lev) Illen [[1Dal? %)) ey -

1
[1Dal? Tpyunll ;-1

This shows that for ||n||s, small enough, 1 — ¢ — Tg(,),n is an isomorphism from C33

to itself. In partliculzlir, if we are given a small enough w in H 25 ¢ C%’“’_%, we may find
a unique 9 in C2772 such that w = 9 — Tg)yn. In other words, when interested only in

: 1
C"Y—%-estimates for |D.|? w, we may as well establish them on |D,|2 v instead, as soon as
In]l o stays small enough.

Let us state now our main result.

We fix real numbers s, s1, sg satisfying, for some large enough numbers a and v with v ¢ %N
and a > v, the following conditions

(1.10) s, 50,581 € N, s—a2s12802§+7.
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Theorem 1.4. There is €g > 0 such that for any e €]0,e0], any couple of functions (1, o)
satisfying for any integer p < sy

(€0,)Pmo € HP(R),  (20,)P4ho € H> P72 (R),
(20:)P (Y0 — Trmoyemo) € H 757P(R),

and such that the norm of the above functions in the indicated spaces is smaller than 1,
equation (1.6) with the Cauchy data n|i=1 = eno, Y|i=1 = € has a unique solution (n,v)
which is defined and continuous on [1,+oo[ with values in the set (1.9).

(1.11)

1
Moreover, u = |Dy|2 ¥ + in admits the following asymptotic expansion ast goes to +oo:

There is a continuous function a: R — C, depending of € but bounded uniformly in €, such
that

T ? ie? |a(z/t)|? 1
(1.12) u(t,z) = %g(—) eXp(4\xt/t] + 5—4 ’_‘;//;’2’ log(t)> +et 2 p(t, x)

t

where K is some positive number and p is a function uniformly bounded for t > 1, ¢ €]0, gg].

Remark. If the integers s,si,sy are large enough, we shall see in section 6 that a(x/t)
vanishes when x/t goes to zero at an order that increases with these integers. Because of
that, we see that the singularity of the phase at z/t = 0 is quite irrelevant: for |z/t| small
enough, the first term in the expansion is not larger than the remainder.

1.3 Strategy of the proof

The proof of the main theorem relies on the simultaneous propagation through a bootstrap
of L>® and L?-estimates. We state here these two results. The first one is proved in the
companion paper [5]. The proof of the second one is the bulk of the present paper. We show
below how these two results together imply Theorem 1.4.

The main point will be to prove L? and L™-estimates for the action of the vector field
(1.13) Z =10y + 220,

on the unknown in equation (1.6). We introduce the following notation:

We assume given 7, s, a, s, s1 satisfying (1.10). For (n,%) a local smooth enough solution of
(1.6), we set w =1 — Tg(,;)yn and for any integer k < sy,

k

(1-14) Ms(k)(t) = Z(Han(t, ’)HHsfp + H‘Dx’% pr(t, ')HHS*P)’
p=0

In the same way, for p a positive number (that will be larger than sy), we set for k < sg,

k

(1.15) NB ) =S (1270 M oo + (10217 276 )| o) -
p=0
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By local existence theory, for any given Ty > 1, there is ¢, > 0 such that if ¢ < ¢, equation
(1.6) has a solution for t € [1,7p]. Moreover, assumptions (1.11) remain valid at ¢ = Ty (see
Proposition A.4.2. in the companion paper). Consequently, it is enough to prove Theorem 1.4
with Cauchy data at t = Tj.

The L? estimates that we need are given by the following theorem, that is proved in the
companion paper [5] (see Theorem 1.2.2. of that paper).

Theorem 1.5. There is a constant By > 0 such that Mésl)(To) < %Bgs, and for any constants
Boo > 0, B, > 0 there is gy such that the following holds: Let T > Ty be a number such
that equation (1.6) with Cauchy data satisfying (1.11) has a solution satisfying the regularity
properties of Proposition 1.3 on [Ty, T[XR and such that

i) For any t € [Ty, T], and any € €]0, o],

1 _1
(1.16) 1212 (t, )| gy + 0t ) < Booet ™2,

i1) For any t € [Ty, T, any € €]0, &¢]

(1.17) NGO () < Buoet™ 355

Then, there is an increasing sequence (0g)o<k<s,, depending only on Bl and € with §s, < 1/32
such that for any t in [Ty, T|, any € in ]0,20], any k < sy,

(1.18) M®\(t) < %Bg&‘ték.

Remark. We do not get for the L%-quantities Mék) (t) a uniform estimate when ¢ — +o0.
Actually, the form of the principal term in the expansion (1.12) shows that the action of a
Z-vector field on it generates a log(t)-loss, so that one cannot expect (1.18) to hold true with

0 = 0. For similar reasons, one could not expect that N,ESO)(t) in (1.17) be O(t~%/?) when
t — 4o00. Such an estimate can be true only if no Z-derivative acts on the solution, as in
(1.16).

Let us write down next the L°°-estimates.

Theorem 1.6. Let T > Ty be a number such that the equation (1.6) with Cauchy data satis-
fying (1.11) has a solution on [Ty, T[XR satisfying the reqularity properties of Proposition 1.3.
Assume that, for some constant By > 0, for any t € [Ty, T[, any € in ]0,1], any k < sq,

M) (t) < Boet®,

S

(1.19)
NEO(1) < VE < 1

Then there are constants Beo, BL, > 0 depending only on By and some ¢}, €]0,1], independent
of By, such that, for any t in [Ty, T[, any € in )0, (],

N{o(t) < %Boost_%+€23‘l’°y
(1.20) 1
1 _1
H|l)ilc|2 P(t, ')Hc"f*% + [|In(t, ')HCW < 5300575 2.
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We deduce form the above results the global existence statements in Theorem 1.7.

Proof of Theorem 1.4. We take for Bs the constant given by Theorem 1.5. Then Theorem 1.6
provides constants Bo, > 0, B > 0, and given these Boo, B, Theorem 1.5 brings a small
positive number £g. We denote by T the supremum of those T' > T such that a solution exists
over the interval [Tj, T'[, satisfies over this interval the regularity conditions of Proposition 1.3
and the estimates

M®) (t) < Boet®  for k < si,
(1.21) NGO () < Booet™ 3+ P,
1 _1
1Dal2 ¢t ) oy + lIntior < Booet™ 2.

We have T, > Ty: By the choice of By in the statement of Theorem 1.5, the first estimate
(1.21) holds at t = Ty with By replaced by Bs/2. If By is chosen from start large enough,
we may as well assume that at ¢ = Tp, the second and third inequalities in (1.21) hold with
B, replaced by By /2. Consequently, the local existence results of Appendix A.4 in the
companion paper [5] show that a solution exists on some interval [Ty, Ty + ¢, and will satisfy
(1.21) on that interval if ¢ is small enough.

If T, < 400, and if we take gy small enough so that By,/eg < 1, we see that (1.21) implies
that assumptions (1.16), (1.17), and (1.19) of Theorem 1.5 and 1.6 are satisfied. Consequently,
(1.18) and (1.20) hold on the interval [Ty, Tk[ i.e. (1.21) is true on this interval with By (resp.
By,) replaced by By/2 (resp. Bso/2). This contradicts the maximality of T,. So Ty = 400
and the solution is global. We postpone the proof of (1.12) to the end of Section 6. O

The rest of this paper will be devoted to the proof of Theorem 1.6. Theorem 1.5 is proved in
the companion paper [5].

2 Classes of Lagrangian distributions

We denote by h a semi-classical parameter belonging to ]0,1]. If (z, &) — m(z,€) is an order
function from T*R to C, as defined in Appendix A, and if a is a symbol in the class S(m) of
Definition A.1, we set, for (up), any family of elements of S'(R)

(2.1) Opy (a)u = % / ez, h, hYI(E) de.

It turns out that we shall need extensions of this definition to more general classes of symbols.
On the one hand, we notice that if a is a continuous function such that |a(z, &, h)| < m(z,€)
and if u is in L2(R), (2.1) is still meaningful.

We shall also use a formula of type (2.1) when the symbol a is defined only on a subset of
T*R. Denote by 71 : (z,§) — x and ma: (z,£) — & the two projections. For F' a closed subset
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of T*R, and r > 0, we set
Fo={(2,8) e T"R; d((x,§),F) <r}
where d is the euclidian distance.

Definition 2.1. Let m be an order function on T*R, F a closed non empty subset of T*R such
that mo(F) is compact. We denote by S(m, F) the space of functions (z,&,h) — a(x,&, h),
defined on F,,x]0,1] for some ro > 0, and satisfying for any o, B in N, any (z,§) in Fy,, any
h in ]0,1],

920 a(w, &, h)| < Capm(z,€).

We define next the notion of a family of functions microlocally supported close to a subset F'
as above.

Definition 2.2. i) Let p be in [1,+o0]. We denote by Eg the space of families of LP functions
(vp)n indexed by h €)0,1], defined on R with values in C such that for any N in N, there is
Cy > 0 with |Jvp|| ., < CNRYN for any h in]0,1].

i) Let F' be a closed non empty subset of T*R such that mo(F) is compact. We denote by EY,
the space of families of functions (vp)p of LP(R) satisfying

e There are Ny in N, Cy >0 and for any h in]0,1], |vp|l» < Coh™™0.

e For any r > 1’ > 0, there is an element ¢ of S(1) supported in F,, equal to one on F,/ such
that (Opy,(¢)vn — va)n belongs to Ej. We say that (vp,)y is microlocally suported close to F.

Remarks. e Notice that definition 2.2 is non empty only if there exists at least one function
¢ in S(1) supported in F}, equal to one on Fy.. This holds if F' is not “too wild” when || goes
to infinity, for instance if F' is compact, or if F' = m, L(K) for some compact subset K of R. In
the sequel, we shall always implicitly assume that such a property holds for the closed subsets
in which are microlocally supported the different classes of distributions we shall define.

e It follows from Theorem A.2 of Appendix A that the last condition in Definition 2.2 will
hold for any element ¢ of S(1), supported in F}, equal to one on Fj.

We may define the action of operators associated to symbols belonging to the class S(1, F)
on functions microlocally supported close to F', modulo elements of Eg . Let us notice first
that if a is in S(1) and is supported in a domain {(z,£,h); |£] < C} for some C' > 0, then
(2.1) defines an operator bounded on LP(R) for any p, uniformly in h. It follows then from
the theorem of symbolic calculus A.2 of Appendix A that, if a is in S(1, F), if <;~5 is in S(1)
supported in F,. N (F.)¢, for some 0 < 7' < r < 1, then (Opy,(ag)vy)p is in Ej for any (vp)n
in EY.. We may thus state:

Definition 2.3. Let F' be a closed set as in Definition 2.2, a be an element of S(1,F). For
(vn)n in E%., we define

(2.2) Opy,(a)v, = Opy(ad)vy.
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where the right-hand side is defined by (2.1) and where ¢ is in S(1), supported in F,x]0,1]
for small enough v > 0 and equal to one on F,.x]0,1], for some v’ €]0,r[. The definition
1s independent of the choice of ¢ modulo Eg, so that Opy,(a) is well defined from E%/Eg to
itself.

Let K be a compact subset of T*R, K7 = m1(K) and let w be a real valued function defined
on an open neighborhood U of K;. Denote by x,, the canonical transformation

Xw: T*U — T*U
Set K" = xu(K).
Lemma 2.4. i) Let a be in S(1,K’). There is a symbol b in S(1, K) such that for any (vp)n
in E%., we may write
23 @ Opy(a) (DM, = Opy(ao xale,€)un + hOpy (B
modulo Ej.

it) If (vp)p is in EY., then (e_iw(”ﬁ)/hvh)h is in EY,.

Proof. We shall prove both assertions at the same time. Remark first that since (Qv, — vp)p
is in Eg if 0 is in C§°(U) equal to one on a neighborhood of K1, we may always assume that
vy, is compactly supported in U. By symbolic calculus, and the assumption a € S(1, K'), we
may also assume that a is compactly supported and that the first projection of the support
is contained in U. Consequently, we may replace in (2.3) w by a C§°(R) function, equal to
the given phase in a neighborhood of Kj.

We compute

. . 1 .
(2.4) /" Opy, (a) (e‘“"(m)/ hvh) =3 / e c(x, h, h)oy (€) dé
with

1 .

e(a,8,h) = o [ e aelemlia . ¢ — . 1) dy di

(2.5) i
- = —iyn/h —n—
57 | © a(z,§ —n—0(z,y),h)dydn

w(z) —w(z —y)
Yy

hood of zero in R and equal to one close to zero. We insert under the last oscillatory integral

in (2.5) a factor x(y)k(n). The error introduced in that way is a symbol in h>°S((§)~°°). The

action of the associated operator on vy, gives an element of Eg . We have reduced ourselves to

where 6(z,y) = . Let k be a smooth function supported in a small neighbor-

1

(26) o | € alw, € = n— 0(x,y), h)s(y)a(n) dy di.
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The argument of a belongs to K/ if (x,&) is in K,» with v < r and the support of x has
been taken small enough. Moreover, it is given by (x,& — dw(z) + O(y) + O(n)), so that an
integration by parts shows that (2.6) may be written aoy,, + hb for some symbol b in S(1, K).
This gives ).

To check i) we apply (2.4) with a = ¢’ an element of S(1) supported in KT’,(,) %10, 1], equal to
one on K;,IX]O, 1] for some 0 < ] < r{. We assume that ||Opy(¢)vy, — vp|l ., = O(h™) for

some ¢ in S(1) supported in K,,x]0,1], ¢ =1 on K,, x]0, 1] with r; < ro < r}. Then if (z,&)
is in K, and Supp  has been taken small enough in (2.6), we see that this integral is equal

to
1 .
_— —iyn/h
57 | € k(y)k(n) dy dn,
which is equal to one modulo O(h*). We conclude from (2.4) where we replaced vy by

Opy,(¢)v, modulo O(h*) and from symbolic calculus that
Heiw/h Oph((b/)(e_iw/hvh) - vhHLP — O(h00)7

which is the wanted conclusion. O

Lagrangian distributions We consider A a Lagrangian submanifold of 7*(R \ {0}) that
is, since we are in a one-dimensional setting, a smooth curve of T*(R \ {0}). We shall assume
that

A={(z,dw(x)); w e R*}

for w a smooth function from R* to R. We want to define semi-classical lagrangian distribu-
tions on A i.e. distributions generalizing families of oscillating functions (8(z)e™(®)/),. Since
in our applications w will be homogeneous of degree —1, so will have a singularity at zero, we
shall define in a first step these distributions above a compact subset of R\ {0}. In a second
step, the lagrangian distributions along A will be defined as sums of conveniently rescaled
Lagrangian distributions on a compact set.

We fix o, 8 two small positive numbers and consider two Planck constants h and & satisfying
the inequalities

(2.7) 0< Cy'h'™P <h< Coh? <1

for some constant Cy > 0. Notice that these inequalities imply that O(h*>°) remainders will
be also O(h*°) remainders.

Definition 2.5. Let F' be a closed nonempty subset of T*R such that wo(F) is compact. Let
v, be in R, v € Ry, p € [1,+o0].

i) One denotes by h”BL[F] the space of elements (vy), of EY/EY, indexed by h and depending
on h, such that there is C > 0 and for any h,h in ]0,1] satisfying (2.7)

h IH‘% n\ 27
(28) lonll < CR” (E) (1+ﬁ> |
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We denote
h*By" = U h* By [F,
F
where the union is taken over all closed non empty subsets F of T*R such that mo(F) is
compact.

i1) Let K be a compact subset of T*(R\ {0}) such that K N A # (). Denote by e an equation
of A defined on a neighborhood of K. One denotes by h” LPIN"[K]| (resp. h” LPJ\"[K]) the
subspace of h” By '[K| made of those families of functions (vs); such that there is C > 0 and
for any h,h in ]0,1] satisfying (2.7), one has the inequality

G A
(2.9) 10D, (e)vnll . < CRY (= 14— [hi + h}
h h
respectively, the inequality
h pti B\ ~2Y
. pr(@)vsll;p < ChY | = " (1 + = h.
(2:10) [0p(eenl < (5 )

Notice that by definition A LPJY"7[K] is included in hYLPI{"V[K]. If € is another equation
of A close to K, we may write € = ae for some symbol a € S(1, K) on a neighborhood of
K. By Theorem A.2, Op;(é) = Opy(a) Opy(e) + R Opy(b) for another symbol b in S(1, K).
Consequently (2.8) and (2.9) imply that the same estimate holds with e replaced by €, so that
the space h”LPI\"'[K] depends only on A. The same holds for h”LPJ{"7[K]. In particular,
because of our definition of A, we may take e(z,§) = & — dw(x).

Example 2.6. Let 0 be in C°(R \ {0}) and set vp(x) = O(x)e®@/" Then (vp) is in
LOOJX’O[K] for any compact subset of 7%(R \ {0}) meeting A such that Suppf C m(K).
Actually (vp)p is microlocally supported close to K and Lemma 2.4 shows that Opj(§ —
dw(z))vy, satisfies estimate (2.10) with p = 0o, v = pr = v = 0. Notice that in this example,
one could apply Op;(§ —dw(x)) several times to vy, and gain at each step one factor A in the
L°° estimates. It turns out that the lagrangian distributions we shall have to cope with will
not satisfy such a strong statement, but only estimates of type (2.9) or (2.10).

Proposition 2.7. Let p € [1,+o0], p,v in R, K a compact subset of T*(R \ {0}) with
ANK # 0.

i) Let a be in S(1,K) and (vg)n an element of LPIY7[K]. Then ((Opy(a) — a(z,dw(z))vp),
is in (h'/2 + h)By[K].

Assume we are given a vector field Z = a(h,x)Dy + B(h,x)D, satisfying the following con-
ditions: || Zh||;« = O(h) and if e is a symbol in S(1,K) (resp. that vanishes on A), then
[Z,0py,(e)] = Opy(€é) for some other symbol € in S(1,K) (resp. that vanishes on A). Assume
also that for some integer k, Z¥ vy is in LPIN7[K] for 0 < k' < k. Then Z* Opp(a)vy is in
LPIVYK] and ZF[(Opy(a) — a(z,dw))vy) is in (R/? + h)BYY[K].

ii) Denote by Ao the zero section of T*R. Let (vp)p be in LPINY[K]. Then (e7™/Muy),

is LPIN[Ko] where Ko = xo(K). Conversely, if (vn)n is in LPI\[Kol, (e/Myp)y s in
LA K],
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i1i) Let Ay, Ay be two Lagrangian submanifolds of T*(R\{0}) satisfying the same assumptions
as A, let K1, Ko be compact subsets of T*(R \ {0}) with Ay N K1 # 0, Ao N Ky # (). Set

A+ A ={ (2,6 +8&2); (2,61) € Ay, (,62) € Ao }

and define in the same way Ky + Ko. Let p1,p2 be in [1,00] with pil + p% = %, s 2, Y1, 2
in R with 1 + po = p, y1 +v2 = 7. Let (vh); be in LWIK?W[KA for £=1,2. Then (v} -v?)p
is in LPIY) ) [K1 + Kol

A similar statement holds for the classes LPJ\"" K] and By [K].

Proof. i) We may always modify w outside a neighborhood of 71 (K) so that it is compactly
supported, and this will modify the quantities at hand only by an element of Eg . We may
find a symbol b in S(1, K) so that

a(z,§) —a(z,dw(z)) = b(z,§)(§ — dw(z))
in K, for some small . By the symbolic calculus of appendix A,
Opy(a)vn — a(z, dw)vs = Opy(b) Opy (€ — dw(x))vn + h Opy(c)un
for a new symbol e in S(1, K). The conclusion follows from estimate (2.9).

If we make act a vector field Z as in the statement on the last equality and use the commu-
tation assumptions, we obtain the last statement of 7).

i) We have seen in Lemma 2.4 that (e=*/"up), is in EY., /By Since Opy, (&) (e™™/hyy) =
e~ /" Op, (€ — dw(x))vy, we deduce from (2.9) the statement.
ii1) Denote by w1, ws two smooth functions, that may be assumed to be compactly supported

close to m1 (K1), 71 (K2) respectively, such that Ay = {(z,dw¢(x))} close to Ky, £ = 1,2. Then

w = wy + wy parametrizes A = Ay + As close to K1 + Ko. We define w% = e_iwz/hv%. By i),
(wh)p is in LPINSY [Ky ), where Kpo = xu,(K¢). Writing a product from the convolution

of the Fourier transforms of the factors, we see that (wiw?)y is in Eiw o /Ej. Let us

check that wiw? satisfies estimate (2.9) when e is an equation of Ag i.e. e(z,&) = ¢ so that
Opy,(e) = AD,. We write

11D Cwnwi)ll o < [1ADawp| o [ will oo + Nt o1 [ADzwR ]

and use (2.8), (2.9) for each factor to get that (w}w?)p is in LPIKQ;’ [K10+ Ka2p]. We just have

to apply again 74) to vy = €™/ ﬁ(w}iw%) to get the conclusion. The proof is similar for classes
LPJHK) and BEY[K). O

We have defined, up to now, classes of Lagrangian distributions microlocally supported close
to a compact set of the phase space. We introduce next classes of Lagrangian distributions
that do not obey such a localization property.
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From now on, we consider phase functions w: R\ {0} — R which are smooth, non zero, and
positively homogeneous of degree —1. We set

(2.11) A={(z,dw(z)); z € R\{0}} c T"(R\ {0})
so that A is invariant under the action of R% on T*(R \ {0}) given by A - (z,&) = (Az, A72).
For h €]0,1], C' a positive constant, we introduce the notations
J(h,C) = {j €Z; C1h20-9) < 9i < Ch—%} ,
(2.12) h; = h279/2if j € J(h,C),
jo(h,C) =min(J(h,C)) — 1, j1(h,C) = max(J(h,C)) + 1.
We note that (2.7) is satisfied by h = h; if j € J(h,C) (for a constant C' = C3). For j € Z, v

a distribution on R, we set '
Ojv = 0(2]/2-),

so that in particular, if p € [1, 00 — 279/(2P) _If @ belongs to the class of symbols

11851 2(zv. 1)
S(m) and if aj(z,€&) = a(279/%2,27¢) we notice that for j € J(h,C)
(2.13) O~ Opy(a)O] = Opy,, (a;)-

We fix a function ¢ in C§°(R?) such that Z ©(277¢) = 1. We define
JEZ

-1
wol€) = D (277¢), A} =O0p,(p(277¢)) = w(277hD).

j=—o00

Definition 2.8. Let v € R, p € [1,0¢0], b € R. One denotes by h"Rf, the space of families of
LP-functions (v)n such that there is C > 0 and

| Ay, < Coh?273% for j > jo(h,C)

(2.14) '
0P (002" v, < CHY,

where j1 = max(j,0).

Clearly the definition is independent of the choice of yg.

Definition 2.9. Let A be a lagrangian submanifold of form (2.11), K a compact subset of
T*(R\ {0}) meeting A. Let v,pu be in R, v € Ry, F a closed non empty subset of T*R such
that wo(F') is compact in R. One denotes by h”Lpr"Y [K] (resp. h”LpJNK"Y (K], resp. h* BY[F])
the space of families of functions (vp)pejo,1) such that

e For any j € J(h,C), there is a family (vij)hj, indexed by
1 jo 1 _ 148
hj € 0, min (€57 2305, ¢ 2775 )|
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which is an element of h” LPIN7 (K| (resp. h”LPJ\"7[K], resp. h” By [F]) with the constants
in (2.8), (2.9), (2.10) uniform in j € J(h,C).

e For any h €]0,1], vp =3 ¢ jin.c) G;Uij'

One defines h* By = |Jh* By [F) where the union is taken over the sets F which are closed
with mo(F) compact in R.

