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Abstract

Our goal in this paper is to apply a normal forms method to estimate the Sobolev norms of

the solutions of the water waves equation. We construct a paradifferential change of unknown,

without derivatives losses, which eliminates the part of the quadratic terms that bring non

zero contributions in a Sobolev energy inequality. Our approach is purely Eulerian: we work

on the Craig-Sulem-Zakharov formulation of the water waves equation.

In addition to these Sobolev estimates, we also prove L2-estimates for the ∂αxZ
β-derivatives of

the solutions of the water waves equation, where Z is the Klainerman vector field t∂t+2x∂x.

These estimates are used in the paper [5]. In that reference, we prove a global existence result

for the water waves equation with smooth, small, and decaying at infinity Cauchy data, and

we obtain an asymptotic description in physical coordinates of the solution, which shows

that modified scattering holds. The proof of this global in time existence result relies on

the simultaneous bootstrap of some Hölder and Sobolev a priori estimates for the action of

iterated Klainerman vector fields on the solutions of the water waves equation. The present

paper contains the proof of the Sobolev part of that bootstrap.
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Introduction

1 Description of the main results

This paper addresses the well-posedness of the initial value problem for the motion of a two-

dimensional incompressible fluid under the influence of gravity. At time t, the fluid domain,

denoted by Ω(t), has a free boundary described by the equation y = η(t, x), so that

Ω(t) =
{
(x, y) ∈ R

2 ; y < η(t, x)
}
.

The velocity field v : Ω → R2 is assumed to be irrotational and to satisfy the incompressible

Euler equations. It follows that v = ∇x,yφ for some velocity potential φ : Ω → R satisfying

(1.1) ∆x,yφ = 0, ∂tφ+
1

2
|∇x,yφ|2 + P + gy = 0,

where g > 0 is the acceleration of gravity, P is the pressure term, ∇x,y = (∂x, ∂y) and

∆x,y = ∂2x + ∂2y . Hereafter, the units of length and time are chosen so that g = 1.

The water waves equations are then given by two boundary conditions on the free surface:

(1.2)

{
∂tη =

√
1 + (∂xη)2 ∂nφ on ∂Ω,

P = 0 on ∂Ω,

where ∂n is the outward normal derivative of Ω, so that
√

1 + (∂xη)2 ∂nφ = ∂yφ− (∂xη)∂xφ.

It is well known that the linearized equation around the equilibrium η = 0 and φ = 0 can be

written under the form ∂2t u+ |Dx|u = 0 where |Dx| is the Fourier multiplier with symbol |ξ|.
Allowing oneself to oversimplify the problem, one can think of the linearized equation around

a nontrivial solution as the equation (∂t + V ∂x)
2u+ a |Dx| u = 0, where V is the trace of the

horizontal component of the velocity at the free surface and a = −∂yP |y=η is the so-called

Taylor coefficient. To insure that the Cauchy problem for the latter equation is well-posed,

one has to require that a is bounded from below by a positive constant. This is known as the

Taylor sign condition; see [22] for an ill-posedness result without this requirement. That the

well-posedness of the Cauchy problem depends on an assumption on the sub-principal term

a |Dx| reflects the fact that the linearized equation has a double characteristic, see Craig [16,
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Section 4] or Lannes [32, Section 4.1]. This leads to an apparent loss of 1/2 derivative in

the study of the Cauchy problem in Sobolev spaces. However, Nalimov [40] proved that, in

Lagrangian coordinates, the Cauchy problem is well-posed locally in time, in the framework

of Sobolev spaces, under an additional smallness assumption on the data; see also the results

of Yosihara [56] and Craig [15].

Notice that if η and φ are of size ε then a = 1 + O(ε) so that the Taylor sign condition

is satisfied for ε small enough. As was first proved by Wu [52, 53], this property is always

true, without smallness assumption (including the case that the interface is not a graph, as

long as the interface is non self-intersecting). As a result, the well-posedness of the Cauchy

problem was proved in [52, 53] without smallness assumption. Several extensions or different

proofs are known and we refer the reader to Córdoba, Córdoba and Gancedo [13], Coutand-

Shkoller [14], Lannes [32, 34, 35], Linblad [36], Masmoudi-Rousset [37], Shatah-Zeng [44, 45],

Zhang-Zhang [58] for recent results concerning the gravity water waves equations.

Two different approaches were used in the analysis of the water waves equations: the La-

grangean formulation with a more geometrical point of view and the Eulerian formulation in

relation with microlocal analysis. Our analysis is entirely based on the Eulerian formulation

of the water waves equations: we shall work on the so-called Craig–Sulem–Zakharov system

which we introduce below. Let us also mention that the idea of studying the water waves equa-

tions by means of microlocal analysis is influenced by the papers by Craig-Schanz-Sulem [19],

Lannes [32] and Iooss-Plotnikov [29]. More precisely, we follow the paradifferential analysis

introduced in [6] and further developed in [3, 2]. We explain later in this introduction how

this allows to overcome the apparent loss of derivative in the Cauchy problem.

Following Zakharov [57] and Craig and Sulem [20], we work with the trace of φ at the free

boundary

ψ(t, x) = φ(t, x, η(t, x)),

and introduce the Dirichlet-Neumann operator G(η) that relates ψ to the normal derivative

∂nφ of the potential by

(G(η)ψ)(t, x) =
√

1 + (∂xη)2 ∂nφ|y=η(t,x).

Then (η, ψ) solves (see [20]) the system

(1.3)





∂tη = G(η)ψ,

∂tψ + η +
1

2
(∂xψ)

2 − 1

2(1 + (∂xη)2)

(
G(η)ψ + (∂xη)(∂xψ)

)2
= 0.

Consider a classical solution (η, ψ) of (1.3), such that (η, ψ) belongs to C0([0, T ];Hs(R)) for

some T > 0 and s > 3/2. Then it is proved in [4] that there exist a velocity potential φ and a

pressure P satisfying (1.1) and (1.2). Thus it is sufficient to solve the Craig–Sulem–Zakharov

formulation (1.3) of the water waves equations (1.1)-(1.2).
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Our goal in this paper is to apply a normal forms method to estimate the Sobolev norms of the

solutions to the water waves equations. In practice, one looks for a local diffeomorphism at 0

in Hs, for s large enough, so that the equation obtained by conjugation by this diffeomorphim

be of the form of an equation with a cubic nonlinearity (while the water waves equations

contain quadratic terms).

The analysis of normal forms for the water waves system is motivated by physical consid-

erations, such as the derivations of various equations in asymptotic regimes (see the recent

paper by Totz and Wu [50], the first rigorous results by Craig-Sulem-Sulem [21] and also the

papers of Schneider and Wayne [42, 43]). Another motivation is that, for solutions sufficiently

small and sufficiently decaying at infinity of a dispersive equation, it is easier to prove global

well-posedness for cubic nonlinearity. Let us mention that the results of this paper are used in

[5] where we prove global existence of solutions for the two dimensional water waves equations

with small, smooth, decaying at infinity Cauchy data, and get for these solutions a one term

asymptotic expansion in physical variables when time goes to infinity. In particular, the form

of these asymptotics shows that solutions do not scatter at infinity, i.e. do not behave like

solutions of the linearized equation at zero.

Nonlinear changes of unknowns, reducing the water waves equation to a cubic equation, have

been known for quite a time (see Craig [17] or Iooss and Plotnikov [28, Lemma 1]). However,

these transformations were losing derivatives, as a consequence of the quasi-linear character

of the problem (see [55, Appendix C] for the study of the Poincaré-Shatah normal form

associated to (1.3)). In her breakthrough paper, Wu [54] proved that one can find good

coordinates which overcome this loss of derivatives and ultimately proved an almost global

existence result for two-dimensional gravity waves. Then Germain–Masmoudi–Shatah [24]

and Wu [55] have shown that the Cauchy problem for three-dimensional waves is globally

in time well-posed for ε small enough (with linear scattering in Germain-Masmoudi-Shatah

and no assumption about the decay to 0 at spatial infinity of |Dx|
1
2 ψ in Wu). Germain–

Masmoudi–Shatah [23] recently proved global existence for two-dimensional capillary waves.

We shall construct a paradifferential change of unknown, without derivatives losses, which

eliminates the part of the quadratic terms that bring non zero contributions in a Sobolev

energy inequality. Our main result is stated after we introduce some notations, but one can

state one of its main corollary as follows: There exists γ > 0 such that, for any s ≥ γ+1/2, if

Nγ(t) = ‖η(t, ·)‖Cγ +
∥∥|Dx|

1
2 ψ(t, ·)

∥∥
Cγ− 1

2
is small enough, then one can define an Hs-Sobolev

energy, denoted by Ms, satisfying

(1.4) Ms(t) ∼ ‖η(t, ·)‖2Hs(R) +
∥∥|Dx|

1
2 ψ
∥∥2
Hs−1

2 (R)
+
∥∥(∇x,yφ)|y=η(t, ·)

∥∥2
Hs− 1

2 (R)

and

(1.5) Ms(t) ≤Ms(0) +

∫ t

0
C(Nγ(τ))Nγ(τ)

2Ms(τ) dτ.

Let us comment on these estimates. The key point is that the summand in the right hand

5



side of (1.5) is quadratic in Nγ (while, for an equation containing quadratic terms in the non-

linearity, one obtains in general a linear bound). Then it follows from the Sobolev embedding

that M̃s(T ) = supt∈[0,T ]Ms(t) satisfies M̃s(T ) ≤ Ms(0) + TC(M̃s(T ))M̃s(T )
2. This in turn

implies that, if the initial data are of size ε, namely ifMs(0) = O(ε2) (notice thatMs is linked

to the square of the Sobolev norms) for some s large enough, then the Cauchy problem is

well-posed on a time interval of size ε−2 (see also the results in Totz and Wu [50]).

Another important property is that the estimate (1.5) is tame, which means that it is lin-

ear in the Sobolev norm (γ is a fixed large enough number which might be much smaller

than s). Eventually, let us notice that it would have been easier to obtain (1.5) with Nγ

replaced by Nγ(t) + ‖Hη(t, ·)‖Cγ +
∥∥H |Dx|

1
2 ψ(t, ·)

∥∥
Cγ− 1

2
where H denotes the Hilbert trans-

form. A fortiori, it would have been easier to obtain the previous bound with N replaced by

‖η(t, ·)‖Hγ +
∥∥|Dx|

1
2 ψ(t, ·)

∥∥
Hγ , that is with Hölder norms replaced by Sobolev ones. However,

the corresponding estimates would not be sufficient to prove global well-posedness in [5].

The smallness assumption on Nγ enters essentially only for the following reason: we shall

obtain Ms as the square of the Hs-norm of some functions deduced from η and ψ by a

nonlinear change of unknowns. If Nγ is small enough, then this nonlinear change of unknowns

is close to the identity. This is used to prove (1.4).

The estimate (1.5) will be proved in Chapter 3 (in fact we shall prove an equivalent statement

where the right-hand side of (1.4) is replaced by ‖η‖Hs+
∥∥|Dx|

1
2 ω
∥∥
Hs

where ω is defined in the

next section of this introduction). To prove global well-posedness in [5], our approach follows

a variant of the vector fields method introduced by Klainerman in [31, 30]. In particular, in

this paper we shall not only study Sobolev estimates, that is L2-estimates for derivatives ∂αx ,

but also L2-estimates for ∂αxZ
β where Z = t∂t + 2x∂x. This is the most difficult task of this

work which will be achieved in Chapters 4 and 5.

The vector field Z appears for the following reason. If (η, ψ) solves (1.3), then

ηλ(t, x) = λ−2η
(
λt, λ2x

)
, ψλ(t, x) = λ−3ψ

(
λt, λ2x

)
(λ > 0)

are also solutions of the same equations. Now observe that for any function C1 function

u, there holds Zu(t, x) = d
dλu(λt, λ

2x)

λ=1

. In particular, if u solves the linearized water

waves equation around the null solution, that is ∂2t u + |Dx|u = 0, then so does Zu. This

vector field already played an essential role in the above mentioned papers of Wu [54] and

Germain-Masmoudi-Shatah [23]. We also refer the reader to Hur [26] where a similar vector

field is used to study the smoothing effect of surface tension.

Let us mention that the paper is self-contained. We shall give simplified statements of our

results in this introduction and refer the reader to the next chapters for precise statements. Let

us also mention that Ionescu and Pusateri [27] have obtained independently a similar global

existence result to the one proved in [5], under weaker decay assumption for the Cauchy data,

and obtained an asymptotic description of the solutions in frequency variables.
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2 Properties of the Dirichlet-Neumann operator

A notable part of the analysis consists in proving several estimates for the Dirichlet-Neumann

operator. We present here some of the results on this topic which are proved in Chapter 1

and in Chapter 2.

• Definition of the Dirichlet-Neumann operator

Let η : R → R be a smooth enough function and consider the open set

Ω := { (x, y) ∈ R
2 ; y < η(x) }.

It ψ : R → R is another function, and if we call φ : Ω → R the unique solution of ∆x,yφ = 0

in Ω satisfying φ|y=η(x) = ψ and a convenient vanishing condition at y → −∞, one defines the

Dirichlet-Neumann operator G(η) by G(η)ψ =
√

1 + (∂xη)2 ∂nφ|y=η , where ∂n is the outward

normal derivative on ∂Ω. In Chapter 1 we make precise the above definition and study the

action of G(η) on different spaces. In this outline we consider only the case where ψ belongs

to the homogeneous space Ḣ1/2(R) or to the Hölder space Cγ(R) of order γ ∈ [0,+∞[. (We

refer to Chapter 1 for the definition of these spaces and of the Sobolev or Hölder norms used

below.)

Proposition. Let γ be a real number, γ > 2, γ 6∈ 1
2N. Let η be in L2 ∩ Cγ(R) satisfying the

condition

(2.1) ‖η′‖Cγ−1 +
∥∥η′
∥∥1/2
C−1

∥∥η′
∥∥1/2
H−1 < δ.

Then G(η) is well-defined and bounded from Ḣ1/2(R) to Ḣ−1/2(R) and satisfied an estimate

‖G(η)ψ‖Ḣ−1/2 ≤ C
(
‖η′‖Cγ−1

)∥∥|Dx|
1
2 ψ
∥∥
L2 .

Moreover, G(η) satisfies when ψ is in Cγ(R)

(2.2) ‖G(η)ψ‖Cγ−1 ≤ C
(
‖η′‖Cγ−1

)∥∥|Dx|
1
2 ψ
∥∥
Cγ− 1

2
,

where C(·) is a non decreasing continuous function of its argument.

Remark. Many results are known for the Dirichlet-Neumann operator (see for instance [12,

19, 35] for results related to the analysis of water waves). The only novelty in the results

proved in Chapter 1 is that we shall consider more generally the case where ψ belongs either

to an homogeneous Sobolev space of order greater than 1/2 or to an homogeneous Hölder

spaces. As a corollary, notice that if we define G1/2(η) = |Dx|−
1
2 G(η), we obtain a bounded

operator from Ḣ1/2(R) to L2(R) satisfying
∥∥G1/2(η)ψ

∥∥
L2 ≤ C

(
‖η′‖Cγ−1

)∥∥|Dx|
1
2 ψ
∥∥
L2 .

If we assume moreover that for some 0 < θ′ < θ < 1
2 ,
∥∥η′
∥∥1−2θ′

H−1

∥∥η′
∥∥2θ′
C−1 is bounded, then we

prove that, similarly, |Dx|−
1
2
+θG(η) satisfies

∥∥|Dx|−
1
2
+θG(η)ψ

∥∥
Cγ− 1

2−θ ≤ C
(∥∥η′

∥∥
Cγ−1

)∥∥|Dx|
1
2 ψ
∥∥
Cγ− 1

2
.
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Hereafter, γ always denote a real number such that γ > 2 and γ 6∈ 1
2N. It is always assumed

that the condition (2.1) holds for some small enough δ.

Let us introduce two functions that play a key role. Since Ḣ− 1
2 (R) ⊂ H− 1

2 (R) and since

Cγ−1(R) ·H− 1
2 (R) ⊂ H− 1

2 (R) for γ > 3/2, the following functions are well-defined

(2.3) B =
G(η)ψ + (∂xη)(∂xψ)

1 + (∂xη)2
, V = ∂xψ −B∂xη.

These functions appear since one has B = (∂yφ)|∂Ω and V = (∂xφ)|∂Ω, so that B (resp. V ) is

the trace of the vertical (resp. horizontal) component of the velocity at the free surface.

• Tame estimate for the Dirichlet-Neumann operator

If η ∈ C∞
b , it is known since Calderón that G(η) is a pseudo-differential operator of order 1

(see [47, 48, 51]). This is true in any dimension. In dimension one, this result simplifies to

(2.4) G(η)ψ = |Dx|ψ + R(η)ψ,

where R(η)f is a smoothing operator, bounded from Hµ to Hµ+m for any integer m. Namely,

(2.5) ∀m ∈ N, ∃K ≥ 1, ∀µ ≥ 1

2
, ‖R0(η)ψ‖Hµ+m ≤ C (‖η‖Hµ+K ) ‖η‖Hµ+K ‖ψ‖Hµ .

Several results are known when η is not smooth. Expressing G(η) as a singular integral

operator, it was proved by Craig, Schanz and Sulem [19] that if η is in Ck+1 and ψ is in Hk+1

for some integer k, then G(η)ψ belongs to Hk. Moreover, it was proved by Lannes [32] that

when η is a function with limited smoothness, then G(η) is a pseudo-differential operator with

symbol of limited regularity. This implies that if η is in Hs and ψ is in Hs for some s large

enough, then G(η)ψ belongs to Hs−1 (which was first established by Craig and Nicholls [18]

and Wu [52, 53] by different methods). We refer to [2, 3, 44, 45] for results in rough domains.

We shall prove in Chapter 2 an estimate which complements the estimate (2.5) in two direc-

tions. Firstly, notice that, for the analysis of the water waves equations, η and ψ are expected

to have essentially the same regularity so that the constant K corresponds to a loss of deriva-

tives. We shall prove an estimate without loss of derivatives. In addition, we shall prove a

tame estimate (which means an estimate linear with respect to the highest order norms).

Proposition (Tame estimate for the Dirichlet-Neumann operator). Let (s, γ) ∈ R2 be such

that

s − 1

2
> γ > 3, γ 6∈ 1

2
N.

Then, for all (η, ψ) in Hs(R)×Hs(R) such that that the condition (2.1) holds, G(η)ψ belongs

to Hs−1(R) and there exists a non decreasing function C : R → R such that

(2.6) ‖G(η)ψ − |Dx|ψ‖Hs−1

≤ C (‖η‖Cγ )
{∥∥|Dx|

1
2 ψ
∥∥
Cγ− 1

2
‖η‖Hs + ‖η‖Cγ

∥∥|Dx|
1
2 ψ
∥∥
Hs− 1

2

}
.
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Remark. It follows from (2.6) and the triangle inequality that

(2.7) ‖G(η)ψ‖Hs−1 ≤ C (‖η‖Cγ )
{∥∥|Dx|

1
2 ψ
∥∥
Cγ− 1

2
‖η‖Hs +

∥∥|Dx|
1
2 ψ
∥∥
Hs− 1

2

}
.

Other tame estimates, with Hölder norms replaced by Sobolev norms Hs0 for some fixed real

number s0, have been proved in [32] (see also [1]).

• Paraproducts

The proof of the previous proposition, as well as the proof of most of the following results,

are based on paradifferential calculus. The results needed in this paper are recorded in

Appendix A.1. To make this introduction self-contained, we recall here the definition of

paraproducts.

Consider a cut-off function θ in C∞(R × R) such that

θ(ξ1, ξ2) = 1 if |ξ1| ≤ ε1 |ξ2| , θ(ξ1, ξ2) = 0 if |ξ1| ≥ ε2 |ξ2| ,

with 0 < ε1 < ε2 < 1. Given two functions a = a(x) and b = b(x) one writes

ab =
1

(2π)2

∫∫
eix(ξ1+ξ2)â(ξ1)̂b(ξ2) dξ1 dξ2 = Tab+ Tba+RB(a, b)

where

Tab =
1

(2π)2

∫∫
eix(ξ1+ξ2)θ(ξ1, ξ2)â(ξ1)̂b(ξ2) dξ1 dξ2,

Tba =
1

(2π)2

∫∫
eix(ξ1+ξ2)θ(ξ2, ξ1)â(ξ1)̂b(ξ2) dξ1 dξ2,

RB(a, b) =
1

(2π)2

∫∫
eix(ξ1+ξ2)

(
1− θ(ξ1, ξ2)− θ(ξ2, ξ1)

)
â(ξ1)̂b(ξ2) dξ1 dξ2.

Then one says that Tab and Tba are paraproducts, while RB(a, b) is a remainder. The key

property is that a paraproduct by an L∞ function acts on any Sobolev spaces Hs with s in R.

The remainder term RB(a, b) is smoother than the paraproducts Tab and Tba whenever one

of the factors belongs to Cσ for some σ > 0 (see (A.1.17) in Appendix A.1).

• The quadratic terms

We call (2.6) a linearization formula since the right-hand side is quadratic in (η, ψ). We shall

prove much more precise results, with remainders quadratic in (η, ψ) and estimated not only

in Hs−1 but in Hs
′

for some s
′ ≥ s. To explain this improvement, we begin by considering

only the linear and quadratic terms in G(η)ψ. Set

G(≤2)(η)ψ := |Dx|ψ − |Dx| (η |Dx|ψ)− ∂x(η∂xψ).

Then it is known that G(η)ψ −G(≤2)(η)ψ is cubic in (η, ψ) (see [19] or (2.14) below).
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Now write

|Dx| (η |Dx|ψ) = |Dx|
(
Tη |Dx|ψ

)
+ |Dx|

(
T|Dx|ψη

)
+ |Dx|RB(η, |Dx|ψ)

and perform a similar decomposition of ∂x(η∂xψ). Noticing the following cancellation (cf.

Lemma A.1.11 in Appendix A.1)

(2.8) |Dx|
(
Tη |Dx|ψ

)
+ ∂x

(
Tη∂xψ

)
= 0,

we conclude that

G(≤2)(η)ψ = |Dx|ψ − |Dx|
(
T|Dx|ψη

)
− ∂x

(
T∂xψη

)
− |Dx|RB(η, |Dx|ψ)− ∂xRB(η, ∂xψ).