Remark 2.10. e The interval of variation imposed to h; in the preceding definition is the
one deduced from (2.7) with h = h;.

e The building blocks (vij)hj in the above definition are defined modulo O(h$°) so modulo

O(h*°) since h; < h?. Since the cardinal of J(h,C) is O(|loghl), we see that the classes
introduced in the above definition are well defined modulo O(h>).

e It follows from the above two definitions that h” 5’2’*’ C h” Rf,. Moreover, by (2.14) and the

fact that the cardinal of Z_ N {j > jo(h,C)} is O(|log h|), we see that if u,v are in RY, with
b > 0, then uv is in h"ORY, := Np=oh IR

Let us prove a statement similar to i) of Proposition 2.7 for elements of the classes of distri-
butions we just defined.

Proposition 2.11. We assume that the function w defining A satisfies either w(x) # 0 for
all z € R* or w = 0. In the first (resp. second) case we denote by K a compact subset of
T*(R\ {0})\ 0 (resp. of T*(R\ {0})) such that KNA #0. Let u € R, v € Ry, p € [1,0],
k € N be given. Consider a function (z,£) — a(x,&) smooth on R* x R* (resp. R* x R)
satisfying for some real numbers €,0',d,d' (resp. £,¢', d >0, d >0) and all o, 8 in N

(2.15)

0207 a(w,€)| < Caplel' ™ (@)" 1¢1" P &)
when (x,&) € R* x R* (resp. (2.15) when 8 < d and

(2.16) 0500a(z,€) =0 for B> d,
when (z,§) € R* xR).

Denote Z = —hDy, + xD, and let (vy)y satisfy for any k' < k, (Z¥vp), € LPINY[K] (resp.
BYU[K]). Then (Z*(Opy,(a)vp))n belongs to LPINA’L:Y[K] (resp. Bgﬁ[K]) where fi = p+2d—0—1',
F=y-5-d.

Moreover, under the assumption (Z¥ vp);, € Lpf/’("y (K], if x is in C§°(R) is equal to one close

to zero, and has small enough support, Z*((1—x)(xzh™?)a(z,dw)vy,) is also in ij:/{m [K] and
(2.17) Z¥ | Opy(a)v, — (1 — X)(:Eh_ﬁ)a(x,dw)vh]
belongs to h'/2B5 K] + hBE I K].
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If we assume that (Z¥ vy,)y, is in LPJY7[K] for k' < k, we obtain instead that (Z* Opy,(a)vy)n
and (Z¥(1 — x)(zh=P)a(x,dw)vy);, belong to ijj;";’[K] and that (2.17) is in hBL~"[K].
When w = 0, if Z¥ vy, is in By [K), we obtain that (ZF Opy,(a)up)s is in BY7[K].

The same results hold if we quantize a by Opy(a@)* instead of Opy(a) i.e. under the same
assumptions as above (Z* Opy,(@)*(vy,)) belongs to LPIN7 K] and

(2.18) Z8 | Opp, @) vy, — (1 — x)(zh™P)a(, dw)vh]

belongs to the same spaces as indicated above after (2.17). In the same way, when w =0, and
when (Z¥vp)y is in By [K], for k' <k, (Z*(Opy(@)*vn))n is in By [K].
Proof. According to Definition 2.9, we represent v, = 3¢ .0 @;”ij where (Uflj)hj is a

bounded sequence of elements of LPI{"7[K], as well as (Zklvhj)hj for ¥ < k. By (2.13) and
(2.15),

(2.19) Opp(a)on = ) ©fwp
jeJ(h,C)

with w{;j = Opy, (aj)vij and
. ) (gt (ol
a;(w,€) = a (279/%2,27¢) = g (1= ) i (45 )y (4 ),

When (z,&) stays in a compact subset of 7*(R \ {0}) \ 0, (2.15) shows that agafbj = 0(1)
uniformly in j. In the same way when (z,£) stays in a compact subset of T*(R \ {0}), (2.15)

for p < d and (2.16) show also that 8?8?6]- = O(1) uniformly in j. Since 2/ = (h/h;)?, it
follows from Theorem A.2 of the appendix that (w%j)hj is a bounded sequence indexed by

j € J(h,C) of elements of LPI 1,\1,@ [K]. Moreover, the vector field Z satisfies for any symbol e
[Z,0py,(€)] = Opy,; (£D2 — 2 D¢)e) -

Since either A = {(z,dw(z))} with w homogeneous of degree —1 or A = {(x,0)}, we see that
(D5 — 2 D¢)e vanishes on A if e does. Consequently, the assumption of the last statement

in i) of Proposition 2.7 is satisfied and we conclude that (walj) n; is a bounded sequence of
elements of LPIK’J[K].
To prove (2.17), we use that again by i) of Proposition 2.7,

wflj = aj(x,dw)vflj + (h1/2 + hj) r{lj

where (rij)hj is a bounded sequence indexed by j € J(h,C) of elements of Bg’g’[K], that

stay in that space if one applies Z*' (k' < k) on them. Let x be as in the statement of the
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proposition, with small enough support. Then, if = is close to 7 (K) and j is in J(h,C),
(1 —x)(277/22h=P) = 1. Consequently, since (Uflj)hj, as well as (Zklvflj)hj is microlocalized

close to K, we may write vflj = vflj (1—x)(277/22h=P) modulo a remainder which is O(h3°) =

O(hoo) in LP, as well as its Z kl-derivatives, 0 < k' < k. Integrating such a remainder in the
Tflj contributions, we may write, using that d w is homogeneous of degree —2,

w), = (1= )@ ehP)a (2792, dw(@ /%)) of, + W2+ hif,

where (rij)hj is as above and fflj = 2—1'/27{” is such that (Zk’fflj)hj is in Bg_l’:’[K] for k' < k.
This gives (2.17) if we plug this expansion in (2.19).
To check that (Z*((1 — x)(zh?)a(z, dw)uy)), is also in LPIN/‘;"Z’[K], we write the function on

which acts ZF as

Z @*[ (27922, dw(279/22))(1 X)(m2_j/2h_5)vfl
jeJ(h,C)

J

and remark that, as above, the assumptions of microlocal localization of (vij)hj allow one to

remove the cut-off (1 — x) up to O(h*°) remainders. Since dw is homogeneous of degree —2,
(2 j/2$ dw(2 /2 )) 10 (23< >+j+<d’+g>>

when z stays in a compact subset of R*, so that the above sum defines an element of LPT /‘;":Y [K].

The statement of the proposition concerning the case when (Z¥vy,);, is in LPJA[K] is proved

similarly, as well as the one about B4 [K].

Finally, the statements concerning Opy,(@)* instead of Opy,(a) are proved in the same way: one
may write (2.19) with wh given by Opy,(@;)* vh By Theorem A.2 in the appendix, we know

that there is a symbol b; in S(1, K) uniformly in j, such that Op,, (@;)* = Opy, (b;). Moreover,
bi(z,8) = aj(x,&) + hjcj(x,§) for some other symbol ¢; in S(1, K) unlformly in j. The
statements concerning Opy, (@)*vy, thus follows from those we just proved for Opy(a)vy. O

Let us study products.

Proposition 2.12. Let p1,p2,p be in [1,+00] with il + p% = %, v1,72 in R, Ay, Ay be
two Lagrangian submanifolds of T*(R \ {0}) of the form (2.11), defined in terms of phase
functions wi,ws homogeneous of degree —1, w1 Z 0, we # 0. Let Ky, Ko be two compact
subsets of T*(R\ {0}) with K,N Ay # 0, £ =1,2. Let (v});, be an element of Byt "[K,] (resp.
Lpffkﬁ’w[Kg], resp. Lpfjkﬁ’w[Kg]) 0=1,2.

There is a compact subset K of T*(R\ {0}) with K N (A1 +Az) # 0 such that (vi -v?), belongs
to BYV[K] (resp. LPIY: L, (K, resp. ijx’;ﬂrAz [K]) with u = p1 + pa, v = v1+72. Moreover,
for any neighborhood Q2 of Ay + Aa, any compact subset L of R\ {0}, there are neighborhoods
Q of Ay, £ =1,2, such that if K, C QN7 (L), £ =1,2, then K C Q.
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Proof. By Definition 2.9, we may write for £ = 1,2,

Z _ 7.][
Ynh = Z QMU}W
Je€I(hC)

where (v77%), " is a bounded sequence of LP¢T¥*7[K,]. We write
hj, /i, Ay

(2.20) vy - vh = Z o7, wy!
jleJ(hvc)
with
17‘ 2
(2.21) w;; =, d>oooe hj;
j2€J(h,C)

7.72)

Because of the microlocal localization properties of (vh h;, We may, up to an O(h*>) re-

7]5)

mainder in LP¢ replace (UfL s

50 DY (HUhfZ) h;, where 6 is in C§°(R) and is equal to one on a

large enough compact subset of R*. This shows that in (2.21), we may limit the summation
to those ja such that |jo — j1| < Cp for some large enough Cp, up to remainders which are
O(h®) in LP. Define

ot — »J

h f= Z @]2 —J1 hJ;

j2€J(h,C)
l71—721<Co

Then (U,IL’J ")n;, is a bounded sequence of Bp2 2Ky (vesp. LP21 o (K], resp. LP2.J fle [K>5])

for some large enough compact subset Ky of T*(R \ {0}), as follows from (2.13) and the
homogeneity properties of Ay. We just need to apply #ii) of Proposition 2.7 to conclude that
(wh_ )hh is a bounded sequence of elements of By [K + K>] (resp. LPIN ) K+ K], resp.

The last statement of the proposition follows from the fact that K = K; + Ko, and that

K> mat be taken in an arbitrary neighborhood of Ay if K5 is contained in an even smaller
neighborhood of that submanifold. O

Proposition 2.13. Let Fy, Fy be closed subsets of T*R such that o (Fy) is compact, £ = 1,2.
Let (v%) be in B [Fy] with pg >0, v > pg. Then v} - v2 is in h=9BE[F] with p = py + po
for any 8 > 0 and some closed subset F' of T*R whose second projection is compact.

Proof. We write (2.20)

1 2 * 1 * 2
vy -V = Z ®j1whj1+ Z 0,w

j1€J(h,C) j2€J(h,C)
with
1 _ 17]1 Z 7]2
whjl Uhjl @]2 .]1 hj2
jo€J(h,C)
Jj2<i



and a symmetric expression for w,zlj . Then w,llj is microlocally supported in some closed
2 1

subset of T*RR, whose £ projection is compact, as
P 27j J— 27j
Ophj1 (%) |:®;2—j1 Uhj;} - @;2—j1 Uhj;

if ¢ is supported for || < C, equal to one on [£| < C/2, for some C' > 0. The L*-norm of

w}ljl is bounded from above by

9J1H1 /2= 147 Z 9J212/29—=ja+7 < C| 1Ogh‘2jw/2—j1+77

jQEJ(h7C)
Jj2<J1

since pg > 0, v > /2. O

3 The semi-classical water waves equation

Let us recall an equivalent form of the water waves equation that is obtained in the companion
paper [5] (see Corollary 4.3.13. in that paper). If (n,v) is a solution of the water waves
equation, if Z denotes the collection of vector fields Z = (Z,0,) and if we assume that

u = \Dx\% 1 + in satisfies for k smaller than some integer sy, for @ > 0 large enough and
d e N,

sup HZku(t, ')HHfHa < 400, sup HZku(t, ')Hcdﬂ < 400

[To,T) To,

on an interval [Ty, T|, we may write, using the notation U = (u,u),
(3.1) Dyu = D |2 u+ Qo) + CoUd) + Ro(),

where Qo (U) denotes the quadratic part of the nonlinearity

Goft) = 1D 1% [(De 1D (b @) + (IDa] (4 )]

(3.2) . 1 . .
+ 11Dl ((w =) D2} (u+ @) = Da((w = D)D; D2 7F (w4 9)),

Co(U) stands for the cubic contribution
Colth) = 5 IDul? [(1D21F () 1Da] (0w~ ) Dl w4 3))
L 2 3 U — U x% U+ u
- f\Dx\ [(1D212 () ( >rf>\ (w+))]
— 5 1Dsl [(w =) Do ((u =) [ D (u - 0)

+ 2610 [(u— 0 1D (ut )] + o
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and where ﬁo(U) is a remainder, vanishing at least at order 4 at ¢/ = 0, which satisfies for
k < sy the following estimates

3
O L PP A ND DI | (et P s o
ki4-+ka<k j=1
k1,k2,k3<k4

with a constant Ci[u] depending only on ||Z(k_1)+u||cd+a and, if @ > 0 is small enough,

4
(3.5) 12510275 Ro@)|| pa < Gl Y. T 125 ul| v
ki+-+ka<k j=1
where Cj[u] depends only on HZ(’“—1)+uH0d+a and on a bound on HuH;%/HuHii for some

0’ €]0,0].

We make the change of variables t = ', x = t'2’ and set h = /=1, u(t,z) = h'/?v(t',2), so
that

Dy = h? [(Dt, — &'hDy)v + %hv].

The vector field Z = t0, + 220, becomes Z = 'Oy +2'0,,. We deduce from (3.1) the following
equation for v, in which we write (¢,z) instead of (¢, 2’), since we shall not go back to the
old coordinates

(36) (D~ Opy (€ + [€15)0 = VAQu(V) + h[ v+ Co(V)] + 1 RY(V)

where V' = (v, 0),

]

Qo(V) = =< Op4(I£[3) | (Opw(€lE]2) (v + ) + (Opa(lg[2) (v + )]

(37) + 20D, (€) (v~ ) Oy (Il (v + )

7

~ £ 0P, () (v = 1) Opy (€lEl ™) (v + 1),

Co (V') stands for the cubic contribution

Co(V) = 5 Omu((€13)[ (s (1€1*) (v +)) Opy (I (0~ 2) O, (1€l ) (v + 7))

— 5 0m, (Ie1%) [ (Opw (1) 0+ ) (0~ ) Oy, (1€1F ) (v +9)]

1

(3.8) — £ 0P (€D [ (v = ) Opy () (v = 7) Opy (€12 ) (v + )

+ 25 Op4 18 [0 — 9 Opy (€ 3) (0 + 9)]
+ 25 Op (16P) [(0 — 9 Opy (€ 2) v + 9)]
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and where the remainder satisfies for p = 2 or oo and a small positive number 6, for any
d € N, k € N such that H (hDy )yt ZFy( )HL2 and H (hDy )t ZFy( are finite, the

estimate

’)HLOO

(3.9) |[(hD.) 2% |hD, |72 RE(V)||,,
2
<Gllhs Y IR 25V | | [hD) 20V,

k1+ko+k3<k j=1
k1,ka<ks

where Cy[v] depends on
s || (hDy)* 2 E Do)

and on a uniform bound for Hle 207 e HUH%Q

Actually (3.6), (3.7), (3.8) follow from (3.1), (3.2), (3.3). The remainder, estimated by (3.4)
and (3.5), being at least quartic, would bring in factor a power h%/2 in (3.6). We retained only
the power h'Y/8 to keep the extra h'/!0 factor in the right hand side of (3.9), and to keep
also a h'/16_factor in front of one of the HijUHCd+a in the right hand side of (3.4), (3.5). In
that way, we obtain in (3.9) an estimate in terms of cubic expressions, modulo the indicated

multiplicative constant. Notice also that the uniform bound assumed for ||v||}3 12 20 R [lv H
will be satisfied, when 6’ > 0 will have been fixed. Actually, we shall obtain a uniform control
of ||v];, and a bound of ||v(t,-)|| ;2 in O(t?) for some § > 0 as small as we want. Taking
this § smaller than ¢’ will provide the wanted uniformity. Finally, notice also that the fact
that order zero pseudo-differential operators are not L>°-bounded is harmless in deriving (3.9)
with p = oo from (3.5), as we may always replace o by some larger value.

Our main task in the following subsections will be to deduce from equation (3.6) the oscillatory
behavior of v when h goes to zero. We shall do that expressing v from Lagrangian distributions
as those defined in the preceding section. This structure will be uncovered writing from (3.26)

an equation for v involving only D; derivatives. Actually, since D; = —ihZ — Opy,(z€), we
may write
(3.10) Opy (2a€ + [€]2)v = —VAQo(V) + h[%v gV — CO(V)] RS RR(V).

From nom on, we consider v(t,-) as a family of functions of z indexed by h =t~ €]0,1]. We
do not write explicitly the parameter h i.e. we write v instead of (vy)p. Let us introduce the
Lagrangian submanifold given by the zero set of the symbol in the left hand side of (3.10)
outside £ =0 i.e. set

A={(z.& e T"R\ {0}); 20¢ + |¢[* =0 £ £0}
(3.11)
:{:Edw xGR*}

where



In Section 6, we shall need the exact expressions of Qo(V'), Co(V') given by (3.7), (3.8). Before
that, we shall use only some less precise informations on the structure of these terms that we
describe now.

From now on, we denote by Z the collection of vector fields Z = (Z,h0,) and, if v is a
distribution on R, we define for any natural integer k the vector valued function

Zhv = (2 (hd2) ")k, +ha<i
Lemma 3.1. Let p be in [1,+00].

i) Denote by By the symmetric bilinear form associated to the quadratic form Qq. Let k be
in N*, and for every couple (ki1,k2) € N x N with ki + ko = k, take pg,, pg, in [1,+00] such

that ﬁ + 1% = %. Then for any distributions Vi = (v1,01), Va = (ve,v2), any jo, j1,jo in Z,
1 °2

HA?OZ]CBO (A;'lel’ A?zvé) HLP < C2j0+% minn 7j2)1max(j17j2)2j0—0

312 S S I AN
k1+ko<k

for some positive constant C. In the same way

10Dy (o (h7277€)) 28 Bo (A7, V3, AJ V)|,

(3.13) < Op20-0) 93 min(j1,j2)

x> B AL VAl |20 A% V|
ki1+ko=k

LPka

i1) Let Ty be the trilinear symmetric form associated to Cy. Then for any k € N, for some
constant C,
h zk h h h
| A%, 2T (A5, Vi, Aj, Va, Aj Va)

1 2 HLP

< (Cd0/2+2 maX(ijz,ja)1max(j17j2’j3)2j0_c

(3.14)
<> IER AL VA e (|25 AL V| e, | 2R AL VA |
k1+ko+k3<k

LPk3

here - 4+ 1 4 1 _ 1
where pk1+pk2+pk3 P

In particular, for any d in Ry, any p in [1,+00], any a > 2

| A" ZRTy (v, Vo, VB) || L

2
(319 D S ) (TRl I ER Xt

k1+ko+k3<k (=1
k1,k2<ks
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If, in the left hand side, one replaces A? by Opy, (cpo (h_2(1_")§)), the same estimates hold
with the factor 23/2=3+4 in the right hand side replaced by h'=7.

iii) The remainder RQ(V) satisfies for any d € Ry, any j in Z, with 27 > ch?1=9) estimates

1a5 28R (V)]|

2
(310 <oyt 30 24DV | |25 (D) V]
k1+ko+k3<k =1
k1,k2<ks
and
3
(3.17) |ARZERE(V)|| o < C27/27041 Z HHZke<th>a+dVHL°°

k1+kot+ks<k (=1

where C depends only on h1/16H(th>°‘+dZ(k_1)+VHLOO for some large enough o > 0.

If, in the left hand side of (3.16), (3.17), A;? is replaced by by Opy, (gpo (h_z(l_a)ﬁ)), similar

estimates hold with 29/2=3+4 replaced by h*=°.

Proof. i) Consider the contribution to By(Vy, Va) of the first term in the right hand side of
(3.7). Its Fourier transform may be written as the symmetrization of a multiple of

2 |€h)|2 B ) o
h/(h|£—n|)%(h|n|%)((§ mn + 1€ —nl[n]) f1(§ —n) fa(n) dn.

where fi = v1 + v1, fo = vy + 3. On the support of the integrand, (§ — n)n > 0 so that
|€] = [€ —n|+|n|. Consequently, the contribution of this term to A?OBO (A?lvl, A;»LQ Va) will be
non zero only when jy > max(ji,jo) — C for some C' > 0. In the same way, the contribution
to By(V1, Va) of the sum of the last two terms in (3.7) may be written, after Fourier transform

an up to symmetries, as a multiple of
s [1E]Inl —&n+ n
nt [ ”Tfnmf—nm(n) an.
77 2

On the support of the integrand £n < 0, whence | —n| > max(|£], ||) so that the contribution
to
h h h
AG Bo (A}, V1, A V2)

1

will be non zero only if jy < j; + C for some C' > 0. Using these inequalities and taking into
account the distribution of the derivatives on the different factors, we conclude

(3.18) AL Bo(A] Vi, AL V)| o < GO RO AL VAL, A Vo

if pil—l—pi2 = % Moreover, by spectral localization, we have always max(ji1, j2) > jo—C for some

C > 0. If one makes act Z* on By(Vi,V3), the above properties of spectral localization are
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not affected since, if a(§) is smooth outside zero, [Z, Opy,(a)] = —2 Opy,(£d’(€)). Distributing
the Z-derivatives on the different factors, one gets (3.12). The proof of (3.13) is similar.

i1) We notice first that in all contributions in (3.8), Op;(|¢ |%) is always in factor. This allows
to make appear the 270/2-factor in (3.14). Since the sum of the powers of |¢| appearing in each
term of (3.8) is equal to 5/2, we get as well the factor 2202x(1.72.33) in (3.14). The cut-of for
max(J1, jo, j3) > jo — C follows from the spectral localization of each factor. Finally, making

act Z¥ on Ty and commuting each vector field with Oph(\ﬂ%), Op;, (€ \5]_%), ... we obtain
(3.14).

To deduce (3.15) from (3.14), we decompose in the left hand side of (3.15),

Vi = Opy(@o(€))Ve+ > AL VL.
Je20
Because of the spectral localization, we get for j;, > 0,
ke AR —je(a+d K, a+d
128 A5 Vel < C27HD Sy | 25 (hD) Vi

ky<kp

12" Opy (o) Vel o < © D [|254(hD2) Vs
ky<k,

lo-

We plug these estimates in (3.14) with pg, = pg, = 00, pr; = p and in the similar inequality
where some A?ZVg is replaced by Opy,(¢0)Ve. We obtain a bound given by the product of the
sum in the right hand side of (3.15) multiplied by

C93/? Z 92 max(ji,j2,j3) = (j1+j2+7j3)(a+d)

max(j1,j2,j3)>j—C
Je=>0

Since a > 2, this is bounded by C27/277+4 a5 wanted. The analogous statement, when A;L is

replaced by Opy, (cpo (h_2(1_")§)) in the left hand side of (3.15) is obtained in the same way.

i71) Inequalities (3.16), (3.17) follows from (3.9) with p = 2 or p = oo, using that the loss
2730 < ¢h=20(1=9) i5 absorbed by the extra h!/!6 factor in the right hand side of (3.9), if 6
has been taken small enough. O

Let us introduce the following decomposition of a solution v of (3.6). Fix o, some small
positive numbers, ¢ in C§°(R) the function equal to one close to zero introduced before
Definition 2.7. We decompose the solution v of (3.6) as

v =v +w+ vy,
(3.19) vr, = Opy, (0o (A7),
vy = Oph((l — gpo)(h_ﬁg))fu.

We notice that if C'is a large enough constant, w = v—v; —vg may be written ZjeJ(h,O) A;-‘w.
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Proposition 3.2. Assume that for some k € N, some a > b+ % + % + «a, some positive

constants O, 0y, Ax, A}, a solution v of (3.6) satisfies for any h in an interval |W', 1], with
h' €]0,1] given, the a priori L?-bounds

0Py (0 (h72077€)) 28| o < 2ARR ™,

(3.20) . ‘
HA?Z%HH < e A h 0%k I+0 for 27 > c~1p201-09)

and the a priori L -bounds

0Py (00 (h_z(l_g)f))ZkaLm < e Al h 0%k,

(3.21)
127 2"

V|| oo < €A}RTR27IHE for 27 > 0 1R2070),

Then, if 0, are small enough, one gets that

(3.22) h_%y = h_%(UL +wy)  belongs to an e-neighborhood of 0 in R,
with the notation introduced in Definition 2.8. Moreover, w = v — v satisfies

(3.23) (D¢ — Opy, (€ + \gy%))w = VhQo(W) + h —%w + Co(W)| + hiRy(V)

where Z¥Ry(V) belongs to RE, and is an e-neighborhood of zero in that space.

oo

Notice, for further reference, that as we did for (3.10), we deduce from (3.23)
(3.24) Opy, (22€ + |£I%)w = —VhQo(W) + h %w — iZw — Cy(W)| — hiRo(V).

The proposition will be proved using the following lemma.

Lemma 3.3. i) Assume that estimates (3.20), (3.21) hold. Then if a > b+ 3 + %, a >
b+a+1+%, b>a>2,

10D (00 (h~20=7)) 25 Qo (V)| oo < ere?h1,

(3.25) -
HA? Oph((l - @0)(h2ﬁ£))sz0(V)HLw < B2 for any .
and
O h_z(l_U) ZkC 174 < 3h%7
o 0P TI0)Z ) < e

| A" Opy, ((1 = o) (R*P€)) 2 Co (V)| oo < k127 for any j,

if 0k, 0}, in (3.21) are small enough and ¢, is a convenient constant.
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it) Assume (3.20) and the same inequalities on a,b as above. Then if 0y, ) are small enough

|0y (00 (h20=2)) Z50]|, o, < cpehTe 7,
(3.27) HA;‘ Op, ((1— 900)(h255))3kv|‘mo < cpeht2ith for any .

H2j£A§L Opy, (cpo (h_2(1_”)§))ZkUHLOO < cksh%_ﬂ'%(l_g), £>0.
Moreover, if we assume (3.20) and (3.21),

(3:28) [|Ops (o (h72477€)) 24 [Qo(V) — Qo(W)] || 1

+ sup 2 ARZE[Qo(V) = Qo(W)] | o < cah
j=jo(h,C)

and

(3.29) [ Opy (20 (h~217¢)) 2 [Co(V) = Co(W)]|]

+ sup 29+b||Ath [Co(V) = Co(W)] HLoo < cks?’hi.
3Zjo(h,C)

Proof. i) To obtain the first formula in (3.25) we use (3.13) with pg, = pr, = p = 00. Using
assumption (3.21) we get a bound of the left hand side by

C€2A;€2h_26;€+2(1_0) Z 93 min(j1,j2) —j1+b—ja+b
J1,J2€Z
which gives the conclusion since o €]0,1/2[ and we take ) small enough. To get the second

inequality (3.25) we use (3.12) with pg, = pr, = p = 00, and we estimate the L> norms in
the right hand side using Sobolev injection and (3.20). We obtain

Ce2 A2p~20k0i 2: 93 min(j1,j2)—ji+a—jzsat B +2 -1
max(j1,j2)>j—C

If one uses that by assumption 27 > c¢h~2, and the fact that a > b+ % + %, one gets the
wanted estimate (for J; small enough).

To obtain (3.26), one substitutes inside (3.15) with p = 00, d = 0,

Vi = Opy, (o (h217708)) Ve + > AL Opy, (1 = o) (207)E))V,
Je€Z

one uses (3.21) to estimate two of the three factors of the right hand side, (3.20) and Sobolev
injection to bound the third one, and one makes similar computations as above, exploiting
that for the left hand side of the second estimate (3.26) not to vanish, it is necessary that one
of the j, be larger than j — C, and the assumptions on a.
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i1) Inequalities (3.27) follow from (3.20) and Sobolev injections, using the assumptions on a
and the fact that d < 1/16.

We estimate the contribution to (3.28) corresponding to j € J(h,C). We write Qo(V)—Qo (W)
from By(V — W, V) and Bo(V — W, W). By (3.12), HA;‘Z’“BO(V — W, W)HLOO is smaller than

] L min(j1,5 kAh kEAh
c2 Yy 2mmRURZRAL (V- W) | 2R ALV -
max(j1,j2) >j—C
By the definition of w = v—vp —vy, A;‘l (V—W) is non zero only if 27t < h2(1=9) or 201 > p=28,
In the first case, we bound HZ’“A?1 (V-W) HLOO 271/4 using the third inequality (3.27) with ¢ =
1/4. We get a bound in O(Eh%_%’). In the second case HZkA;»LI(V - VV)HLOo is O(Eh%Q_jer)

by the second estimate (3.27). Using assumption (3.21) to estimate HZkA?ZVHLOO , we get a
bound

CEth—‘SZ_%GQj Z Z 2% min(jl,jz)—%jk2—(j1++j2+)b < 0522—j+(b—1)h%_5§c_%"_
max(j1,j2)>j—C
Since 27 < Ch™ 28 with 8 < 1 and 0 < 1, 8, < 1, we obtain the wanted conclusion.

One studies in the same way the contributions of indices j in J(h,C) to (3.29), expressing
Co(V) — Co(W) from Ty(V — W, V, V) and from similar expressions and using (3.15).

To estimate the first term in the left hand side of (3.28), (3.29), or the contribution of
j > ji(h,C) to the latter, we just need to apply (3.25), (3.26), and to notice that these
inequalities remain true with V replaced by W. O

Proof of Proposition 3.2. Notice first that (3.22) follows from (3.27) if 0 < 1. Denote X}, =
Id — Oph(cpo(h_z(l_”)g)) — Oph((l — gpo)(h%f)) so that w = Xpv by definition and v =

(Id — Xp)v. We notice that [D; — Opy, (z€ + \5]%),2‘%] = hYp,, where ), may be written as

a linear combination of quantities Opy, (4,50 (h_2(1_")§)), Opy, (4,50 (h%g)) for new functions @y
in C§°(R*). We deduce from (3.6)

(Dy — Opy, (€ + [€]2) v = VR(Id — £)Qo(V)
4 h(Id —2,) (5 + Co(V)

+h's (Id — Sp)RA(V)
— hihv.

By estimates (3.25), (3.26) and (3.27) the first, second and last terms of the right hand side
may be written h>*R(V) with R(V) in RY,.

To estimate the remainder term R} (V), we estimate its L norm using (3.17) with d = b+ %
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The factors in the right hand side of (3.17) are estimated in the following way:
[$hD)* 2V | o < COps (0 (20 E))V | o

+C Y |prerraly
FE€J(h,C)

. 1
. 7\ 2
+C Z oi(a+b+1) <%>2HA?VHL2,

where we used the Sobolev injection for the last term. Using assumptions (3.21) and (3.20) for
the right hand side, together with the fact that 2/ < Ch~2% on the the first sum, 27 > ch™28
on the last one, and a > a4+ b+ 1+ %, we bound this quantity by say Ch™21 (if 0y, 0, 3 are
small enough). It follows that

(Dy — Opy, (#€ + |£|%))w = VhQo(V) + h[—%v + Co(V)| + h%R(V)

with R(V) in R%,. Using (3.27), (3.28), (3.29) we may replace the right-hand side of this
equation by the right hand side of (3.23) up to a modification of R(V'). If we make act the
Z-family of vector fields on (3.23), and use the commutation relations

1 1
(3:30) [t0; + 20z, Dy — Opy, (x€ + [€]2)] = —(Dr — Opy, (€ + [€]2)),
’ 1
[0z, Dy = Opy, (€ + 1¢]2)] = 0,
we obtain in the same way the estimates involving Z* derivatives. O

4 Weak L*° estimates

The goal of this subsection is to show that if v is a solution to equation (3.6), and if we are
given an L?-control of Z¥* 1y of type HZ’I‘H'IUHL2 = O(h_5k+1) for some small d;11 > 0, we

UHLOO = O(h_‘sllc) for some

small 6}, > di41. Actually, we shall get as well bounds for (hD,)Pv instead of v for some
given b > 0.

can deduce from it and the equation an L°°-bound of the form HZ k

These bounds are not good enough, but they will be the starting point of the more elaborated
reasoning that will be pursued in Sections 5 and 6. Before stating the main result, we fix
some notation.

Assume given integers s > N; > Ny > 1 and an increasing sequence of positive num-
bers (0x)o<k<s/2+N,+1- We consider another increasing sequence (5,;)0§k5%+ N, satisfying the
inequalities

A V4
VRS LD S
§=0

y {056’5654, 5ok <k,
j=t'+1

(4.1) kj <k when 0 < j </,

5]; > 5k+1 + 209 + 456 if k>1,
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for k=0,...,5+ N;i. Clearly such a sequence (; ), may always be constructed by induction,
and if §4 is small enough, we may assume moreover that

1 S s
4.2 é — k=0,...,—+ N, +1, § < —k‘—O N.
( ) k<32 ) 72+ 1+ ) k 8<32 2+ 1

We assume that the positive number f introduced in (2.12) is small enough so that 23 (a+%) <
%, where o > 2 is the fixed large enough number introduced in (3.4) and (3.15), and that
B < 0 /2. We fix positive numbers a > b > b’ > b” such that

3 1 1
a>b+-+=-+a, b>_,
(4.3) 2 2
b-V)p>2, (b —-b"38>2.
In that way, the assumptions of Proposition 3.2 will be fulfilled.

For k a nonnegative integer, we define

k
(a4 = 3 max([0py (o (207 20 . s 247 ALZV, )
E—0 3>jo(h,C)
and
k
(4.5) Fi(v) = Z maX(HOph(gpo (h_2(1_”)§))2k UHLQ, sup 2J+“HAth ’UHL2>
k'=0 J=>jo(h,C)

Let k € N*. We denote by 7,>° the set of functions v — Py (v) satisfying for any v = (vp)s
with &,_1(v) < h~'/* a bound of type

P S C|&0)+ D &)
k1+ko<k
(4.6) 1+k2<
Y ()8 ()& ).
k1+ko+ks<k

In the same way, we define Ty as the set of functions v — Py (v) admitting for any v = (vp)p,
with &,_1(v) < h~'/* a bound of type

¢
(4.7) GRS D ZH&k II 7re@)
1<b<d k1+-+ke<k £'=0j=1 j=0'+1

The main result of this section is the following one.

Proposition 4.1. Let k be a positive integer. Assume that we are given constants /Nlo, Ay,
Ay,..., Agy1 and a solution v of (3.6) such that for h in some interval |h', 1]

(4.8) Eo(v) < Agh™%,  Fru(v) <eAph ™%, 0<k <k+1.
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Then, there are hg > 0, Ay, > 0, k' = 1,...,k, depending only on cAg, A1, ..., Apt1 such
that for any h in |h' 1]

(4.9) Ew(v) <ed,h ™%, K =1,k

Remark 4.2. e The result of the preceding proposition may be thought of as a “Klainerman-
Sobolev” estimate, that allows one to get L*°-decay from L2-bounds (There is no decay
involved in (4.9) since the negative power of time ¢t~/ = /h has been factored out when we
defined v from u).

The proof of the proposition will be made in three steps.

First, we treat the case of small or large frequencies, for which we deduce (4.9) from the
L2-estimate in (4.8) and Sobolev injection.

Next, we are reduced to intermediate frequencies i.e. to A;‘v with j belonging to J(h,C). We

write the equation for A?v coming from (3.10). The operator of symbol 2z¢ + |£ \% is elliptic

outside the Lagrangian A defined in (3.11). Since the right hand side of (3.10) is O(h'/279),
one will get for the L>°-norm of A?Zkv cut-off outside a neighborhood of A some O(h'/?~0)
estimates, that are better than what we want.

In the last step, we decompose in the quadratic part Qo(V') of the right hand side of (3.10),
v as the sum of the contribution microlocalized outside A, which by the preceding step will
give an O(h'~0) contribution to (3.10), and a contribution microlocalized close to A. The
quadratic interactions between the latter will be microlocally supported close to 2- A, 0- A,
—2- A where

AA= {(:17,)\5); (z,8) € A}.

Consequently, if we microlocalize (3.10) close to A, which does not meet £2 - A, 0- A, the
v/h-terms of the right hand side disappear, and we get an O(h'~0) estimate for the L?-norm of
the left hand side. This allows to deduce the wanted L*°-estimate from a Sobolev embedding,
after reduction of A to the zero section, through a canonical transformation.

First step: Low and large frequencies

We decompose v = vf, + w + vy according to (3.19). By assumption (4.8), estimates (3.20)
hold. Then ii) of Lemma 3.3 implies that vy, vy satisfy the first two inequalities (3.27).

Second step: Elliptic estimates for w outside a neighborhood of A.
We define, for j € J(h,C) with C large enough

w; = 0% AMy,
(4.10) Lo | |
2= O ,205 = (Z,27°h9,),  Zf = (Z"(2*h0.)" )k tha<hs

so that w =3 ,c., o) Ojw;.
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Let ® € C5°(R\ {0}) be equal to one on a domain C~! < |¢| < C for a large constant C' and
let I" be in C§°(R), with small enough support, equal to one close to zero. We define

(e, &) = D(ET (22€ + [¢]7),

(4.11) )
Va2, €) = (&) (1 — T (22€ +[¢]2)).

We obtain two symbols of S(1,F) where F = {¢; C'7! < |¢] < O’} for a large enough C'.

Moreover, since 2x§ + |€ |1/ 2—-0isan equation of A, we see that on the domain where ® = 1,

A (resp. 7{) cuts-off close to A (resp. outside a neighborhood of A). We shall prove the
following estimates.

Proposition 4.3. Let k > 1, N € N. We denote by k some fived small enough positive
number (say k = 1/24). There is a constant Cy, > 0, an element Py of Ty such that for any
v satisfying Ep—1(v) < h=Y10, one has for any j in j(h,C),

HOphj ('Y/CX)Z]I?wj HL3

2
< \/_22]/3 ]+(b+ a—b) Z H]:kz 3&% §
k1+ko<k (=1

(4’12) + h2j/6_j+bh_4ﬁ_0 Z [‘Flﬂ (U)‘sz (U)gks (U) + gkl (U)gkz (U)gks (U)]
k1+ko+ks<k

+ 2j/4_j+“h?/6}'k+1(v) + 2]'/6—]'+bh1+npk(v)

+ 2j/6—j+(b+§(a—b))h;y}-k(v)%’»gk(v)l/i%}
where h=*~% means a bound in Cyh=*8=0 for any 6 > 0.

1
To prove the proposition, we need to estimate the action of Ophj (2x£ + ¢ |§) on Z]’?w in
various spaces.

Lemma 4.4. i) Let k > 1. There are an element Py, of Ty, a matriz A(h;) with uniformly
bounded coefficients, a constant Cy, > 0 such that, for any v satisfying Ex_1(v) < h=1/16 when
h stays in some interval |h', 1], one gets for any h in that interval, any j in J(h,C),

|Opy,, (226 + [¢]7 ) Fwj — 2792V hA(hy) ZF0" ;ATQo (W) L

(4.13) < G [ Z H]:k (0)3Eg, (v)2/3n' 0
k1+ko+ks<k (=1

R P () + h1—02—j/2fk+1<v>] .
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i1) Under the preceding assumptions, we get as well
1
10ps, (22€ + [¢]7) 2wy

< afvRr e S ] R0t}

k1+ko<k (=1
(4.14)

+ h2d /6T +bp =450 Z [‘F/ﬂ (U)‘FkQ (’U)ng (U) + &k (U)ng (’U)ng (U)]
ki+ko+ks<k

+ 2]/4 ]+ah5/6./."k+1(’l)) + 2j/6—j+bh1+/ipk(,v):| )

iii) Under the preceding assumptions

1 . .
10Dy, (256 + Ig]2) 25w — 2792V RA(h) 256 ;AN Qo(W)]| .
(4.15) < R0 N 8y (0)E, (0)Ek, (v)
k1+ko+ks<k

+ Cphj279+b8, 41 (v)
and

(4.16) 127972V A(h;) 2807 ;AMQo(W) || oo < VR2T7+E72) N & (1), (v

k1+k2<k
Proof. We apply A? to equation (3.24). Denoting A? = ¢(277hD,) for a new smooth function
@ satisfying Supp @ C Supp ¢, we get
1
Opy (228 + [¢]2) Ajw = —VhAGQo(W)
{ X ;
+ th?w - ZA?w - zZA?w - A?C’O(W)]
5/4 B
— WAALR(V).
Applying ©7 ; and using (2.13), we get
Opy, (226 + [€]7)w; = —Vh279/20" ;AbQy(W)
(4.17) + hoil 2w] —iZw; — 0%, AL Co(W))|
— 27923  ARR(V)

where w; = w; — 2@*_]-3?10 satisfies the same estimates as wj. We commute Z]k to the
equation, using that

(2,0, (226 + [¢]2)] = — Opy,, (20 + [€]),

(27200, Opy, (20 + [€]2)] = —2ih; (27/2h0).

43



We get
(4.18)

Opy, (226 + [¢]7) (Zkw;) = 2772V RA(hy) 2F07 ;ARQy(W)
+ by [E(h VER@; + B(hyj)ZE wy + C(hy)ZFer ;AMCy(W)
— M*h;D(hj) 2k ,ARE(V)
where A(h;), B(hj), B(hj),C(h;), D(h;) are matrices with uniformly bounded coefficients.

Let us control the cubic terms in (4.18). We write Co(W) as To(W, W, W) as in i) of
Lemma 3.1. We express Z]’-“@*_]-A;-‘C’O(W) = @*_jZkA;‘C’O(W) from @*_jA;-’Zk/TO(VV,VV, W)

for k' < k (changing eventually the definition of the spectral cut-off A;‘) and decompose each

argument W as zje A?ZW. Applying estimate (3.14) with pg, = pr, = pr, = 6 and writing
1/3 1 12/3 .

10 < 15 1172, we obtain

|ALZ¥ To(W, W, )| L.

7/2 2max(j1,j2,J
<ca? Yy 2RI G pgzi-c
(4.19) J1,32,03 k1+ka+ka <k’

XHHZ’“‘A W2 ag W

Using (4.4), (4.5), we bound the last factor by

3

9~ (J1++j24+js+ ) [b+3 (a—b)] kal(w)l/?)gkl(w)ws'
(=1
Summing in j1, jo, j3 in J(h,C), we obtain
|ALZY Co(W)| 2 < C|log h[?23/2-3+(b=245(a=t) o 3™ Hfl/?’ &,

k1+ko+ks<k’

Remembering that H@_] HE(LQ 2y = O(27/*) we conclude that the L?norm of the cubic term

in the right hand side of (4.18) is bounded from above by the first term in right hand side of
(4.13) (since a — b is large enough for f < 1, according to (4.3)).

To estimate the Rp-term in (4.18), we use (3.16). We notice first that the right hand side of
this inequality may be controlled from &, (v), Fi,(v): actually

200V 1 £ € 3 [ [Om (0207700 2"
ky<k,

+ Z 2j+(a+d)HA§,lgkév
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where the constant C' depends only on h6 H(th>O‘+dZ(k_1)+”HL°°.

We shall take d = b — o — 0, so that the bounds (4.4) imply that the j-series converges and
gives a bound

(4.20) |27 (hDg)* V|| o < CEk,(v)|log h].
Similarly, we get

(4.21) |27 (hD,)* V||, < CFp, (v)|log hl.

Plugging this in (3.16), we obtain, using again that H@* = 0(2//%),

—j HL(L2,L2)

WG| 2507 ARRE (V)| . < CHYAZOR/P9i 2 bma0) NP g (0)8y, (0) Fiky (v).

ki+ko+ks<k

We notice that since 2/ = O(h~2#), we may bound 27+(=a=0) 1y 93+ (b+3) p=2at 31008 Fop
/3 small enough, this negative power of h will be compensated consuming a O(h!/3)-factor, so
that we end up with a bound of the remainder in (4.18) by

CRY/893/4—i+(b+3) Z Ery (0)Epy (V) Fiy (V)
k1+kot+ks<k

so by the Pg-term in the right hand side of (4.13).

Finally, the linear terms in the right hand side of (4.18) are bounded by the last contribution in
(4.13), remembering that w; may be expressed from Ahw by (4.10) and that ||©*

—J H£ L2,12)
O(27/%). This concludes the proof of i) of the lemma.

ii) To prove (4.14), let us bound the L3-norm of the right hand side of (4.18). We express
first Zf@*_jA?QO(W) from @*_]-A?ZMQO(W), K < k write Qo(W) = Bo(W, W), decompose

W = Ejz A;‘ZW in each factor and apply (3.12) with p = 3, px, = pg, = 6. We get

! ] 1 . . .
|ARZE Qo) < €2 Y ST odminluiy
jlvaEJ(h,C) k1+k2§k’

2
x HHZ’“‘M WAl wl.
Using (4.4), (4.5), we see that this quantity is smaller than

Z <H~Fk5 35]% %)2—j+(b+%(a—b)).

k1+ko<k

We thus get the first term in the right hand side of (4.14), using that ||©* = 0(2//9).

J Hﬁ(LS,L?’)
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Let us study next the L3-norm of the cubic term in (4.18). We proceed as in the proof of
(4.19), applying (3.14) with p = 3, py, = pr, = 6, pr; = 0. We obtain

, . o
|AFZN CoW)|| s < 22 Y Yo 2RI sy 2O
J1,J2,33 k1+ka+k3 <k’

2
1/3 2/3 .
< (T2 al w2 |zt sl w2 ) 25w
(=1

We bound the general term of this sum by

/

R IV 1/3 2/3
ORI 1 oy P (B (0)Fi (0) (8 ()8 (0) " Exy 0.

As 27 < Ch~?#, we conclude, using the convexity inequality a'/3b%/® < (a + 2b)/3

HAgz'f’oo(W)Hm < Op~46-097/2—j+b Z [Frey (V) Fy (0)Ehy (v) + Eky (V) Ey (V) Es (V)]
k1+ko+ks<k

This gives in (4.14) a contribution to the second term in the right hand side, using again that

H@*—jHL(Li%,LB) is O(27/°).

Consider next the remainder. We estimate HZ;?@*_JA?RQ(V)H 13 from
—1/6|| zkx Ah ph
hy |27 0787 Ry (V)] 1

using that the expression to be bounded is spectrally supported in a ball of radius O(hj_l). We
apply next estimate (3.16) together with (4.20), (4.21). We obtain, using that H@*_j Hﬁ(L3 13) =

O(27/6), that the L3-norm of the last term in (4.18) is bounded from above by

k1+ko+k3<k

with d = b— a — 0. We get finally as a coefficient 27/6-7+bp13/12-0-28(a+1/12) if we yse again
that 2/ = O(h™2%). If 3 is small enough, we see that the remainder in (4.18) contributes to
the last term in the right hand side of (4.14).

Finally, the contribution of the linear terms in (4.18) is bounded from above by
k ~
h| 25 @5

HLS + thZ]I?J’_leHLS = Ch?/6<“zf@j“L2 + HZJI'H_leHL2>

. 5
< OIS Fr s (v)
where we have used Sobolev injection and the fact that Z;?{Ej, Zj]-”le is spectrally supported

for h;|€] ~ 1, and where the gain 2//4 comes from |ex

h .
Ajw in (4.10).