The previous identity is better written under the form

(2.9) G(≤2)(η)ψ = |Dx|
(
ψ − T|Dx|ψη

)
− ∂x

(
T∂xψη

)
+ F(≤2)(η)ψ,

where F(≤2)(η)ψ = − |Dx|RB(η, |Dx|ψ)− ∂xRB(η, ∂xψ). Assuming s+ γ > 1, it follows from

standard results (see (A.1.17) in Appendix A.1) that F(≤2)(η) is a smoothing operator:

(2.10)
∥∥F(≤2)(η)ψ

∥∥
Hs+γ−2 ≤ K ‖η‖Cγ

∥∥|Dx|
1
2 ψ
∥∥
Hs− 1

2
.

• The good unknown of Alinhac

In the previous paragraph, we considered only the linear and quadratic terms G(≤2)(η)ψ. To

prove an identity similar to (2.9) for G(η)ψ, exploiting a cancellation analogous to (2.8), as

in [6, 3], we shall express the computations in terms of the “good unknown” of Alinhac ω

defined by

ω = ψ − TBη

where B is as given in (2.3). As explained in [6, 3], the idea of introducing ω is rooted in a

cancellation first observed by Lannes [32] for the water waves equations linearized around a

non trivial solution. Here, we want to explain that ω appears naturally when one introduces

the operator of paracomposition of Alinhac [7] associated to the change of variables that

flattens the boundary y = η(x) of the domain. This is a quite optimal way of keeping track

of the limited smoothness of the change of coordinates. Though we shall not use this point

of view, we explain here the ideas that underly the computations that will be made later.

To study the elliptic equation ∆x,yφ = 0 in Ω = {(x, y) ∈ R2 ; y < η(x)}, we shall reduce the

problem to the negative half-space through the change of coordinates κ : (x, z) 7→ (x, z+η(x)),

which sends {(x, z) ∈ R2 ; z < 0} on Ω. Then φ(x, y) solves ∆x,yφ = 0 if and only if

ϕ = φ ◦ κ = φ(x, z + η(x)) is a solution of Pϕ = 0 in z < 0, where

(2.11) P = (1 + η′2)∂2z + ∂2x − 2η′∂x∂z − η′′∂z

(we denote by η′ the derivative ∂xη). The boundary condition φ|y=η(x) becomes ϕ(x, 0) = ψ(x)

and G(η) is given by

G(η)ψ =
[
(1 + η′2)∂zϕ− η′∂xϕ

]
z=0

.
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We first explain the main difficulty to handle a diffeomorphism with limited regularity. Let

us use the notation D = −i∂ and introduce the symbol

p(x, ξ, ζ) = (1 + η′(x)2)ζ2 + ξ2 − 2η′(x)ξζ + iη′′(x)ζ.

Notice that P = −p(x,Dx,Dz). We shall write Tpϕ for T1+η′(x)2D
2
z+D

2
x−2Tη′DxDz+Tη′′∂z.

Starting from p(x,Dx,Dz)ϕ = 0, by using standard results for paralinearization of products,

we find that Tpϕ = f1 for some source term f1 which is continuous in z with values in Hs−2

if η is in Hs and the first and second order derivatives in x, z of ϕ are bounded. The key

point is that one can associate to κ a paracomposition operator, denoted by κ∗, such that

Tp(κ
∗φ) = f2 for some smoother remainder term f2. That is for some function f2 continuous

in z with values in Hs+γ−4, if η is in Hs and if the derivatives in x, z of order less than γ of ϕ

are bounded (the key difference between f1 and f2 is that one cannot improve the regularity

of f1 by assuming that ϕ is smoother).

We shall not define κ∗, instead we recall the two main properties of paracomposition operators

(we refer to the original article [7] for the general theory). First, modulo a smooth remainder,

one has

κ∗φ = φ ◦ κ− Tφ′◦κκ

where φ′ denotes the differential of φ. On the other hand, there is a symbolic calculus formula

which allows to compute the commutator of κ∗ to a paradifferential operator. This formula

implies that

κ∗∆− Tpκ
∗

is a smoothing operator (that is an operator bounded from Hµ to Hµ+m for any real number

µ, where m is a positive number depending on the regularity of κ). Since ∆x,yφ = 0, this

implies that Tp
(
φ ◦ κ− Tφ′◦κκ

)
is a smooth remainder term as asserted above.

Now observe that

ω =
(
φ ◦ κ− Tφ′◦κκ

)
z=0

.

This is the reason why the good unknown enters into the analysis. The previous argument is

the key point to prove the following

Proposition (Paralinearisation of the Dirichlet-Neumann operator). Define F (η)ψ by

G(η)ψ = |Dx|ω − ∂x
(
TV η

)
+ F (η)ψ.

Let (s, γ) ∈ R2 be such that

s − 1

2
> γ > 3, γ 6∈ 1

2
N.

For all (η, ψ) in Hs(R)×Hs(R) such that that the condition (2.1) holds,

(2.12) ‖F (η)ψ‖Hs+γ−4 ≤ C (‖η‖Cγ )
{∥∥|Dx|

1
2 ψ
∥∥
Cγ− 1

2
‖η‖Hs + ‖η‖Cγ

∥∥|Dx|
1
2 ψ
∥∥
Hs− 1

2

}
.
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Our goal was to explain how to obtain an identity analogous to the identity (2.9) obtained by

considering the linear and quadratic terms in G(η)ψ. To compare (2.12) and (2.10), notice

that, from the definition of B and V (see (2.3)), B − |Dx|ψ and V − ∂xψ are quadratic in

(η, ψ). Therefore, modulo cubic and higher order terms, |Dx|ω − ∂x
(
TV η

)
is given by the

expression |Dx|
(
ψ − T|Dx|ψη

)
− ∂x

(
T∂xψη

)
which appears in the right hand side of (2.9). We

shall compare F (η)ψ and F(≤2)(η)ψ in the next paragraph.

The main interest of this proposition will be explained in the next section. At this point,

we want to show that this estimate implies the tame estimate (2.6). To do so, write the

remainder R(η)ψ in (2.4) as R(η)ψ = − |Dx|
(
TBη

)
−∂x

(
TV η

)
+F (η)ψ since |Dx|ω−|Dx|ψ =

− |Dx|
(
TBη

)
. The key point is that (η, ψ) → F (η)ψ is smoothing, with respect to both

arguments, while the two other factors are operators of order 1 acting on η. Indeed, as a

paraproduct with an L∞ function acts on any Sobolev spaces, one has

∥∥∂x
(
TV η

)∥∥
Hs−1 ≤ K ‖V ‖L∞ ‖η‖Hs ,

‖|Dx|ω − |Dx|ψ‖Hs−1 =
∥∥|Dx|

(
TBη

)∥∥
Hs−1 ≤ K ‖B‖L∞ ‖η‖Hs .

On the other hand, directly from the definition (2.3) of B, we deduce that

‖B‖L∞ ≤ ‖G(η)ψ‖L∞ + ‖∂xη‖L∞ ‖∂xψ‖L∞ .

Now the estimate (2.2) implies that the right-hand side of the above inequality is bounded

by C
(
‖η′‖Cγ−1

)∥∥|Dx|
1
2 ψ
∥∥
Cγ− 1

2
. Writing V = ∂xψ − B∂xη, we obtain the same estimate for

the L∞-norm of V . This proves that (2.12) implies (2.6) (and hence (2.7)).

• Taylor expansions of the Dirichlet-Neumann operator

Consider the Taylor expansion of the Dirichlet-Neumann operator G(η) as a function of η,

when η goes to zero. Craig, Schanz and Sulem (see [19] and [46, Chapter 11]) have shown that

one can expand G(η) as a sum of pseudo-differential operators and gave precise estimates for

the remainders. Tame estimates are proved in [19] and [8, 29]. We shall complement these

results by proving sharp tame estimates tailored to our purposes.

Proposition. Assume that

s − 1/2 > γ ≥ 14, s ≥ µ ≥ 5, γ 6∈ 1

2
N,

and consider (η, ψ) ∈ Hs+ 1
2 (R) × (Cγ(R) ∩ Hµ+ 1

2 (R)) such that the condition (2.1) holds.

Then there exists a non decreasing function C : R → R such that,

(2.13)
∥∥F (η)ψ − F(≤2)(η)ψ

∥∥
Hµ+1

≤ C(‖η‖Cγ ) ‖η‖Cγ

{∥∥|Dx|
1
2 ψ
∥∥
Cγ− 1

2
‖η‖Hs + ‖η‖Cγ

∥∥|Dx|
1
2 ψ
∥∥
Hµ

}
,

where recall that F(≤2)(η)ψ = − |Dx|RB(η, |Dx|ψ)− ∂xRB(η, ∂xψ).
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Notice that the right-hand side is cubic in (η, ψ) and that F (η) − F(≤2)(η) is a smoothing

operator, bounded from Hµ+ 1
2 to Hµ+1 (in fact it is a smoothing operator of any order,

assuming that γ is large enough).

Let us prove that this estimate allows to recover an estimate for the difference of G(η)ψ and

its quadratic part G(≤2)(η)ψ introduced above. By definition of F (η)ψ and F(≤2)(η)ψ, one

has

G(η)ψ = |Dx|
(
ψ − TBη

)
− ∂x

(
TV η

)
+ F (η)ψ,

G(≤2)(η)ψ = |Dx|
(
ψ − T|Dx|ψη

)
− ∂x

(
T∂xψη

)
+ F(≤2)(η)ψ.

Substracting these two expressions one obtains

G(η)ψ −G(≤2)(η)ψ = − |Dx|
(
TB−|Dx|ψη

)
− ∂x

(
TV−∂xψη

)
+ F (η)ψ − F(≤2)(η)ψ.

Noticing that the L∞-norms of B − |Dx|ψ is bounded by C (‖η‖Cγ ) ‖η‖Cγ

∥∥|Dx|
1
2 ψ
∥∥
Cγ− 1

2
,

together with a similar estimate for the L∞-norm of V −∂xψ, and repeating arguments similar

to those used in the previous paragraph, one finds that

(2.14)
∥∥G(η)ψ −G(≤2)(η)ψ

∥∥
Hs−1

≤ C (‖η‖Cγ ) ‖η‖Cγ

{∥∥|Dx|
1
2 ψ
∥∥
Cγ− 1

2
‖η‖Hs + ‖η‖Cγ

∥∥|Dx|
1
2 ψ
∥∥
Hs− 1

2

}
,

for any s ≥ γ + 1/2, provided that γ is large enough.

On the other hand, we shall also need to study the case where (η, ψ) ∈ Cγ×Hµ with γ larger

than µ. Then we shall prove that G(η)− |Dx| and G(η)−G(≤2)(η) are smoothing operators,

satisfying

‖G(η)ψ − |Dx|ψ‖Hγ−3 ≤ C (‖η‖Cγ ) ‖η‖Cγ

∥∥|Dx|
1
2 ψ
∥∥
L2 ,

∥∥G(η)ψ −G(≤2)(η)ψ
∥∥
Hγ−4 ≤ C (‖η‖Cγ ) ‖η‖2Cγ

∥∥|Dx|
1
2 ψ
∥∥
H1 .

3 Paradifferential normal forms method

The main goal of this paper is to prove that, given an a priori bound of some Hölder norm

of Zk
′
(η + i |Dx|

1
2 ψ) for k′ ≤ s/2 + k0, we have an a priori estimate of some Sobolev norms

of Zk(η + i |Dx|
1
2 ω) for k ≤ s, where recall that ω = ψ − TB(η)ψη. The proof is by induction

on k ≥ 0. Each step is divided into two parts:

1. Quadratic approximations: in this step we paralinearize and symmetrize the equations.

In addition, we identify the principal and subprincipal terms in the analysis of both the

regularity and the homogeneity.
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2. Normal form: in this step we use a bilinear normal form transformation to compensate

for the quadratic terms in the energy estimates.

For the sake of clarity, we begin by considering the case k = 0. Our goal is to explain the

proof of (1.4) and (1.5).

• Quadratic and cubic terms in the equations

The previous analysis of G(η)ψ allows us to rewrite the first equation of (1.3) as

∂tη + ∂x
(
TV η

)
− |Dx|ω = F (η)ψ.

It turns out that it is much simpler to analyze the second equation of (1.3): expressing the

computations in terms of the good unknown ω, it is found that

∂tω + TV ∂xω + Taη = f,

where a is the Taylor coefficient and f is a smoothing remainder

f = (TV T∂xη − TV ∂xη)B + (TV ∂xB − TV T∂xB)η

+
1

2
RB(B,B)− 1

2
RB(V, V ) + TVRB(B, ∂xη)−RB(B,V ∂xη)

(the last four terms are remainders in the paralinearization of a products while the first two

terms are estimated by symbolic calculus, see (A.1.14)).

It is convenient to symmetrize these equations by making act T√a (resp. |Dx|
1
2 ) on the first

(resp. second) equation. Set

U =

(
T√aη

|Dx|
1
2 ω

)
.

We can now state the main consequence of the results given in the previous section.

Proposition. The water waves system can be written under the form

(3.1) ∂tU +DU +Q(u)U + S(u)U + C(u)U = G,

where D =

(
0 − |Dx|

1
2

|Dx|
1
2 0

)
, u =

(
η

|Dx|
1
2 ψ

)
, Q(u)U and S(u)U (resp. C(u)U and G) are

quadratic (resp. cubic terms). Moreover there exists ρ > 0 such that, for s large enough,

‖Q(u)U‖Hs−1 ≤ K ‖u‖Cρ ‖U‖Hs ,

‖S(u)U‖Hs+1 ≤ K ‖u‖Cρ ‖U‖Hs ,

‖C(u)U‖Hs−1 ≤ C(‖u‖Cρ) ‖u‖2Cρ ‖U‖Hs ,

‖G‖Hs ≤ C(‖u‖Cρ) ‖u‖2Cρ ‖U‖Hs .
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Remark. i) The operators Q(u), S(u) and C(u) are explicitly given in the proof. The

previous estimates mean that U 7→ Q(u)U and U 7→ C(u)U (resp. U 7→ S(u)U) are linear

operators of order 1 (resp. −1) with tame dependence on u.

ii) For ‖η‖Cγ small enough, ψ → ψ− TB(η)ψη is an isomorphism from Cγ to itself. Then one

could write (2.12) in terms of U only. However, it is convenient to introduce u because the

Hölder bounds are most naturally proved for u (see [5] for these estimates).

• Quadratic normal form: strategy of the proof

Recall that

u =

(
η

|Dx|
1
2 ψ

)
, U =

(
T√aη

|Dx|
1
2 ω

)
.

We want to implement the normal form approach by introducing a quadratic perturbation of

U of the form

Φ = U + E(u)U,

where (u,U) 7→ E(u)U is bilinear and chosen in such a way that the equation on Φ is of the

form

∂tΦ+DΦ = N(≥3)(Φ),

where N(≥3)(Φ) consists of cubic and higher order terms. To compute the equation satisfied

by Φ, write

∂tΦ = ∂tU + E(∂tu)U + E(u)∂tU.

Hence, by replacing ∂tU by −DU − (Q(u) + S(u))U , we obtain that modulo cubic terms,

∂tΦ = −DU − (Q(u) + S(u))U −E(Du)U −E(u)DU

= −DΦ+DE(u)U − (Q(u) + S(u))U − E(Du)U − E(u)DU.

It is thus tempting to seek E under the form E = E1 + E2 such that

Q(u)U + E1(Du)U + E1(u)DU = DE1(u)U,(3.2)

S(u)U + E2(Du)U + E2(u)DU = DE2(u)U.(3.3)

However, one cannot solve these two equations directly for two different reasons. The equation

(3.2) leads to a loss of derivative: for a general u ∈ H∞ and s ≥ 0, it is not possible

to eliminate the quadratic terms Q(u)U by means of a bilinear Fourier multiplier E1 such

that U 7→ E1(u)U is bounded from Hs to Hs. Instead we shall add other quadratic terms to

the equation to compensate the worst terms. More precisely, our strategy consists in seeking

a bounded bilinear Fourier multiplier Ẽ1 (such that U 7→ Ẽ1(u)U is bounded from Hs to Hs)

such that the operator B1(u) given by

(3.4) B1(u)U := DẼ1(u)U − Ẽ1(Du)U − Ẽ1(u)DU,
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satisfies

Re〈Q(u)U −B1(u)U,U〉Hs×Hs = 0.

The key point is that one can find B1(u) such that U 7→ B1(u)U is bounded from Hs to Hs.

This follows from the fact that, while U 7→ Q(u)U is an operator of order 1, the operator

Q(u)+Q(u)∗ is an operator of order 0. Once B1 is so determined, we find a bounded bilinear

transformation Ẽ1 such that (3.4) is satisfied. We here use the fact that Q is a paradifferential

operator so that one has some restrictions on the support of the symbols.

The problem (3.3) leads to another technical issue. If one computes the bilinear Fourier

multiplier E2(u)U which satisfies (3.3) then one finds a bilinear Fourier multiplier E2 such

that U 7→ E2(u)U is bounded from Hs to Hs, but whose operator norm satisfies only

‖E2(u)‖L(Hs ,Hs) ≤ K ‖u‖C̺ +K ‖Hu‖C̺ ,

where H denotes the Hilbert transform. The problem is that, in general, ‖Hu‖C̺ is not

controlled by ‖u‖C̺ . Again to circumvent this problem, instead of solving (3.3), we solve

B2(u)U := DẼ2(u)U − Ẽ2(Du)U − Ẽ2(u)DU,

where B2(u) satisfies

(3.5) Re〈S(u)U −B2(u)U,U〉Hs×Hs = 0.

The key point is that one can find B2(u) such that the solution Ẽ2(u) to (3.5) satisfies

∥∥Ẽ2(u)
∥∥
L(Hs ,Hs)

≤ K ‖u‖C̺ .

• Paradifferential operators

According to the previous discussion, we shall have to consider the equation

(3.6) E(Du)U + E(u)DU −D
[
E(u)U

]
= Π(u)U,

where (u,U) 7→ E(u)U and (u,U) 7→ Π(u)U are bilinear operators of the form

E(u)U =
∑

1≤k≤2

1

(2π)2

∫
eix(ξ1+ξ2)ûk(ξ1)A

k(ξ1, ξ2)Û(ξ2) dξ1 dξ2,

Π(u)U =
∑

1≤k≤2

1

(2π)2

∫
eix(ξ1+ξ2)ûk(ξ1)M

k(ξ1, ξ2)Û(ξ2) dξ1 dξ2,(3.7)

where Ak and Mk are 2 × 2 matrices of symbols. We shall consider the problem (3.6) in

two different cases according to the frequency interactions which are permitted in E(u)U and

Π(u)U . These cases are the following:
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(i) The case where Π(u)U is a low-high paraproduct, which means that there exists a

constant c ∈]0, 1/2[ such that

SuppMk ⊂
{
(ξ1, ξ2) ∈ R

2 : |ξ2| ≥ 1, |ξ1| ≤ c |ξ2|
}
.

The operator Q(u) and its real part are of this type.

(ii) The case where Π(u)U is a high-high paraproduct which means that there exists a

constant C > 0 such that

SuppMk ⊂
{
(ξ1, ξ2) ∈ R

2 : |ξ1 + ξ2| ≤ C(1 + min(|ξ1| , |ξ2|))
}
.

This spectral assumption is satisfied by S(u) and its real part.

That one can reduce the analysis to considering such paradifferential operators is the key

point to prove tame estimates. This allows us to prove the following result.

Proposition. There exist γ > 0 and a bilinear mapping (u,U) 7→ E(u)U satisfying, for any

real number µ in [−1,+∞[,

(3.8) ‖E(u)f‖Hµ ≤ K ‖u‖C3 ‖f‖Hµ

such that Φ̇ = (Id−∆)s/2
(
U + E(u)U

)
(with s large enough) satisfies

∂tΦ̇ +DΦ̇ + L(u)Φ̇ + C(u)Φ̇ = Γ

where the operators D and C(u) are as in (3.1), the source term satisfies

‖Γ‖L2 ≤ C(‖u‖Cγ ) ‖u‖2Cγ

∥∥Φ̇
∥∥
L2

and

(3.9) Re〈L(u)Φ̇, Φ̇〉 = 0

where 〈·, ·〉 denotes the L2-scalar product.

The proof of this proposition follows immediately from the analysis in Section 3.7. We describe

now how one proves the estimates (1.4) and (1.5). Setting

Ms(t) =
∥∥Φ̇(t, ·)

∥∥2
L2 = ‖U + E(u)U‖2Hs ,

the estimate (1.5) follows from an L2-estimate (the key point is that the quadratic terms

L(u)Φ̇ do not contribute to the energy estimate in view of (3.9)). Also (1.4) follows from

(3.8) assuming that ‖u‖C3 is small enough ( to compare the right-hand side of (1.4) with Ms,

one has also to compare
∥∥(∇x,yφ)|y=η

∥∥
Hs− 1

2
and

∥∥|Dx|
1
2 ω
∥∥
Hs

; this will be done in Chapter 2).
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4 Iterated vector fields Z

We describe now how one gets L2-estimates similar to those of the preceding section when

one makes act iterates of the Klainerman vector field Z = t∂t + 2x∂x on (η, |Dx|
1
2 ω).

We fix real numbers a and γ with γ 6∈ 1
2N and a ≫ γ ≫ 1. Given these two numbers, we fix

three integers s, s0, s1 in N such that

s − a ≥ s1 ≥ s0 ≥
s

2
+ γ.

We also fix an integer ρ larger than s0. Our goal is to estimate the norm

M (s1)
s

(t) =

s1∑

p=0

(∥∥Zpη(t)
∥∥
Hs−p +

∥∥|Dx|
1
2 Zpω(t)

∥∥
Hs−p

)
,

assuming some control of the Hölder norms

Nγ(t) = ‖η(t)‖Cγ +
∥∥|Dx|

1
2 ψ(t)

∥∥
Cγ

and

N (s0)
ρ (t) =

s0∑

p=0

(∥∥Zpη(t)
∥∥
Cρ−p +

∥∥|Dx|
1
2 Zpψ(t)

∥∥
Cρ−p

)
.

To estimate M
(s1)
s we shall estimate the L2-norm of ∂αxZ

nU for (α, n) in the set

P =
{
(α, n) ∈ N× N ; 0 ≤ n ≤ s1, 0 ≤ α ≤ s − n

}
.

(In fact, we shall estimate

∥∥∂αxZnη
∥∥
Hβ +

∥∥|Dx|
1
2 ∂αxZ

nω
∥∥
Hβ +

∥∥|Dx|
1
2 ∂αxZ

nψ
∥∥
Hβ−1

2
,

for some large enough exponent β, but small compared to γ; in this outline, we do not discuss

this as well as other similar difficulties).