]H £(L2,12) when expressing w; from
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i1i) Let us prove (4.15) and (4.16). Applying (3.12) with p = py, = pr, = 00, we get for
K <k,

' ) 1o
HA?Zk QO(W)HLOC 0% Z Z 22 mm(hm)1max(j17j2)2j—()
J1,52€J (h,C) k1+ko <Kk’

x| 28 AL W| o | 25 A5 W

which gives (4.16). To get (4.15), we use again (4.18). The cubic term in the right hand side
of this expression is bounded using (3.14) with p = pg, = pr, = pr, = 00 and gives the first
term in the right hand side of (4.15). To estimate the L>-norm of the Rp-term in (4.18) we
use (3.17) with d = b—a — 0 and (4.20). The loss 2/+(@+0) < Ch=28(e+0) may be absorbed by
the extra h'/* factor in front of the remainder in (4.18), so that we get again a contribution
bounded by the first term in the right hand side of (4.15). Finally, the linear term in (4.18)
is controlled by h;277+°&; 1 (v). This concludes the proof. O

Proof of Proposition 4.3. We apply corollary A.3 with the weight m(z,£) = (z). By the
definition (4.11) of 7§, 2z§ + €]'/2 > ¢(z) on the support of 7% Consequently, for any N in

N, we may find symbols ¢ in S((z)~1),r in S(1) such that 1§ = g#(22€ + <]V + h;-vr. It
follows that for any p > 1,

(422) O, (R)ZFwy |, < ClOPy, (26 + [€l2) 2wy |y + 1Y 2 ]

Applying this with p = 3, we may bound by (4.14) the first term in the right hand side in
terms of the right hand side of (4.12). The last contribution is smaller than

2/3
L2

1/3

B |25 will s < w1125 I~

12551

going back to the estimates of w; = @*_jA;‘w from & (v), Fi(v), we obtain the last term in
the right hand side of (4.12). This concludes the proof of the proposition. O

The L3-estimate we obtained in Proposition 4.3 outside a microlocal neighborhood of A will
be useful as auxiliary bounds in the third step of our proof of Proposition 4.1. We also need
L*>-estimates for w cut-off outside A. They are given by the following

Proposition 4.5. Let k > 1. There is an element Py, in T2° such that for any v satisfying
Ep—1(v) < h7H/16

(4.23) HZ;IC Ophj (%C\)ijLoo < C[h1/4pk(v) + h1/2]:k+1(v)} 9—J+b.

Proof. We notice first the commutation relations

[tDy + 2Dy, Opy, (75)] = Opp, (V4.1),

(4.24)
[thxa Ophj (’Y/c\)] = h’j Ophj (7?\,2)’
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where 7§ ; is in S (1) with support contained in Supp (y§). This shows that, up to a mod-

ification of the definition of 7§, it is enough to control HOphj (’yf\)wajH oo Let us show

(4.25) |0y, (226 + 1€12) 25w .o < c[hl/‘lp( ) + hlﬁfm(u)} 9—i+b

for some Py in 7,>°. This will imply (4.23) using (4. 22) with p = oo and N large enough,

< h 2]:k( )277+b by Sobolev. We prove

(4.25) estimating the L°°-norm of (4.18). We bound HZkA;»‘QO(I/V)HLoo using (3.12) with

P = Pk, = Pk, = 00 and HZkZAh wHLoo = O(&k, (v)277¢+%). We obtain a bound in 27=9+° P (v)
for some P in 7., which gives a contribution to the first term in the right hand side of
(4.25), writing 2//2v/h = O(h'/*) as 27/2 < Ch=". To bound the cubic term in (4.18), we
apply (3.15) with p =00, d = b — a — 0, and (4.20), and control the loss 2/+(®*0) by a small
negative power of h using again 2/ < Ch™2%. We obtain that the cubic term in (4.18) is
O(h'/*Py(v)). The Ry term of (4.18) is estimated in the same way, using (3.17), (4.20).

since hj = O(h?) and we may estimate HZ‘]]?ijLoo

Finally, we must bound the linear contributions in (4.18). Their L?-norms are
O(hj2/* 940 Fiia (v))

according to the definition of Fj41(v) and the expression w; = 0% jA?w. Moreover, they are
spectrally localized at h;|| ~ 1, so that by Sobolev injection, the L>*-norms are bounded by

the L2-norms multiplied by Chj_l/ ?. This gives a contribution to the last term in (4.25). O

Third step: Estimates on a microlocal neighborhood of A.

We have obtained in Proposition 4.6 L>°-estimates for Z]'?wj truncated outside a neighborhood

of A. We want here to prove similar L*°-estimates for Zj’-“wj truncated close to A. They will

be deduced from L2-estimates for Opy, (2z€ + |£|%) Opy, (WA)ZJ’?wj that follow from (4.18)
truncated close to A. Let us introduce the following decomposition of the function w =
> jesnc) Ojw; introduced in (3.19), (3.10): we define, using notation (4.11)

(4.26) wa= Y ©50p, (7a)w
jeJ(h,C)

and denote Wy = (wp,wp). We shall prove
Proposition 4.6. Let k 12 1. There are C' > 0, an element Py in Ty such that for any v
satisfying Fi,(v) = O(eh™1), E_1(v) < K1, for any j in J(h,C)

fom, o Zkusl <on[ S [[rwmiso!
(427) k1+ko+ks<k (=1

+ hE P(v) + ]:k-l-l(v)] 27740,
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To prove the proposition, we shall use (4.18) with Qo (W) replaced by Qo(wya) in the right
hand side. Let us estimate the error that is done.

Lemma 4.7. For any k € N, there are C' > 0, an element Py in Ty such that for any v with
Ep—1(v) < h71/16

122 (Qo(W) = Qo(Wa)) || < CVR2TH+ 3™ H.m 0)3 &, (v)

(4.28) k1+ka+ks <k (=1

+ h1279b P (v).

Proof. We have to bound for j in J(h,C),
|25 AT Bo(W, W — Wh)|| 1 + || ZF AT Bo(Wa, W — W) -
Consider for instance the first term. We decompose each argument using

w = Z Aw— Z @;-ewj(.

Je€J(h,C) Je€J(h,C)

By using (4.26),

w—wp = Z o; Oph () wj,-
je€J(h,C)

We write for j; € J(h,C),

(4.29) |25 Al o < |25 Al 25 AL w] .

2

< 2—J1+(b+§(a—b))}-k1( )3gk (v)3.

Moreover Z*2 A?z (w — wp) may be written as

>, zZRaje; Opy,, (v8)w;

3% 3 1d5—32|<No

for some large enough Ny, up to a remainder whose L3 norm is

=

This follows from the fact that

AlL63, Opy, (98)wy, = €3, Opy, (9(2772€) ) Opy, (1)

and that 7§ is supported for || ~ 1.
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If we apply (4.12), we conclude that, since H@]2H£ 13,03 = O(2‘j2/6),

HZszh w_wA)HL3 SCO[\/’QDM jo+ (b+5(a=b)) Z H‘sz 35ke g
k1+kh<ks =1

R ORTP0 N (B (0) Fiy (0) Ery (0) + Egy (0)Epy (0)Eg ()]
(4.30) Kkl +k, <ko

+2j2/12_j2+ah?2/6fk2+1(v) + 2_j2+bh1+npkz (v)

2 OES ) (B 4 1) Fiy (v) 36, (v):la} .

We plug (4.29), (4.30) in (3.12) with pg, = 6, pr, = 3 and we sum for k1 + ko < k, j1,j2 in
J(h,C). We obtain that, for some P in T*,

| ZFANBy(W, W — Wa)||

< OV/h2i—i+(bt5(a=b)—3) Z H]:ke 35']% %
k1+ko+ks<k (=1

+ C A= 487027=i+b p(y)
+ C’12j_j+(b+%(a_b))h%P(v).

Since 27 < Ch~28, for § small enough and a — b >> 1, we get a quantity bounded from above
by (4.28). This concludes the proof. O

Let us deduce from Lemma 4.7 a sharp version of (4.13).

Corollary 4.8. Let k > 1. There are C > 0, and an element P, of Ty such that for any j in
J(h,C), any v with Ex_1(v) < h~1/16

|0y, (22 + [€]7) ZEw; — 2792V RA(h >Z’?®’:-M@0<WA>HL2

< Chz Opz2ib) N kal 0)5Ek, (V)3 + ha Py(v) + Fiepa (v) |
k1+ko+ks<k (=1

Proof. We start from estimate (4.13). If in the left hand side, we replace Qo(W') by Qo(Wh),
the resulting error is bounded from above by the product of (4.28) and of

\/52‘”2\\@%\\5(L2,L2) =O(h 1/2)

We obtain a contribution to the right hand side of (4.31). On the other hand, the right
hand side of (4.13) is bounded from above by the right hand side of (4.31) if we write that

21/4p9/8 < 2j/2h;/2h5/8. This concludes the proof. O
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Proof of Proposition 4.6. Let us prove that for any j in J(h,C)

1
HOPhj (22€ +1¢]2) Opy, (VA)waj“LZ
(4.32) N . .
< Chz "h2277+ > Hf,w )3E, (V)3 + B8 Py(v) + Fiop1(v)
k1+ko+ks<k =1

for some element P, in 7.

We notice first that since w; = 0* .Aw, the definition of Fj, shows that
J J=I

(4.33) HZ;?wJ'HB < Fi(v)2i/4-iva,

Consequently, by the gain of one power of h; coming from symbolic calculus, we see that

1[Ops, (22€ + [€]7), Opy, (1a)] Z¥uw| 12

is estimated by the last term in the right hand side of (4.32). We are reduced to estimating

HOPhj (74) Opy, (2w + |£|%)Z]’?wj HL2 which, according to (4.31) is smaller than the right hand
side of (4.32) modulo the quantity

(4.34) 2792Vh||Opy, (74) 2707 ;ALQo(Wi )| 2

Since wy is given by (4.26), we may write for ¥’ < k

2Ky = Z @;(Zf/Ophj(yA)wj)
j€J(h,C)

and by definition of Fj(v), and the fact that w; = @*_jA;‘w, we have

125 Opy, (ya)wj || 2 < C2/479+ Fy (v).

Since w; is microlocally supported for h;|¢| ~ 1, we deduce from that
’ _l . s
|25 Opn, (va)wj| o < CH™72/240 Fpo (v).

By Definition 2.5, this shows that the family (Z]’?’ Ophj (WA)wj)j is a family of elements of

(h_%Bééa [K]) N (Bg’a[K]) for some compact K of T*(R\ {0}) \ 0, contained in a small neigh-
borhood of A, and that
k,/

125 Opn, (vl - ooy
which is by definition the best constant in (2.8), is smaller than C'Fy/(v). A similar estimate
holds for HZ;?/ Ophj (va)w; H B (K] We shall now prove that Qo(Wj) is microlocally supported

2

outside a neighborhood of A.
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Let us express ZRQO(WA) as a combination of terms By (Zkl Wy, Zk2 WA), k1 + ko <k, so as
a combination of expressions deduced from (3.7).

Opy, (a0(6)) [ (Opy (a1(§) ZF ) (Opy (a2(6)) 22 ) .
(4.35) Opy, (a0(6)) | (Opy, (a1(6) 2w ) (Opy, (a2(€)) 254) |,

Opy, (a0(€)) :(Oph (a1(€)) 2F1,) (Opy, (a2(§))ZkZWA): ,

where ag, a1, az are homogeneous of non negative order. We have just seen that ZFawy is

in (h h 2 BYIK )N (Boa[ ]) with norm in that space bounded from above by CFy(v). It
follows from Proposition 2.12 and the fact that a is large enough relatively to bt that the first
(resp. second, resp. third) expression (4.35) belongs to h~ 215’2 PIKy] (vesp. h~ 2B *[ K], resp.

h_EB% “[K_3]) where K3 (resp. Ko, resp. K_5) is a compact subset of T*(R\ {0}) contained in
a small neighborhood of 2- A (resp. 0- A, resp. —2-A), and that the norm of these functions in
those spaces is O(Fg, (v)Fp,(v)). Consequently Zjl?@*_ jA?QO(WA) is microlocally supported
far away from A. When we apply a Opy, (7a) cut-off as in (4.34), we gain a O(h3°) = O(h™)

factor. We conclude that (4.34) is bounded from above h'¥ >k tka<k Sk (V) Fky (v) so that
(4.34) is controlled by the h'/®term in (4.32).

To finish the proof of Proposition 4.6, we are left with showing
Lemma 4.9. Assume that (4.32) holds. Then estimate (4.27) holds as well.

Proof. The definition of Fj(v) and the fact that w; = ©* jA?v implies that
(4.36) 10Dy, (74) ZFwj]| ;2 < C2179+9 Fy(v).

Since (2x£ + |£|%) (€ —dw(x))g(x, &) for some elliptic symbol g, on a neighborhood of the
support of 5, we deduce from (4.32), (4.36) and symbolic calculus that

1 .
(4.37) 10py, (€ — dw(@)) Opy, (ya)ZFwy| 2 < hF Rz OM2 4"

where

M=c| Y kaz V)34, (V)3 + 3 Po(v) + Frpr(v)
k1+ko+ks<k (=1

for some Py in 7. We may rewrite (4.36) and (4.37) as
He—iw(w)/hj Ophj (’yA)waj HL2 < CQi—J#afk(U),

[ (hsD2) (7% Opy (o) 28wy )|, < CnFni-Onrz-i=
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1 1
Using that ||l = O(IFIZ 1Dafl2:), we get

SIS

0Py, (14) ZFwj| oo < Ch™ 094 =3+ 3" (. (v) M)
< Ch92-J+bpr,

This implies (4.27). O

Proof of Proposition 4.1: We combine estimates (4.23) and (4.27). We obtain

ET P D ol ENC N
(4.38) k1+ka+ks<k (=1

+ h¥ Py(v) + fk—i—l(v)} 277+

for any j in J(h,C) and some P}, in T, assuming an a priori bound &,_(v) < h~1/16,
We assume that (4.8) holds and that (4.9) has been proved up to order k — 1. Consequently,
by (i) of Lemma 3.3, we know that

sup (27| A% Opy (1 = o) (h27€)) 250 ) < Ciehh,
J

10py (0 (h_z(l_a)é’)ZkaLoo < C’kshllei_",
where Ck depends only on Ay, ..., Ag.

On the other hand, (4.38) gives a control of HA?Z’“UHLM for j € J(h,C). Going back to the
definition (4.4) of & (v) we obtain

5k(v)§0h_0[ Z H}—m 351% %}

(4.39) ki+ko+ka<k (=1

+ 116 [Py(v) + Cre] + b0 Fjoi1 (v).
Let us deduce from that that (4.9) holds at rank k. By the assumption (4.8) and the fact that
by (4.1) 8} > 011, we may bound h~F; 1 (v) by eAf,Ch_‘Sfc for some A} > 0 depending only
on Agy1. The same is true for his Cre, with A} depending only on Ay,..., Ag+1. Consider

the hllGPk(v) contribution. By definition of the class 7; and (4.7), this term has modulus
bounded from above by quantities of the form

(4.40) W5 €4y (v) -+ Eayy (0) Fiy,, (V) Fiy, (0)

where ¢/ < ¢ < 4, k1 + -+ k¢ < k. Assume first that one of the k;, 1 < j < £, is equal
to k, so that the other ones equal 0. We obtain, according to assumption (4.8) a bound in

Chis—(¢—D&—(E—+1)51 o Ek(v), with a constant C' depending only on Ag, A;.
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By (4.1) and (4.2) this is smaller than Cé’k(v)h% with a constant C' depending only on
Ap, Ai1. On the other hand, if all k;, 0 < j < ¢, are strictly smaller than k, we may apply the
induction hypothesis to estimate & (v) and (4.8) to control F., (v). We obtain for (4.40) a

bound in C&?thﬁ_‘S;c, according to the first inequality (4.1), where the constant depends only
on Ao,Ao, e ,Ak.

Let us study now the first term in the right hand side of (4.39). When ky < k, ky < k, k3 < k,
we write

3 _
W 7o)} 8,00% < "2 (@ 060
(4.41) =1

o 1y (0)F iy (0) €1y (0) + Epy ()0, (0)Fiy (0) )

By (4.8), the fact that (4.9) is assumed to hold for k; < k and the first inequality (4.1), we
get that (4.41) is O(gh—%) with a constant depending only on Ag, A1, ..., Agi1. Finally, we
are left with studying the first term in the right hand side of (4.39) when one the k; is equal
to k, i.e.
h 08, ()3 Fr(v)3 Folv)3 & (v) €k (V) + =6 2h O T (v) Fo (v) 2 (v)*

for any § > 0 (where in the right-hand side, h=° denotes 2=’ if in the left hand side h~°
stands for =% with # > 0 small). The last term in the above inequality is O(gh—%) according
to assumption (4.8) and the second inequality (4.1), with a constant depending only on

Ag, A1, ..., Agr1. Summing up, we have obtained
2 1 Y
En(v) < [55 + C’haz]é’k(v) +eALh0%

from which (4.9) at rank & follows if h and 0 are taken small enough. O

5 Decomposition of the solution in oscillating terms

The goal of this subsection is to give a description of the component w in the decomposi-
tion (3.19) of v in terms of oscillating contributions. More precisely, we expect w to be a sum
of a main term, oscillating along the phase w (i.e. a term which is a lagrangian distribution
along A), of O(\/E) terms, coming from the quadratic part of the nonlinearity, that will oscil-
late along the phases +2w (so, which are associated to the lagrangians +2A), of O(h) terms,
coming from the cubic part of the nonlinearity, oscillating along the phases +3w, +w, and
a remainder. Moreover, we shall need, in preparation for next subsection, to get an explicit
expression for contributions oscillating on £2A.

We consider a solution v of (3.6) satisfying for h in some interval |h’, hg] the a priori estimate
(4.9) for " < 5 + Ny for some fixed Ny < s. In particular, for k < 5 + Ny,

(5.1) |ALZR]|, o < Ajh~Ok27I+P
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for j € J(h,C). In this section, we shall denote by K compact subsets of T%(R \ {0})
contained in a small neighborhood of one of the lagrangians ¢- A, £ # 0, by L compact subsets
of T*(R\ {0}) and by F closed subsets of T*R whose second projection is compact in R\ {0}.

We first obtain a rough decomposition of v.

Lemma 5.1. One may write v = vy, + wp + wpe + vy, where vy, vy are defined in (3.19)
and, for some compact subset K of T*(R\ {0}), lying in a small enough neighborhood of A
and intersecting A, some closed set F as above, ZFwy, 0 < k < 5+ Ny is an O(e) element

of h_5i,v+1L°°I~2’b_2[K] and ZFwpe, 0 < k < 5+ Ny is an O(e) element of h%_%ﬂlggéb_z[F] +
R =%k BWPT2[F). Moreover, Opy, (2€) ZFwye is in h%_%ﬂl’;’égb_z[F] + B 0%k BYO .
Proof. We have written in (3.19) v = vy + w + vy and using notations (4.10), we may
decompose w = ZjeJ(h,C) ©jw;. Recall definition (4.11) of symbol vy, and set

wjn = Opy, (ya)wj,  j € J(h,O)
so that Zkw, = >jesme) 9 (Z]'?wj,A). Since, when commuting Z;? to Opyp,,(7a), we get
expressions of the form Ophj (%’“()ZJI?/ with & < k and %k\, a new symbol, we deduce from

estimates (4.9) that Z*w, belongs to ho% B’ [K] for a compact set K satisfying the conditions
of the statement if v5 is supported in a small enough neighborhood of A. Moreover, ZFwy
is O(e) in the preceding space. If we use symbolic calculus, estimates (4.15), (4.16) and the
assumed a priori estimates (4.9) together with (4.1), we get

(5.2) HOphj (2z€ + |£|%)Z]]?ij,AHLoo < Ce2 I+ (0= p=% [h% + hy]

ie. (Z;?wj,/\)j belongs to h_‘;;cHLOOIIO\’b_2 and is of size O(¢) in that space. This gives the
statement concerning wp of the Lemma.

Set wjae = Opy, (V§)w; so that wae = 37.c ;4 0y Ofwjae. We use (4.22) with p = co. We

estimate the first term in the right hand side of this inequality using (4.15), (4.16), the bounds
(4.9) together with inequalities (4.1). We get

(5.3) 10Dy, (V8) ZFw;| oo < C2277+ 07D 0k (h? + hj) + CnehNh=0k2-i+t,
where the last term has been estimated from (5.1).
If N is large enough, since h; < Ch? we get that Zkwpe is in

h%—62+13&b—2[F] + h1_6;€+1l§g01’b_2[F]

and is O(e) in that space (where F' is a closed set as described before the statement of
Lemma 5.1).

To study Opy,(z€)wpe, we write

Opy(z&)wae = Y 220; Opy, (26w ae.
jed(h,C)
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By symbolic calculus, we may write Ophj (x€)wj e from

Ophj (’NYAC)'wja Ophj (’YAC)(OPhj (xf)wj),

where ¢ is a cut-off with support contained in the one of ypc. The L*°-norm of the action
of Z;? on the first of these expressions is bounded like (5.3). The second expression may be
written from

Ops, (7a¢) Oby, (226 + €12 )w;,  Opy, (a¢) Opy, (I€]7 ).

The L*°-norm of the action of Z; on the last term is bounded using (5.3) by the right hand
side of this inequality. For the first term, we use again (4.15), (4.16) as in the proof of (5.2)
to get a similar upper bound. This concludes the proof. O

The decomposition w = wp + wae, in terms of a contribution wy localized close to A and
another one wyc supported outside a neighborhood of A is not precise enough for our purposes.
We need to refine it, writing wpac as a sum of terms oscillating on the lagrangians £2A, of size
of order v/h, and of a remainder that is O(h). Moreover, we need also to check that wy is
in h~ 2% Loojg’b/ [K]. This is the goal of next proposition, that will be proved plugging the
decomposition of Lemma 5.1 in the equation (3.23) satisfied by w, written under the form

(54)  Opy (226 + €]7)w = —VAQo(W) + h[%w ~iZw — Co(W)] ~ hER(V).

Proposition 5.2. Let b/ <b—5 and Ny < Ny such that (N3 — Nog — 1)o > 1. We may write
the first decomposition of w

(5.5) w = wp + \/E(wm\ +w_27) + hyg

. _og! =20 +3 .
where, for any k < 5 + No, Zkwigp is a O(€) element of h 25k+1L°<’IjE2AJr2 [Kio], ZFwy is

an O(e) element of h_5;v+1L°°j2’b/ (K], Z*g is a O(e) element of k1 o B [F] and

Zk Opy,(2€)g is an O(e) element of B 3%4148 - N BLY [F], for some compact subsets Kio of
T*(R\ {0})\ 0 contained in small neighborhoods of £2A, some closed subset F' of T*R whose
second projection is compact in R\ {0}. Moreover, wiop are given by

|dw(z)|wg,

way = —i(1— X)(xh—ﬁ)¥

(5.6) s
4

w_gp = —i(1 = x)(xh™") |dw (@) w3

where x € C°(R), x =1 close to zero has small enough support.