We shall proceed by induction. This requires to introduce a bijective map, denoted by Λ, from

P to {0, 1, . . . ,#P−1}. We find that it is convenient to chose Λ such that Λ(α′, n′) < Λ(α, n)

holds if and only if either n′ < n or [n′ = n and α′ < α]. This corresponds to

Λ(α, n) =

n−1∑

p=0

(s + 1− p) + α.

Given an integer K in {0, . . . ,#P} we set

MK =
∑

Λ(α′,n′)≤K−1

∥∥∥∂α′

x Z
n′

U
∥∥∥
L2
.
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As alluded to above, the Hilbert transform appears at several place in the analysis. The

problem is that it is not bounded on Hölder spaces and one has only an estimate of the form:

for any ρ 6∈ N, there exists K > 0 and for any ν > 0, any v ∈ Cρ ∩ L2,

‖Hv‖Cρ ≤ K
[
‖v‖Cρ +

1

ν
‖v‖1−νCρ ‖v‖νL2

]
.

Here one cannot overcome this problem and we are lead to introduce the norms

NK = N (s0)
ρ +

1

ν

(
N (s0)
ρ

)1−ν(MK

)ν

for some ν > 0 (the optimal choice is ν =
√
ε for initial data of size ε).

We shall prove that there are for any K = 0, . . . ,#P −1 a constant AK and a non-decreasing

function CK(·) such that for any ν in ]0, 1], any positive numbers T0, T and any t in [T0, T ],

(4.1)

MK+1(t) ≤ AKM
(s1)
s

(T0) + CK
(
N (s0)
ρ (t)

)(
1 +NK(t)

)
MK(t)

+

∫ t

T0

CK
(
N (s0)
ρ (t′)

) ∥∥u(t′, ·)
∥∥2
Cγ MK+1(t

′) dt′

+

∫ t

T0

CK
(
N (s0)
ρ (t′)

)
NK(t

′)2MK(t′) dt′

(setting N0 ≡ 0, M0 ≡ 0 when K = 0).

This estimate will be used to prove that, if for any t ∈ [T0, T [ and any ε ∈]0, ε0]

(4.2)
∥∥|Dx|

1
2 ψ(t, ·)

∥∥
Cγ− 1

2
+ ‖η(t, ·)‖Cγ = O

(
εt−

1
2
)

and

(4.3) N (s0)
ρ (t) = O

(
εt−

1
2
+ν
)

for some constant 0 < ν ≪ 1, then there is an increasing sequence (δK)0≤k≤#P , depending
only on ν and ε such that for any t in [T0, T [ and any ε,

(4.4) MK(t) = O
(
εtδK

)
.

The proof is by induction on K. For K = #P we obtain an estimate forM
(s1)
s . The key point

is that, when we use Gronwall lemma to deduce from (4.1) a bound for MK+1, assuming that

(4.2), (4.3), (4.4) hold, the coefficient of MK+1(t
′) in the first integral in (4.1) is O(ε2t−1)

by (4.2). In that way, it induces only a O(tε
2C) growth for MK+1. The fact that, on the

other hand, MK(t
′) in the second integral in (4.1) is multiplied by a factor that may grow

like t−
1
2
+δ (with 0 < δ ≪ 1) is harmless, as MK(t

′) is a source term, already estimated in

the preceding step of the induction.

The proof of (4.1) contains an analysis of independent interest. Namely, we shall prove various

tame estimates for the action of iterated vector fields Z = t∂t + 2x∂x on the equations. Such
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estimates have already been obtained by Wu [54] and Germain-Masmoudi-Shatah in [23]. We

shall prove sharp tame estimates tailored to our purposes (one key point is to estimate the

action of Zk on F (η)ψ). This part is quite technical and we refer the reader to Chapter 4 for

precise statements. In this chapter, we shall prove that

ZG(η)ψ = G(η)
(
(Z − 2)ψ −BZη)− ∂x((Zη)V ) + 2 [G(η), η]B + 2V ∂xη.

Since B and V are expressions of ∂xη, ∂xψ and G(η)ψ, one deduce from the above identity

formulae for ZB and ZV . This allows by induction to express the action of iterated vector

fields Z on the Dirichlet-Neumann operator G(η) in terms of convenient classes of multilinear

operators.
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Chapter 1

Statement of the main results

In this chapter, we state the main Sobolev estimate whose proof is the goal of this paper, and

we describe the global existence theorem for water waves equations established in [5] using

these Sobolev bounds. Before stating the result, we define in a precise way the Dirichlet-

Neumann operator that appears in the Craig-Sulem-Zakharov version of the water waves

equation, and establish properties of this operator that are used in the sequel as well as in [5].

1.1 Definitions and properties of the Dirichlet-Neumann op-

erator

Let η : R → R be a smooth enough function and consider the open set

Ω := { (x, y) ∈ R× R ; y < η(x) }.

If ψ : R → R is another function, and if we call φ : Ω → R the unique solution of ∆φ = 0

in Ω satisfying φ|y=η(x) = ψ and a convenient vanishing condition at y → −∞, one defines

the Dirichlet-Neumann operator G(η) by

G(η)ψ =
√

1 + (∂xη)2 ∂nφ|y=η,

where ∂n is the outward normal derivative on ∂Ω, so that

G(η)ψ = (∂yφ)(x, η(x)) − (∂xη)(∂xφ)(x, η(x)).

The goal of this section is to make precise the above definition and to study the action of

G(η) on different spaces.

We shall reduce the problem to the negative half-space through the change of coordinates

(x, y) 7→ (x, z = y − η(x)), which sends Ω on {(x, z) ∈ R2 ; z < 0}. Then φ(x, y) solves

∆φ = 0 if and only if ϕ(x, z) = φ(x, z + η(x)) is a solution of Pϕ = 0 in z < 0, where

(1.1.1) P = (1 + η′2)∂2z + ∂2x − 2η′∂x∂z − η′′∂z
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(we denote by η′ the derivative ∂xη). The boundary condition becomes ϕ(x, 0) = ψ(x) and

G(η) is given by

G(η)ψ =
[
(1 + η′2)∂zϕ− η′∂xϕ

]
z=0

.

It is convenient and natural to try to solve the boundary value problem

Pϕ = 0, ϕ|z=0 = ψ

when ψ lies in homogeneous Sobolev spaces. Let us introduce them and fix some notation.

We denote by S ′
∞(R) (resp. S ′

1(R)) the quotient space S ′(R)/C[X] (resp. S ′(R)/C). If S∞(R)

(resp. S1(R)) is the subspace of S(R) made of the functions orthogonal to any polynomial

(resp. to the constants), S ′
∞(R) (resp. S ′

1(R)) is the dual of S∞(R) (resp. S1(R)). Since the

Fourier transform realizes an isomorphism from S∞(R) (resp. S1(R)) to

Ŝ∞(R) = {u ∈ S(R) ; u(k)(0) = 0 for any k in N}

(resp. Ŝ1(R) = {u ∈ S(R) ; u(0) = 0}), we get by duality that the Fourier transform defines

an isomorphism from S ′
∞(R) to (Ŝ∞)′(R), which is the quotient of S ′(R) by the subspace of

distributions supported in {0} (resp. from S ′
1(R) to (Ŝ1)

′(R) = S ′(R)/Vect (δ0)).

Let φ : R → R be a function defining a Littlewood-Paley decomposition (see Appendix A.2)

and set for j ∈ Z, ∆j = φ(2−jD). Then for any u in S ′
∞(R), the series

∑
j∈Z∆ju converges

to u in S ′
∞(R) (for the weak-∗ topology associated to the natural topology on S∞(R)). Let

us recall (an extension of) the usual definition of homogeneous Sobolev or Hölder spaces.

Definition 1.1.1. Let s
′, s be real numbers. One denotes by Ḣs

′,s(R) (resp. Ċs
′,s(R)) the

space of elements u in S ′
∞(R) such that there is a sequence (cj)j∈Z in ℓ2(Z) (resp. a constant

C > 0) with for any j in Z,

‖∆ju‖L2 ≤ cj2
−js′−j+s

(resp.

‖∆ju‖L∞ ≤ C2−js
′−j+s)

where j+ = max(j, 0). We set Ḣs
′
(resp. Ċs

′
) when s = 0.

The series
∑+∞

j=0 ∆ju always converges in S ′(R) under the preceding assumptions, but the

same is not true for
∑−1

j=−∞∆ju. If u is in Ḣs
′,s(R) with s

′ < 1/2 (resp. in Ċs
′,s(R) with

s
′ < 0), then

∑−1
j=−∞∆ju converges normally in L∞, so in S ′(R), and u → ∑+∞

−∞∆ju gives

the unique dilation and translation invariant realization of Ḣs
′,s (resp. Ċs

′,s(R)) as a subspace

of S ′(R). One the other hand, if s′ ∈ [1/2, 3/2[ (resp. s
′ ∈ [0, 1[), the space Ḣs

′

(R) (resp.

Ċs
′
(R)) admits no translation commuting realization as a subspace of S ′(R), but the map

u → ∑+∞
−∞∆ju defines a dilation and translation commuting realization of these spaces as

subspaces of S ′
1(R). We refer to Bourdaud [11] for these properties.

For k ∈ N, we denote by Ckp (] − ∞, 0],S ′
∞(R)) the space of functions z → u(z) defined on

]−∞, 0] with values in S ′
∞(R), such that for any θ in S∞(R), z → 〈u(z), θ〉 is Ck, and there
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is M ∈ N and a continuous semi-norm p on S∞(R), such that for any k′ = 0, . . . , k, any θ in

S∞(R), ∣∣∂kz 〈u(z), θ〉
∣∣ ≤ p(θ)(1 + |z|)M .

We denote by D′(]−∞, 0[,S ′
∞(R)) the dual space of C∞

0 (]−∞, 0[)⊗S∞(R). We shall denote

by L2(] − ∞, 0],S ′
∞(R)) the subspace of D′(] − ∞, 0[,S ′

∞(R)) made of those distributions u

such that for any θ ∈ S∞(R), z → 〈u(z, ·), θ〉 is in L2(] − ∞, 0]) and there are continuous

semi-norms p on S∞(R) and an L2-function h on ] − ∞, 0] so that for any θ in S∞(R),

|〈u(z, ·), θ〉| ≤ p(θ)h(z).

Definition 1.1.2. We denote by E the space

E =
{
ϕ ∈ D′(]−∞, 0[,S ′

∞(R)) ; ∇x,zϕ ∈ L2(]−∞, 0[×R)
}
.

(We consider L2(] − ∞, 0[×R) as a subspace of D′(] − ∞, 0[,S ′
∞(R)) using that the natural

map from L2(R) to S∞(R) is injective). We endow E with the semi-norm ‖∇x,zϕ‖L2L2 .

Remarks. — If ϕ is in E, then ϕ belongs to C0
p(] − ∞, 0],S ′

∞(R)). In particular, ϕ|z=0 is

well defined as an element of S ′
∞(R). Actually, if θ1 is a test function in S∞(R), it may be

written θ1 = ∂xθ̃1 for another function θ̃1 in S∞(R), so that, for any θ0 in C∞
0 (]−∞, 0[),

〈
ϕ, θ0(z)⊗ θ1(x)

〉
= −

〈
∂xϕ, θ0(z) ⊗ θ̃1(x)

〉

which shows that z → 〈ϕ(z, ·), θ1〉 is in L2(]−∞, 0[). Moreover, its z-derivative is also L2, so

that z → 〈ϕ(z, ·), θ1〉 is a continuous bounded function.

— The semi-norm ‖∇x,zϕ‖L2L2 is actually a norm on E, and E endowed with that semi-norm

is a Banach space. Actually, if (ϕn)n is a Cauchy sequence in E, if θ0, θ1, θ̃1 are as above, we

may write

|〈ϕn − ϕm, θ0(z)⊗ θ1(x)〉| ≤ ‖∂x(ϕn − ϕm)‖L2L2

∥∥θ0 ⊗ θ̃1
∥∥
L2L2

which shows that (ϕn)n converges to a limit ϕ in D′(]−∞, 0[,S ′
∞(R)). That limit ϕ satisfies

∇x,zϕ ∈ L2(]−∞, 0[×R) i.e. belongs to E.

The space E introduced in Definition 1.1.2 is a natural one in view of the following lemma.

Lemma 1.1.3. Let ψ be in S ′
∞(R). There is an equivalence between

i) The function x→ ψ(x) is in Ḣ
1
2 (R).

ii) The function (x, z) → ez|Dx|ψ(x) is in E.

Moreover

(1.1.2)
∥∥∂x
(
ez|Dx|ψ

)∥∥2
L2L2 +

∥∥∂z
(
ez|Dx|ψ

)∥∥2
L2L2 =

∥∥|Dx|
1
2 ψ
∥∥2
L2 .
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Proof. If ψ is in Ḣ
1
2 (R), it is clear that (x, z) → ez|Dx|ψ is a bounded function with values in

S ′
∞(R). Moreover,

∥∥∂x
(
ez|Dx|ψ

)∥∥2
L2L2 =

1

2π

∫ 0

−∞

∫
e2z|ξ|

∣∣ψ̂(ξ)
∣∣2 |ξ|2 dξdz =

1

2

∥∥|Dx|
1
2 ψ
∥∥2
L2

and
∥∥|Dx|

1
2 ψ
∥∥
L2 is equivalent to the Ḣ1/2(R)-norm. As a similar computation holds for the

∂z-derivative, the conclusion follows.

The preceding lemma gives a solution ez|Dx|ψ to the boundary values problem ∆(ez|Dx|ψ) = 0

in z < 0, ez|Dx|ψ|z=0 = ψ. Let us study the corresponding non homogeneous problem.

Lemma 1.1.4. Let f be given in L2(]−∞, 0],S ′
∞(R)) and ψ be in S ′

∞(R). There is a unique

function ϕ in C1
p(]−∞, 0],S ′

∞(R)) solution of the equation (∂2x+∂
2
z )ϕ = f in z < 0, ϕ|z=0 = ψ.

It is given by the equality between elements of S ′
∞(R) at fixed z:

(1.1.3)

ϕ(z, x) = ez|Dx|ψ +
1

2

∫ 0

−∞
e(z+z

′)|Dx| |Dx|−1 f(z′, ·) dz′

− 1

2

∫ 0

−∞
e−|z−z′||Dx| |Dx|−1 f(z′, ·) dz′.

Moreover, if we assume that ∇x,zϕ is in L2(]−∞, 0]×R) (resp. that ϕ is in L2(]−∞, 0]×R))

the solution ϕ is unique modulo constants (resp. is unique).

Proof. Let us show first that the integrals in the right hand side of (1.1.3) are converging

ones when acting on a test function θ in S∞(R). By definition of L2(] − ∞, 0],S ′
∞(R)),

there is a semi-norm p on S∞(R), there is an L2(] − ∞, 0]) function z → h(z) such that

|〈f(z′, ·), θ1〉 ≤ p(θ1)h(z
′) for any θ1 in S∞(R), any z′ < 0. Moreover, for any N , |Dx|N is an

isomorphism from S∞(R) to itself. We may write for fixed z and for any θ in S∞(R)

(1.1.4)

∫ z−1

−∞

〈
e−|z±z′||Dx| |Dx|−1 f(z′, ·), θ

〉
dz′

=

∫ z−1

−∞

〈
f(z′, ·), e−|z±z′||Dx|(|z − z′| |Dx|

)(
|Dx|−2 θ

)〉 dz′

|z − z′| ·

Any semi-norm of the term in the right hand side of the bracket is controlled uniformly in

z < 0, z′ < 0. It follows that the integral converges. The same is trivially true for the integral

from z−1 to 0 of the integrand in the left hand side of (1.1.4). This shows also that the right

hand side of (1.1.3) is in C0
p(] −∞, 0],S ′

∞(R)). Taking the ∂z-derivative, we get in the same

way that ∂zϕ is in C0
p(] −∞, 0],S ′

∞(R)). Moreover, a direct computation shows that we get

a solution of (∂2x + ∂2z )ϕ = f with the wanted boundary data.
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To prove uniqueness, we have to check that when ψ = 0, the unique function ϕ in the space

C1
p(] −∞, 0],S ′

∞(R)) satisfying (∂2x + ∂2z )ϕ = 0 in z < 0, ϕ|z=0 = 0 is zero in that space. If

we set

U =

(
ϕ

∂zϕ

)
, A(Dx) =

(
0 1

|Dx|2 0

)
,

this is equivalent to checking that the only solution of ∂zU = A(Dx)U in C0
p(]−∞, 0],S ′

∞(R)×
S ′
∞(R)) with U1|z=0 = 0 is zero. If we set

P (Dx) =

(
1 1

|Dx| − |Dx|

)
, V =

(
V1
V2

)
= P (Dx)

−1U,

we are reduced to verifying that the unique V in C0
p(] − ∞, 0],S ′

∞(R) × S ′
∞(R)) such that

∂zV =
(

|Dx| 0
0 −|Dx|

)
V and V1 + V2|z=0 = 0 is zero in that space. It is sufficient to check that

(1.1.5)
V2 ∈ C0

p(]−∞, 0],S ′
∞(R)) and ∂zV2 + |Dx|V2 = 0 ⇒ V2 ≡ 0,

V1 ∈ C0
p(]−∞, 0],S ′

∞(R)) and ∂zV1 − |Dx|V1 = 0 ⇒ V1 ≡ 0.

To prove the first implication, we take θ in C0
p(]−∞, 0[,S∞(R)) and set

θ̃(z, x) =

∫ 0

z
e−(z′−z)|Dx|θ(z′, ·) dz′.

If θ1 is some C∞
0 (]−∞, 0]) function equal to one close to zero, such that θ1(z)θ(z, x) = θ(z, x),

we may write for any M > 1, using that θ̃ vanishes close to z = 0,

0 =

∫ 0

−∞

〈
(∂z + |Dx|)V2, θ1(z/M)θ̃(z, ·)

〉
dz

=

∫ 0

−∞

〈
V2, θ(z, ·)

〉
dz −

∫ 0

−∞

〈
V2,

1

M
θ′1
( z
M

)
θ̃(z, ·)

〉
dz

and the conclusion will follow if one shows that the last integral goes to zero as M goes to

+∞. Because of the fact that V2 is assumed to be at most at polynomial growth, it is enough

to show that any semi-norm of 1
M θ

′
1

(
z
M

)
θ̃(z, ·) in S∞(R) goes to zero more rapidly than M−k

(or |z|−k) for any k when M goes to +∞. This follows from the fact that, as above, we may

write θ̃ as ∫ 0

a
e−(z′−z)||Dx|((z′ − z) |Dx|

)N(|Dx|−N θ(z′, ·)
) dz′

(z′ − z)N

if a is such that Supp θ ⊂ [a, 0] × R, if z is in the support of θ′1(z/M) and N is an arbitrary

integer.

To prove the second implication (1.1.5), we argue in the same way, taking

θ̃(z, x) =

∫ z

−∞
e−(z−z′)|Dx|θ(z′, ·) dz′
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and replacing θ1 by 1. Since V1|z=0 = 0 and θ̃ is supported for z in a compact subset of

]−∞, 0], we obtain

0 =

∫ 0

−∞

〈
(∂z − |Dx|)V1, θ̃(z, ·)

〉
dz = −

∫ 0

−∞
〈V1, θ(z, ·)〉 dz

this implies the conclusion.

The above uniqueness statement holds in general only in C1
p(] − ∞, 0],S ′

∞(R)) i.e. modulo

polynomials at fixed z. Let us check that if we assume moreover that ∇x,zϕ belongs to

L2(] −∞, 0] × R), then ϕ is constant. By what we have just seen, we already know that for

any fixed z, x → ∂xϕ(z, x) is zero in S ′
∞(R) i.e. is a polynomial. Consequently, for almost

every z, x → ϕ(z, x) has to be a polynomial such that ∂xϕ(z, x) is in L2(dx). This implies

that ϕ has to be independent of x, which, together with the equation (∂2x + ∂2z )ϕ = 0 implies

that ϕ is a constant. If we assume that ϕ is in L2(]−∞, 0]×R), one proves in the same way

that ϕ is zero. This concludes the proof.

We use now the preceding result to write the solution of the Dirichlet boundary values problem

associated to the operator P defined in (1.1.1) as the solution of a fixed point problem.

Lemma 1.1.5. Let ψ be in S ′
1(R), η in Cγ(R) with γ > 2, h1, h2 two functions in L2(] −

∞, 0[×R), with ∂zh1 in L2(]−∞, 0[,H−1(R)). Let ϕ be an element of the space E of Defini-

tion 1.1.2, satisfying Pϕ = ∂zh1 + ∂xh2, ϕ|z=0 = ψ. Then ϕ is in C1
p(] −∞, 0],S ′

∞(R)) and

satisfies the equality between functions in C0
p(]−∞, 0],S ′

∞(R))

(1.1.6)

ϕ(z, x) = ez|Dx|ψ

+
1

2

∫ 0

−∞
e(z+z

′)|Dx|
[
∂x |Dx|−1 (η′∂zϕ+ h2

)]
dz′

+
1

2

∫ 0

−∞
e(z+z

′)|Dx|
[
−
(
η′∂xϕ− η′2∂zϕ+ h1

)]
dz′

+
1

2

∫ 0

−∞
e−|z−z′||Dx|

[
−∂x |Dx|−1 (η′∂zϕ+ h2

)]
dz′

+
1

2

∫ 0

−∞
e−|z−z′||Dx|

[
sign(z − z′)

(
η′∂xϕ− η′2∂zϕ+ h1

)]
dz′.

If we assume that ψ is in Ḣ
1
2 (R), this equality holds modulo constants. Conversely, if ϕ is in

E and satisfies (1.1.6), then Pϕ = ∂zh1 + ∂xh2, ϕ|z=0 = ψ.

Proof. The equation Pϕ = ∂zh1 + ∂xh2 implies

(1.1.7) ∂2zϕ = − 1

1 + η′2
∂2xϕ+ 2

η′

1 + η′2
∂x∂zϕ+

η′′

1 + η′2
∂zϕ+

∂zh1 + ∂xh2
1 + η′2

·
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The assumptions on η imply that the coefficients of the first two and last terms (resp. of the

third term) in the right hand side are in Cγ−1(R) (resp. Cγ−2(R)). Since ∂2xϕ, ∂x∂zϕ, ∂zh1,

∂xh2 (resp. ∂zϕ) are in L2(] −∞, 0],H−1(R)) (resp. L2(]−∞, 0], L2(R))), property (A.1.21)

of the Appendix A.1 and assumption γ > 2 imply that ∂2zϕ is in L2(] − ∞, 0],H−1(R)).

Consequently, if we set

(1.1.8) f1 = η′∂xϕ− η′2∂zϕ+ h1, f2 = η′∂zϕ+ h2, f = ∂zf1 + ∂xf2,

we obtain that f is in L2(] −∞, 0],S ′
∞(R)) and the equation Pϕ = ∂zh1 + ∂xh2, ϕ|z=0 = ψ

may be rewritten

(1.1.9) (∂2x + ∂2z )ϕ = f, ϕ(0, ·) = ψ.

Moreover, since ∂2zϕ is in L2(]−∞, 0],H−1(R)) and ∂zϕ in L2(]−∞, 0[×R), we conclude that

∂zϕ is in C0
p(] −∞, 0],S ′

∞(R)). Consequently, we may apply Lemma 1.1.4 which shows that

the unique C1
p(]−∞, 0],S ′

∞(R)) solution to (1.1.9) is given by (1.1.3). If we replace f by its

value given in (1.1.8), we deduce (1.1.6) from (1.1.3) if we can justify ∂z′-integration by parts

of the ∂z′f1 contribution to f . Let us do that for the second integral in the right hand side of

(1.1.3) with f replaced by ∂z′f1. Take θ a test function in S∞(R), θ1 in C∞
0 (]−∞, 0]) equal

to 1 close to zero. Compute

(1.1.10)

∫ 0

−∞

〈
e−|z−z′||Dx|∂z′ |Dx|−1 f1(z

′, ·), θ
〉
θ1

(z′
R

)
dz′

=
〈
e|z||Dx|f1(0, ·), θ

〉

−
∫ 0

−∞

〈
e−|z−z′||Dx| sign(z − z′)f1(z

′, ·), θ
〉
θ1

(z′
R

)
dz′

−
∫ 0

−∞

〈
e−|z−z′||Dx| |Dx|−1 f1(z

′, ·), θ
〉 1
R
θ′1
(z′
R

)
dz′.

Since f1 is in L2L2, the first integral in the right hand side may be written

1

2π

∫ 0

−∞

∫
e−|z−z′||ξ| sign(z − z′)f̂1(z

′, ξ)θ̂(−ξ)θ1
(z′
R

)
dz′dξ,

where θ̂ is in S(R) and vanishes at infinite order at ξ = 0, converges when R goes to +∞ to

the same quantity with θ1 replaced by 1. On the other hand, the last integral

1

2π

∫ 0

−∞

∫
〈e−|z−z′||ξ| |ξ|−1 f̂1(z

′, ξ)θ̂(−ξ) 1
R
θ1

(z′
R

)
dz′dξ,

goes to zero if R goes to +∞, using again the vanishing properties if θ̂ at ξ = 0. To finish the

justification of the integration by parts, we just need to see that the left hand side of (1.1.1)

converges when R goes to infinity to the same quantity with θ1 dropped. This follows in the

same way since ∂zf is in L2(]−∞, 0],H−1(R)).
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The equality (1.1.6) holds in the space C1
p(]−∞, 0],S ′

∞(R)) i.e. modulo polynomials for each

fixed z. To check that it actually holds modulo a constant when we assume that ψ is in

Ḣ1/2(R), it is enough, according to Lemma 1.1.4, to verify that the (x, z)-gradient of both

sides belongs to L2(] − ∞, 0] × R). This is true for ϕ by assumption. On the other hand,

Lemma 1.1.3 shows that ∇x,z(e
z|Dx|ψ) belongs to that space. It remains to show that if g is

in L2L2 then
∫ 0
−∞ e−|z±z′||ξ| |ξ| g(z′, ξ) dz′ is in L2(]−∞, 0] × R; dzdξ), which is trivial.

Conversely, if ϕ is in C0
p(]−∞, 0],S ′

∞(R)) and ∇x,zϕ in L2(]−∞, 0]×R) and solves (1.1.6),

one checks that Pϕ = ∂zh1 + ∂xh2 by a direct computation.

The main result of this section, that allows one to define rigorously the Dirichlet-Neumann

operator, and prove some of its property, is the following.

Proposition 1.1.6. Let γ be a real number, γ > 2, γ 6∈ 1
2N.

i) There is δ > 0 such that for any η in Cγ(R) with ‖η′‖L∞ < δ, for any ψ in Ḣ1/2(R), any

h = (h1, h2) in L2L2 with ∂zh1 in L2(] − ∞, 0[,H−1(R)) the equation Pϕ = ∂zh1 + ∂xh2,

ϕ|z=0 = ψ has a unique solution ϕ in E. Moreover there is a continuous non decreasing

function C : R+ → R+ such that for any η, ϕ, ψ, h as above

(1.1.11) ‖∇x,zϕ‖L2L2 ≤ C
(
‖η′‖L∞

)(∥∥|Dx|
1
2 ψ
∥∥
L2 + ‖h‖L2L2

)
,

(1.1.12)
∥∥∇x,z

(
ϕ− ez|Dx|ψ

)∥∥
L2L2 ≤ C

(
‖η′‖L∞

)(∥∥η′
∥∥
L∞

∥∥|Dx|
1
2 ψ
∥∥
L2 + ‖h‖L2L2

)

Moreover, if ‖η′‖Cγ−1 < δ and h = 0, then ∇x,zϕ is in (L∞ ∩ C0)(] − ∞, 0],H− 1
2 (R)),

(1 + η′2)∂zϕ− η′∂xϕ is in (L∞ ∩ C0)(]−∞, 0], Ḣ− 1
2 (R)) and

sup
z≤0

∥∥∇x,ze
z|Dx|ψ

∥∥
Ḣ− 1

2
≤ C

∥∥|Dx|
1
2 ψ
∥∥
L2 ,(1.1.13)

sup
z≤0

∥∥∇x,z

(
ϕ− ez|Dx|ψ

)∥∥
H− 1

2
≤ C‖η′‖L∞

∥∥|Dx|
1
2 ψ
∥∥
L2 ,(1.1.14)

sup
z≤0

∥∥(1 + η′2)∂zϕ− η′∂xϕ
∥∥
Ḣ− 1

2
≤ C

∥∥|Dx|
1
2 ψ
∥∥
L2 .(1.1.15)

i) bis. Let µ ∈ [0,+∞[, γ > µ+ 3
2 and assume that ψ is in Ḣ

1
2
,µ+ 1

2 . Then the unique function

ϕ found in i) when h = 0 is such that ∇x,zϕ is in L2(]−∞, 0],Hµ+ 1
2 ), (1 + η′2)∂zϕ− η′∂xϕ

is in C0(]−∞, 0], Ḣ− 1
2
,µ+ 1

2 ) ∩ L∞(]−∞, 0], Ḣ− 1
2
,µ+ 1

2 ) and

(1.1.16) sup
z≤0

∥∥((1 + η′2)∂zϕ− η′∂xϕ
)
(z, ·)

∥∥
Hµ ≤ C

∥∥|Dx|
1
2 ψ
∥∥
Hµ+1

2
.

ii) There is δ > 0 such that for any η ∈ Cγ(R) ∩ L2(R) satisfying

(1.1.17) ‖η′‖Cγ−1 +
∥∥η′
∥∥1/2
C−1

∥∥η′
∥∥1/2
H−1 < δ,
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any ψ in Ḣ1/2(R) ∩ Ċ 1
2
,γ− 1

2 (R), the unique solution given in i) when h = 0 satisfies

(1.1.18) ‖∇x,zϕ‖L∞(]−∞,0],Cγ−1) ≤ C
(
‖η′‖Cγ−1

)∥∥|Dx|
1
2 ψ
∥∥
Cγ− 1

2
.

Moreover, if 0 < θ′ < θ < 1
2 and if

∥∥η′
∥∥1−2θ′

H−1

∥∥η′
∥∥2θ′
C−1 is bounded, one has the estimate

(1.1.19) sup
z≤0

∥∥|Dx|−
1
2
+θ ((1 + η′2)∂zϕ− η′∂xϕ

)
(z, ·)

∥∥
L∞ ≤ C

∥∥|Dx|
1
2 ψ
∥∥
Cγ− 1

2
.

Notation. We shall denote by Eγ the set of couples

(η, ψ) ∈ Cγ(R)× (Ḣ1/2(R) ∩ Ċ 1
2
,γ− 1

2 (R))

such that the condition (1.1.17) holds. By the proposition, the boundary value problem

Pϕ = 0, ϕ|z=0 = ψ will have a unique solution ϕ satisfying all the statements of i) and ii) of

the proposition.

Proof. By Lemma 1.1.5, the equation Pϕ = ∂zh1 + ∂xh2, ϕ|z=0 = ψ has a solution in E if

and only if the fixed point problem (1.1.6) has a solution in E. Moreover, since (1.1.6) holds

modulo constants, we get

(1.1.20)

∇x,zϕ(z, x) = ez|Dx|
(
∂xψ

|Dx|ψ

)

+

∫ 0

−∞
K(z, z′)M(η′) · ∇x,zϕ(z

′, ·) dz′

+

∫ 0

−∞
K(z, z′)M0h(z

′, ·) dz′ +
(

0

η′∂xϕ− η′2∂zϕ+ h1

)

where h = (h1, h2), K(z, z′), M0, M(η′) are the matrices of operators

K(z, z′) =
1

2
e(z+z

′)|Dx|
(
∂x ∂x
|Dx| |Dx|

)

+
1

2
e−|z−z′||Dx|

(
−∂x −(sign(z − z′))∂x

(sign(z − z′)) |Dx| |Dx|

)
,

M(η′) =

(
0 ∂x |Dx|−1 (η′·

)

−η′ η′2

)
, M0 =

(
0 ∂x |Dx|−1

−1 0

)
.(1.1.21)

Let us notice first that if U is in L2(] − ∞, 0] × R), then
∣∣∫ 0

−∞
̂K(z, z′)U(z′,ξ) dz′

∣∣ may be

bounded from above by expressions of the form

∫ 0

−∞
e−|z−z′||ξ| |ξ| û(z′, ξ) dz′
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where u stands for one component of U . It follows that U →
∫ 0
−∞K(z, z′)U dz′ is bounded

from L2(]−∞, 0]× R) to itself. Moreover,

(1.1.22)
‖M0h‖L2 ≤ ‖h‖L2 ,∥∥M(η′)U

∥∥
L2 ≤ C

(
‖η′‖L∞

)
‖η′‖L∞ ‖U‖L2 .

Consequently

(1.1.23)
∥∥∥∇x,zϕ− ez|Dx|

(
∂xψ

|Dx|ψ

)∥∥∥
L2L2

≤ C
(
‖η′‖L∞

)
‖η′‖L∞ ‖∇x,zϕ‖L2L2 + C ‖h‖L2L2 .

This, and the fact that by Lemma 1.1.3, ez|Dx|
(
∂xψ

|Dx|ψ

)
is in L2L2 if ψ belongs to Ḣ1/2(R),

implies that for ‖η′‖L∞ small enough, the fixed point problem (1.1.6) has a unique (modulo

constants) solution in E. Moreover, the norm of ϕ in E, i.e. ‖∇x,zϕ‖L2L2 is bounded according

to (1.1.23) and (1.1.2) by 2
(∥∥|Dx|

1
2 ψ
∥∥
L2 + C ‖h‖L2L2

)
if ‖η′‖L∞ is small enough. This gives

(1.1.11) and (1.1.12).

We notice next that (1.1.13) holds by definition of the Ḣ1/2(R)-norm. To prove (1.1.14), we

shall show that the fixed point problem (1.1.6) has a unique (modulo constants) solution ϕ

in the subspace of E formed by those functions ϕ for which supz≤0 ‖∇x,zϕ(z, ·)‖H−1/2 < +∞.

Taking (1.1.13) into account, we see from (1.1.20) that it is enough to show that

(1.1.24) sup
z≤0

∥∥∥∥
∫ 0

−∞
K(z, z′)M(η′) · ∇x,zϕ(z

′, ·) dz′
∥∥∥∥
Ḣ− 1

2

≤ C
(
‖η′‖L∞

)
‖η′‖L∞

∥∥|Dx|
1
2 ψ
∥∥
L2

and

(1.1.25) sup
z≤0

∥∥η′∂xϕ− η′2∂zϕ
∥∥
H− 1

2 (R)
≤ C

(
‖η′‖Cγ−1

)
‖η′‖Cγ−1 sup

z≤0

∥∥∇x,zϕ
∥∥
H− 1

2 (R)
.

Inequality (1.1.25) follows from Property (A.1.21) in Appendix A.1. Taking into account

(1.1.22) we see that (1.1.24) will follows from (1.1.11) if we prove that, for any g in L2(] −
∞, 0]× R), there is an ℓ2(Z)-sequence (cj)j such that

sup
z≤0

∥∥∥∥
∫ 0

−∞
K(z, z′)

(
∆jg

)
(z′, ·) dz′

∥∥∥∥
L2

≤ cj2
j/2 ‖g‖L2L2

for any j in Z. According to the definition of K, the left hand side of this inequality is

bounded from above in terms of

∥∥∥∥
∫ 0

−∞
e−|z−z′||ξ| |ξ|1C−1<2−j |ξ|<C∆̂jg(z

′, ξ) dz′
∥∥∥∥
L2(dξ)

which has the wanted upper bound by Cauchy-Schwarz.
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To prove (1.1.15), we rewrite the second component of equality (1.1.20) as

(1.1.26) (1 + η′2)∂zϕ− η′∂xϕ = ez|Dx| |Dx|ψ +

∫ 0

−∞

[
K(z, z′)M(η′) · ∇x,zϕ(z

′, ·)
]
2
dz′

where [·]2 stands for the second component. By (1.1.13) and (1.1.24), we conclude that

(1.1.15) holds.

We notice also that the right hand side of (1.1.26) is a continuous function of z with values

in Ḣ−1/2. This is trivial for the ez|Dx| |Dx|ψ contribution. For the integral term, it suffices to

show that if g is in L2(] −∞, 0] × R), then
∥∥∥
∫ 0
−∞
[
K(z, z′)−K(z0, z

′)
]
g(z′, ·) dz′

∥∥∥
Ḣ−1/2

goes

to zero if z goes to z0. This reduces to showing that

∥∥∥∥
∫ 0

−∞

∣∣e−|z±z′||ξ| − e−|z0±z′||ξ|∣∣ |ξ| 12
∣∣ĝ(z′, ξ)

∣∣ dz′
∥∥∥∥
L2(dξ)

goes to zero if z goes to z0. This follows by dominated convergence, from Cauchy-Schwarz

and the fact that

C(z, z0, ξ) =

∫ 0

−∞

∣∣e−|z±z′||ξ| − e−|z0±z′||ξ|∣∣2 |ξ| dz′

is uniformly bounded and goes to zero as z goes to z0 at fixed ξ.

The same proof shows that ∂xϕ is also continuous on ] − ∞, 0] with values in Ḣ− 1
2 (R) ⊂

H− 1
2 (R). Using (1.1.26) to express ∂zϕ from (1+ η′2)∂zϕ− η′∂xϕ and ∂xϕ, we conclude that

∂zϕ is also continuous with values in H− 1
2 (R).

This concludes the proof of i) of Proposition 1.1.6.

i) bis. By i), we only need to study large frequencies. We notice that if ψ is in Ḣ
1
2
,µ+ 1

2 ,

ez|Dx|
(

∂xψ

|Dx|ψ

)
is in L2(] − ∞, 0],Hµ+ 1

2 ). Moreover, we have seen after (1.1.21) that U →
∫ 0
−∞K(z, z′)U(z′, ·) dz′ is bounded on L2L2. Consequently, for any j > 0

∥∥∥∥∆j

∫ 0

−∞
K(z, z′)M(η′)∇x,zϕ(z

′, ·) dz′
∥∥∥∥
L2L2

≤ C
∥∥∆j

[
M(η′)∇x,zϕ

]∥∥
L2L2 .

Since γ > µ+ 3
2 , we have the product law Cγ−1 ·Hµ+ 1

2 ⊂ Hµ+ 1
2 so the right hand side of the

preceding equality is bounded from above by

C
(
‖η′‖Cγ−1

)
‖η′‖Cγ−12−j(µ+

1
2
)cj(z

′)
∥∥∇x,zϕ

∥∥
L2Hµ+1

2
.

where
∑

j ‖cj(z′)‖2L2(dz′) < +∞. We conclude that

∥∥∥∥∥∇x,zϕ(z, ·) − ez|Dx|
(
∂xψ

|Dx|ψ

)∥∥∥∥∥
L2(]−∞,0],Hµ+1

2 )

≤ C
(
‖η′‖Cγ−1

)
‖η′‖Cγ−1 ‖∇x,zϕ‖

L2Hµ+1
2
,
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so that the fixed point giving ϕ provides a solution in E with ∇x,zϕ ∈ L2(] −∞, 0],Hµ+ 1
2 )

and ‖∇x,zϕ‖
L2Hµ+1

2
≤ C

∥∥|Dx|
1
2 ψ
∥∥
Hµ+1

2
.

Let us check that (1+η′2)∂zϕ−η′∂xϕ is in L∞(]−∞, 0], Ḣ− 1
2
,µ+ 1

2 ). The case of low frequencies

follows again from i). Thus, by (1.1.26), we just need to stuy for j > 0 the L2-norms in x of

∆je
z|Dx| |Dx|ψ

∆j

∫ 0

−∞

[
K(z, z′)M(η′)∇x,zϕ(z

′, ·)
]
2
dz′.

The L2(dx)-norm of the first expression is bounded uniformly in z ≤ 0 by

C2j/2
∥∥∆j |Dx|

1
2 ψ
∥∥
L2 ≤ C2−jµ

∥∥∆j |Dx|
1
2 ψ
∥∥
Hµ+1

2
.

On the other hand, the L2-norm of the second quantity is smaller than

(1.1.27) 2−j(µ+
1
2
)

∥∥∥∥
∫ 0

∞
e−|z−z′||ξ|1C−12j<|ξ|<C2j |ξ| gj(z′, ξ) dz′

∥∥∥∥
L2(dξ)

where

gj(z
′, ξ) = 2j(µ+

1
2
) ̂∆j

[
M(η′)∇x,z′ϕ(z′, ·)

]
(ξ).

By the product lax Cγ−1 ·Hµ+ 1
2 ⊂ Hµ+ 1

2 , we know that
∑

j>0

‖gj‖2L2L2 ≤ C
(
‖η′‖Cγ−1

)
‖∇x,zϕ‖2

L2Hµ+1
2
.

Cauchy-Schwarz then shows that (1.1.27) is bounded from above by C2−jµ ‖gj‖L2L2 . This

gives the wanted inequality (1.1.16). The continuity is established as in i).

Before starting the proof of ii), we state the following lemma.

Lemma 1.1.7. Let φ̃ be in C∞
0 (R∗), χ̃ in C∞

0 (R) with χ̃ equal to one close to zero. Let b

be some function homogeneous of degree r > 0, analytic outside 0. For j in N∗, z, z′ ≤ 0,

x ∈ R, define

(1.1.28) k±j (z, z
′, x) =

1

2π

∫
eixξ−|z±z′||ξ|b(ξ)ϕ̃

(
2−jξ

)
dξ.

Denote by k±0 (z, z
′, x) the similar integral with ϕ̃

(
2−jξ

)
replaced by χ̃(ξ). There is C > 0 such

that for any j in N∗,

(1.1.29) sup
z≤0

∥∥∥∥
∫

R

k±j (z, 0, x − x′)g(x′) dx′
∥∥∥∥
L∞(dx)

≤ C2jr ‖g‖L∞

and

(1.1.30) sup
z≤0

∥∥∥∥
∫ 0

−∞

∫

R

k±j (z, z
′, x− x′)g(z′, x′) dz′dx′

∥∥∥∥
L∞(dx)

≤ C2j(r−1) ‖g‖L∞L∞ .
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Moreover, when 0 < r < 1,

(1.1.31) sup
z≤0

∥∥∥∥
∫

R

k±0 (z, 0, x − x′)g(x′) dx′
∥∥∥∥
L∞(dx)

≤ C ‖g‖L∞

and if 0 < r ≤ 1 and p ∈]1, 1/(1 − r)[,

(1.1.32) sup
z≤0

∥∥∥∥
∫ 0

−∞

∫

R

k±0 (z, z
′, x− x′)g(z′, x′) dz′dx′

∥∥∥∥
L∞(dx)

≤ C ‖g‖L∞Lp .

Proof. For j in N∗, we perform the change of variables ξ = 2jξ′ in (1.1.28). Making then

∂ξ′-integration by parts, we get a bound

∣∣k±j (z, z′, x)
∣∣ ≤ CN2

j(1+r)
(
1 + 2j |x|+ 2j |z ± z′|

)−N

for any N in N. This implies immediately (1.1.29) and (1.1.30). To treat the case j = 0, we

remark that, in the expression

∫
eixξ−|z±z′||ξ|b(ξ)χ̃(ξ) dξ

we may deform in the complex domain the integration contour close to ξ = 0, replacing ξ by

ξ + iε(sign x)ξ. We obtain

(1.1.33)
∣∣k±0 (z, z′, x)

∣∣ ≤ C
(
1 + |x|+ |z − z′|

)−1−r
.

Since r > 0, (1.1.31) follows at once. To get (1.1.32), we bound the left hand side by

(
sup
z≤0

∫ 0

−∞

[∫

R

∣∣k±0 (z, z′, x′)
∣∣p′dx′

] 1
p′

dz′
)
‖g‖L∞Lp

where p′ > 1 is the conjugate exponent of p. Using the bound (1.1.33) and r > 1/p′, we get

the finiteness of this quantity.

End of the proof of Proposition 1.1.6. To prove ii) of the proposition, it is enough to show

that under the smallness condition (1.1.17), the fixed point problem (1.1.6) has a unique (up

to constants) solution in the subspace of those ϕ in E such that supz≤0

∥∥∇x,zϕ
∥∥
Cγ−1 < +∞.

According to (1.1.20), this will hold if we prove that

(1.1.34) sup
z≤0

∥∥ez|Dx|(∂xψ, |Dx|ψ)
∥∥
Cγ−1 ≤ C

∥∥|Dx|
1
2 ψ
∥∥
Cγ− 1

2
,

(1.1.35) sup
z≤0

∥∥(η′ − η′2∂zϕ
)
(z, ·)

∥∥
Cγ−1 ≤ C

(
‖η′‖Cγ−1

)
‖η′‖Cγ−1

∥∥∇x,zϕ
∥∥
L∞Cγ−1 ,

33



and

(1.1.36) sup
z≤0

∥∥∥∥
∫ 0

−∞
K(z, z′)M(η′) · ∇ϕ(z′, ·) dz′

∥∥∥∥
Cγ−1

≤ C
(
‖η′‖Cγ−1

)(
‖η′‖Cγ−1 +

∥∥η′
∥∥ 1

2

C−1

∥∥η′
∥∥ 1

2

H−1

)∥∥∇x,zϕ
∥∥
L∞Cγ−1 .