In order to prove the proposition, we shall compute the main contribution to Qo (W) obtained
when plugging inside (3.7) the decomposition w = wp + wpe obtained in Lemma 5.1. We
make at the same time a similar (and more precise) computation when one knows that an
expansion of the form (5.5) holds.
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Lemma 5.3. i) Assume that w = wp+wpe, where for all k < 54Ny, Zkwy (resp. ZFwpe) is
an O(e) element of h_51;+1L°°I~2’b_2[K] (resp. of h%_%HBgéb_z[F] + WOk B T2F) such

that Z* Opy, (x€)wae is in h%_6;€+1l§’é5b_2[F] + W%+ BLPT2[F)). Denote by b any number
V' <b—>5. Then, there are functions wion such that for k < § 4 Ny

Ry is O(e) in h=Phn LoT 0 T2 (K|
so that
> AJQo(W) = ios + @-oa + Vi,
5.7 jed(h,C)
S AMNWRCH(W) = Vigs
jed(h,C)

where for any k < 5 + Ny,

1b+2[ 1,b’+%[

Zkgy, 2% Opy, (2€)Go € h™2%11B F|, 2§, 2F Op, (2€)gs € %1080 "2 [F]

for some new closed subset F of T*R. Moreover one may write

wop = —i(1 — X)(a:h_ﬁ) ]dw[Z iwm
(5.8)

_ . _ 32 _
w—_gp = —i(1 — x)(xh ﬁ) |dw|2 Tw%,

for some x € Cg°(R), x =1 close to zero, with small enough support.

i1) Assume one is given a decomposition of w of the form (5.5) and denote by b’ any number
b < b— 8. Then there are elements Wiop such that for 0 < k < 5 + No, ZE@ oo is
O(e) in h™ 2516+1L°°J?’b+3/2 [Ki2], and for £ € {+1,43} elements wyn, such that, for any

0<k<3+ No, Zkwep is O(e) in h™ ?’6'€+1L°"13bJr?’/2 [Kg] so that

(5.9 > AQo(W)+ VRCo(W)] = ton + @—oa + Vh(Wsp + @ + T + D_35) + h,
jeJ(h,C)

where ZX§ is in h_45;v+Pl§1’b/+%[F] and Z* Opy,(2€)g is in h_45;v+Pl§C1>5b/[F] with P = Ny —
N(] + 1.

Moreover, wp is given in terms of wa and of the functions in (5.6) by

- 7 _ 3 __ _
wp = 5(1 —x)(zh B) |dw|2 wA(ng — w_gA)
(5.10)

+=(1—x)(zh~ ) dw(x) ‘wA‘ wa,

=~ =
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for some x € C°(R), x =1 close to zero, with small enough support, and wspn, W_p, W_37
have similar expressions

. l _ 3 _
w3A = 5(1 —x)(zh ) [dw|Z wa (Hywan + psW_2n)

+ (1= ) (2h™®) | dw(@) |2y wl,

~ { - 3 w
W_p = 5(1 —x)(zh 5) |dw|2 wA(u'_lw—zA + N,ilwﬂ\)
(5.11)

+ (1= ) (xh ™) | dw(@)| 1, [wa s,

) _ 3 __ _
@_gn = 5(1 = x)(ah By |dw|2 T (1_gw_sn + p 5Tan)
+ (1= x) (eh™7) | dw(@)|2 p" 5w},

for some real coefficients yy, py, wy', ¢ € {—3,—1,3}.

Before starting the proof, we make the following remark that will be used several times below.

Remark 5.4. Let x be a smooth function on R*, such that for some real numbers ¢, ¢’ and for
any integer k, Ofr = O(|x|_€_k<x>_zl). Let x be in C§°(R), equal to one close to zero and let

r be an element of B4 [K] for some compact subset of T*(R\ {0}). Then (1 — x)(zh~?)r(x)r

belongs to B2 [K].

Proof. We decompose 7 =3¢ ;. c) ©;7j Where (r;); is a bounded family in BL[K]. Then
(1—x)(zh P)kr = Z O;7;
j€J(h,C)

with 7; = (1 — x)(2277/2h=8)x(277/22)r;. Since r; is microlocally supported in K we may,
modulo a O(h}°) = O(h>) remainder, replace r; by (z)r; for some 6 € C§°(R), equal to one
on a large enough compact subset of R*. Since

r—(1— X)(x2_j/2h_5)2—%(f+z’)+j+%/{(2_%33)9(33)
is in C§°(R*) and has derivatives uniformly estimated in j, h, we see that (7;); is microlocally

: : : o+ + 5
supported on K and satisfies uniform bounds in Bg:( 0ty [K]. O

Remark 5.5. Let x1,x2 be two C§°(R) functions equal to one close to zero and r be in
BY[K] for some compact set K of T*(R \ {0}). Then, if Suppx; and Supp x2 are small
enough, (1 — x1)(zh™?)r and (1 — x2)(zh~")r coincide modulo O(h™) (so that they are
identified).

Proof. We write again

(1= x)@h ™) = (L= x2)@h ™ )]r= 3 5[0 — x1)@22h )y
jeJ(h,C)
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As above, modulo O(h*), we may insert some cut-off 6 against r;. We may then notice that
(x2 — x1)(@2792h=P)0(z) = 0 if Supp x; is small enough, as 277/2h=% > ¢ for some ¢ > 0
since j is in J(h, C). O

To prove lemma 5.3, it will be necessary to compute explicitly the action of some multilinear
operators on functions of the type w = wa + wpe.

Let us fix some notation. If py,py are in Z*, K,,,, K,,, are compact subsets contained in small
neighborhoods of p; - A, ps - A and if wﬁZ.A is an element of LOOI;L;.XZ [K,,], Proposition 2.12

1 a2 0o TH1+H2,71+72
shows that the product Wy A Wy A belongs to L I(p1+p2)'A

subset K, 1p, of T*(R\ {0}) contained in a small neighborhood of (p1 + p2) - A, if K,
and K, were contained in small enough neighborhoods of p; - A, ps - A respectively. In
the sequel, to avoid heavy notations, we shall eventually denote by K,, different compact
subsets of T*(R \ {0}) contained in a small enough neighborhood of py - A. All of them
will be constructed from a compact subset K of T#(R \ {0}) contained in a small enough
neighborhood of A. To simplify some notations, pA will sometimes stand for p - A. We shall
also denote by L some compact subset of 7%(R \ {0}) which may vary from line to line.

[Kpy+p,] for some compact

Lemma 5.6. Letby: R* — C, £ = 1,2,3 be smooth functions positively homogeneous of degree
dy and ag,a1: R* — C be smooth, positively homogeneous of degree mgy, my.

Let pg be in Z*, |pg| <3, ¢=1,2,3. If p1 +p2 =0 (resp. p1 +p2+p3 =0), assume moreover
that a1 (resp. ag) is an homogeneous polynomial of order my € N* (resp. mg € N*). Let V/ be
a large enough positive number. Let x be in C§°(R), x = 1 close to zero, with small enough
support.

i) Assume given for ¢ = 1,2,3 functions wﬁZA such that for some N and any k < 5+ N,

kaf;m s in h_5§c+1L°°I~Sljl,’;\ [Kpl], for compact subsets K, satisfying the above conditions.
Denote pg = 2(my + dy + da), s = 2(mo+mq +dy + do + ds). Then,

(5.12) O (ar) | (Opn(ba)w, 5) (OPy (b))
may be written as the sum of
(5.13) (1 = x)(xh™)a1 ((p1 + p2) dw)bi (p1 dw)ba(po dw)wzl,lAwng,

which is an element of h_z‘siLoofézl’izz).A [Kp1+p2] such that the action of Z* on it gives an

element of B~ 20541 00 H2:2 [Kp1+p2] for k < 5+ N, and of a remainder R such that, for

(p1+p2)-A
those k's, Z¥R is in
(5.14) h%_%éﬂéég_l’%l_% (L] + h1_26;€+1l§“2_2’2bl_1[[/],
In the same way, a cubic term
(5.15) Opy(ao) [Oph(al){ (0P (b1)wp, ) (0P (b2)w?, 5) } (oph(bg)w;A)}
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may be written as the sum of
3
(5.16) (1= x)(@h™P)ao((p1 + p2 + p3) dw)ai ((p1 + p2) dw) H (pedw)w) 5,

which is a function such that the action of Z* on it, k < 5 + N, gives an element of

36, oo Fu3,3b
h L I(p1+P2+p3) A [Kp1+p2+p3]

and of a remainder R such that ZFR is in

3
(517) Zh% k+1B~gg_]73b’_J/2[L]
7j=1

i1) Assume that we are given a function

¢ ¢ ¢ V4
(5.18) w :wpe,A—i—\/E[me,A—kw_gpl,A}
where for k < 5+ N,

k, £ . 26, oo 70,0
Z Wigp,.A 15 0N h™“k+1[, I:I:2pZA[Ki2Pe]7

gl s in B0 L0 (K]

Assume also that p1 £ 2ps # 0, pay £+ 2p1 # 0. Then (5.12) may be written as the sum of a
quadratic term, given by (5.13), which is such that the action of Z* on it gives an element

of h™ 2014 LOOJ&Z’_?_I;Q) A [Kp1+p2], of a cubic term, which may be written as the product of V'h
and

(1-— X)(a:h_ﬁ) [al ((p1 + 2p2) dw)bl (p1 dw)ba(2p2 dw)w})lAw%pzA
(5.19) + ay ((p1 — 2p2) dw) b1 (p1 dw)ba(—2pad w)w}nsz_QmA
' + a ((2p1 + p2) dw) b1 (2p1 dw)ba(po dw)w%plAwf,zA

+ a1 ((—2p1 + p2) dw)bi(—2p1 dw)ba(p2 dw)w1_2p1Awl2)2A]

and of a remainder term R. Moreover the action of Z* on (5.19), 0 < k < 5+ N, gives an
element of

35" 20
Z h2%+1 Looféij:%z) A [Km:l:?pz]

36, [ 20
+ Z h™°%+1], Ié;z +£2p1)- A[szﬂ:?pl]

and the action of Z¥ on R gives an element of

po—1 2b’——

(5.20) B0k B2 2[L).
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Proof. i) We use Proposition 2.11. By (2.17) applied with a symbol a = by(§), £ = 1,2, we
may write

(5.21) Opy, (be)wh,x = (1 = x) (zh™P)be(pe dw)ws,  + 7

where the action of Z* on # (resp. on the left hand side, resp. on the first term in the right
. .. Ll_sr =2dy—1b -1 N 7 ~2d, b
hand side) of (5.21) is in h2 ™ %+1 35" *[L] (vesp. in A=+ LI 07 [Kp,]).

By Proposition 2.12,

(5.22) Z* [(Oph(bl)wll,m) (Oph(bg)wng) - (1- X)(mh_ﬁ)zbl(pl dw)ba(p2 dw)wll,lAwlz,zA]

i1s in
1_o5  =2(di+da)—1,20'—1 _ost =< o op
h2 26k+18 (d1+d2) 2[L] hl 25k+1 B2(d1+d2) 2,2b 1[[]

and the second term in (5.22) belongs to

YV =2(d1 +ds),20
h ke [ R (e, LT

We make act Opy,(a1) on the bracket in (5.22). By Proposition 2.11, this gives a remainder
R satisfying the conclusions of the statement. Moreover, the action of Opy(a;) on

(1-x) (wh_ﬁ) 21)1 (p1 dw)ba(pad w)w;)lszQA

may be written as (5.13) modulo similar remainders. Notice that the second remark after the
statement of Lemma 5.3 allows one to replace any power (1 — x)? (xh_ﬁ) by (1 —x) (xh_ﬁ) if
Supp x is small enough.

One studies the cubic expressions (5.15) in the same way.

1) We start from the stronger assumption (5.18). By (2.17) and the lines following that
formula we may write Opy, (by)w’ as

(1= x)(zh™P)be(pe dw)ws 5

(5.23) +Vh(1 = x)(zhP) [bé(sz dw)wh, s + be(—2pe dw)wg_mA]
+ 7
/ ~ 1y =1
where the action of Z¥ on 7 is in h!™%%+1 i‘f‘ R [L].

Moreover Z* [(1 - X) (mh_ﬁ)bg(pg dw)wﬁm] (resp. Z¥ [(1 - X) (mh_ﬁ)bg(jﬁpg dw)wi2mA]) be-
longs to

—5 =2dy b —25! =0d, b
h kHLOOJp[‘}\ [sz} (resp. h™2 k+1LOOI:I:2ZpZ-A[Ki2PZ])‘

Applying Proposition 2.12, we obtain that (Opy,(b1)w')(Opy,(b2)w?) may be written as the
sum of quadratic terms

(5.24) (1= x) (2h™7) b1 (p1 dw)ba(pz dw) (wh, 5) (w2, ),
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of cubic terms
VA1 =) (h™?)? b1 (p1 dw)bs (202 dw) (1), ) (105,,0)

+ b1(p1dw)ba(—2pa dw) (wy, ) (w?,4)

(5.25) ) )
+ b1(2p1 dw)ba(p2 dw) (wyp, ) (wh,a)
+ by (—2p1 dw)ba(pa dw) (why, 4) (wng)}
. - . 1oy _1
and of a remainder R’ such that ZF¥R’ is in h' %%+ ic()d1+d2) L2 =3 [L].

To study (5.12), we make act Opy,(ap) on (5.24), (5.25) and on the remainder. We know from

Proposition 2.12 that (1 — X)(xh_ﬁ)2w11)11\w12)21\ is in h_%;ﬂﬂLooj(OIfim)A [Kp,+p,] and that

—B\2 o2
(1—x)(zh A wll)lAwi2p2A (resp. (1 — x)(zh f) w:1|:2p1Aw]2)2A) belongs to
—35; 70,2t/ —38, 70,2/
W Ly [EKpropy | (vesp. ATPR LTy [Kaop i, ]).

To study the action of Opy,(ap) on (5.24), (5.25), we may use (2.18), noticing that, since dw
is homogeneous of degree —2,

a1(£§)b1(p1 dw(x))b2(p2 dw(z)),

a1(£§)b1(p1 dw(z))ba(+2p2 dw(x)),

a1(£)b1 (+2p1 dw(z))ba(p2 dw(x))
satisfy the assumptions (2.15) with (¢, ¢',d, d’) replaced by (—2(dy+dz),0,m1,0). We conclude
that (5.12) is given by the sum of (5.13), (5.19) and remainders R such that the action of

/ ~ 1o — /1
Zk on R gives elements of k'~ %%+1 557 b2 [L]. Moreover, (5.13) and (5.19) belong to the
spaces indicated in the statement of the lemma. This concludes the proof. O

Proof of Lemma 5.3. i) Let us prove the first equality (5.7). Recall that we denote W =
(w,w). In the same way, set W = (wp, Wy ), Wae = (wpe, Wpe). If By denotes the polar form
of QQy, we have

Qo(W) = Qo(Wa) + 2Bo(Wa, Wae) + Qo(Wae).

For j in J(h,C), we set

~ 1 s
go,j = h 2@_jA?[QBO(WA,WAc) —I-Qo(WAc)].
Let us show that g = > eI (hC) O3 9s,; satisfies the conclusions of the lemma. By assumption

ZFwy is in B %+ B T2K] and ZFw)e. is in h%‘5fc+1l’5’2g,b‘2[F] + R %0 BT F). We plug
these informations inside (3.12). We get

| A" 25 By (W, Wae)

< 09 Z 95 min(j1,j2) |:h%_26;c+1 + B 2041 2_%2]

max(j1,j2)>j—C
J1,j2€J(h,C)

| £
w 9~ (J1++24)(b-2)
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Summing using the fact that the number of negative j,’s in J(h, C) is O(|log(h)|), we obtain a

bound in 29-7+0=2) 332541 which is the bound characterizing elements of ha~Wis ngb_2[F ]
(where F is a closed set of the form C~! < |¢| < C). In the same way

| A" 25 By (Wae, Wae)

‘LOO < CZj Z 2% min(j1,j2) [h%_%ﬂ n h1_5;€+12_j71}

max(j1,j2)>j—C
J1,52€J(h,C)
1_g 1-5, o722
X [h27%+1 + BT %4127 2

w 9~ (1++72+)(0-2)

Summing we get a bound in C 29 p1 21 4 2%112_0_26;%1} 2-7+(=2) " This characterizes an
element of h'~2%-+1 Bg&,b_2[F |+ R2=0=20% 11 Bééb_2[F ]. Summarizing, we get finally that g, is in
B~ 2%k [S’i;,b_% [F] which is the wanted conclusion since we assume b’ < b — 3.

To estimate Opy,(z€)g2, we have to perform similar estimates replacing By (WA, WAC) (resp.

By (WAc, WAC)) by (xhD,)By (WA, WAc) (resp. (xhD,)By (WAC, WAc)). If S(¢) is a positively
homogeneous function of order A > 0, smooth outside zero,

[Opy, (2€), Opp(S(8))] = iAh Opy (S).

Consequently, the expression (3.7) of Qo and Leibniz rule show that Opy(z§)Qo(V') may be
expressed from By ( Opy,(z€)V, V) and from hBy(V, V), where By is a bilinear form satisfying

the same estimates (3.12) as By (Actually, By is either a multiple of the polar form of the
quadratic form in the first line of the right hand side of (3.7), or a multiple of the polar forms
of the sum of the second and third lines). The last property stated in Lemma 5.1 implies that

y ~0b—5 y ~_1b_2
2% Opy, (@€ wae € 3%k B 2 [F] 4 W' %kn B T2 ).

Moreover, still because of this lemma, ZFw, is in B0k 5’85"‘2[1( | for a compact subset K of
T*(R\ {0}). It follows from (2.13) and the fact that z§ restricted to such a compact set is in

/ ~ / ~0.b—2
the class of symbols S(1), that Z* Op,, (z&)wy is in h=%+1 BL2[K] ¢ h™ %k ngb 2[F]. This
shows that to estimate Opy, (x&)Bo(Wa, Wae), Opp, (&) Bo(Wae, Wae), it suffices to use the
bounds obtained above for Bo(Wy, Wae), Bo(Wae, Wye) replacing b by b — % We conclude

51,0+

that Opy, (2€)go is in A~ 2%+ B 3[F] ¢ 2185 "2 [F).

We compute next Qo(Wy) from (3.7). Let us examine first the contributions that are bilinear
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in (wp,wy) ie.

— L OpA(€1%) [ (Opalelel ™3 ywn) (Opy(ele]~)inn) |

4
— 2 OpA(€1%) [ (Opal€1 ) (Opa €] )|
(5.26) Z, 1 1
+ < Opy(I¢]) [1a Opy(1€] 2 )ia = @a Oy (I > Jun |

7

— = Opy(&) [ Opy (€]€]=2ma — @a Op (€l )uwn -
We use that (5.12) may be computed from (5.13), up to a remainder given by (5.14) with
po =3, b’ = b — 2, that contributes to v/hgs in (5.7) (since b’ < b — 2 and b is large enough).
Notice that the main contribution, computed from (5.13) vanishes. For the terms inside the
first two brackets in (5.26), this follows from a two by two cancellation between the two
contributions in each bracket. For the last term in (5.26), we remark that the symbol & of
the outside operator Opy,(§) is an homogeneous polynomial, which allows us to make use of
expansion (5.13) with a1 =&, p1 + p2 = 0, and implies as well the vanishing of that term.

We are left with studying the quadratic terms in wa and the quadratic terms in wp in (3.7).
We may apply to both of them i) of Lemma 5.6 with (p1,p2) = (1,1) or (p1,p2) = (—1,—1).
We get the contribution to Qo(Wa) given by the sum of the two expressions (5.8).

To study Co(W), we use that the assumptions imply that Z*w is in A%+ B 2[F] (This

follows from the fact that hBs " 2[F] C h?BX"?[F], as a consequence of the inequality

h;j = O(h?)). To bound HA?Z’“C’O(W)HL(X,, we apply (3.15) withp =00, d=b—a —2—0,
Vi =V, = V3 =W. Our assumptions on w and d imply that

125D, ) ]| o = O (k1 7)

as is seen from the expansion w = )

(h,C) @;wj and the bounds on the w;’s. It follows
from (3.15) that

jeJ
(5.27) AL ZECH (W) e = 0(2%—j+<b—a—2—o> h—36;+1—0>,

. _35 —0plb+s . . .
The conclusion ZFgs € h™3%+1705 2 [F] follows if we assume b’ < b — % (since « is any
number strictly larger than 2).

/ ~1.p/+1
To obtain that Z* Opj,(z€)gs is in h_?"skﬂ_OBigb i [F] we make act Opy,(x) on Co(W) and

we argue as in the study of quadratic terms, distributing xhD, on the different factors using

7 ~ _5
Leibniz rule. We have seen that Z* Op, (z&)W is h™ %+ Bgéb 2[F]. It follows as above that
we get for HA?Zk Oph(xg)Co(W)HLoo the same estimate as (5.27), with b replaced by b—1/2.
This gives the wanted bound as V' < b — 5. This concludes the proof of i) of the lemma.

i1) Let us show first that we may replace in the quadratic (resp. cubic) part of the left hand
side of (5.9) w by w, = wp + \/E(ZUQA + w_gA) (resp. by wp) up to a contribution to the
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hg term in the right hand side. By assumption, kap is in h_%ﬂl’;’géb/ [F] for some b <
— 2. Set Wy, = (wp, W), G = (g,7) and let us show that the contributions of Z¥By(W,,G)

and hZ¥By(G, Q) are in hVker B2Y [F]. We use (3.12) and the assumption that Z¥g is in
h~¥krr BV [F] to bound using (3.12)

[AZ B (WG, <O Y 2hmnn g

max(j1,j2)>j—C
J1,J2€J(h,C)

We get an estimate in O(h_451,€+P 2J _”b/) which shows the wanted conclusion. One argues in
the same way for hBy(G,G).

Considering the cubic term, we write w = wy + Vhg', where ¢’ = (wap + w_2p) + Vhy

satisfies Z¥g' € h™20k+18%Y [F] and where ZFw, is in B 0%+ LY [F]. If we set G' = (¢',7),
we have to study HA?Z"f [CO(WA +vVhG") - CO(WA)] HLOO ie. \/EHA?Z’“TO(WA, Wa, G’)HLOO,

h||APZFTy (W, G, G| and h3 || ARZFTH (G, G, G| - I d =V — a — 0, we bound

|25(hD,) W[, = O(hO%k1), || 2K (D, ) ||, = O(h2ke170).

[
Plugging these estimates in (3.15), we get for the quantities under study a bound in terms of

95 —i+(t'=a=0)p, =45, 143 et us study as well
Opy, (€) Bo(Wa, G), - Oy (a€) Bo(G, G), - Opy () [Co(Wa + VRG') = Co(Wi)].
As in the proof of i), we may express these quantities from
Bo( Opy,()Wy, G),  Bo(Wp, Opy(€)G),
VRTy( Opy, (2€)Wa, Wa, G'),  VETy (W, Wi, Opy,(2€)G'),
hTo(Wa,Opy(2€)G',G"), hTo(Wa,Opy(2€)G', G), h%To( Opy, (26)G', &', G'),
and from quadratic and cubic quantities of the form of those already estimated. By as-

/ ~ / / ~ /_ 1
sumption, the g-term in (5.5) satisfies Z* Opy,(z€)g € h™%+rBLY[F] h_35k+1’825b 2[F].

Moreover, by definition of that quantity, Z* Op, (z€)w, is in h 0k B [F]. The above esti-
mate of By, with b’ replaced by b’ — %, shows that

| AL 25 By (Opy, (26) Wy, G) || Lo + || AL 25 By (W), Opy, (2€)G) — o(h—45x’c+P2j—j+<b’—%>).