Moreover, these inequalities, (1.1.20) and the smallness condition (1.1.17) imply that estimate

(1.1.18) holds.

We notice that (1.1.35) is trivial. To prove (1.1.34), we write the function in the left hand side

as ez|Dx|b(Dx) |Dx|
1
2 ψ for some b(ξ) homogeneous of degree 1/2. Then using the notations of

Lemma 1.1.7, for j > 0,

∆j

(
ez|Dx|b(Dx) |Dx|

1
2 ψ
)
=

∫
k+j (z, 0, x − x′)

[
|Dx|

1
2 ∆jψ

]
(x′) dx′,

S0
(
ez|Dx|b(Dx) |Dx|

1
2 ψ
)
=

∫
k+0 (z, 0, x − x′)

[
|Dx|

1
2 S0ψ

]
(x′) dx′.

Estimates (1.1.29), (1.1.31) with r = 1/2 show that the L∞-norm of these quantities is

bounded by 2−j(γ−1/2)
∥∥|Dx|

1
2 ψ
∥∥
Cγ−1/2 uniformly in z ≤ 0, whence (1.1.34).

To prove (1.1.35), we notice that by (1.1.21), the operator associating to a R2-valued function

g,
∫ 0
−∞K(z, z′)∆jg(z

′, ·) dz′ (resp.
∫ 0
−∞K(z, z′)S0g(z′, ·) dz′) may be written from

∫ 0

−∞
k±j (z, z

′, x− x′)∆jgℓ(z
′, x′) dx′

(resp. the same expression with j = 0 and ∆j replaced by S0), where gℓ is a component of

g, and kj is given by (1.1.28) with b homogeneous of degree 1. It follows from (1.1.30) with

r = 1 that

sup
z≤0

∥∥∥∥∆j

∫ 0

−∞
K(z, z′)M(η′) · ∇ϕ(z′, ·) dz′

∥∥∥∥
L∞

≤ C
∥∥∆jM(η′) · ∇ϕ

∥∥
L∞L∞ ≤ C2−j(γ−1) sup

z′≤0

∥∥∆jM(η′) · ∇ϕ(z′, ·)
∥∥
Cγ−1

Since the Hilbert transform is bounded on the subspace of those f in Cγ−1 whose Fourier

transform vanishes on a neighborhood of the origin, the expression (1.1.21) of M(η′) shows

that this quantity is smaller than

(1.1.37) C
(
‖η′‖Cγ−1

)
‖η′‖Cγ−1 sup

z′≤0

∥∥∇ϕ(z′, ·)
∥∥
Cγ−1 2

−j(γ−1).

On the other hand, (1.1.32) shows that

(1.1.38) sup
z≤0

∥∥∥∥S0
∫ 0

−∞
K(z, z′)M(η′) · ∇ϕ(z′, ·) dz′

∥∥∥∥
L∞

≤ C
∥∥S0M(η′) · ∇ϕ

∥∥
L∞Lp .
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Since the Hilbert transform involved in the definition of M(η′) is bounded on Lp for 1 < p <

∞, we see that we are reduced to estimating
∥∥S0(η′∇ϕ)

∥∥
L∞Lp and

∥∥S0(η′2∇ϕ)
∥∥
L∞Lp . Taking

p > 2, we conclude that (1.1.38) is bounded from above by a multiple of

∥∥S0(η′∇ϕ)
∥∥

2
p

L∞L2

∥∥S0(η′∇ϕ)
∥∥1−

2
p

L∞L∞ +
∥∥S0(η′2∇ϕ)

∥∥
2
p

L∞L2

∥∥S0(η′2∇ϕ)
∥∥1−

2
p

L∞L∞ .

We write for k = 1, 2,

∥∥S0(η′k∇ϕ)
∥∥
L∞L2 ≤

∥∥η′2∇ϕ
∥∥
L∞H−1 ≤ C

∥∥η′
∥∥
H−1

∥∥η′
∥∥k−1

Cγ−1 ‖∇ϕ‖L∞Cγ−1 ,

∥∥S0(η′k∇ϕ)
∥∥
L∞L∞ ≤

∥∥η′2∇ϕ
∥∥
L∞C−1 ≤ C

∥∥η′
∥∥
C−1

∥∥η′
∥∥k−1

Cγ−1 ‖∇ϕ‖L∞Cγ−1 ,

using property (A.1.21) of the Appendix A.1 and the fact that the product is continuous

from Cγ−1 ×C−1 to C−1. Taking for instance p = 4, we get a bound for (1.1.38) of the form

C
(
‖η′‖Cγ−1

)
‖η′‖1/2

H−1 ‖η′‖1/2C−1 ‖∇ϕ‖L∞Cγ−1 . Combining with (1.1.37), we obtain (1.1.36).

Let us prove the last assertion in ii). If we cut-off spectrally the quantity to be estimated

outside a neighborhood of zero, the upper bound follows from (1.1.18). We have thus to study

sup
z≤0

∥∥|Dx|−
1
2
+θ χ̃(Dx)

(
(1 + η′2)∂zϕ− η′∂xϕ

)
(z, ·)

∥∥
L∞

where χ̃ ∈ C∞
0 (R) is equal to one close to zero. By (1.1.26), the wanted inequality will follow

from

(1.1.39)

sup
z≤0

∥∥χ̃(Dx)e
z|Dx| |Dx|

1
2
+θ ψ

∥∥
L∞ ≤ C

∥∥|Dx|
1
2 ψ
∥∥
Cγ− 1

2
,

sup
z≤0

∥∥∥∥
∫ 0

−∞

[
|Dx|−

1
2
+θ χ̃(Dx)K(z, z′)M(η′) · ∇x,zϕ(z

′, ·)
]
2
dz′
∥∥∥∥

≤ C
(
‖η′‖Cγ−1

)∥∥η′
∥∥1−2θ

H−1

∥∥η′
∥∥θ′
C−1

∥∥∇x,zϕ
∥∥
L∞Cγ−1

from the boundedness assumption of
∥∥η′
∥∥1−2θ

H−1

∥∥η′
∥∥θ′
C−1 and from (1.1.18). The first estimate

follows from (1.1.31) with r = 1
2+θ, as in the proof of (1.1.34). To prove the second inequality,

we bound its left hand side from quantities

(1.1.40) sup
z≤0

∥∥∥∥
∫ 0

−∞

∫

R

k±0 (z, z
′, x− x′)g(z′, x′) dz′ dx

∥∥∥∥
L∞

where k±0 is given by an integral of the form (1.1.28) with ϕ̃(2−jξ) replaced by χ̃(ξ) and b homo-

geneous of degree r = 1
2 + θ, and where g is any of the components of S0

(
M(η′)∇x,zϕ(z

′, x′)
)
.

By (1.1.32), we bound (1.1.40) by C ‖g‖L∞Lp if p < 1/(12 − θ). We have seen above that this

quantity is smaller than

C
(
‖η′‖Cγ−1

)∥∥η′
∥∥2/p
H−1

∥∥η′
∥∥1−2/p

C−1 ‖∇ϕ‖L∞Cγ−1 .

Taking 1
p = 1

2 − θ′, we get the conclusion.
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Corollary 1.1.8. Let η be in L2 ∩ Cγ(R) satisfying the condition (1.1.17). We define for ψ

in Ḣ1/2(R) the Dirichlet-Neumann operator G(η) as

(1.1.41) G(η)ψ =
[
(1 + η′2)∂zϕ− η′∂xϕ

]
z=0

where ϕ is given by Proposition 1.1.6. Then G(η) is bounded from Ḣ1/2(R) to Ḣ−1/2(R) and

satisfied an estimate

(1.1.42) ‖G(η)ψ‖Ḣ−1/2 ≤ C
(
‖η′‖Cγ−1

)∥∥|Dx|
1
2 ψ
∥∥
L2 .

In particular, if we define G1/2(η) = |Dx|−
1
2 G(η), we obtain a bounded operator from Ḣ1/2(R)

to L2(R) satisfying

(1.1.43)
∥∥G1/2(η)ψ

∥∥
L2 ≤ C

(
‖η′‖Cγ−1

)∥∥|Dx|
1
2 ψ
∥∥
L2 .

Moreover, G(η) satisfies when ψ is in Ċ
1
2
,γ− 1

2 (R)

(1.1.44) ‖G(η)ψ‖Cγ−1 ≤ C
(
‖η′‖Cγ−1

)∥∥|Dx|
1
2 ψ
∥∥
Cγ− 1

2
.

where C(·) is a non decreasing continuous function of its argument.

If we assume moreover that for some 0 < θ′ < θ < 1
2 ,
∥∥η′
∥∥1−2θ′

H−1

∥∥η′
∥∥2θ′
C−1 is bounded, then

|Dx|−
1
2
+θG(η) satifies

(1.1.45)
∥∥|Dx|−

1
2
+θG(η)ψ

∥∥
Cγ− 1

2−θ ≤ C
(∥∥η′

∥∥
Cγ−1

)∥∥|Dx|
1
2 ψ
∥∥
Cγ− 1

2
.

Proof. Inequalities (1.1.42) and (1.1.43) follow from (1.1.15). The bound (1.1.44) is a conse-

quence of (1.1.18), the definition (1.1.41) of G(η)ψ and the fact that Cγ−1 is an algebra.

1.2 Main Sobolev estimate

Consider a couple of real valued functions (η, ψ) defined on R × R satisfying for t ≥ 1 the

system

(1.2.1)





∂tη = G(η)ψ,

∂tψ + η +
1

2
(∂xψ)

2 − 1

2(1 + (∂xη)2)

(
G(η)ψ + ∂xη∂xψ

)2
= 0,

with Cauchy data small enough in a convenient space.

The operator G(η) in (1.2.1) and in the rest of this paper is the one defined by (1.1.41) in

Corollary 1.1.8. We set, for η, ψ smooth enough and small enough functions

(1.2.2) B(η)ψ =
G(η)ψ + ∂xη∂xψ

1 + (∂xη)2
·

Let us recall a known local existence result (see [52, 35, 2]).
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Proposition 1.2.1. Let γ be in ]7/2,+∞[\1
2N, s ∈ N with s > 2γ − 1/2. There are δ0 > 0,

T > 1 such that for any couple (η0, ψ0) in H
s(R)× Ḣ

1
2
,γ(R) satisfying

(1.2.3) ψ0 − TB(η0)ψ0
η0 ∈ Ḣ

1
2
,s(R), ‖η0‖Cγ +

∥∥|Dx|
1
2 ψ0

∥∥
Cγ− 1

2
< δ0,

equation (1.2.1) with Cauchy data η|t=1 = η0, ψ|t=1 = ψ0 has a unique solution (η, ψ) which

is continuous on [1, T ] with values in

(1.2.4)
{
(η, ψ) ∈ Hs(R)× Ḣ

1
2
,γ(R) ; ψ − TB(η)ψη ∈ Ḣ

1
2
,s(R)

}
.

Moreover, if the data are O(ε) on the indicated spaces, then T ≥ c/ε.

Remarks. The assumption ψ0 ∈ Ḣ
1
2
,γ implies that ψ0 is in Ċ

1
2
,γ− 1

2 so that Corollary 1.1.8

shows that G(η0)ψ0 whence B(η0)ψ0 is in Cγ−1 ⊂ L∞. Consequently, by the first equality in

(1.2.3), |Dx|
1
2 ψ is in Hs− 1

2 ⊂ Cγ−
1
2 as our assumption on s implies that s > γ + 1/2. This

gives sense to the second assumption (1.2.3).

— The well-known difficulty in the analysis of equation (1.2.1) is that writing energy inequal-

ities on the function (η, |Dx|
1
2 ψ) makes appear an apparent loss of half a derivative. The way

to circumvent that difficulty is now well-known: it is to bound the energy not of (η, |Dx|
1
2 ψ),

but of (η, |Dx|
1
2 ω), where ω is the “good unknown” of Alinhac, defined by ω = ψ − TB(η)ψη

(see Chapter 2). This explains why the regularity assumption (1.2.3) on the Cauchy data

concerns ψ0−TB(η0)ψ0
η0 and not ψ0 itself. Notice that this function is in Ḣ

1
2
,s while ψ0 itself,

written from ψ0 = ω0 + TB(η0)ψ0
η0 is only in Ḣ

1
2
,s− 1

2 , because of the Hs-regularity of η0.

— By (1.1.44) if ψ is in Ċ
1
2
,γ− 1

2 and η is in Cγ , G(η)ψ is in Cγ−1, so B(η)ψ is also in Cγ−1

with ‖B(η)ψ‖Cγ−1 ≤ C
(
‖η′‖Cγ−1

)∥∥|Dx|
1
2 ψ
∥∥
Cγ− 1

2
. In particular, as a paraproduct with an

L∞-function acts on any Hölder space,
∥∥|Dx|

1
2 TB(η)ψη

∥∥
Cγ− 1

2
≤ C

(
‖η′‖Cγ−1

)
‖η‖Cγ

∥∥|Dx|
1
2 ψ
∥∥
Cγ− 1

2
.

This shows that for ‖η‖Cγ small enough, ψ → ψ − TB(η)ψη is an isomorphism from Ċ
1
2
,γ− 1

2

to itself. In particular, if we are given ω in Ḣ
1
2
,s ⊂ Ċ

1
2
,γ− 1

2 , we may find a unique ψ in

Ċ
1
2
,γ− 1

2 such that ω = ψ − TB(η)ψη. In other words, when interested only in Cγ−
1
2 -estimates

for |Dx|
1
2 ω, we may as well establish them on |Dx|

1
2 ψ instead, as soon as ‖η‖Cγ stays small

enough.

— We check in Appendix A.4 that our assumption (1.2.3) implies the one made by Lannes

in [35] so that Proposition 1.2.1 follows from Theorem 4.35 in [35].

Let us state now our main result.

We fix real numbers s, s1, s0 satisfying, for some large enough numbers a and γ with γ 6∈ 1
2N

and a≫ γ, the following conditions

(1.2.5) s, s0, s1 ∈ N, s − a ≥ s1 ≥ s0 ≥
s

2
+ γ.
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We shall prove L2-estimates for the action of the vector field

(1.2.6) Z = t∂t + 2x∂x

on the unknown in equation (1.2.1). We introduce the following notation:

For (η, ψ) a local smooth enough solution of (1.2.1), we set ω = ψ − TB(η)ψη and for any

integer k ≤ s1,

(1.2.7) M (k)
s

(t) =
k∑

p=0

(∥∥Zpη(t, ·)
∥∥
Hs−p +

∥∥|Dx|
1
2 Zpω(t, ·)

∥∥
Hs−p

)
.

In the same way, for ρ a positive number (that will be larger than s0), we set for k ≤ s0,

(1.2.8) N (k)
ρ (t) =

k∑

p=0

(∥∥Zpη(t, ·)
∥∥
Cρ−p +

∥∥|Dx|
1
2 Zpψ(t, ·)

∥∥
Cρ−p

)
.

We consider the set of functions (η0, ψ0) satisfying for any integer p ≤ s1

(1.2.9)
(x∂x)

pη0 ∈ Hs−p(R), (x∂x)
pψ0 ∈ Ḣ

1
2
,s−p− 1

2 (R),

(x∂x)
p
(
ψ0 − TB(η0)ψ0

η0
)
∈ Ḣ

1
2
,s−p(R),

and such that the norm of the above functions in the indicated spaces is smaller than 1. For

ǫ ∈]0, 1[, we solve equation (1.2.1) with Cauchy data η|t=1 = εη0, ψ|t=1 = εψ0. According to

that proposition, for any T0 > 1, there is ǫ′0 > 0 such that if ε < ε′0, equation (1.2.1) has a

solution for t ∈ [1, T0]. Moreover, by Proposition A.4.2, assumptions (1.2.9) remain valid at

t = T0.

Our main result is the following:

Theorem 1.2.2. There is a constant B2 > 0 such that M
(s1)
s (T0) <

1
4B2ε, and for any

constants B∞ > 0, B′
∞ > 0 there is ε0 such that the following holds: Let T > T0 be a number

such that equation (1.2.1) with Cauchy data satisfying (1.2.9) has a solution satisfying the

regularity properties of Proposition 1.2.1 on [T0, T [×R and such that

i) For any t ∈ [T0, T [, and any ε ∈]0, ε0],

(1.2.10)
∥∥|Dx|

1
2 ψ(t, ·)

∥∥
Cγ− 1

2
+ ‖η(t, ·)‖Cγ ≤ B∞εt

− 1
2 .

ii) For any t ∈ [T0, T [, any ε ∈]0, ε0]

(1.2.11) N (s0)
ρ (t) ≤ B∞εt

− 1
2
+B′

∞ε2 .

Then, there is an increasing sequence (δk)0≤k≤s1 , depending only on B′
∞ and ε with δs1 < 1/32

such that for any t in [T0, T [, any ε in ]0, ε0], any k ≤ s1,

(1.2.12) M (k)
s

(t) ≤ 1

2
B2εt

δk .
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The rest of this paper will be devoted to the proof of the above theorem. In [5], it is shown that

this result, together with an L∞-estimate of the solutions of (1.2.1), implies global existence

and modified scattering for solutions of (1.2.1) with Cauchy data ε(η0, ψ0), where (η0, ψ0)

satisfy(1.2.9) and ε is small enough. For the reader’s convenience, we reproduce below these

two statements. The proofs are given in [5].

The L∞ conterpart of the Sobolev estimates of Theorem 1.2.2 is the following:

Theorem 1.2.3. Let T > T0 be a number such that the equation (1.2.1) with Cauchy data

satisfying (1.2.9) has a solution on [T0, T [×R satisfying the regularity properties of Proposi-

tion 1.2.1. Assume that, for some constant B2 > 0, for any t ∈ [T0, T [, any ε in ]0, 1], any

k ≤ s1,

(1.2.13)
M (k)

s
(t) ≤ B2εt

δk ,

N (s0)
ρ (t) ≤ √

ε < 1

Then there are constants B∞, B′
∞ > 0 depending only on B2 and some ε′0 ∈]0, 1], independent

of B2, such that, for any t in [T0, T [, any ε in ]0, ε′0],

(1.2.14)

N (s0)
ρ (t) ≤ 1

2
B∞εt

− 1
2
+ε2B′

∞ ,

∥∥|Dx|
1
2 ψ(t, ·)

∥∥
Cγ− 1

2
+ ‖η(t, ·)‖Cγ ≤ 1

2
B∞εt

− 1
2 .

The main result of global existence for the water waves equation with small Cauchy data

deduced in [5] from the above estimates may be stated as:

Theorem 1.2.4. There is ε0 > 0 such that for any ε ∈]0, ε0], any couple of functions (η0, ψ0)

satisfying condition (1.2.9), and whose norm in the indicated spaces is smaller than 1, equation

(1.2.1) with the Cauchy data η|t=1 = εη0, ψ|t=1 = εψ0 has a unique solution (η, ψ) which is

defined and continuous on [1,+∞[ with values in the set (1.2.4).

Moreover, u = |Dx|
1
2 ψ + iη admits the following asymptotic expansion as t goes to +∞:

There is a continuous function α : R → C, depending of ε but bounded uniformly in ε, such

that

(1.2.15) u(t, x) =
ε√
t
α
(x
t

)
exp
( it

4|x/t| +
iε2

64

|α(x/t)|2

|x/t|5
log(t)

)
+ εt−

1
2
−κρ(t, x)

where κ is some positive number and ρ is a function uniformly bounded for t ≥ 1, ε ∈]0, ε0].

In the rest of this paper, we prove Theorem 1.2.2 i.e. we show estimates for the Sobolev norms

M
(k)
s (t) introduced in (1.2.7) assuming a priori Hölder estimates of the form (1.2.11). To do
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so, we first need to establish a collection of estimates for the Dirichlet-Neumann operator.

Chapter 2 will be devoted to such a task. Next we have to design a normal form method

that will allow us to eliminate in the Sobolev energy the contributions coming from the

quadratic part of the non-linearity. This is the object of Chapter 3. Chapter 4 is devoted to

the commutation of the Z-vector field to the water waves equation, and in particular to the

Dirichlet-Neumann operator. In Chapter 5, combining the results obtained so far, we prove

the Sobolev estimates for the action of the Z-vector field on the solution we are looking for.
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Chapter 2

Estimates for the

Dirichlet-Neumann operator

The Dirichlet-Neumann operator G(η) has been defined in the first section of Chapter 1 (see

Corollary 1.1.8) and Ḣ1/2-estimates have been obtained for it. The goal of this chapter is to

prove Sobolev estimates for G(η) and related operators. We shall make an extensive use of

paradifferential operators. We refer to Appendix A.1 for the main definitions and results on

this topic.

We use in this chapter the notations introduced at the beginning of Chapter 1, in particular

for the elliptic operator P introduced in (1.1.1). We shall consider a couple (η, ψ) belonging

to the set Eγ introduced after the statement of Proposition 1.1.6. This implies in particular

that estimates (1.1.14) and (1.1.18) hold.

Given (η, ψ) in Eγ we introduce the notations

(2.0.1) B(η)ψ =
G(η)ψ + (∂xη)(∂xψ)

1 + (∂xη)2
, V (η)ψ = ∂xψ − (B(η)ψ)∂xη.

Remarks. i) It follows from equality (1.1.41) and the fact that ϕ|z=0 = ψ that

(2.0.2)





G(η)ψ = (1 + (∂xη)
2)∂zϕ− ∂xη∂xϕ


z=0

,

B(η)ψ = ∂zϕ|z=0,

V (η)ψ = (∂xϕ− ∂xη∂zϕ) |z=0.

If one goes back to the (x, y)-coordinates introduced at the beginning of Section 1.1, for which

the fluid domain Ω is given by {y < η(x)} and the velocity potential is φ(x, y) = ϕ(x, y−η(x)),
one sees that B(η)ψ = (∂yφ)|∂Ω and V (η)ψ = (∂xφ)|∂Ω.

ii) We rewrite, for further reference, the first equality of (2.0.2) taking into account (2.0.1),
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as

(2.0.3) B(η)ψ − (∂xη)V (η)ψ = G(η)ψ.

Finally, we shall eventually denote η′ instead of (∂xη) to simplify some expressions.

It follows from (2.0.1), the estimate (1.1.18) and the classical product rule in Hölder spaces

(see Proposition 8.6.8 in [25]) that we have the following

Lemma 2.0.5. Let γ ∈]3,+∞[\1
2N. There exists a non decreasing function C : R+ → R+

such that, for all (η, ψ) ∈ Eγ,

(2.0.4) ‖G(η)ψ‖Cγ−1 + ‖B(η)ψ‖Cγ−1 + ‖V (η)ψ‖Cγ−1 ≤ C
(
‖η′‖Cγ−1

)∥∥|Dx|
1
2 ψ
∥∥
Cγ− 1

2
.

2.1 Main results

We shall state in this section the main result that will be obtained in this chapter. We want

to get estimates for the Dirichlet-Neumann operator G(η)ψ, as well as the related operators

B(η)ψ, V (η)ψ introduced in (2.0.1), in terms of Sobolev and Hölder norms of η and ψ. The

main result will be expressed in terms of the “good unknown” of Alinhac ω = ω(η)ψ defined

by the relation

(2.1.1) ω(η)ψ = ψ − TB(η)ψη.

We shall explain, in the comments following the statement of the next theorem, the interest

of working with (η, ω) instead of (η, ψ). Recall from the introduction that ω defined by

(2.1.1) appears naturally when one introduces the operator of paracomposition of Alinhac [7]

associated to the change of variables that flattens the boundary y = η(x) of the fluid domain,

namely (x, y) 7→ (x, z = y− η(x)). This is a quite optimal way of keeping track of the limited

smoothness of the change of coordinates. Though we shall not use this point of view here, it

underlies the computations that will be made at the beginning of the next section.

Let us now state our main result.

Theorem 2.1.1. Let (s, γ) ∈ R2 be such that

s − 1

2
> γ > 3, γ 6∈ 1

2
N.

There exists a non decreasing function C : R+ → R+ such that for all (η, ψ) in Hs(R) ×
Ḣ

1
2
,s− 1

2 (R) such that (η, ψ) belongs to the set Eγ introduced after the statement of Proposi-

tion 1.1.6, the following properties hold:
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(i) (Tame estimate)

(2.1.2) ‖G(η)ψ‖Hs−1 + ‖B(η)ψ‖Hs−1 + ‖V (η)ψ‖Hs−1

≤ C (‖η‖Cγ )
{∥∥|Dx|

1
2 ψ
∥∥
Cγ− 1

2
‖η‖Hs +

∥∥|Dx|
1
2 ψ
∥∥
Hs− 1

2

}
.

(ii) (Paralinearization) Define F (η)ψ by

(2.1.3) G(η)ψ = |Dx|ω − ∂x
(
TV (η)ψη

)
+ F (η)ψ.

Then

(2.1.4) ‖F (η)ψ‖Hs+γ−4 ≤ C (‖η‖Cγ )
{∥∥|Dx|

1
2 ψ
∥∥
Cγ− 1

2
‖η‖Hs + ‖η‖Cγ

∥∥|Dx|
1
2 ψ
∥∥
Hs− 1

2

}
.

(iii) (Linearization)

(2.1.5) ‖G(η)ψ − |Dx|ψ‖Hs−1 + ‖B(η)ψ − |Dx|ψ‖Hs−1 + ‖V (η)ψ − ∂xψ‖Hs−1

≤ C (‖η‖Cγ )
{∥∥|Dx|

1
2 ψ
∥∥
Cγ− 1

2
‖η‖Hs + ‖η‖Cγ

∥∥|Dx|
1
2 ψ
∥∥
Hs− 1

2

}
.

Let us comment on the above statement.

— All these estimates are tame: they depend linearly on the Sobolev norms. Moreover, we

consider the case where η and ψ are at exactly the same level of regularity (i.e. η in Hs and

ψ in Ḣ
1
2
,s− 1

2 ). This is important to prove Hs-energy estimates for the water waves equation.

Indeed, as already explained in the introduction, we shall write in Chapter 3 the water waves

equation as a quasi-linear system in the unknowns (η, |Dx|
1
2 ω). To be able to obtain Hs-

energy inequalities for this equation, it is important to check that the right-hand sides in the

inequalities of Theorem 2.1.1 are controlled by the Hs-norm of (η, |Dx|
1
2 ω). Let us show that

this property holds. To do so notice that by Lemma 2.0.5 if (η, ψ) belongs to Eγ then B(η)ψ

belongs to Cγ−1 so that B(η)ψ is in L∞. Then, as a paraproduct with an L∞-function acts

on any Sobolev spaces, we have

(2.1.6)

∥∥|Dx|
1
2 TB(η)ψη

∥∥
Hs− 1

2
. ‖B(η)ψ‖L∞ ‖η‖Hs

≤ C (‖η‖Cγ )
∥∥|Dx|

1
2 ψ
∥∥
Cγ− 1

2
‖η‖Hs .

Thus if we express ψ as ω + TB(η)ψη then one obtains

(2.1.7)
∥∥|Dx|

1
2 ψ
∥∥
Hs− 1

2
≤
∥∥|Dx|

1
2 ω
∥∥
Hs− 1

2
+C (‖η‖Cγ )

∥∥|Dx|
1
2 ψ
∥∥
Cγ− 1

2
‖η‖Hs .

Had we proved the statements of the theorem above with
∥∥|Dx|

1
2 ψ
∥∥
Hs− 1

2
replaced with

∥∥|Dx|
1
2 ψ
∥∥
Hs

, then this would give a bound in terms of ‖η‖
Hs+1

2
, preventing us to control

this quantity from the Hs-energy (which is the Hs-norm of (η, |Dx|
1
2 ω)).
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— It has been known since Calderón that, for η a smooth function, G(η) is a pseudo-differential

operator that, in one dimension, differs from |Dx| by a smoothing remainder. The paralin-

earization result (ii) above gives a more precise description of G(η)ψ when η has limited

smoothness. Namely, this result states that G(η)ψ − |Dx|ψ is the sum of the “explicit”

contribution − |Dx|TB(η)ψ − ∂x(TV (η)ψη) and of a smoothing remainder F (η)ψ.

— Assertion (iii) of the theorem computes the error one gets when approximating G(η)ψ,

B(η)ψ, V (η)ψ by their linear part. In this direction, we mention that we shall prove two more

technical statements that will be used below. In section 2.6 we study the Taylor expansion

at order 2 and 3 of G(η)ψ and of related quantities as a function of η, when η goes to zero.

The explicit knowledge of this expansion will be used in the rest of the paper. In particular

we shall prove that, for some explicit quadratic term F(≤2)(η)ψ,
∥∥F (η)ψ − F(≤2)(η)ψ

∥∥
Hs

is

estimated by

C(‖η‖Cγ ) ‖η‖Cγ

{∥∥|Dx|
1
2 ψ
∥∥
Cγ− 1

2
‖η‖Hs + ‖η‖Cγ

∥∥|Dx|
1
2 ψ
∥∥
Hs− 1

2

}
,

This estimate will allow us to have a quadratic approximation of the equations without loss

of derivatives.

The proof of Theorem 2.1.1 will be given in the next sections. Let us describe the strategy

we shall use.

To be able to obtain estimates for G(η)ψ (and the other quantities B(η)ψ, V (η)ψ), we need

to return to the definition of this function from the boundary values of the solution ϕ of

the elliptic boundary values problem Pϕ = 0, ϕ|z=0 = ψ, where P is given by (1.1.1). The

beginning of the next section is devoted to the study of a related elliptic paradifferential

problem Tp0W = f , W |z=0 = ω, where W = ϕ − T∂zϕη is a function whose boundary value

is the new unknown ω, and where p0 is the symbol of P . The point is that the choice of W

is made so that the right hand side f = Tp0W is a continuous function of z with values in

Hs+γ−3 (⊂ Hs if γ > 3) while a mere paralinearization of Pϕ = 0 would give that Tp0 is a

continuous function of z with values in Hs−1. This gain of smoothness in the right hand side

will be instrumental in the proof of the estimate in (ii) of the theorem.

Once the elliptic problem satisfied by W is established, we deduce from it bounds for W

in z < 0 in terms of W |z=0 and η (see Proposition 2.2.9). They are proved microlocally

decomposing the elliptic boundary value problem into two coupled forward and backward

parabolic equations, and performing a bootstrap argument exploiting the gain of smoothness

of f = Tp0W explained above.

These estimates of W are next used in section 2.3, which is devoted to the proof of the tame

estimate (2.1.2) from the bounds of W in z < 0.

Section 2.4 studies the paralinearization of the Dirichlet-Neumann operator: one establishes

that F (η) defined by

F (η)ψ = G(η)ψ −
(
|Dx|ω − ∂x(TV (η)ψη)
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is a smoothing operator satisfying (2.1.4), using again the bounds on W obtained in sec-

tion 2.2.

The assertions of the statement (iv) of the theorem are deduced from the preceding result in

section 2.5.

We end up Chapter 2 with a section devoted to a variant of the estimates of Theorem 2.1.1.

Actually, inequalities (2.1.2) and (2.1.5) hold when η and ψ are at the same level of regularity

(i.e. η in Hs and ψ in Ḣ
1
2
,s− 1

2 ). We shall need estimates of the same type when η is smoother

than ψ, namely η in Cγ and ψ in Ḣ
1
2
,µ− 1

2 for some µ ≤ γ − 2. These bounds are established

in Section 2.7.

2.2 Sharp estimates

Let us introduce the following notation. Set

a =
1

1 + η′2
, b = −2aη′, c = aη′′,

where η′ stands for ∂xη. Then the solution ϕ of Pϕ = 0, ϕ|z=0 = ψ obtained in Proposi-

tion 1.1.6 satisfies,

∂2zϕ+ a∂2xϕ+ b∂x∂zϕ− c∂zϕ = 0 in {z < 0},(2.2.1)

ϕ|z=0 = ψ.(2.2.2)

Assumption 2.2.1. We fix (s, µ, γ) ∈ R3 such that

s − 1

2
> γ > 3, 0 ≤ µ ≤ s, γ 6∈ 1

2
N.

Throughout this section, we assume that (η, ψ) is in the set Eγ defined after the statement of

Proposition 1.1.6 and that moreover (η, ψ) ∈ Hs × Ḣ
1
2
,µ is such that ω ∈ Ḣ

1
2
,µ+ 1

2 .

We introduce the function defined on {(x, z) ; z < 0}

(2.2.3) W = ϕ− T∂zϕη

where the paraproduct is taken relatively to the x-variable alone, z < 0 playing the role of a

parameter. In particular by (2.0.2), W |z=0 = ψ − TB(η)ψη = ω(η)ψ. Our goal is to study the

regularity of ϕ,W in terms of the regularity of ψ, η and ω.

Let us set a notation that will be used constantly below. If u is defined on {z < 0}, we
shall denote by ‖u‖Hr the z-dependent function defined by ‖u‖Hr (z) = ‖u(z, ·)‖Hr . The

inequality ‖f‖Hr ≤ ‖g‖Hr′ thus means that ‖f(z)‖Hr ≤ ‖g(z)‖Hr′ for any z such that f(z)

and g(z) are well defined. We denote by C various non decreasing functions of their arguments.
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Lemma 2.2.2. There exists a non decreasing function C : R+ → R+ such that

(2.2.4) ∂2zW + (Id+ Ta−1)∂
2
xW + Tb∂x∂zW − Tc∂zW

def
= f

satisfies the bound

(2.2.5) sup
z≤0

‖f(z)‖Hs+γ−3 ≤ C
(
‖η′‖Cγ−1

)
‖η‖Hs sup

z≤0
‖∇x,zϕ(z)‖Cγ−1 .

Remark 2.2.3. — In equation (2.2.4) above, we make appear as a coefficient of ∂2xW the

operator (Id + Ta−1) instead of Ta. By definition (A.1.3) of the paradifferential operators,

T1−Id is a Fourier multiplier whose symbol is supported for |ξ| ≤ 2. Therefore, (Id+Ta−1)−
Ta = Id − T1 is a smoothing operator. Nevertheless, we prefer to use (Id + Ta−1) instead

of Ta because a− 1 = O(η′2), η′ → 0, so that the remainder coming from symbolic calculus

will vanish at η′ = 0. In that way, we shall get the quadratic bound (2.2.5) instead of a mere

sub-linear bound as (η, ϕ) → (0, 0).

— The idea of the proof of the proposition is as follows: we shall paralinearize equation (2.2.3).

This will give us

∂2zϕ+ (Id+ Ta−1)∂
2
xϕ+ Tb∂x∂zϕ− Tc∂zϕ = f ′1 + f ′2,

where f ′2 is a a remainder that has similar bounds as f in (2.2.5) and f ′1 is made from

expressions of type T∂2xϕ(a − 1), T∂x∂zϕb, T∂zϕc. These contributions will not be smoother

than η′′ (since c involves η′′) i.e. will not be in a better space than Hs−2 if η is in Hs. The

gain in introducing W instead of ϕ lies in the fact that
(
∂2z + (Id+ Ta−1)∂

2
x + Tb∂x∂z − Tc∂z

)
T∂zϕη

will be equal (up to smooth remainders) to f ′1, which gives the asserted result.

To start the proof, we first obtain a paradifferential description of the coefficients a, b, c in

(2.2.1).

Lemma 2.2.4. One may write

(2.2.6) a− 1 = Tabη
′ + r1, b = Tb2−2aη

′ + r2, c = Taη
′′ + Tabη′η

′ + r3

where rℓ, ℓ = 1, 2, 3, belong to Hs+γ−3 and satisfy

(2.2.7) ‖rℓ‖Hs+γ−3 ≤ C
(
‖η′‖Cγ−1

)
‖η′‖Cγ−1

∥∥η′
∥∥
Hs−1 , ℓ = 1, 2, 3.

Proof. We use the fact (see section 5.2.3 in [38]) that if F is a smooth function vanishing at

0 and if u is in Hs(R) with s > 1/2, then

F (η′) = TF ′(η′)u+R(η′)
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where R(η′) ∈ H2s−5/2(R) and ‖R(η′)‖Hs+γ−2 ≤ C(‖η′‖Cγ−1) ‖η′‖Hs−1 .

Since a− 1 = F1(η
′) and b = F2(η

′) with

F1(u) = − u2

1 + u2
, F2(u) = − 2u

1 + u2
,

so that F ′
1(η

′) = ab and F ′
2(η

′) = b2 − 2a, we obtain the first two formulas in (2.2.6). To get

the last one we write

c = aη′′ = Taη
′′ + Tη′′a+ r13,

where the remainder r13 is in Hs+γ−3 by the paraproduct formula (A.1.17) in Appendix A.1

and satisfies the bound (2.2.7). We use the first equality (2.2.6) to express a in Tη′′a. We get

Tη′′a = Tη′′1 + Tη′′Tabη
′ + r23,

for a new remainder of the same type r23 (as a paraproduct with an L∞ function acts on any

Sobolev spaces, see (A.1.12)). Finally, by symbolic calculus (see (A.1.14)), Tη′′Tabη
′ = Tabη′′η

′

modulo another remainder of the same type. Since Tη′′1 = 0 by definition of a paradifferential

operator, this concludes the proof of the lemma.

Proof of Lemma 2.2.2. We use the notation D = −i∂. If p0(x, ξ, ζ) is a polynomial in ζ, with

coefficients that are paradifferential symbols in (x, ξ) i.e.

p0(x, ξ, ζ) =
∑

α

pα0 (x, ξ)ζ
α,

we shall write Tp0ϕ for
∑

α Tpα0 (D
α
z ϕ)(z, ·).

Let us write the contributions to the left hand side of (2.2.1) as

(a− 1)D2
xϕ = Ta−1(D

2
xϕ) + TD2

xϕ
(a− 1) +R1,

bDxDzϕ = Tb(DxDzϕ) + TDxDzϕb+R2,

cDzϕ = Tc(Dzϕ) + TDzϕc+R3,

where Rℓ, ℓ = 1, 2, 3, the remainders in the paralinearization formula, satisfy estimate (2.2.5).

In the second term in the right hand side of the above equalities, we express a− 1, b, c using

(2.2.6). The remainders rℓ in (2.2.6) will give rise, according to (2.2.7), to new contributions

satisfying (2.2.5).

Now we introduce

p0(x, ξ, ζ) = ζ2 + ξ2 + (a− 1)ξ2 + bξζ + icζ

and

T̃p0 = D2
z + (Id+ Ta−1)D

2
x + TbDxDz − TcDz.

Notice that we do not have Tξ2 = D2
x (because we assume in Definition A.1.2 that the cut-

off function θ, which enters into the definition (A.1.3) of paradifferential operators, satisfies
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θ(ξ1, ξ2) = 0 for |ξ2| ≤ 1). However, Tp0 − T̃p0 = Tξ2 −D2
x is a smoothing operator. Then we

see that (2.2.1) may be rewritten as

(2.2.8)
T̃p0ϕ = −TD2

xϕ
Tabη

′ − TDxDzϕTb2−2aη
′

− iTDzϕTabη′′η
′ − iTDzϕTaη

′′ + r

where r satisfies (2.2.5). Since D2
xϕ, DxDzϕ (resp. Dzϕ) is in L∞(] − ∞, 0], Cγ−2) (resp.

L∞(] −∞, 0], Cγ−1)) and ab, b2 − 2a, a (resp. abη′′) belong to Cγ−1 (resp. Cγ−2), it follows

from the symbolic calculus result (A.1.14) that the differences

TD2
xϕ
Tab − TabD2

xϕ
, TDxDzϕTb2−2a − T(b2−2a)DxDzϕ, TDzϕTabη′′ − Tabη′′Dzϕ

are operators in L(Hs−1,Hs+γ−3) (resp. TDzϕTa−TaDzϕ is an operator in L(Hs−1,Hs+γ−2))

with operator norms bounded from above by

C
(
‖η′‖Cγ−1

)
sup
z≤0

‖∇x,zϕ‖Cγ−1 .

We conclude that (2.2.8) may be written

(2.2.9) T̃p0ϕ = Tqη
′ + r

where r is a remainder satisfying (2.2.5), and where q is the symbol

(2.2.10) q(x, ξ, ζ) = ab∂2xϕ+ (b2 − 2a)∂x∂zϕ− abη′′∂zϕ− ia(∂zϕ)ξ.

By definition of W , the left hand side of (2.2.4) is up to sign T̃p0(ϕ − T∂zϕη), so that taking

(2.2.9) into account, and remembering that Tp0 − T̃p0 = Tξ2 −D2
x is a smoothing operator, we

see that the proposition follows from the following lemma.

Lemma 2.2.5. Under Assumption 2.2.1,

sup
z≤0

∥∥Tqη′ − Tp0T∂zϕη
∥∥
Hs+γ−3 ≤ C

(
‖η′‖Cγ−1

)
‖η‖Hs sup

z≤0
‖∇x,zϕ‖Cγ−1 .

By the formula of composition of paradifferential operators (A.1.7), which is exact at order 3

since p0(x, ·) is a polynomial of order 2 in (ξ, ζ), we may write

(2.2.11) Tp0T∂zϕ = Tp0∂zϕ + Tg1 + Tg2 +R

where R is an operator satisfying

‖R‖L(Hs ,Hs+γ−3) ≤ C
(
‖η′‖Cγ−1

)
sup
z≤0

‖∇x,zϕ‖Cγ−1

and where g1, g2 are given by

g1(x, ξ, ζ) =
1

i

(
∂ζp0∂

2
zϕ+ (∂ξp0)(∂x∂zϕ)

)
,

g2(x, ξ, ζ) = −1

2

(
(∂2ζ p0)(∂

3
zϕ) + 2(∂ζ∂ξp0)(∂x∂

2
zϕ) + (∂2ξ p0)(∂

2
x∂zϕ)

)
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Computing these expressions using that (2.2.1) implies that
(
∂2z + a∂2x + b∂x∂z

)
∂zϕ = c∂2zϕ,

we obtain

(2.2.12)
g1(x, ξ, ζ) =

1

i

(
(2ζ + bξ + ic)∂2zϕ+ (2aξ + bζ)∂x∂zϕ

)
,

g2(x, ξ, ζ) = −c∂2zϕ.

Finally, we get that the right hand side of (2.2.11) may be written Te+R where e is a symbol

of the form

e(x, z, ξ, ζ) = ζ2Γ0(x, z) + ζΓ1(x, z, ξ) + Γ2(x, z, ξ),

where Γ0 is a function of (x, z), Γ1, Γ2 are symbols in (x, ξ) depending on the parameter z,

with

Γ2(x, z, ξ) = a(∂zϕ)ξ
2 − ib(∂2zϕ)ξ − 2ia(∂x∂zϕ)ξ.

We are reduced to showing Tqη
′−Teη = 0. Since η does not depend on z, we have Teη = TΓ2η,

so that it is enough to check that Γ2(x, z, ξ) = q(x, z, ξ)(iξ). This follows from the above

definition of Γ2 where we substitute to ∂2zϕ its expression ∂2zϕ = −a∂2xϕ − b∂x∂zϕ + c∂zϕ

coming from (2.2.1), remembering that c = aη′′. This concludes the proof.

We thus have proved that the unknown W solves the paradifferential equation PW = f ,

where

(2.2.13) P = ∂2z + (Id+ Ta−1)∂
2
x + Tb∂x∂z − Tc∂z.

Our next task is to find two operators P− and P+ such that

P = (∂z − P−)(∂z − P+)

modulo an admissible remainder.

Lemma 2.2.6. Set

P− = − |Dx|+ Tp+|ξ|, P+ = |Dx|+ TP−|ξ|

where p = p(x, ξ) and P = P (x, ξ) are two symbols given by

(2.2.14)
p(x, ξ) = a(x) (i∂xη(x)ξ − |ξ|) + c(x),

P (x, ξ) = a(x) (i∂xη(x)ξ + |ξ|) .

Then

(2.2.15)
(
∂z − P−

)(
∂z − P+

)
= P +R0,

where P is given by (2.2.13) and R0 is a smoothing operator, satisfying

(2.2.16) ‖R0u‖Hµ+γ−3 ≤ C(‖η‖Cγ ) ‖η‖2Cγ ‖∂xu‖Hµ−1 ,

for any µ ∈ R and any u ∈ Hµ(R).
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Proof. Below we freely use the facts that, for any symbol a = a(x, ξ),

Ta(x,ξ)(iξ) = Ta∂x, Ta(x,ξ)|ξ| = Ta |Dx| , ∂x(Tau) = Ta∂xu+ T∂xau.