[P

. a8 2 -1 48 Bl =3 I ~ . .
We obtain a h~4%k+r By~ 2[F] ¢ h™%%+rB) ~ 2[F] contribution to Z¥ Opy, (z£)g in the action

’ ~0.p—1
of Opy,(z€) on (5.9). The definition of ¢’ implies that Z* Opj,(z€)g’ is in h= 2 B2 [F].
Bounding, with d = b — % —a—0

HZ]"?<th>a+d Oph(xé.)WAHLoo — O(h—0—5;€+1)7
|Z2%(hD,) 4 Opy, (3G | = O (A0 2ki),
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we get again from (2.15) that

| A% 2¥ Opy, (2€) [Co(Wa + VRG') = Co(Wa)]|| oo = O(22 7+ 2700 p=40001+3),

If we replace above b/ by & 4+ 3 (since a = 2+ 0), which corresponds to decreasing by 3 units
the assumption made on ' — b in Proposition 5.2 (i.e. imposing & < b — 8), we obtain finally
that the contributions of Qo(W)—Qo(W)) and Co(W)—Co(Wy) to (5.9) may be incorporated
into the hg term of the right hand side. We are reduced to the study of

Qo(Wa + Vh(Wap + W_an)), Co(Wa).

To treat the first expression, we use i) of Lemma 5.6, which allows us to compute expressions
(3.7) using (3.11). The remainders satisfy bounds of the form (5.20) with pe = 3, so may be
incorporated to the hg term in (5.9). We have already seen in the proof of i) that the O(1)
term in (5.9) is given by (5.8).

The O(v/h) term is computed from (5.19) applied to the different contributions to Qq given
by (3.7). We need to compute explicitly only the A-oscillating term i.e. the contributions to
(5.19) corresponding to p; +2ps = 1 and pa£2p; =1 (p1,p2 € {—1,1}). From the expression
(3.7) of Qo and (5.19), we get a contribution

(5.28) (1-x) (wh_ﬁ)% ]dw]% EA(ng — w_QA).

In the same way, using (5.16), we compute the A-oscillating cubic term coming from the
expression (3.8) of Co(Wa). We obtain a contribution (1 — x) (wh_ﬁ)\dw(x)\%\wAFwA.
Summing up, we get
Qo(w, w) + VhCo(w, W) = Wop + W—2a
+ \/ﬁ(’[ﬁg/\ + Wp + W_p + ’[17_3A)
+ hi1
where according to (5.17) and (5.20),

! ~o 1/ / ~1.y+1

Zk‘gl e h_46k+1826b +1[F] C h_46k+1 ié)b +2[F]
(if o' is large enough), and where wy is given by (5.10). The contributions wsa, W_p, W_3a
have expressions (5.11), for which we do not need to compute explicitly the coefficients 1,
. This concludes the proof of the lemma. O

The next step of the proof of Proposition 5.2 will be to deduce from equation (3.10), and from
the description provided by Lemma 5.3 of the right hand side of this equation, an expansion

1
of Op,(7§)w, exploiting that 2z¢ + [£|2 is an elliptic symbol on the support of 4§. In a
first step, we establish some a priori bounds for the components w; of w cut-off outside a
neighborhood of A.
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Lemma 5.7. Assume that (4.9) holds for k < 5§ + N1 for some integer Ny satisfying (Ny —
No)o > 1. Then for any symbol a in S(1), microlocally supported outside a neighborhood of
A, the following estimate holds for k < § + Ny, and any j in J(h,C),

(5.29) HOphj (G)waj“Lw < Ckeh%_é;werfNo (2j/2 + h1/2)2—j+b’

forany b <b—a <b-—2.

Proof. Let us construct for any 1 < £ < Ny — No, any k < § + N1 — £, a family of symbols in

S(1), (b5)o<e<e, vanishing close to A and a sequence (Tf’k)jej(h7c) with

(5.30) [ Cehs Ok (2912 4 p1/2) =iV
such that
¢
! o, L,k
& 25 O oy =1 |37 21 Oy )il |
V=0
where w](-é’el) denotes a function defined like w; = @’ijA?w but with A? replaced by another

cut-off of the same type. Then (5.31) with £ = N; — Ny implies (5.29) since h;.vl_NO <

(&)

ho(N1=No) < h, and since w; "’ satisfies the same L estimates (4.9) as wj.

We remark that to prove (5.31), we just need to treat the case £ = 1 and iterate the formula.
Finally, to obtain (5.31) with £ = 1, we use that, by the symbolic calculus of appendix, and

since a vanishes close to A, we may find a symbol ¢ in S({(z)~') C S(1), vanishing close to
A, a symbol p in S(1) such that

Opy, (a) = Opy, (@) Opy, (22€ + [€]2) + B Opy,, ()

for an arbitrary integer N. If N is large enough, the fact that (4.9) holds implies that
Z]'?(hév Ophj(p)wj) satisfies estimate (5.30) with ¢ = 1 for all j € J(h,C). We are thus
reduced to showing that

(5.32) 2! Opy, () Ops, (22 + €12 )

may be written as the right hand side of (5.31) with £ = 1. We use (4.17). On the one hand,
we get a contribution to (5.32) of the form

24y Opy, () (55 — 2wy

that forms part of the sum in (5.31) with ¢ = 1. On the other hand, the nonlinear terms in
(4.17) bring an expression

zFop,, (9) [—\/ﬁz—%@*_jA?Qo(W) — 12730 JALCH (W) — 275 hier APR(V)].
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Let us check that these terms satisfy estimates (5.30) with £ = 1. For the quadratic terms,
this follows from (3.12) (with p = pg, = pr, = o0) and from the assumption &)+ d;, < 52“
if k1 + ko < k, that follows from (4.1). For the cubic term (resp. the remainder) we use (3.15)
(resp. (3.17)) and the estimates of HZk(th>°‘+dVHLOO deduced from (4.9) with d =b—a—0,
b < b— o — 0. This concludes the proof. O

We shall use the preceding lemma to give an asymptotic expansion of Ophj (v§)w;, assum-
ing that we know a priori that Qo(w,w) admits the expansion given by equality (5.7) in
Lemma 5.3, or that Qq(w, @) + vVhCo(w,w) obeys the equality (5.9) of the same lemma.

Lemma 5.8. i) Assume b’ < b—15 and that Qo(W) satisﬁes (5.7). Then there are functions
Wop = ZjEJ(h o) Ojwion,; such that for any k < 5 + No, Zkwyiop is an O(e) element of

Ay R |

Kig] and a function g = ZjeJ(h,C) ©3g; such that Zkg is an O(e) element
of h~ et 143, - N ngf" [F'] for some closed subset F' of T*R whose second projection is compact

in R* and Z¥ Opy,(2€)g is an O(g) element of B30k vy -Ng BLY [F], so that

wan = —i(1 =) (ah ") 2 )
(5.33) \f
wan = —i(1 ) (™) = () 0}
and for any j in J(h,C)
(5.34) Opp, (Vi)w; = \/ﬁ(ng,j +w_24,j) + hgj.

ii) Assume that b < b—8 and Qo(w,w) + vVhCo(w,w) obeys (5.9). Then there are functions

R
wiop such that for any k < 5+ No, Zkwigp is an O(€) element of h™ 25k+1LC’OJ2 +2 [Kﬁ],
there are functions wpy = ZjeJ(h,O) Ojwep,; for £ = —=3,-1,3, such that for k < s+

/ b +3
Ny, ZFwgy is an O(e) element in h_35k+1LOOIZ’\b+2 [Kg], a function g = ZjeJ(h,C) O3g;
such that Z¥g is O(e) in h_45;“+1+N1*N01§25bI[L] and Z¥ Opp,(z€)g is an O(e) element of

b/ 1
B0k, - NOBO 2[F] so that

Opy, (V8)w; = Vh(wanj + w-2a ;)
(5.35) + h(waaj +w-p;+w-34;)
+ h1+ogj.

Moreover, wigp is still given by (5.33) and

wspy = (1 — X)(l’h_ﬁ))\g ]dw(m)\2 wy
(5.36) wop=(1- X)(mh_ﬁ))\_l |dw(z)|? [wa |* @p

w_gn = (1 —x) (zh ™) A3 |dw(z)]* @}
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for some real constants A3, A\_1, A_3.

Proof. i) By Corollary A.3 of the appendix, we may find symbols a in S({z)™1), ¢ in S(1),
supported in a domain Cj 1< |¢] < Cp and outside a neighborhood of A such that ~§ =

a#(2z€ + ]f\%) + hj»vc. Moreover, we may write

1
(5.37) a= (22€ + |€]2) 71§ + hja

for some symbol a; in S({x)~!). We get

1
Since hj < h?, taking N large enough, we see that assumption (4.9) implies that the last
term in (5.38) may be written as h%gj with HZ]'-“ngLoo = O(h=%277+Y) for k < 5+ No. By
construction, g; is microlocally supported in a closed set of the form Cj < €] < Co.
Moreover, since by Lemma 5.1 ZFw, is in h_%ﬂlg’géb_z[K], we get that Z¥ Op,, (x€)wy be-
longs to h~%+1 BL7?[K]. Since Z* Opy,(x€)wae is by the same lemma in h2 ks BY2F) +
R =1 BIPT2F], we get that 2% Op,, (z&)w belongs to h~%+1 BL2[F] + h!' =%+ BL 2.
Since h27z = hj = O(h?) = O(1), this implies for HZJk Opp, (azf)ijLoo a bound in

95 01 [2%—j+(b—2) + hg—j+(b—2)] < Ch O%k+17+(0-2)
This implies that HZJ"f Opy, (€)g;]| o s O(h_5k+12—j+b') so that } ;¢ ;) ©jg; brings a
contribution to the g function in the statement of the lemma.

We use expression (4.17) to study the first term in the right hand side of (5.38). The contri-
bution of

(5.39) zy [hj Opy, (@) <%{‘73 —iZ wﬂ‘)]

has according to (5.29) a bound of the form

(5.40) Creh? ~t1em—No (h 4+ hh2 )27+ < Cpeh o Tmem —no g =it

using hj = O(h?). This will give a contribution to g; in (5.34) since the action of Opy, ()

on (5.39) admits similar bounds as a is in S((x)~!).

Let us examine the contribution of

s zk [ — V2772 Opy, (a)©* ;A"Qe(W) — h277/% Opy, (a)O* ;AT Co(W)
— 27311 Op, ()0 ;ATR(V)
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to (5.38). We use expressions (5.7). The contributions of g2, g3 to (5.41) induce in (5.34) an ex-
pression contributing to hg;. Actually, they give terms whose L*°-norm is O (h_252+1+12_7+b’).
Moreover, the action of Opy, (z£) on these terms admit similar bounds, again because (5.41)

contains a Opy,, (a) operator in factor, with a in S({x)~1). In the same way, the L>®-norm of
the last term in (5.41) (and of the action of Opy, (€) on it) may be estimated using (3.17)

with d = b — o — 0 and the fact that HZk<th>o‘+dVHLoo is bounded using (4.9) (The loss

in 27+(@+0) = O(h=28(¢+0)) coming from the right hand side of (3.17) is absorbed by part
of the h'/-extra factor in the last term in (5.41)). This brings another contribution to hg;.
Consequently the only contribution to (5.41) that we are left with is

(5.42) —zk {2—”2\/% Opy, (@)0" ;A (@ + w_%)] :

We shall study this expression in part i) of the proof below.

i) We assume that Qo + vhCy obeys (5.9) and write again (5.38), expressing the right
hand side from (4.17). The contribution (5.39) brings, according to (5.40), part of the term
h'*9g in (5.35). The same holds for the remainder term in (4.17). We are thus reduced to
the study of the quadratic and cubic terms in (5.41). By (5.9), we have an expression for
Qo(W) + VhCo(W). The term § in that expansion will bring part of the g; term in (5.35).
Consequently, we are reduced to studying

s ZF[VR27I2 Opy, ()07 A% (ian + -2 |
25 [h279/2 Opy, ()07 AR (ian + Tn + B p + B-s0) |

We notice first that wp is microlocally supported close to A while Ophj (a) cut-offs outside a
neighborhood of that set. Consequently, the wp term in the second formula (5.43) gives rise
to a remainder. For ¢ € {—3,—2,—1,2,3} and j in J(h,C), set

(5.44) wiy) ;= ~279/2 Op,, ()07 ;Aldyy.

Expressions (5.41), (5.42), (5.43) show that (5.35) holds with wys ; replaced by wgdj. We

have to show that, up to a modification of g; in (5.35), wéjl\) ; may be replaced by a function

wep ; such that ZjeJ(h,C) @;wm,j = wy, satisfies the conclusions of the lemma.

We write wpp = (h,C) @;,ﬁm,jr and set

j'ed

@2&. = @*_jA?@zA = Z MY Ophjr (90(2_j+j/£))wmvjl'
j'eJ(h,C)

Since wyp j = Ophj, (@(€))wen ;v for some @ in C§°(R*), we may limit the sum above to those

j' satisfying |j — 7| < M for some M. This shows that (ZJ’?@&) j)j is a bounded family in

250 roo 13 +5 —28, 100 72,0 +1
W™kt LT 0\ 2 [ K] € AT k+1 LT 7 [ Ko
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/ 43
when ¢ = £2 and in h %+ LOOIZ’\ T2 [Kg] if ¢ € {—3,—1,3}, according to the assumptions

made on wyp. In the expression (5.44) of

1 —j (1
wéA)J = —27I/2 Ophj(a)wéA)J,

we insert the decomposition (5.37) of a. Since 7§ may be assumed to be equal to one close
to LA, £ # 1, if the support of v, is close enough to A, we may write

1 _1
a‘g/\ = (‘6’5 —6)_1 ]dw(az)] 2 +hja1‘gA

for £ € {—3,—2,—1,2,3}. Consequently, (5.44) may be written as the sum of

(5.45) weny = 272 (|02 — )7 [dw ()| "2 0 Al
and of
(5.46) ~273 Opy,, (¢ + hyd”)ay

where ¢, d* are symbols, with ¢/ vanishing on ¢ - A.

Let us show first that (5.46) multiplied by v/A when £ = £2 and by h when /¢ belongs to
{-3,—1,3} provides a contribution to h!'*7g; in (5.35). Since (ZJ]%ZS_LI%AJ);' is a O(e) family
in b~ 2041 1,50 Ji’gxrl [Kig] and ¢*2 vanishes on £2A, we see that the L®-norm of the action
of Z]'? on (5.46) with ¢ = £2 is bounded from above by

Ce2 2~ Phirgi =i+ H D < Cepl =i i+ (/41

Consequently, when ¢ = £2, if we make act Z;? on (5.46) multiplied by Vvh, we obtain an
element of 2~ 2%+1 8% [L] i.e. a contribution to h1*7g; in (5.35). In the same way, when
¢ € {-3,—1,3}, using that (fo[ﬁé}\)’j)j is in h_35§c+1L°°I£21’\b,+1 [Kg], we may estimate the

L*>°-norm of (5.46) on which acts ZJ’»c by

Ce2 5 h P12 =+ O[3 4 p] < Cehs Phiig i+ +3),

Again, after multiplication by h, this gives a contribution to h1+Ugj in (5.35). Notice that
the fact that Opy,(2§)g = > ;e im0 2%@; Opy,, (z€)g; satisfies the same estimates as g, with
b’ replaced by b/ — %, follows from the above bounds since @23 ;s microlocally supported in
a compact set of T*(R\ {0}).

We have thus shown that Op, (v§)w; is given by the right hand side of (5.35), with wea ;
given by (5.45). In particular since |dw| is positively homogeneous of degree —2, we get

_1 __
wn = > Ofwey = (02 — )7 [dw(x)| "2 @
jeJ(h,C)
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Combining this with (5.8), (5.11), we obtain (5.33) and (5.36). Moreover, expressions (5.45)
and the properties of wyy obtained in i) if Lemma 5.3 show that ZFw.iga is in the space

/ ~ by 43 b L3
h_25k+1L°°Ji’§A+2 [Kﬁ] and that wgy, ¢ € {—3,—1,3} belongs to LOOIZ’\I)JFQ [Kg], and are
O(e) in these spaces. O

Proof of Proposition 5.2. Let b’ satisfying the assumption of the proposition.

By Lemma 5.1, ZFw) is an O(e) element of A~ %+1 Loojzlo\’b—2[K] and ZFw,e. is an O(e) element

of h%_%ﬂlggéb_z[F] + W%k BM TR, for 0 < k < 5+ N1. We may therefore apply 4) of
Lemma 5.3 which shows that (5.7) holds. This allows us to use i) of Lemma 5.8. In that way,

we obtain functions w4sp, in the spaces indicated in the statement of that lemma, such that
(5.6) holds. Writing

w=wx+ Y O70p, (v§)w
j€J(h,C)

and using (5.34), we obtain equality (5.5).

We still have to check that Z¥w) is an O(e) element in A~ 2%+1 ijX’b/ [K] since Lemma 5.1

was only ensuring that this function is O(e) in the space h_51,v+1L°°I~2’b/ [K]. To do so, we
must show that

(5.47) |25 Opy, (226 + €] )wn | oo < Ceh™Phsrhy2=i+,
We notice that, by symbolic calculus and assumption (4.9)

|25 [ Opy, (22€ + €]2), Opy, (v4)] wy|

satisfies the wanted bound, since the commutators between the vector fields and Opy, (e), for
a symbol e, are of the form Ophj(é) for another symbol é. We may therefore study

|25 Opy, (v4) Opy, (226 + €12 ) wj | -

Using the commutation relation

[tD; + 2D, Opy, (22€ + [¢]%)] = i Opy,, (22€ + [¢]?)

we see that the above quantity may be estimated from

10ps, (7a) Opy, (2 + [€]2) 25wy

for ¥ < k and 4, a symbol with Supp¥s C Suppya. We use now (4.15), which provides the
wanted bound of type (5.47), up to a similar estimate for

25 VR Opy, () 2§ 02,81 Q0(W))| o
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To study this quantity, we need to exploit the structure of Qo(W) given by (5.7). The
remainder in the first equation (5.7) gives a contribution bounded by the right hand side of
(5.47). On the other hand,

Oy, (51) 2507 A% iy + -01)

is O(shoo) since 4, cuts-off on a neighborhood of A while wiop are supported close to +2A, so
outside such a neighborhood. This concludes the proof of (5.47), whence the proposition. [

Let us deduce from expansion (5.5) of w a second refined decomposition of w in oscillating
factors.

Corollary 5.9. Under the assumptions of Proposition 5.2 with moreover b’ < b— 8, we may
write

(5.48) w =wp + Vh(wap +w_op) + h(wsy +w_p +w_sr) +h"g

where wiop, wisp, w_p Ssatisfy the conclusions of it) of Lemma 5.8 and are given in terms

of w by (5.33), (5.36), and where for k < 5+ Ny, Z¥g is O(e) in B k1 - oY [F] and

/ ~0b —1
Zk Opy,(2€)g is O(e) in k14, N &f’ 2[F].

Proof. By Proposition 5.2, w may be written as (5.5). Consequently, the assumptions of i)
of Lemma 5.3 hold and this lemma implies a decomposition (5.9) for

> AMQW) + VRCy (W),

FE€J(h,C)

This shows that the assumptions of ii) of Lemma 5.8 hold. According to this lemma,
Opy, (V/C\)Wj is given by (5.35). We define wyy = ZjeJ(h,O) ©jwen,; and get (5.48), re-
membering that we defined wx = > .c ;4 0y O Opp, (va)w; if w = 3 .5 0) Ofw;. The
expansion in terms of wy,w, follow from (5.33), (5.36). O

We have seen in Proposition 5.2, that Z¥w, is an O(g) element in h_%ﬂijX’b, [K]. We
need a more precise description of this quantity.

Proposition 5.10. Let wp = ZjEJ(h’C) @;wA,j be the function introduced in Proposition 5.2.
There are elements f = 3 ic jn.c) ©;fi where ZEf s O(e) in h_35§6+2L°°I~2’b/ (K] for k <

5+ No and r = ZjEJ(h’C) Ojrj, with Zky of size O(e) in h_46;€+NrNo+1[;’25b, [F] such that

(5.49) Opy, (226 + |€]2 )wa ;= hi [ f; + hiry).
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Proof. We use the definition of w;x = Opy,, (ya)w; and (4.17) to write

Opy, (226 + [€]F)wjn = [Opy, (22€ + [€]Z), Opy, (10)] wy

~ V27 Opy,,(12)0% ;AR Qo(W)
(5.50) ; i
+h272 Opy, (7a) [5’&7]' —iZwj - G*—jA?CO(W)]

—275h1 Opy, (74)O" ,AMR(V).

The commutator term may be written hj Opy; (e)w; for some symbol e in S(1), with support
contained in Suppvya (up to a O(h;-’o) = O(h*) remainder). Consequently Opy, (e)w; will
satisfy the same type of properties as wp j i.e. by Lemma 5.1, (Z]k Opy, (e)wj)j will be a O(¢)
family in b~k L‘X’I[O\’b/ [K] so that the first term in the right hand side of (5.50) contributes
to hyf; in (5.49).

To study the quadratic and cubic terms in (5.50), we use expression (5.9) for Qo(W) +
VhCo(W). The remainder § in (5.9) will bring a contribution to hjhérj in (5.49). The

contribution

V272 Oy, (1)07 ;A7 (@m +Wan + Vh(wsp + -n + "5—“))

and its Z-derivatives are O(¢h™) since 7y, cuts-off close to A, while the terms on which it acts
are supported close to £ - A, |¢] < 3, ¢ # 1. Consequently, the only remaining term coming
from (5.9) is
—h272 Opy, (4)O" ; Al
Since o
Zhiy= Y Z*endyy s O(e) in K% LIV K]
j'ed(h,0)

we get a contribution to h;f; in (5.49).

The remainder term 2~ 3A% Opy, (’yA)@*_jA?R(V) will contribute to the last term in (5.36)
as it has been seen in the estimate of the last term in (5.41).

Finally, we are left with studying
i (PSR
(5.51) h272 Opy,; () [iwj - szj}

We use 4ii) of Lemma 4.4 to bound the action of Z;? Opy, (2z€ + \5]%) on (5.51). We obtain
an L*° bound of the form

Orz V1S @@t S (0060 + b))

k1+ko<k+1 k1+ko+ks<k+1
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Using (4.1) we bound this by Ch; (h% + h;)Er42(v) so, according to (4.9), by

Chyh™%k+2 (h3 4 hy)279+Y,

We obtain in that way a contribution to h;f; in (5.49). O

In the following section, we shall need estimates not only for w, but also for

w® = Opy, () )w, w = Opy ({&))wa,
where £ is an integer 0 < ¢ < 5 + Ny + b. Let us deduce from Corollary 5.9 an expansion for
w® in terms ofwl(f), (=0,....,5+No+V.
Corollary 5.11. Under the assumptions of Proposition 5.2, for £ = 0,...,5 4+ No + b we
may write

(5:52) 0 =l +Vaugd + ) + (i el ey 4 attogl)

where for any k < min (§ + No,5 + No + b — 6), 2k s in h_46;€+1+N1*NoBgéb/_g[F]

J

1
Zk Opy,(v€)g\" is in h~ 1, - BOb - 2[F] and of size O(g) in that space and
wil = —i(1 — x) (zh ) (2 dw)(dw) ¥ |dw)| 1+7\/§(w1(f))2
w(—g/\ = —i( (mh B) 2dw (dw) Myd ‘Tﬁ(m%))2
5.93
wl) = (xh 5) dw) 2€|dw| 2w ‘ @)
w', = ) (2h ) (Bdw)(dw) ¥ [dw > A4 (@')?

where )\g,)\g_ 1,)\5_ 3 are real constants, x € C°(R), x = 1 close to zero, with small enough
support.