Since b = −2a∂xη, by definition of P− and P+, we have P−+P+ = −Tb∂x+Tc. Consequently,
we have (2.2.15) with

R0 = P−P+ − (Id+ Ta−1)∂
2
x

= Tp+|ξ| |Dx| − |Dx|TP−|ξ| + Tp+|ξ|TP−|ξ| − Ta−1∂
2
x.

The proof of (2.2.16) is in two steps. We first give an exact formula for Tp+|ξ| |Dx|−|Dx|TP−|ξ|.

Namely we prove that Tp+|ξ| |Dx|−|Dx|TP−|ξ| = Ta−1∂
2
x−Tq for some explicit symbol q. Then

we use symbolic calculus to estimate the difference between Tp+|ξ|TP−|ξ| and Tq.

To compute Tp+|ξ| |Dx| − |Dx|TP−|ξ| we use the two following identities (see Lemma A.1.11):

for any function a = a(x) in L∞(R) and any function u in L2(R),

|Dx|Ta |Dx| u+ ∂xTa∂xu = 0,(2.2.17)

|Dx|Ta∂xu− ∂xTa |Dx|u = 0.(2.2.18)

Now, by definition,

p+ |ξ| = aη′(iξ) + aη′′ + (1− a)|ξ|, P − |ξ| = aη′(iξ) + (a− 1)|ξ|,

so

(2.2.19) Tp+|ξ| |Dx| − |Dx|TP−|ξ|

= Taη′∂x |Dx|+ Taη′′ |Dx|+ T1−a |Dx|2 − |Dx|Taη′∂x − |Dx|Ta−1 |Dx| .

Since Taη′∂x + Taη′′ = ∂x
(
Taη′ ·)− T(∂xa)η′ , the identity (2.2.18) implies that

(2.2.20) Taη′∂x |Dx|+ Taη′′ |Dx| = |Dx|Taη′∂x − T(∂xa)η′ |Dx| .

On the other hand, (2.2.17) implies that

(2.2.21) |Dx|Ta−1 |Dx| = −∂xTa−1∂x = −T∂xa∂x − Ta−1∂
2
x.

Setting (2.2.20) and (2.2.21) in (2.2.19), we obtain that

Tp+|ξ| |Dx| − |Dx|TP−|ξ| = −T(∂xa)η′ |Dx|+ T1−a |Dx|2 + T∂xa∂x + Ta−1∂
2
x

= T(a−1)∂
2
x − Tq

with

(2.2.22) q = η′(∂xa)|ξ| − ∂xa(iξ) + (a− 1)|ξ|2.

We conclude that R0 = Tp+|ξ|TP−|ξ| − Tq.
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It remains to estimate the difference between Tp+|ξ|TP−|ξ| and Tq. To compute Tp+|ξ|TP−|ξ|,
it is convenient to introduce the symbol

℘(x, ξ) = a(x) (i∂xη(x)ξ − |ξ|) ,

and to decompose p as ℘+ c. Since ∂kξ℘(x, ξ) = 0 and ∂kξ |ξ| = 0 for k ≥ 2 and ξ 6= 0 and since

the symbols ℘,P belong to Γ1
γ−1(R), using (A.1.7) applied with (m,m′, ρ) = (1, 1, γ − 1), we

obtain that

T℘+|ξ|TP−|ξ| = Tq1 +Q1

where Q1 is of order 3− γ and the symbol q1 is given by

q1 = (℘+ |ξ|)(P − |ξ|) + 1

i
∂ξ(℘+ |ξ|)∂x(P − |ξ|).

This simplifies to

q1 = −ξ2 + ℘P + 2aξ2 +
1

i
∂ξ℘∂xP +

1

i

ξ

|ξ|∂xP.

On the other hand, using the notation (A.1.4), we have

M1
γ−1(p+ |ξ|) +M1

γ−1(P − |ξ|) ≤ C(‖η‖Cγ ) ‖η‖Cγ ,

and hence ‖Q1‖L(Ht,Ht+γ−3) ≤ C(‖η‖Cγ ) ‖η‖2Cγ .

Similarly, (A.1.7) applied with (m,m′, ρ) = (0, 1, 2 − γ) implies that

TcTP−|ξ| = Tc(P−|ξ|) +Q2

where ‖Q2‖L(Ht,Ht+γ−3) ≤ C(‖η‖Cγ ) ‖η‖2Cγ .

The previous observations yield Tp+|ξ|TP−|ξ| = Tτ +Q1 +Q2 with

τ = −ξ2 + ℘P + 2aξ2 +
1

i
∂ξ℘∂xP +

1

i

ξ

|ξ|∂xP + c(P − |ξ|).

Now using the calculation results

℘P = −aξ2, 1

i
(∂ξ℘)(∂xP ) + cP = 0,

we obtain that

τ = (a− 1)|ξ|2 + 1

i

ξ

|ξ|∂xP − c|ξ|

and it is easily verified that τ = q where q is given by (2.2.22) (recalling that c = aη′′). We

conclude that R0 = Q1 +Q2 and the previous observations yield

‖R0u‖Hµ+γ−3 ≤ C(‖η‖Cγ ) ‖η‖2Cγ ‖u‖Hµ .
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Having proved this first estimate for the remainder, we prove it is estimated by the derivative

of u only:

‖R0u‖Hµ ≤ C(‖η‖Cγ ) ‖η‖2Cγ ‖∂xu‖Hµ−1 .

To do so, introduce κ̃ = κ̃(ξ) such that κ̃(ξ) = 1 for |ξ| ≥ 1/3 and κ̃(ξ) = 0 for |ξ| ≤ 1/4.

Split R0 as

R0κ̃(Dx) +R0(Id− κ̃(Dx)).

Notice that R0(Id− κ̃(Dx)) = 0 since A(Id− κ̃(Dx)) = 0 for any paradifferential operator A.

On the other hand,

‖R0κ̃(Dx)u‖Hµ+γ−3 ≤ C(‖η‖Cγ ) ‖η‖2Cγ ‖κ̃(Dx)u‖Hµ

≤ C(‖η‖Cγ ) ‖η‖2Cγ ‖∂xu‖Hµ−1 .

This completes the proof.

By construction, it follows from the previous lemma that

(∂z − P−)(∂z − P+)W = PW +R0W.

On the other hand, f := PW is estimated by (2.2.5). Introduce now

w = (∂z − P+)W.

Then

(2.2.23)

{
(∂z − P−)w = f +R0W,

(∂z − P+)W = w.

Since Re p(x, ξ) ≤ −c |ξ| for 1 ≪ |ξ|, the first equation in (2.2.23) is parabolic. Since

ReP (x, ξ) ≥ c |ξ|, the backward Cauchy problem is well posed for the second equation. Hence,

up to time reversal in the second equation, System (2.2.23) is a system of two paradifferential

parabolic equations. We begin by recalling a classical estimate for such equations.

Lemma 2.2.7. Let µ ∈ R, T ∈ [0,+∞). Let u in C0([0, T ];Hµ(R)) ∩ C1([0, T ];Hµ−1(R))

and F in L∞([0, T ];Hµ(R)) satisfying

∂tu+ |Dx| u+ Tq−|ξ|u = F,

for some symbol q ∈ Γ1
1(R) (independent of time) such that Re q ≥ c |ξ|. Then, for any ε > 0,

u belongs to C0([0, T ];Hµ+1−ε(R)) and there exists a positive constant K depending on M1
1 (q)

(see (A.1.4)) such that

(2.2.24) ‖u‖L∞([0,T ];Hµ+1−ε) ≤ K ‖u(0)‖Hµ+1−ε +K ‖F‖L∞([0,T ];Hµ) +K ‖u‖L∞([0,T ];Hµ) .
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Proof. This follows from [41] (see also [6, Prop. 4.10] and [3, Prop. 3.19]). We recall the

proof for the sake of completeness. Write

∂tu+ Tqu = g := F + (T|ξ| − |Dx|)u.

Since T|ξ| − |Dx| is a smoothing operator we have

‖g‖L∞([0,T ];Hµ) . ‖F‖L∞([0,T ];Hµ) + ‖u‖L∞([0,T ];Hµ) .

Given τ ≤ 0, one denotes by e(τ, ·, ·) or simply e(τ) the symbol defined by e(τ, x, ξ) =

exp(τq(x, ξ)) so that e(0, x, ξ) = 1 and ∂τ e(τ, x, ξ) = e(τ, x, ξ)q(x, ξ).

Now, given y ∈ [0, T ] and t ∈ [0, y], write

∂t
(
Te(t−y)u

)
= Te(t−y)g +

(
T∂te(t−y)u− Te(t−y)Tq

)
u

and integrate on [0, y] to obtain

T1u(y) = Te(−y)u(0) +
∫ y

0

{
Te(t−y)g(t) +

(
T∂te(t−y) − Te(t−y)Tq

)
u(t)

}
dt.

Which is better formulated as

u(y) = Te(−y)u(0) +
∫ y

0

{
Te(t−y)g(t) + S(t− y)u(t)

}
dt+ (Id− T1)u(y),

with S(τ) := (T∂τ e(τ)u− Te(τ)Tq).

According to our assumption that Re q ≥ c |ξ|, q ∈ Γ1
1(R), we see that e(τ) belongs uniformly

to Γ0
1(R) for τ ∈ [−T, 0]; which means that supτ∈[−T,0]M

0
1 (e(τ, ·, ·)) ≤ C(M1

1 (q)) where the

semi-norm M1
0 (q) is as defined in (A.1.4). Therefore ∂τe = eq belongs uniformly to Γ1

1(R).

It follows from symbolic calculus (see (A.1.8)) that S(τ) = Te(τ)q − Te(τ)Tq is uniformly of

order 0. Therefore there exists a constant K depending only on M1
1 (q) such that, for any

y ∈ [0, T ] and any t ∈ [0, y],

‖S(t− y)u(t)‖Hµ ≤ K ‖u(t)‖Hµ ,

Similarly, (A.1.12) implies that
∥∥Te(−y)u(0)

∥∥
Hµ+1−ε ≤ K ‖u(0)‖Hµ+1−ε .

On the other hand, |y − t|1−ε 〈ξ〉1−εe(t− y, x, ξ) is uniformly of order 0 so that

∫ y

0

∥∥Te(t−y)g(t)
∥∥
Hµ+1−ε dt . ‖g‖L∞([0,y];Hµ) .

It follows that there exists a constant K depending only onM1
1 (q) such that, for all y ∈ [0, T ],

‖u(y)‖Hµ+1−ε ≤ K ‖u(0)‖Hµ+1−ε +K ‖F‖L∞([0,y];Hµ) +K ‖u‖L∞([0,y];Hµ) .

This proves that u ∈ L∞([0, T ];Hµ+1−ε(R)). Since u ∈ C0([0, T ];Hµ(R)) by assumption, this

implies, by interpolation, that u ∈ C0([0, T ];Hµ+1−2ε(R)). This gives the desired result with

ε replaced with 2ε.
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We are now in position to estimate (w,W ) by using the previous lemma and the fact that

(w,W ) satisfy (2.2.23). For later purposes, it is convenient to state this as a general result.

Lemma 2.2.8. Consider τ < 0, µ ∈ R and ε > 0.

(i) Let v in L∞([τ, 0];Hµ+1(R)), V in C0([τ, 0];Hµ+1(R)) ∩ C1([τ, 0];Hµ(R)) satisfying

(∂z − P+)V = v.

If ∂xV (0) ∈ Hµ+1−ε(R) then V ∈ C0([τ, 0];Hµ+2−ε(R)) and there exists a non decreasing

function C depending only on γ, τ, µ, ε such that

(2.2.25) ‖∇x,zV ‖L∞([τ,0];Hµ+1−ε)

≤ C(‖η‖Cγ )
(
‖∂xV (0)‖Hµ+1−ǫ + ‖v‖L∞([τ,0];Hµ+1) + ‖∇x,zV ‖L∞([τ,0];Hµ)

)
.

(ii) Consider V in L∞([τ, 0];Hµ−(γ−3)(R)), v in C0([τ, 0];Hµ(R))∩C1([τ, 0];Hµ−1(R)), and

f in L∞([τ, 0];Hµ(R)) satisfying

(2.2.26) (∂z − P−)v = f +R0V.

Then, for any τ ′ in ]τ, 0[, v belongs to C0([τ ′, 0];Hµ+1−ε(R)) and there exists a non decreasing

function C depending only on γ, τ, τ ′, µ, ε such that

(2.2.27)
‖v‖L∞([τ ′,0];Hµ+1−ǫ) ≤ C(‖η‖Cγ )

(
‖f‖L∞([τ,0];Hµ) + ‖v‖L∞([τ,0];Hµ)

)

+ C(‖η‖Cγ ) ‖η‖Cγ ‖∇x,zV ‖L∞([τ,0];Hµ−1−(γ−3)) .

Proof. To prove statement (i) we apply Lemma 2.2.7 to the auxiliary function u(t, x) =

(∂xV )(−t, x) which satisfies

∂tu+ |Dx| u+ TP−|ξ|u = G

where P is given by (2.2.14) and where G(t, x) = −(∂xv + T∂xPV )(−t, x). Thus the estimate

(2.2.24) applied with T = −τ implies that there exists a positive constant K = K(‖η‖Cγ )

such that

‖u‖L∞([0,−τ ];Hµ+1−ε) ≤ K ‖u(0)‖Hµ+1−ε +K ‖G‖L∞([0,−τ ];Hµ)

+K ‖u‖L∞([0,−τ ],Hµ) .

This yields

‖∂xV ‖L∞([τ,0];Hµ+1−ε) ≤ K ‖∂xV (0)‖Hµ+1−ε +K ‖∂xv‖L∞([τ,0];Hµ)

+K ‖∂xV ‖L∞([τ,0];Hµ) .

Since ∂zV = P+V + v can be estimated by means of ∂xV and v, we obtain (2.2.25).
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To prove statement (ii) we apply Lemma 2.2.7 to the auxiliary function u(t, x) = t v(t+ τ, x)

which satisfies u(0, x) = 0 and

∂tu+ |Dx|u+ Tq−|ξ|u = F

with q = −p (where p is given by (2.2.14)) and

F (t, x) = tf(t+ τ, x) + t(R0V )(t+ τ, x) + v(t+ τ, x).

It follows from (2.2.16) and the assumption γ > 3 that ‖F‖L∞([0,−τ ];Hµ) is bounded by the

right-hand side of (2.2.27).

Since u|t=0 = 0, the parabolic estimate (2.2.24) implies that

‖u‖L∞([0,−τ ];Hµ+1−ε) ≤ K ‖F‖L∞([0,−τ ];Hµ) +K ‖u‖L∞([0,−τ ],Hµ) .

Clearly,

‖u‖L∞([0,−τ ];Hµ) = sup
z∈[τ,0]

‖(z − τ)v(z)‖Hµ ≤ |τ | sup
z∈[τ,0]

‖v(z)‖Hµ

and

sup
z∈[τ ′,0]

‖v‖Hµ+1−ε ≤ 1

|τ − τ ′| sup
z∈[τ ′,0]

‖(z − τ)v(z)‖Hµ+1−ε

≤ 1

|τ − τ ′| sup
t∈[0,−τ ]

‖u(t)‖Hµ+1−ε .

Therefore, the previous estimates imply (2.2.27).

We are now in position to prove the main result of this section. Given τ < 0, we use the

notations

(2.2.28)

E(τ) := sup
z∈[τ,0]

{‖∂zϕ‖H−1/2 + ‖∂xϕ− ∂xη∂zϕ‖H−1/2} ,

D(τ) := sup
z∈[τ,0]

∥∥∂zϕ− |Dx|ϕ
∥∥
H−1/2 .

Proposition 2.2.9. Let (s, µ, γ) ∈ R3 be such that

s − 1

2
> γ > 3, 0 ≤ µ ≤ s, γ 6∈ 1

2
N,

and assume that (η, ψ) is in the set Eγ defined after the statement of Proposition 1.1.6 and

that moreover (η, ψ) ∈ Hs × Ḣ
1
2
,µ is such that ω ∈ Ḣ 1

2
,µ+ 1

2 .

Consider ε > 0 and τ < τ ′ < 0. There exists a non decreasing function C : R → R such that

(2.2.29)

sup
z∈[τ ′,0]

‖∂zW (z)− P+W (z)‖Hµ+γ−3−ε ≤ c1 ‖η‖Hs + c2 ‖∂xω‖Hµ−1

+ c2E(τ) + c3D(τ),
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and

(2.2.30) sup
z∈[τ ′,0]

‖∇x,zW (z)‖Hµ ≤ c1 ‖η‖Hs + c3 ‖∂xω‖Hµ + c3E(τ) + c3D(τ),

where

(2.2.31) c3 := C(‖η‖Cγ ), c1 := c3 sup
z∈[τ,0]

‖∇x,zϕ(z)‖Cγ−1 , c2 := c3 ‖η‖Cγ .

Remark. We prove not only a priori estimates but also an elliptic regularity result. Namely,

the previous statement means that if the right-hand side of (2.2.30) is finite, then so is the

left hand-side.

Proof. Given τ ∈]−∞, 0[ and (µ, σ) ∈ R2, introduce

A1(τ ;σ) := sup
z∈[τ,0]

‖∂zW − P+W‖Hσ ,

A2(τ ;µ) := sup
z∈[τ,0]

‖∇x,zW‖Hµ .

One denotes by A1 the set of µ ∈] − ∞, s] such that the following property holds: for

all (σ, τ, τ ′) ∈ R3 such that

σ ∈ [µ, µ+ γ − 3[, τ < τ ′ < 0,

the function ∂zW −P+W belongs to C0([τ ′, 0];Hσ(R)) and there is a non decreasing function

C : R+ → R+ depending only on (s, γ, µ, σ, τ, τ ′) such that

A1(τ
′;σ) ≤ c1 ‖η‖Hs + c2

∥∥∂xω
∥∥
Hµ−1 + c3A1(τ ;−1/2) + c2A2(τ ;−1/2),

where c1, c2 and c3 are as in (2.2.31).

Similarly, one denotes by A2 the set of µ ∈] −∞, s] such that the following property holds:

for all τ ∈]−∞, 0[, the function ∇x,zW belongs to C0([τ, 0];Hµ(R)) and there exists a non

decreasing function C : R+ → R+ depending only on (s, γ, µ, τ, τ ′) such that

A2(τ
′;µ) ≤ c1 ‖η‖Hs + c3

{∥∥∂xω
∥∥
Hµ +A1(τ ;−1/2) +A2(τ ;−1/2)

}
·

The proof of Proposition 2.2.9 is in two steps. The key point consists in proving that

(2.2.32) A1 = ]−∞, s] , A2 = ]−∞, s] .

To prove (2.2.32), we proceed by means of a bootstrap argument (as in [2]).

Recall that, by notations, w = (∂z − P+)W and

{
(∂z − P−)w = f +R0W,

(∂z − P+)W = w,
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where f is given by Lemma 2.2.2. It follows from the estimate (2.2.5) for f and Lemma 2.2.8

that, for any (s, γ, µ) as above, any τ < τ ′ < 0 and any ε > 0, there exists a non decreasing

function C : R+ → R+ such that

A1(τ
′;µ + 1− ε) ≤ c1 ‖η‖Hs + c2A2(τ ;µ − 1− (γ − 3)) + c3A1(τ ;µ),

A2(τ ;µ + 1− ε) ≤ c3 ‖∂xω‖Hµ+1−ε + c3A1(τ ;µ+ 1) + c3A2(τ ;µ),

where c1, c2 and c3 are as in (2.2.31). This implies that, for any ε > 0,

(2.2.33) µ− (γ − 3) + ε ∈ A1, µ− 1− (γ − 3) ∈ A2

⇒ min {µ+ 1− ε− (γ − 3), s} ∈ A1,

and

(2.2.34) µ+ 4− γ + ε ∈ A1, µ ∈ A2 ⇒ min {µ+ 1− ε, s} ∈ A2.

Now, let us show that (2.2.33) and (2.2.34) imply (2.2.32). Firstly, notice that, clearly,

(2.2.35) 5/2 − γ ∈ A1, −1/2 ∈ A2.

Observe that 5/2 − γ < −1/2. Now assume that [5/2 − γ, κ] × [5/2 − γ, κ] ⊂ A1 × A2 for

some 5/2− γ ≤ κ < s, and set

ε = min

{
1

4
(γ − 3),

1

4

}
, µ = κ− 1 + 2ε, ν = κ+ (γ − 3)− 2ε.

Then µ < κ and µ+4−γ+ε < κ. Therefore µ+4−γ+ε ∈ A1 and µ ∈ A2. Property (2.2.34)

then implies that min {µ+ 1− ε, s} ∈ A2. Since µ+ 1− ε = κ+ ε we thus have proved that

min{κ+ε, s} ∈ A2. Similarly, ν− (γ−3)+ε < κ and ν−1− (γ−3) < κ; so Property (2.2.33)

implies that min{κ+ ε, s} ∈ A1. We thus have proved that

[5/2 − γ, κ̃]× [5/2 − γ, κ̃] ⊂ A1 ×A2 with κ̃ = min{κ+ ε, s}.

In view of (2.2.35), this implies (2.2.32).

To conclude the proof of Proposition 2.2.9 it is sufficient to prove that

A2(τ ;−1/2) . E(τ) + ‖η‖H1 sup
z∈I

‖∇x,zϕ(z)‖C1 ,(2.2.36)

A1(τ ;−1/2) . D(τ) + C(‖η‖C2)
{
‖η‖C2 E(τ) + sup

z∈I
‖∇x,zϕ(z)‖L∞ ‖η‖H1/2

}
.(2.2.37)

Recall that

A1(τ ;−1/2) = sup
z∈[τ,0]

‖∂zW − P+W‖H−1/2 ,

A2(τ ;−1/2) = sup
z∈[τ,0]

{
‖∂zW‖

H− 1
2
+ ‖∂xW‖

H− 1
2

}
·
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Let us prove (2.2.36). Since ∂zW = ∂zϕ− T∂2zϕη we have

‖∂zW‖
H− 1

2
≤ ‖∂zϕ‖

H− 1
2
+
∥∥∂2zϕ

∥∥
L∞ ‖η‖

H− 1
2
,

and hence supz∈[τ,0] ‖∂zW‖
H− 1

2
is bounded by the right-hand side of (2.2.36) by definition

of E(τ). To estimate ∂xW , write

∂xW = ∂xϕ− T∂zϕ∂xη − T∂x∂zϕη

= ∂xϕ− ∂zϕ∂xη + (∂zϕ− T∂zϕ)∂xη − T∂x∂zϕη,

so

‖∂xW‖
H− 1

2
≤ ‖∂xϕ− ∂zϕ∂xη‖

H− 1
2
+ ‖∂zϕ∂xη‖

H− 1
2

+ ‖T∂zϕ∂xη‖H− 1
2
+ ‖T∂x∂zϕη‖H− 1

2
.