Finally, in the decomposition

> e

FEI(h,C)
of wl(f) deduced from the one of wy, we may write
1
(5.54) Opy, (22 + [€]2)w); = hy (£ + hirl?)
where

(Zﬁkf]@))j is a O(e) family in h_35§c+2L°°[27b/—f[K]

(Z;?rj(.g))j is a O(e) family in ™ 40k14 8- l’S’QfLZ[L]-
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Proof. By definition, wy = Op,, (<§>_Z)w%) and kal(f) belongs to h_%ﬂLo"jX’b,_é[K]. By
Proposition 2.11, we may write

wp = (1 —X)(xh_g)(dw> -t () + hry

where ZFr is in h_‘s;ﬁll’;’gol’bl[K] and the action of Z¥ on (1 — x)(zh™") (dw)‘gw%) is in
h_5;c+1L°°jg’b/ [K]. We apply Proposition 2.12 to compute powers of wy

@UA)2::(1——x)(xh—5) ¢1w>—2600%)) + By
(wa)" = (1~ x)(xh_5)2<dw>—%(m%))2 + hr_y
(5.55) (wp)® = (1= x) (@h ™) > dw) =2 () + hrg
wal*w} = (1~ x)(xh‘ﬁ)?’(d@—i’»qw%)‘2w§\13) .
a2 = (1= ) (2h~?)* (dw) w0250 + hr_y
(@a)” = (1 =) (@h ™) (dw) > (@) + hr_s

. . o8l =—220 —
where the action of Z¥ on rq gives an element of A 2041 B

W3 B K] if g = 3,1, -1, 3.

%[Kq] if ¢ = £2 and of

On the other hand, consider the contributions wga, |¢| < 3, ¢ # 1, to the expansion (5.48)
and define w((ﬁ\)’l = Opy, ((€)*)wga so that (5.48) may be written

(5.56) w® = w + VRS + w) + hw w0+ 0y + pig®

where g() satisfies the bounds of the remainder in (5.52). We apply again Proposition 2.11
(0),1

to get an expansion of w A - Since by i) of Lemma 5.8,

2b+2[

ZFwygp isin h™ 21 o0 Kig],

2b+2[

kaqA is in B~ 3% Lo°] Kq], for g = —3,-1,3,

we obtain that

wﬁ/\ =1 =x) (a;h‘ﬁ) (2dw) wisn + hrgg’l
o wyd! - ¢ 100
qA _(1—X)($h )(qdw) qu—l—h2rq "~ (]:—3,—1,37

Ly +3—¢

where Zkri% isin h™ 26k+113 [Kg] and for ¢ = —3,—1,3,

E (O : « 338 3L +1—£
Z?“((]) is in h™"%+1 82 [Kq].
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We deduce from (5.56) that

w® = wl(\é) +Vh(2dw) (1 - X)(xh_ﬁ) (won 4+ w—_2n)
(5.58) + (1 = x)(xh™?) ((3d w)fwsa + (dw) w_p + (3dw)fw_3p)
+ hl—l—og(f)

with a new remainder ¢g(¥) as in (5.52). We use next (5.33), (5.36) to express wga from wy,

wy and (5.55) to compute the resulting quantities from w%), wff). We get expressions (5.53),

with (1 — x) replaced eventually by some of its powers. As already seen, these powers may
be replaced by (1 — x), up to O(h*°) remainders.

The remainders coming from the ones in (5.55) may be expressed as the product of 3
(resp. h?) with (1 — x)(zh™")|dw| (2dw)’rss (resp. (1 — x)(zh™P) ldw|? (gdw)lry, € =
—3,—1,3). By Proposition 2.11, and since |dw| (2dw)’ (resp. |dw|* (gdw)?) satisfies (2.15)
with (¢,¢,d,d’) replaced by (—2¢ — 2,2¢,0,0) (resp. (—2¢ — 4,2¢,0,0)), we obtain that the
action of Z¥ on these functions gives elements belonging to

b—1

54

h 20k B (K] € h™ 2k BOV (]
(resp. h™3%+1 Bé@gb/_l_z[Kg] C B 3% B&”"f[m]) for ¢ € {—3,...,3} so that we obtain again
a contribution to g*. (Notice that the action of Opj,(z€) on these remainders give elements

of the same spaces with b replaced by b — 1/2, since they are microlocally supported in a
compact subset of T*(R \ {0})). This concludes the proof of (5.52).

To prove (5.54), we first write, according to the definition of w/(f) and (2.13), that w%)j =

Opy, (<2j£>é)w1\,j. Making act Opy, (<2j£>€) on (5.49), we get for the left hand side of (5.54)
an expression given by its right hand side, modulo a term

|Opy, (226 +[€]2), Oy, ((27€)") ] wn .

Since (kaAJ)j is a bounded family in B30k LOOJX’b/ [K], we see using symbolic calculus,

that this expression contributes to the h; f]@ term in (5.54). O

6 Ordinary differential equation for wy

We consider a solution v of (3.6), satisfying for h in some interval |h’, 1] the a priori estimate
(4.8) for k¥’ < k+ 1, with K < s —a — 1. By Proposition 4.1, we know that v satisfies then
(4.9), and by Corollary 5.9, that v = vy, + w + vy, where w has an expansion (5.48). Our
goal here is to deduce from that and from the equation satisfied by w, a uniform estimate
for ||Opy, ((€)*)w(t, -)HL(X,, and estimates for || Z* Op,, ((£)*)w(t, -)HLOO which are not uniform,
but which are better than (4.9) (i.e. that involve exponents closer to zero than the 47, ).
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For 0 </ <5+ Npand 0 <k < 5+ Ny — £ we define
k() _ (k. (¢
(6.1) WO = (Z¥w ) oy
where
w® = Opy, ((6)")w,

as in the preceding section. The estimates we are looking for will follow from an ordinary
differential equation satisfied by W*:(®).

Proposition 6.1. Under the preceding assumptions, the function w® satisfies the equation
(6.2)

Dau® = 21— ) (ah ™) |d ()| w®

- z‘g(l =0 (#h ™) [dw]? (dw) 2 2dw)’ |1+ vV2) (w)* - 301 - VI @9)’]

[0 @O+ OO0 4 B uOFTO 4 30
+ WOt 1)

where x is in C§°(R), equal to one close to zero, with small enough support, where k is a

()

small positive number, where (I>j , —3 < j <3 are given by

o9 (z) = (1 — ) (2h~?)| dw|? (dw) = [@dw% 3B-2v2) | 1]

(6.3) (dw)2t 16 2

q)§g)(x) =(1- X)(azh_ﬁ)\ dw\gfg.g)(dw) 0#1

for some real valued symbols of order —2¢, I‘y), and where H(th)kar(Z) (t,x)HLoo is O(e)

for any integers k,p,L with k < 54 No—£, 0<p <V —1. Moreover, WO defined by (6.1)
satisfies a system of the form

51— X)(eh™) | dew(a) EWH O

DR =
(6.4) + VAQH O [z, by Wk,(é))ka(Z)]
+ WOz, by WhO 75O 4 pls RO )
o where ||(hDy)PZF RO (t,)|| .. = O(e) for0<p <" <V —2/B and k' < 5+ No— L —k;

o where Q%W is q vector valued quadratic map in (Wk’(é), Wk’(g))

combination of functions of the form

whose components are linear

0 (zh=0)®(x) (251w ®) (ZF2w®)
(6.5) g(mh—ﬁ)q)(x)(zklw(@) (Zkzw(e))
0(zh=%)®(z) (ZFw®) (2Fw ")
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for k1 + ko < k, with smooth functions 0 bounded as well as their derivatives, 8 = 0 close to
zero and ® satisfying !Zk ‘ < Olz|*73(x)=% for any k;

o where CO) is o vector valued cubic map, whose components are linear combination of
quantities

0(eh ™)@ (a) (210) (201) (242)
. 0(ah?)2(x) (270 ) (240 ) (247)

0(zh =) ®(x) (2" w®) (ZFw ) (ZFw")

0(zh ") (z) (2" w0 (2Fw ) (ZFw )
for ki + ko + ks < O (z)| < Cla*>(x)=* for any k.

We shall prove first (6.2), deducing it from (3.23) on which we make act Opy, ((£)*). Let us
study first the action of this operator on the nonlinearity.

As in the preceding section, we shall call K or K, compact subsets of 7*(R \ {0}) contained
in a small neighborhood of ¢A for ¢ € {£3,+2,4+1}, by L compact subsets of T*(R\ {0}) and
by F' closed subsets of T*R whose second projection is compact in R\ {0}.

Lemma 6.2. Under the assumptions of the proposition, we may write for £ < 5 + No,

> Ao ((©)) [VAQu(W) + hCo(W)] |

jeJ(h,C)
= —ivA(1 ) (ah )] w2 2 ey [l + (@0)°]
(6.7) g(l— 30 (zh) | dw|3 {dw) 3 (3dw) {)\()( (0y3 +A(f;(w(f>)3}
o= ) (@) dwlbdw) > ol Pufd) + 29 o) o]
+h2r®

where for k < % + No— /¢ AL belongs to h_361;+1+fl§’gc’>b/ [F] and )\gg, )\(_Z)l are real constants.

Proof. We apply Opy,((€)¢) to (5.9) and write the resulting right hand side as in (6.7). By

3b+2[

ii) if Lemma 5.3, we know that Z¥Tf@49s is O(g) in h~ o1 J Kig], 50 ZFiion

is O(e) in h~Pheen [0 P20 ).

- . 3,0/ ¥4
In the same way Z*, is O(¢) in h™~ 36k+f+1L°°I o [

Proposition 2.11 shows that
Opy, ((€)")taon = (1 — x) (zh™P) (2 d w) bson + hfgg,
Op;, (&) )itgr = (1= x) (xh ™) (g dw)igr + h=7lf),

Kq], for ¢ € {£1,£3}. Consequently,
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where Zkri% (resp. Zkﬁ(f)) isO(g) in h™ 25k+f+18 a [Kﬁ] (resp. h_3‘5’€+1+‘fl§’ggb/+1 [Kq]). We
combine this with the expressions (5.8), (5.10), (5.11) of wWga in terms of wa, w2a, and with
the formulas (5.33) expressing w9y in terms of wy. If moreover we compute the powers of

wp, W from w%), wff) using (5.55), we get

3
2

Opy, ((€)")tian = —i(1 — x) (zh™7)| dw| <2dw> “dw)~ (w (€ )) +hr®,

3
2

Opn (1€ )-an = —i(1 ) (eh~*)  dw]3 Y2 2dw)(dw) 2 (@) + '),

& =1

with remainders rgg satisfying again, because of Proposition 2.11, that Zkri% is O(e) in

B 20140 GOV [K+2]. In the same way
~ _ 5 _ 1
by ((6))an = (1 =) (zh ™) dwlEAD (g dw) (dw) Py (w)) @Y) + harlf,

where P, (wl(\),w%)) is equal to (wl(f))3 (resp. ‘w%)|2w%), resp. |w%)‘2w%), resp. (E%))?’) if

q =3 (resp. ¢ = 1, resp. ¢ = —1, resp. ¢ = —3), where )\(Z) are real constants with )\(Z) = %

and where Z krgz) is O(g) in h™%k+140 BY Y [K,]. (We used again remark 5.5 to replace different
powers of (1 — x)(zh™") by 1.)

This concludes the proof of the lemma. O

Let us study next the action of Opy,((£)*) on the linear term Opy, (z€ + ]f\%)w of (3.23),
writing w = Opy, ((€)~9)w®.

Lemma 6.3. One may write, for £ < 5+ Ny

2

Op ({(6)") Opy (€ + [€12) Opy, () ) w® + ith Op,, (é?)ww
= (1= ) an™?) | (31t + gh)uf’
68) ~ 0w dw e [ - @)

+ bl doli dw) ™ [Bdw) () () + G @P)?)

+ @) o)

+ hl-l—or(f)

for some real constants ,u:(f), ,u(_q, ,u(_zg,) and where for k < 5§+ No — £, Zkr® belongs to

/_1
h™ 46k+£+1+N1 Ng B 0,b'— Q[F]
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The proof of the above lemma will use

Lemma 6.4. We may write for £ < 5 + Ny

1 1 )
(6.9) Opy, (€ + ¢]7)wlf) = S =) (zh™7) [| dwlzwl) + ihwl)] + pitop®
where for k < 5+ No — £, Zkrgz) 8 in h_451,v+2+fl§’gg,b/ [L].

Proof. We write remembering (2.13)

1 I 1
(6.10) Opy,(z€ + [€]7)wl) = 3" 2507 0p,, (€ +[¢]2)wl).
jeJ(h,C)

Let us show that we may write

1 1 %
Opy, (26 + [€]%) = 31 dw(z)|% + Oy (e1) (O, (226 + [¢]%) )
(611) + Zhj Ophj (62) Ophj (2‘7:6 + ’6’%)
—ih; Ophj(el) Ophj ( |f|% ) + h? Ophj (e3)

where e; are symbols in S(1, K), for some large enough compact subset K of T*(R \ {0}),
satisfying

1 1
(6.12) erls = — 5l dw(@)| 2.

Denote a(z,&) = z€ + |£|% and take

_ a(r.8) —aledw)
(22¢ + |¢]2 )

61(117,6)

A direct computation shows that the numerator vanishes at second order on A, so that the

1
quotient is smooth, and that its restriction to A is given by (6.12). If we set e(x, §) = 2x£+]|{]2,
we obtain by symbolic calculus

e#e = €% — ih;0ce0ye + h?é
for some symbol €, so that by an immediate computation
(6.13) ¢? = efte + 2ihje — ihy |€|2 — h2e.

On the other hand, by symbolic calculus eje? = e;#e*+ hjeh#te + h? ¢’ for some symbols €}, &
in S(1, K), so that taking (6.13) into account

1
e1e? = ej#e#e — ihjei# |2 + ihjeadte + h?e3
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for new symbols eg,e3. Since eje? = a(z,€) — a(z,dw) = x& + |£|% —1 |dw(m)|%, we obtain
(6.11) by quantification.
Let us use (6.11) to show that (6.9) holds. Actually, the contribution of the first term in the

right hand side of (6.11) to (6.9) gives the |d w|% term in the right hand side of (6.9) (Again,
we may insert a cut-off (1 — x) (xh_ﬁ ) as wy,; is microlocally supported on a compact subset
of T*(R\ {0}) and j stays in J(h,C), if we accept some O(h>°) remainder). The contribution
of the last but one term in (6.11) to (6.10) may be written

—ih Y ©10py,(e1) Opy, (I€]2 ), = —ih Opy(er) Opy, ([€]2 ).
jeJ(h,C)

By Proposition 2.11 and (6.12), this is equal to
%h(l -x) (xh_ﬁ)w%) + hzrﬂ

where Zkrﬂ belongs to h~ ke B Y [K]. Actually noticing that e;(z,§) = \x!el(ﬁ, |z|2€),
and that (8?8561)(:l:1,77) = O(|77|_1_|5‘), |n| — 0 and |n| — +o00, one checks that ej(x,§)
satisfies (2.15) with (¢,¢',d,d") = (—1,0,—1,0) so that el(x,£)|£|é obeys these estimates for

,0,d,d) = (-1,0,—1/2,0). Since kal(\é) is in h_%HHLOOJX’b/[K], the above statement
holds. Since for j € J(h,C), 27 > h*(1=9) the remainder may be rewritten as the product of

Rt with an element whose Z*-derivatives are in h‘5%+1+/zz§’2§' [K] i.e. contributes to h1+"7‘§£)
in (6.9).

We are reduced to showing that the contributions of the second, third and last terms in the
right hand side of (6.11) provide remainders. This is evident for the last term as 2%h? =

hh; = O(h'). Using (5.54), we may write the sum of the two remaining terms
1 1 . 1
(614) 1 Opy, (e1) Opy, (206 -+ 16]2) (£ + harf?) it Op, (e2) (£ + har?).

Since (Zkf]@)j is O(e) in h_35§c+2+eL°°I%b/ [K] and (Zkr](-z))j is O(g) in B4 10 GO [L], the
last term as well as the r](-z) contribution to the first one induce in (6.10) a contribution that
may be included in the h1+c’7“§é) remainder term of (6.9). On the other hand, the fact that
(Zkf]@)j is O(e) in h_35;v+2+fL°°I%b/ [K] implies that Z* Opp, (22€ + ]5]%)]‘}@ belongs to a
e-neighborhood of zero in h™%+2+¢ (h% + hj)[S’&f" [L]. Consequently, the first term in (6.14)

induces also in (6.10) a contribution forming part to the h“’"riz) term in (6.9). This concludes
the proof of the lemma. O

Proof of Lemma 6.3. We notice first that
2

(615)  Op,(()") Opy (a€ + [€]2) Opy, (1€)~") +ith Opy, (é?) = Opy, (a + [¢]7).
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We make act this operator on the expression of w®) from w A given in (5.52). The action of

Opy, (m£ + |£|%) on w%) has been computed in Lemma 6.4. Let us study

Opy (¢ + [¢]2) (VA (] + ).

One may express wgg A from w/(f), @%) by (5.53). Since, according to Proposition 5.2, Z*Fw (Z)
is in h_5;c+1+fL°°j2’b, [K], it follows from Proposition 2.12 that Z* (wﬁ\)) (resp. Z*(w (Z)) )
belongs to h_%;ﬂﬂ“Lo"jgfb/ [K3] (resp. h_26;€+1+ZL°°j8’222, [K_2]).

We apply next Proposition 2.11, with a replaced by (z€ + |£|%)<2dw>€<dw>_2£| dw|. Since,
(0

because of the fact that w);, is microlocally supported close to £2A, we may assume that

xz€ + € ]% is cut-off close to this manifold, we see that the above symbol satisfies (2.15) with
(0, 0,d,d)=(-2+2¢(,—-2¢,1/2,0) or (—1+2¢,—2¢,1,0). It follows from (2.17) that

VIR Opy (a6 + [€]7) (w5] + wl,)
(6.16) = _i\/ﬁ(l _ X)(:Eh_ﬁ) <2dw>£<dw>_2z| dw|% [(w%))2 _ (wgf))2]

+ h2r®

where Z*r® is in h_%;ﬂﬂ“l’;’gfb/ [L] C h_%;“l“l’;’géb, [L].
In the same way

hOpy, (€ + 1¢]2) (wi +w') +w),)

(6.17) — hdw|? (dw) =3 [<3dw>f(u§f) (i) + G @)°) + )] w]) w)}

+ h2r®)

with Z8r@ in =310 BV (L] C h™ 31 BV [L] and some real constants ugg, u(ﬁ.

Finally, since the action of Opy, (z€ +[£]? \l) on the remainder g(*) of (5.52) gives a function r(*)

/

such that ZFr(® is in b~ 2%+~ —No+1+e S e 2[F] we conclude, summing (6.9), (6.16), (6.17)
that (6.15) is given by formula (6.8). O

We may now prove Proposition 6.1.

Proof of Proposition 6.1. Let us compute

52
Dw'® = D, Opy, ((€)*)w = ith Opy, (

W)ww + Opy, (<§>Z)th.
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According to (3.23) this is the sum of —%hw(f), of (6.7), of (6.8) and of a remainder h%R(Z)(V)

where ZFR( (V) is in RY,. (Notice that by definition of w, we may always insert on the left
hand side of (3.23) a cut-off > ,c ;¢ A;L for some large enough C, so that the sum of
quadratic and cubic contributions is really given by (6.7)). Remembering the expression

(5.52) of w® in terms of wl(f), we may write
{ { - 3
—§hw(£) = —§h(1 —x)(zh ﬁ)wl(f) + h2r®

with Z5r© in h_45;€+N1*N0+1+‘fl§ggbl [F] (We used again that the microlocal support properties

of wl(f) allow to multiply it by some cut-off (1 — x) (a;h_ﬁ) up to a O(h™)-remainder). We

obtain

(6.18)
D' = %(1 - X)(a;h_ﬁ)\ dw]%wl(f)
- ig(l — ) (zh )| dw|? (2dw)(dw) ¥ [(1 +vV2) () + (V2 - 1)(m<f>)2]
h 5
+ 30 =0 (@h ™) dwld (e [ Bdw) (b ()’ + G @)°)
+ (dw) i) Pl + (dw)nG i [o |
+ MRV

: . A5 V=3 ¢
where ZFR(V) is O(g) in b~ ""k+N1-No+1+¢R 2 and where ,ul(l ) are some new real constants.

We express next w%) from w(® inverting relation (5.52) i.e. writing, taking (5.53) into account,

(6.19)
wl) = w® + ig(l — ) (zh?) 2dw) (dw) | dw] [(1 +V2) (w2 + (1 - V2) (w“))Q]
+ hldw]*(1 = x)(zh ") [Fi(f)(d w) (w(g))?’ + Fgé)(d w)!w“) |2w(£)
+ T (@w) w5 + T (dw) (@O)?]

+ h1+0'g(é) ’

where Z*g(® is in h_46;“+N1*N0+1“Rg;, and where F,(f)(g) is a symbol of order —2¢, with

r(0) = (2021~ (3 ‘5”) .

We plug this expansion in (6.18) to get (6.2). The remainder satisfies the conditions of the
statement of the proposition if we assume that 44}, LN - Not1re < 5, so that we may take
K=0/2.
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We prove now (6.4) by induction from (6.2).

To deduce (6.4) at order k from the similar equality at order k — 1, we notice first that the
action of Z on the quadratic (resp. cubic, resp. remainder) terms of (6.4) at order k — 1 gives
contributions to Q*® (resp. C¥(9), resp. R*®)). Moreover,

2,0~ 51— x)(h™?) | dw(@)]?]

= (Do = 50— 0(@h ) | dw(a)]?)

+ #(mh_ﬁ)xl(:ﬂh_g) ] dw(az)]%

The product of the last term with W* =5 may be computed from expressions of the form
h_BF(:Eh_B)Zk/w(E) where ¥/ <k —1 and I is in C§°(R*). We just have to check that such
terms contribute to the remainder in (6.4). Because of the expression (5.52) of w®) in terms

of w%), we see that we need to check that for p < v

(6.20) |y [P (@n=?)Z¥u@] || = ont++s).

.-

(The contribution coming from the remainder in (5.52) satisfies the wanted bound as we

assume after (4.2) that 8 < 0/2.) We remember that w/(f) =2 jeJ(hC) @;w%) where w/(i)j is

7]’
microlocally supported for z in a compact subset of R*, so that
Peh™)ZM e = 30 T(eh™?) 2" (1 (252)05ul))
jeJ(h,C)

for some T'y in C§°(R). This shows that the sum is limited to those j for which 2/ ~ h=25.

Since Zk,wl(f) is in bW er Loojg’b/ [K] according to Proposition 5.2,

! .
O es1 2—J+b/) )

|€;25w)]| . = O~

Using that 2/ ~ h=25 we bound 2779+V" < 2-7+" WOk TATRH2 G ce the assumption on b”
relatively to b’ implies that 260" — ") > 0;,,,,, +Kx+B+2, as &) .4, K, § are small enough.
Consequently, we get (6.20) for all integers p < b”.

This concludes the proof of the proposition. O

Proposition 6.5. Let Ty be a large enough positive number, k a small positive constant,
Co > 0.

Let £ be an integer, with { < § + No. Assume given a function (t,x) — rO(t,z) from a
domain [Ty, T[xR to C, satisfying for p < b”,

sup |(hD,)Pr(t, z)| < Coe
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for any t € [Ty, T[. Assume given a solution w¥): [Ty, T[xR — C of equation (6.2), such that
‘w(z) (Ty, )| < Coe for any x.

Then there are g > 0, C1 > 0, depending only on Cy, such that for any e €]0,eq],

(6.21) sup Hw(g)(t, -)HLOO < Cie.
(76,7

Moreover, if we assume that 9 is defined and satisfies the above assumption on [Ty, +oo[ xR,
then w9 is defined on [Ty, +o0o[xR and there are a continuous bounded function a: R — C,
vanishing like |z|?®" when = goes to zero, (t,z) — p(t,z) a bounded function on [Ty, +oo[xR
with values in C and k > 0 such that

. t . 2
(6.22)  w(t,z) =ea(x)exp . / (1-— X)(Tﬁx) dr + —¢2 \a(a:;] logt| + et "p(t, x)
1l Jy 6 o

where x € CP(R), x =1 close to zero.

Remark. We may write (6.22) on a more explicit fashion. Assume that b” > k/(28). The
contribution of the first term in expansion (6.22) localized for |z| < Ct=*/(Y") may be incor-
porated to the remainder, because of the vanishing of v at order 2b” at x = 0. On the other
hand, if |z| > Ct="/(2") our assumption on b” implies that |z|~1/# < C~/Ft, so that, if C

is large enough,
t +oo
/ x(rPz) dr = / x(7Px) dr.

To To
If we define
i i [T
a(x) = ax)exp [_MTO " T - X(Tﬁx) dT:|
we obtain
it i sla@) -
(6.23) w(t,x) = ea(z) exp P + 61° e logt| +et™"p(t, z)

for a new bounded remainder p.

Proof. We shall establish the proposition performing a normal form transform on equation
(6.2). Denote by G the space of continuous bounded functions on [Ty, T[xR. Let xo be in
C3(R), xo =1 close to zero, Supp xo C {z; x(x) = 1} and set
(6.24)

O = 0

+ i?(l —x0) (2h )| dwl(2dew) (dw)™ | (1 + v2) (w?)? + (1 - v2) (@)
+h(1 = x0) (zh™?)?|dw]? [M?Ef)(dw)(w“))?’ + MY (dw) (@®)?

3
+ MY (dw)|w® \%w}
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where MISZ)(C) are symbols of order —2¢ in ¢ to be chosen, p = —3,—1, 3.

) €
We consider the polynomial map &: <g(5)> — <f(g)> defined on G. For h = t~! small
enough (i.e. t > Ty large enough), this is a local diffeomorphism at zero in G. The inverse
) w®
&1 sends ?(g) to <w(5)>, where w(®) may be expressed explicitly as
(6.25)
w® = O
Vh -3 ¢ —2¢ V2)( £ 2 V2 —(£)y2
— i (1= x0) (eh ™) | dwl(2dw) {dew) |1+ V) (F9) + (1 = v2) (7))
+hldw]*(1 - x0)?(zh™P) [z\?;(dw)(f“))?’

3—2v/2
8

+ M (dw)| O T

+

(2dw)*(dw)™| O 7

T (dw) (7“’)3}
R Ry (e £O,TY)

where k is some positive constant, where R4(m,h; f(z),f(g)) is some analytic function of
( f (Z),T(Z)), vanishing at order four at zero, with bounds uniform in (x,h), and MISZ)(C) =
—Méz)(g) + Ff;({), p=—-3,—1,1 for symbols I‘f, of order —2¢, independent of M;f.

We compute D, f) from (6.24), expressing in the right hand side D;w®, D,;w® using (6.2).
We get
(6.26)
1
Duf® = 51 =) (@h™)| dw(a) 2w

+ z’@(l =0 (#h ™) | dw(@)[* 2dw)(dw) |1+ VD) () + (1 - vI)(@9)’]
#1120k dwo)lf |5 o0 Put?
+ (gM?f” (dw) + T (dw) ) (w®)* + (- %Mﬁ? (dw) + T4 (dw) ) [0 ® Pz
+ (- 3MY e + %) @)’

F R (KO, 2) 4 R b, )
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where f}f)(g ) are symbols of order —2¢ in (, that depend only on the coefficients of (w(g))2,

(w(@)g’ ...in the right hand side of (6.2), where (*) is the remainder in (6.2) and where
Ry (x, h; w“),w“)) is some polynomial in (w“),w“)), vanishing at order 2 at zero, with uni-

form bounds in (z,h). We express w® in the right hand side of (6.26) using formula (6.25).
The quadratic terms in the definition (6.24) of f() have been chosen in such a way that the
quadratic contributions in the right hand side of the resulting expression for D, f® vanish.
We get

DU = 51 =) (ah~?) [ dw(a)| £
(1 =0 e [ dw(o)lf | )]0 50

+ (M0 (aw) - 175 (dw)) (19
(6.27)

+ (= MYGaw) - @) [FOFF

+ (- 2010 - F50) )’

4 pln (Mf) (t,) + Ra(x, h; f@j“’))

~ (¢
where F/L)(g ) are new symbols of order —2¢ that do not depend on MISZ), and where Ry
is a new analytic function of (f (Z),f(z)) vanishing at order 2 at zero, with uniform bounds

in (x,h).

We choose now the free symbols M,Sé), p = 3,—1, =3 introduced in the definition (6.24) of f ®
so that the coefficients of ( f (Z))g, ‘ 1 ‘276 and (f(e))3 vanish. In that way, we are reduced to

2
DO = %(1—X)(:Eh_ﬁ)|dw(l‘)|% 1+ |dwl (dw) 2| fO| O

(6.28) L
+ 7O, 2) + 7R, (z,h; f(g),f(z))

where || (hDy)? ZFr®(t,z)|| - is O(e) for any p <", k+£ < § + Np. It follows from (6.28)

that ‘8t|f(£)|2‘ < (C’os + C’é‘f(z) |2)t_1_“ as long as |f(£)| stays smaller than 1. Since at time

t =T, !f(£)| = O(e), we obtain that !f(g)(t,a;)‘ < (e for some constant C] > 0, as long as

the solution exists. Using expression (6.25) for w® in terms of £ we get (6.21). If 7y is
defined for t € [Tj, +00|, we get that f) and thus w®) is defined on [Tp, +oo[xR.

Let us prove the asymptotic expansion for w. If £ < 5§ + Np, we define

N w(z)|?
@g(t,x):%|dw(:n)|2/cp(1—x)(7'6:1:) [1+u(dw>_%|f@)(7’,@‘2 dr.
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Then (6.28) and the uniform a priori bound just obtained for f) show that

d

= FOE, z)exp [— ie)e@@)“ = O(et™'7")

uniformly for x € R. It follows that the uniform limit when ¢ goes to 400 of

FOt, ) exp [ —iO(t, z)]
exists and defines a continuous function eay(x) on R, which is O(e) in L*>°(R). Moreover
(6.29) Hf(é)(t,a;) — eay(z) exp (iO¢(t,z)) HLoo =O0(et™), t— +oo.

We write

NI

Oult, ) = 5| dw(z)|

/t(1 —x)(rPz) dr

To
4 (= () ()] o) oy o) Lo
(6.30) - S0 ) (I) el (@) (o) log T
5 TZ 5riax! (0x) [dw(@)|E (de(@) ™ o) 227 dr
+3 [ 0= 06) kel @) (17O - o)) .

We notice that |dw(z)|2 (dw) =2 is O((z)~?) if £ > 5/4 and P2\ (P2) |dw(z)|2 (dw(z)) =2
is O(r7#(2)=0) if £ > 3/2.

These bounds and the estimate H‘f(£)|2 — &2 |04€|2HL00 = O(e?t™") that follows from (6.29)
imply that the last three terms in (6.30) may be written as 2I'y(z) + e2Ry(t,z) for some
continuous function I'y(x), which is O ((z)~°) and some remainder R(t, z) satisfying |R(¢t, )| =
O(t™"(x)~°) (assuming 0 < x < ). Modifying the definition of that remainder, we get finally

N

@g(t,x):%]dw(x)\ /T(l—x)(T%)dT
2

+ 5 ldw(a)

N

(dw) ™ |ag(z)[* log t
+&’0(z) + *R(t, x)
when ¢ > 3/2. Tt follows from this and from (6.29) that

| 2

FO(t, x) = edp(z) exp [ﬁ /t(l -x) (Tﬁx) dr + i62 [Ge() (dw)"*logt

(6.31) To 64" |z

+ et " p(t, x)

89



where ay(z) = eiezr(m)ag(a:) and where p(t,z) is uniformly bounded. If we express w(®)
from £ using (6.25), we conclude that the same expansion (6.31) holds for w®) (with a
different remainder). Let us compute w(t,-) = Opy, ((£>_Z)w(z). The action of Opy, ((£)~*)

on the remainder gives a term of the same type, if ¢ is large enough. On the other hand,

by the expression (5.52), (5.53) of w® from wl(f) (and the converse expression), we get that
Opy, ((€)™)w = Opy, ((¢)~“)wa up to a remainder bounded in L*°(dz) by Cet™". As wj is

in K= ijg’b/ [K], Proposition 2.11 applies and shows that Opy, ((£)™*)wa may be written

as (dw)~‘w, modulo a remainder in h!~% B [K] C ho=% B [K], which is O(et™") in L™
for small enough x > 0 since by (4.2) §] < 0/8. Using again the expression of wp from w
deduced from (5.52), we deduce that

Hw(t, ) = (dw) O ¢, ’)Hm — O(et™).

If we define a(z) = (dw)~‘ay(x) with £ equal to b”, we obtain a function continuous and
bounded on R, vanishing like |z[?*" when  goes to zero and such that w(t, z) is given by the
asymptotic expansion (6.22). This concludes the proof. O

We prove now a statement concerning the Z-derivatives of w®). Let (AY)k>1 be a sequence
of positive numbers satisfying Ay > A} + Af + Ay if ki + ko +hs =k, kj <k, j=1,2,3
and A} large enough relatively to the constant C in (6.21).

Proposition 6.6. There is a constant Co > 0 such that, if we set gfg = A%€2, for any k, £
with k + £ < 5 + No — 2, the solution w® of (6.2) satisfies

(6.32) 1750 O (t, )| ;oo < Cost.

Remark. The gain in (6.32), in comparison with (4.9), is that the exponents 5}6 depend only
on the size ¢ of the Cauchy data and not on the exponents 5 that are used in the L?-estimates.
In particular, taking € small enough, we may arrange so that §j, < 0.

Proof. We apply a normal forms method to remove the quadratic terms in (6.4). For (k,¢)

k,(€)

satisfying k + ¢ < 5 + Np, we define a new quadratic map @kv(z) [:17, hy Wk W in the

following way: The components of this map are defined taking the same linear combinations
as those used to define the components of Q% from (6.5) of the quantities

20 (xh=P)®(z)

(2RO (ZF20©)

(1—x)(zh =) |dwl|? ) )
—260(zh=P) ®(z) k1, (0) ( 7kar(£)

6.33 Pl

( ) (1—x) (xh—ﬁ) |dw]|? )( )
—20(zh™")®(x) (Zklw(f)) (Zkz@(é)).

3(1 = x)(zh=F) ]dw\%
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If we make act Dy — (1 — x)(zh ™) |dw(:17)|% on each line of (6.33), we see that we obtain,
using (6.4), the corresponding line of (6.5) and the following contributions

e Quantities of the form VhCk®) [az, h; Wk’(z),Wk’(e)] for cubic forms C*( which have the
same structure (6.6) as C*(©).
e Quantities given by the product of A and of homogeneous expressions of order 4 in

(ijw(f)jzkjm(z))7 i+ 4+ ks <k

with coefficients depending on z which are O(h~"?). If we use that Z¥w(®) satisfies the a

priori estimates (4.9), we see that these contributions may be written as hatrREO for some
x> 0 and a bounded function R* (),

e Contributions coming from the remainder in (6.4) or from the action of D; on the cut-offs

n (6.33), that may be written also as hatrRE(O),

Consequently, if we set for k4 ¢ < § + N,
WO — k0 _ \/_Qk (0 [w By WO ka(f)]j
we obtain that W satisfies bounds of the form (4.9) and solves the equation
1 ~ —
(6.34) <Dt _ 5(1 -X) (:Eh_ﬁ) d w|%>wk‘7(5) = hck) [:E, h; Wlm(f)’ Wlm(f)] 4+ plERE(0)

where C*(®) is a new cubic map given in terms of monomials of the form (6.6) and R*) a
uniformly bounded remainder. Notice that, up to a modification of RO we may replace
WO by Wk in the argument of C*(©).

Assume by induction that for given k, £ with k+¢ < 5+ Ny, £ > 2, (6.32) has been established
with k replaced by k—1. Then W+~ 1) and Wk=L® are under control, and we need to obtain
(6.32) for the last component Z kw® of Wk or equivalently, for the last component Wk @

of WE® We sort the different contributions to
__ —k,(¢)
(6.35) ck%@[$,h;vvk%@,vv ].

On the one hand, we get terms given by expressions of the form

_ =k (0)T5k,(0) Tk, (¢
0 (zh=%) @ ()W, OwHOw O

D WEOTAC =k, ()
0 (zh™") @ kl( )WkQ( )Wkg,

(6.36) . () —k,(£) =k, ()
0 (zh™P)®( Wi, Wi,

k (5) k,(6)==k,(€)
0((13]1 B) kl Wk‘z Wk‘g
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where 6, ® satisfy the same conditions as in (6.6), so are bounded since ¢ > 2, and where two
among ki, ks, k3 are zero and the other one is equal to k. We call F' the sum of contributions
of that type, so that

|F(t2)] < ClWy O, )7 Wi k).
v')HLoo’ so also for

Wo( _ \/_Qk(f[ Wk(Z)W,()}

Proposition 6.5 gives a uniform estimate for Hw(g) (t

We conclude that for some constant B > 0, depending only on the constant Cy in (6.21),

(6.37) |F(t,2)| < Be2|W) O, ).
On the other hand, (6.35) is also made of terms of the form (6.36) with
ki1 +ko+ ks <k, ki ko ks<Ek.

The assumption of induction, together with the inequality between the constants A made in
the statement of the proposition, imply that the contribution G of these terms satisfies

(6.38) G(t, )| < Ce3t%.

We deduce from the equation for the last component W: (O of k(O given by (6.34)
t
k(0 2 Tkt 2 k(0 dr
WO ) < (W@, o) +/T [ (7, )| [W O, )| —
0
t
(¢ dr
!G(T,az)HWk D) —
Rk (z WO dr
! (7. 2)[[We ™ ()|
Using (6.37), (6.38), and the fact that at ¢t = Ty, Wk (£ )(To, -) is O(e) we deduce that
WO, 2)| < Ce + Be? / (W (7,2 |—

t t
s d
+C&:2/ T(Sk_ldT—l—CE/ i
To T T

If we use Gronwall inequality, and assume that the constant A in the definition gfﬁ = Aje?

(6.39)

of gfﬂ is large enough relatively to B, we deduce from (6.39) that

when k+£¢ < 5+ N, £ > 2. By definition of W: ’(Z), the same inequality holds for Z¥w(®. Since

w~2) = Op, ((§>_2)w(z), we conclude that Hka(Z) (¢, -)HLOO is O(Etgllc) when k+{ < 5§+ No—
This concludes the proof of the proposition. O

92



To finish this section, we deduce from the results established so far the proof of Theorem 1.6.
This will conclude the demonstration of our main theorem.

Proof of Theorem 1.6. We notice first that it is enough to prove the following apparently
weaker statement: Assume that for some constants By > 0, Ag > 0, any t € [Ty, T[, any
€ €]0,1], any k < 51

<Ve<1,

MM () < Byet™, NIO)(t)
< Agt—27%.

(6.40)
In(t, Ve + I1Dx]2ot, )H

-

1z
Then, (1.20) holds.

Actually, if the preceding implication is proved with p > v, and if we assume only (1.19), then
(6.40) holds true on some interval [Ty, T"], T' > Tp taking Ag large enough in function of Ty
(because the last condition in (6.40) follows then from the second one, taking 7" close enough
to Tp). We conclude that (1.20) holds on [Tp,T”], and taking € < ¢, small enough so that
€Bs < Ay, we see that, by continuity, (6.40) holds on some interval [Ty, T"] with T" > T".
By bootstrap, we conclude that (1.20) will then be true on the whole interval [T, T.

Consequently, we have reduced ourselves to the proof of the fact that (6.40) implies (1.20).

Recall that we have fixed in (4.3) large enough numbers a,b. We introduced also at the
beginning of Section 4 integers Ny, N1 and we assumed in Proposition 5.2 that (N3 —Ng—1)o >
1. Let us fix v €] max(7/2,b),+00[\3N, and assume that Ny is taken large enough so that
Ny > 2y + % We define

S S
(6.41) si=g+N+1 so=5+No—3-[]

where s is an even integer taken large enough so that the following conditions hold

1
(6.42) s> 512802 5(s+27)
and that moreover
1
(643) S1§S—a—§.

We set p = sp + . It follows from equation (5.2.157) of the companion paper [5] that if
CSONéSO) = C’(N,ESO))N,ESO) is small enough, we have for any k < s;

1250 ()]

s—k T H|Dm|% Zk?b(t)HHsfkf% < Boet'*

for a new value of the constant By. The smallness condition above is satisfied for € < g < 1
using the second estimate (6.40). Since we have set at the beginning of Section 3

1
u(t,z) = \Dx]% Y +in and u(t,z) = Wu <t, %)
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it follows, denoting by the same notation Z the vector field in (¢, ) and in (¢, ¥ )-coordinates,
that

|(hD2) ZF (¢, )| » < Bact®

v HL2
for k' < s1, ¢ < asince s;+a < s— % This, together with the definition (4.5) of Fj, shows that
the second condition in (4.8) holds with k£ = s; — 1. The first condition (4.8) holds because of
the second estimate (6.40) and the fact that p >+ > b. Consequently, Proposition 4.1 implies
that (4.9) holds for any k < s; — 1 = 5 + Ny, with constants A}, depending only on By in
(6.40). The assumption (5.1) is thus satisfied, and since we assumed (N; — Ng — 1)o > 1,
we may apply Proposition 5.2 and Corollary 5.9 which provides development (5.48). This
development is the assumption that allows one to apply the results of Section 6: in particular
inequality (6.32) will hold, with a constant Cy depending only on the constant Bs of (6.40)
(and of universal quantities). If By, is taken large enough relatively to By and if B is larger

than the constant A” o+l +1 introduced in Proposition 6.6, we deduce from (6.32)

| (h02) ZFw(t, )

" HLoo < %-BoofftBé<>€2

for k + ¢ < so+ [y] + 1 (since § + No — 2 = 5o + [y] + 1 by our choice (6.41) of sp). Coming

back to the expression of u = ]Dx\% ¥ +in from t_%v, and using that by definition p = sg+ 7y
this will give the bound

1 /
(6.44) N (1) < §Bmgt—%+3w€2
if we prove that in the decomposition v = vy, + w + vy, the contributions vy, and vy satisfy
also a bound of the form

1 ,
(6.45) 1Z%0n(t, )| o + || 250 (2, < Bocct™>S

HCP k

if k <sp. Since our assumption (6.40) implies that (4.8) holds (with constants Ay depending
only on By), for k¥’ < s, we deduce from (4.5) and the definition (3.19) of vy, that

HZkUL HL2 < €Akh_6k, k < s1.

Since vy, is spectrally supported for h|¢| = O(hQ(l_U)), we deduce from that by Sobolev
injection that

= O(Eh_5k+%_%)

(6.46) |2 or(t, )| e =

with constants depending only on Bs, which gives for vy, a better estimate than the one (6.45)
we are looking for (since vy, is spectrally supported for small frequencies, estimating L* or
CP~* norms is equivalent).

Consider next the vgy-contribution. As (4.9) holds for k = s; — 1 with constants depending
only on Bs, we may write for any j > jo(h,C), any k,¢ with k +¢ < s; — 1,

|AMAD)Y ZFvy (t, )| o < Ce277+PR 0%
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This holds in particular for k + /¢ < sp+~vy+1assp+v+ 1 <s; —1 by (6.41). Since vy is
spectrally supported for |h&| > ch™?, we conclude that

(6.47) | Z*vr (8, )| o < CehPP™0% < Ceh® %

with a constant C' depending only on Bs, as we assumed in (4.3) that b3 > 2. This largely
implies estimate (6.45) for vy, and so concludes the proof of (6.44).

We thus have obtained the first inequality (1.20). We are left with showing the second
estimate. This follows from (6.21) that holds for £ < § + N, so for £ < so + v + 1. This
concludes the proof of Theorem 1.6. O

FINAL REMARK ON THE PROOF OF THEOREM 1.4: In Section 1.3, we did not justify the
asymptotic expansion (1.12) of u(t,z) = %v(t, Z). This follows from (6.23), since we have

seen in the proof above that in the decomposition v = vy + w + vy, vy and vy are O(et™")
for some k > 0 (see (6.46) and (6.47)).

A Appendix: Semi-classical pseudo-differential operators

We recall here some definitions and results concerning semi-classical pseudo-differential op-
erators in one dimension. We refer to the books of Dimassi-Sjostrand [33] Martinez [51] and
Zworski [69].

Let h be a parameter in ]0,1]. An order function m is a function m: (z,&) — m(z,§) from
T*R (identified with R x R) to Ry, smooth, such that there are constants Ny € N, Cy > 0
with

m(z,€) < Co(1+ [ —y| + 1€ — n)™m(y,n)
for any (z,¢), (y,n) in T*R.
Definition A.1. Let m be an order function on T*R. One denotes by S(m) the set of

functions a: T*Rx]0,1] — C, (x,&, h) — a(z,&, h) such that for any (o, B) in N x N, there is
Cap > 0, and for any (z,§) € T*R, any h in ]0,1]

0207l &, h)| < Capm(a,€).

If (up)p is a family indexed by h €]0, 1] of elements of S’(R), and a € S(m), we define a family
of elements of S'(R) by

(A.1) Opy,(a)up emga(az,hf,h)@(g) dg.

If m =1, Opy,(a) is a bounded family indexed by h €]0, 1] of bounded operators in L%(R). If
moreover & — a(x, &, h) is supported in a compact subset independent of (x, h), the kernel of

Oph(a)7 is
1 ]
Kh(:pvy) - Ekh <$7 T)
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where kp(x,z) = (]:f_la)(:n, z,h) is a smooth function satisfying estimates 8%8261%(:17, 2)| <

Capn(1 + |2))7N for any «,8,N so that Opp(a) is uniformly bounded on any LP-space,
p € [1,00].

Let us recall the main result of symbolic calculus (Theorem 7.9, Proposition 7.7, formulas
(7.16) and (7.3) in [33]).

Theorem A.2. Let my,mo be two order functions, a; an element of S(m;), j =1,2. There
is an element aij#ag of S(mima) such that Opy,(a1#a2) = Opy,(a1) Opy,(az2). Moreover, one
has the expansion

Ny .
(A.Z) al#ag—Z‘F(?) (8;(“)(6%(@)GhN—l—lS(mlTrLQ).

j=0""

Let m be an order function, a an element of S(m). There is b in S(m) such that Opy(a)* =
Opy(b). Moreover, b = a + hby with by in S(m).

Corollary A.3. Let m be an order function such that m™" is also an order function. Let a
be in S(1), e be in S(m) and assume that e > cm for some ¢ > 0 on a neighborhood of the
support of a. Then for any N € N, there are ¢ € S(m™'), r € S(1) such that a = e#tq+ hNr
(resp. a = q#e+ th). Moreover, we may write ¢ = qo + hq1 where qo,q1 are in S(m~1) and
qQo = 3.

Proof. We define qg = ¢, which is an element of S (m~1) by assumption. Then Theorem A.2
shows that a — e#qo (resp. a — qo#te) may be written ha; + hNrg with a; in S(1), Suppa; C
Suppa. We iterate the construction to get the result. O
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