This implies that

‖∂xW‖
H− 1

2
≤ E(τ) +K ‖η‖H1 sup ‖∇x,zϕ‖C1 ,

which completes the proof of (2.2.36).

Let us prove (2.2.37). By definition of P+ and W , we have

∂zW − P+W = (∂z − P+)ϕ− (∂z − P+)T∂zϕη

= (∂z − |Dx|)ϕ− TP−|ξ|ϕ− T∂2zϕη + P+T∂zϕη.

The first term in the right-hand side is estimated directly from the definition of D(τ). To

estimate the third term we write
∥∥T∂2zϕη

∥∥
H− 1

2
.
∥∥∂2zϕ

∥∥
C−1 ‖η‖H 1

2
and then use the equation

(2.2.1) satisfied by ϕ to estimate
∥∥∂2zϕ

∥∥
C−1 . To estimate the last term, by using (A.1.5), we

first notice that

‖P+T∂zϕη‖H−1/2 . (1 +M1
0 (P − |ξ|)) ‖T∂zϕη‖H1/2

. (1 +M1
0 (P − |ξ|)) ‖∂zϕ‖L∞ ‖η‖H1/2 .

Since M1
0 (P − |ξ|) ≤ C(‖η‖C1) ‖∂xη‖C1 , we obtain that

‖P+T∂zϕη‖H−1/2 ≤ C(‖η‖C2) ‖∂zϕ‖L∞ ‖η‖H1/2 .

Similarly, (A.1.10) implies that

∥∥TP−|ξ|ϕ
∥∥
H−1/2 .M1

0 (P − |ξ|) ‖∂xϕ‖H−1/2 ≤ C(‖η‖C2) ‖∂xη‖C1 ‖∂xϕ‖H−1/2 .

Since

‖∂xϕ‖H−1/2 . ‖∂xϕ− ∂xη∂zϕ‖H−1/2 + ‖∂xη‖C1 ‖∂zϕ‖H−1/2

. (1 + ‖∂xη‖C1)E(τ),

by combining the above estimates we conclude the proof of (2.2.37). This completes the proof

of the induction argument and hence the proof of the proposition.
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2.3 Tame estimates

In this section we prove the tame estimates (2.1.2).

Proposition 2.3.1. i) Let (s, γ, µ) ∈ R3 be such that

s − 1

2
> γ > 3,

1

2
≤ µ ≤ s, γ 6∈ 1

2
N.

Consider (η, ψ) ∈ Eγ ∩
(
Hs+ 1

2 (R)× Ḣ
1
2
,µ(R)

)
and set ω = ψ − TB(η)ψη. Then

B(η)ψ ∈ Hµ− 1
2 (R), V (η)ψ ∈ Hµ− 1

2 (R),

and there exists a non decreasing function C : R+ → R+ depending only on (s, γ, µ) such that:

(2.3.1) ‖B(η)ψ‖
Hµ− 1

2
+ ‖V (η)ψ‖

Hµ− 1
2

≤ C (‖η‖Cγ )
{∥∥|Dx|

1
2 ψ
∥∥
Cγ− 1

2
‖η‖Hs +

∥∥|Dx|
1
2 ω
∥∥
Hµ

}
.

ii) Let (s, γ, µ) ∈ R3 be such that

s − 1

2
> γ > 3, 1 ≤ µ ≤ s, γ 6∈ 1

2
N.

Consider (η, ψ) ∈ Eγ ∩
(
Hs+ 1

2 (R)× Ḣ
1
2
,µ− 1

2 (R)
)
. Then G(η)ψ ∈ Hµ−1(R) and there exists a

non decreasing function C : R+ → R+ depending only on (s, γ, µ) such that:

(2.3.2) ‖G(η)ψ‖Hµ−1 ≤ C (‖η‖Cγ )
{∥∥|Dx|

1
2 ψ
∥∥
Cγ− 1

2
‖η‖Hs +

∥∥|Dx|
1
2 ψ
∥∥
Hµ− 1

2

}
.

Proof. We begin by proving the following estimates.

Lemma 2.3.2. Let τ < τ ′ < 0 and consider (s, γ, µ) as above. There exists a non decreasing

function C : R+ → R+ such that for all (η, ψ) ∈ Eγ ∩
(
Hs+ 1

2 (R)× Ḣ
1
2
,µ(R)

)
,

sup
z∈[τ ′,0]

‖∂zϕ‖
Hµ− 1

2
+ sup
z∈[τ ′,0]

‖∂xϕ− ∂xη∂zϕ‖
Hµ− 1

2

≤ C (‖η‖Cγ )
{∥∥|Dx|

1
2 ψ
∥∥
Cγ− 1

2
‖η‖Hs + ‖∂xω‖

Hµ− 1
2
+ E(τ) +D(τ)

}
,

where D(τ) and E(τ) are as in (2.2.28).

Proof. We begin by estimating ∂zϕ. To do so, write ∂zϕ = ∂zW + T∂2zϕη to obtain

(2.3.3) sup
z∈[τ ′,0]

‖∂zϕ‖
Hµ− 1

2
. sup

z∈[τ ′,0]
‖∂zW‖

Hµ− 1
2
+ sup
z∈[τ ′,0]

∥∥∂2zϕ
∥∥
L∞ ‖η‖

Hµ− 1
2
.
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It follows from (2.2.30) applied with µ replaced with µ− 1/2 ∈ [0, s − 1/2] that

(2.3.4) sup
z∈[τ ′,0]

‖∇x,zW (z)‖
Hµ− 1

2
≤ c1 ‖η‖Hs + c3

∥∥∂xω
∥∥
Hµ− 1

2
+ c3E(τ) + c3D(τ),

where

c1 := C(‖η‖Cγ ) sup
z∈[τ,0]

‖∇x,zϕ(z)‖Cγ−1 , c3 := C(‖η‖Cγ ).

On the other hand, since ∂2zϕ = −a∂2xϕ− b∂x∂zϕ+ c∂zϕ, we have

sup
z∈[τ ′,0]

∥∥∂2zϕ
∥∥
L∞ ≤ C(‖η‖C2) sup

z∈[τ ′,0]
‖∇x,zϕ‖C1 .

As a result, since µ ≤ s, (2.3.3) implies that

sup
z∈[τ ′,0]

‖∂zϕ‖
Hµ− 1

2
≤ c1 ‖η‖Hs + c3

∥∥∂xω
∥∥
Hµ− 1

2
+ c3E(τ) + c3D(τ),

and the asserted estimate for ∂zϕ follows from (1.1.18) which implies that c1 is estimated by

C(‖η‖Cγ )
∥∥|Dx|

1
2 ψ
∥∥
Cγ− 1

2
.

The estimate for ∂xϕ− ∂zϕ∂xη follows from similar arguments, the decomposition

∂xϕ− ∂zϕ∂xη = ∂xW + T∂x∂zϕη − T∂xη∂zϕ−RB(∂zϕ, ∂xη),

and the classical estimates for paraproducts (see (A.1.17) in the appendix).

We now apply Lemma 2.3.2 to infer the tame estimates (2.3.2) and (2.3.1). Clearly, since

B(η)ψ = ∂zϕ|z=0, V (η)ψ = (∂xϕ− ∂zϕ∂xη)|z=0,

Lemma 2.3.2 implies that ‖B(η)ψ‖Hµ−1/2 and ‖V (η)ψ‖Hµ−1/2 are bounded by

C (‖η‖Cγ )
{∥∥|Dx|

1
2 ψ
∥∥
Cγ− 1

2
‖η‖Hs + ‖∂xω‖

Hµ− 1
2
+ E(−1) +D(−1)

}
.

It follows from (1.1.14) that

E(−1) +D(−1) ≤ C(‖η‖C2)
∥∥|Dx|

1
2 ψ
∥∥
L2 .

Therefore, to complete the proof of (2.3.1), it remains only to observe that, since ψ = ω +

TB(η)ψη,

(2.3.5)

∥∥|Dx|
1
2 ψ
∥∥
L2 .

∥∥|Dx|
1
2 ω
∥∥
L2 +

∥∥TB(η)ψη
∥∥
H

1
2

.
∥∥|Dx|

1
2 ω
∥∥
L2 + ‖B(η)ψ‖L∞ ‖η‖

H
1
2

.
∥∥|Dx|

1
2 ω
∥∥
Hµ + ‖B(η)ψ‖L∞ ‖η‖Hs ,
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where ‖B(η)ψ‖L∞ is estimated by means of (2.0.4).

Now, by using the estimate (2.3.1), the usual tame estimate for products (see (A.1.18)), (2.0.4)

and the identity

G(η)ψ = B(η)ψ − (V (η)ψ)∂xη,

we then obtain

(2.3.6) ‖G(η)ψ‖Hµ−1 ≤ C (‖η‖Cγ )
{∥∥|Dx|

1
2 ψ
∥∥
Cγ− 1

2
‖η‖Hs +

∥∥|Dx|
1
2 ω
∥∥
Hµ− 1

2

}
.

Now since µ ≤ s, by definition of ω = ψ − TB(η)ψη and (2.0.4), we have

(2.3.7)
∥∥|Dx|

1
2 ω
∥∥
Hµ− 1

2
≤
∥∥|Dx|

1
2 ψ
∥∥
Hµ− 1

2
+ C (‖η‖Cγ )

∥∥|Dx|
1
2 ψ
∥∥
Cγ− 1

2
‖η‖Hs

and hence (2.3.2) follows from (2.3.6). This completes the proof of Proposition 2.3.1.

2.4 Paralinearization of the Dirichlet-Neumann operator

We here study the remainder term in the paralinearization formula

F (η)ψ = G(η)ψ −
{
|Dx|ω − ∂x

(
TV (η)ψη

)}
.

We prove an extended version of (2.1.4) where we add two extra parameters µ, σ.

Proposition 2.4.1. Let (s, µ, γ) ∈ R3 be such that

s − 1

2
> γ > 3, 1 ≤ µ ≤ s, γ 6∈ 1

2
N.

Assume that (η, ψ) is in the set Eγ defined after the statement of Proposition 1.1.6 and that

moreover (η, ψ) ∈ Hs × Ḣ
1
2 is such that ω = ψ − TB(η)ψη is in Ḣ

1
2
,µ− 1

2 . Then, for any σ <

µ+ γ − 3, F (η)ψ ∈ Hσ(R) and

(2.4.1) ‖F (η)ψ‖Hσ ≤ C
(
‖η‖Cγ

) {∥∥|Dx|
1
2 ψ
∥∥
Cγ− 1

2
‖η‖Hs + ‖η‖Cγ

∥∥|Dx|
1
2 ω
∥∥
Hµ− 1

2

}
,

where C is a non decreasing function depending only on (s, µ, γ, σ).

Remark 2.4.2. For µ ≤ s, it follows from (2.3.7) and (2.4.1) that

(2.4.2) ‖F (η)ψ‖Hσ ≤ C
(
‖η‖Cγ

) {∥∥|Dx|
1
2 ψ
∥∥
Cγ− 1

2
‖η‖Hs + ‖η‖Cγ

∥∥|Dx|
1
2 ψ
∥∥
Hµ− 1

2

}
.

Proof. We use the notations and results of §2.2.
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Lemma 2.4.3. There holds

(2.4.3) sup
z∈[τ,0]

‖∇x,zW (z)‖Hµ−1 ≤ C
(
‖η‖Cγ

){∥∥|Dx|
1
2 ψ
∥∥
Cγ− 1

2
‖η‖Hs +

∥∥|Dx|
1
2 ω
∥∥
Hµ− 1

2

}
,

and, for any σ < µ+ γ − 3 and any τ ∈ [−2, 0], we have

(2.4.4) sup
z∈[τ,0]

‖∂zW − P+W‖Hσ

≤ C
(
‖η‖Cγ

) {∥∥|Dx|
1
2 ψ
∥∥
Cγ− 1

2
‖η‖Hs + ‖η‖Cγ

∥∥|Dx|
1
2 ω
∥∥
Hµ− 1

2

}
.

Proof. The first (resp. second) estimate follows from (2.3.4)) (resp. (2.2.29)), the Hölder

estimate (1.1.18) (to bound the constant c1 which appears in (2.3.4) and (2.2.29)), the Sobolev

estimate (1.1.14) (to bound E(τ) and D(τ)) and the estimate (2.3.5) for
∥∥|Dx|

1
2 ψ
∥∥
L2 .

Given Lemma 2.3.2 and Lemma 2.4.3, the proof of Proposition 2.4.1 now follows from a close

inspection of the proof of Theorem 1.5 in [6]. Recall that, by definition,

G(η)ψ =
[
(1 + (∂xη)

2)∂zϕ− ∂xη∂xϕ
]

z=0
.

Write

(2.4.5) (1 + (∂xη)
2)∂zϕ− ∂xη∂xϕ

= ∂zϕ+ T(∂xη)2∂zϕ+ 2T∂zϕ∂xη∂xη − (T∂xη∂xϕ+ T∂xϕ∂xη) +R1,

where

R1 = RB(∂zϕ, (∂xη)
2)−RB(∂xϕ, ∂xη)

+ T∂zϕRB(∂xη, ∂xη) + 2
(
T∂zϕT∂xη − T∂zϕ∂xη

)
∂xη

is estimated in L∞
z (Hσ) by means of the paraproduct rules (A.1.14), (A.1.17) and (1.1.18).

We next replace ∂zϕ by ∂z(W + T∂zϕη) and ∂xϕ by ∂x(W + T∂zϕη), to obtain,

(1 + (∂xη)
2)∂zϕ− ∂xη∂xϕ = ∂zW + T(∂xη)2∂zW − T∂xη∂xW

+ T(1+(∂xη)2)∂2zϕ
η − T(∂xη)∂x∂zϕη + T(∂xη)∂zϕ∂xη − T∂xϕ∂xη

+R1 +R2

with

R2 = −(T(∂xη)2T∂2zϕ + T(∂xη)2∂2zϕ)η + (T∂xηT∂z∂xϕ − T(∂xη)∂x∂zϕ)η

+ (T∂zϕ∂xη − T∂xηT∂zϕ)∂xη.

Again, it follows from the paraproduct rules (A.1.14) and (A.1.17) that the L∞
z (Hσ)-norm

of R2 is estimated by the right-hand side of (2.4.1).
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Setting this into the right hand side of (2.4.5) we obtain

(1 + (∂xη)
2)∂zϕ− ∂xη∂xϕ

= ∂zW + T(∂xη)2∂zW − T∂xη∂xW

+ T∂zϕ∂xη∂xη − T∂xϕ∂xη

+ T(1+(∂xη)2)∂2zϕ
η − T(∂xη)∂x∂zϕη +R1 +R2,

Now it follows from the elliptic equation satisfied by ϕ that

(1 + (∂xη)
2)∂2zϕ− (∂xη)∂x∂zϕ = −∂2xϕ+ (∂xη)∂x∂zϕ+ ∂zϕ∂

2
xη

= −∂x
(
∂xϕ− (∂xη)∂zϕ

)
.

Therefore

(1 + (∂xη)
2)∂zϕ− ∂xη∂xϕ = ∂zW + T(∂xη)2∂zW − T∂xη∂xW

− ∂x

(
T∂xϕ−∂zϕ∂xηη

)
+R1 +R2.

Furthermore, (2.4.4) implies that

∂zW + T(∂xη)2∂zW − T∂xη∂xW = P+W + T(∂xη)2P+W − T∂xη∂xW + r1

where the L∞
z (Hσ)-norm of r1 is estimated by the right-hand side of (2.4.1). Now write

P+W + T(∂xη)2P+W − T∂xη∂xW = (|Dx|+ Tλ−|ξ|)W + r2,

with

λ = (1 + (∂xη)
2)P − i∂xηξ,

(P is given by (2.2.14)) and where

r2 =
(
T(∂xη)2TP − T(∂xη)2P

)
W + T(∂xη)2

(
|Dx| − T|ξ|

)
W.

It follows from (2.4.3) and (A.1.11) that the L∞
z (Hσ)-norm of r2 is estimated by the right-hand

side of (2.4.1).

Now, since λ = |ξ|, by (2.2.14), and since ∂xϕ−∂zϕ∂xη|z=0 = V and W |z=0 = ω, we conclude

that

(1 + (∂xη)
2)∂zϕ− ∂xη∂xϕ = |Dx|ω − ∂x(TV η) +

[
R1 +R2 + r1 + r2

]
z=0

.

This concludes the proof of Proposition 2.4.1.

2.5 Linearization of the Dirichlet-Neumann operator

In this section, we prove the estimates (2.1.5). For later purposes, it will be convenient to

prove the following sharp estimates which depend on an additional parameter µ.
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Proposition 2.5.1. Let (s, µ, γ) ∈ R3 be such that

s − 1

2
> γ > 3,

3

2
≤ µ ≤ s, γ 6∈ 1

2
N.

Consider (η, ψ) ∈ Eγ ∩
(
Hs+ 1

2 (R) × Ḣ
1
2
,µ− 1

2 (R)
)
set ω = ψ − TB(η)ψη. There exists a non

decreasing function C : R+ → R+ depending only on (s, γ, µ) such that

‖G(η)ψ − |Dx|ψ‖Hµ−1 ≤ C
∥∥|Dx|

1
2 ψ
∥∥
Cγ− 1

2
‖η‖Hs + C ‖η‖Cγ

∥∥|Dx|
1
2 ψ
∥∥
Hµ− 3

2
,(2.5.1)

‖B(η)ψ − |Dx|ω‖
Hµ− 1

2
≤ C

∥∥|Dx|
1
2 ψ
∥∥
Cγ− 1

2
‖η‖Hs + C ‖η‖Cγ

∥∥|Dx|
1
2 ω
∥∥
Hµ ,(2.5.2)

‖V (η)ψ − ∂xω‖
Hµ− 1

2
≤ C

∥∥|Dx|
1
2 ψ
∥∥
Cγ− 1

2
‖η‖Hs + C ‖η‖Cγ

∥∥|Dx|
1
2 ω
∥∥
Hµ ,(2.5.3)

where C = C
(
‖η‖Cγ

)
.

Proof. Abbreviate B = B(η)ψ and V = V (η)ψ. In view of the definition (2.1.3) of F (η), we

can rewrite G(η)ψ − |Dx|ψ as

G(η)ψ − |Dx|ψ = − |Dx|TBη − ∂x(TV η) + F (η)ψ.

Using (A.1.12), it follows that

‖G(η)ψ − |Dx|ψ‖Hµ−1 .
(
‖B‖L∞ + ‖V ‖L∞

)
‖η‖Hµ + ‖F (η)ψ‖Hµ−1 .

Since γ − 3 > 0, the estimate (2.4.2) (with (σ, µ) replaced with (µ − 1, µ − 1)) for F (η)ψ

implies that

(2.5.4) ‖F (η)ψ‖Hµ−1 ≤ C
∥∥|Dx|

1
2 ψ
∥∥
Cγ− 1

2
‖η‖Hs + C ‖η‖Cγ

∥∥|Dx|
1
2 ψ
∥∥
Hµ− 3

2
.

The estimate (2.5.1) then follows from the L∞-estimate of (B,V ) (see (2.0.4)).

Since B − V ∂xη = G(η)ψ (c.f. (2.0.3)) we have B − V ∂xη = |Dx|ω − ∂x(TV η) + F (η)ψ, so

B − |Dx|ω = V ∂xη − ∂x(TV η) + F (η)ψ.

Since

V ∂xη − ∂x(TV η) = T∂xηV +RB(V, ∂xη)− T∂xV η,

we obtain

B = |Dx|ω + T∂xηV − T∂xV η +RB(V, ∂xη) + F (η)ψ.

The estimate (2.5.2) follows from the tame estimate for V (see (2.3.1)), the estimate (2.4.1)

for F (η)ψ and the classical estimates for paraproducts (see (A.1.12) and (A.1.17)) together

with (2.0.4).

Similarly, with regards to V = ∂xψ −B∂xη, replace ψ by ω + TBη to obtain

V = ∂xψ −B∂xη = ∂xω + ∂x(TBη)−B∂xη

= ∂xω + T∂xBη − T∂xηB −RB(B, ∂xη).

Consequently, the estimate (2.5.3) follows from (2.3.1), (A.1.12) and (A.1.17).
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Remark 2.5.2. Assume that 3/2 ≤ µ ≤ s − 1/2 instead of 3/2 ≤ µ ≤ s. Then, since ψ =

ω + TB(η)ψη, it follows from (A.1.12) and (2.0.4) that

(2.5.5)
‖|Dx|ψ − |Dx|ω‖

Hµ− 1
2
=
∥∥|Dx|TB(η)ψη

∥∥
Hµ− 1

2
. ‖B(η)ψ‖L∞ ‖η‖Hs

≤ C (‖η‖Cγ )
∥∥|Dx|

1
2 ψ
∥∥
Cγ− 1

2
‖η‖Hs .

Similarly
∥∥|Dx|

1
2 ψ− |Dx|

1
2 ω
∥∥
Hµ and ‖∂xψ − ∂xω‖Hµ−1/2 are bounded by the right-hand side

of (2.5.5). The estimates (2.5.2)–(2.5.3) then imply that

(2.5.6) ‖B(η)ψ − |Dx|ψ‖
Hµ− 1

2
+ ‖V (η)ψ − ∂xψ‖

Hµ− 1
2

≤ C (‖η‖Cγ )
{∥∥|Dx|

1
2 ψ
∥∥
Cγ− 1

2
‖η‖Hs + ‖η‖Cγ

∥∥|Dx|
1
2 ψ
∥∥
Hµ

}
.

The previous estimates means that B(η)− |Dx| and V (η) − ∂x are operator of order 1: they

map Hµ+ 1
2 (R) to Hµ− 1

2 (R). In sharp contrast, the estimate (2.5.1) means that G(η) − |Dx|
is an operator of order 0. In fact even more is true: G(η) − |Dx| is a smoothing operator.

Indeed, the proof of (2.5.1) shows that, if we further assume that µ > s+2− γ and if we use

(2.4.1) instead of (2.5.4), then we obtain that ‖G(η)ψ − |Dx|ψ‖Hs−1 is bounded by

C (‖η‖Cγ )
{∥∥|Dx|

1
2 ψ
∥∥
Cγ− 1

2
‖η‖Hs + ‖η‖Cγ

∥∥|Dx|
1
2 ψ
∥∥
Hµ

}
.

2.6 Taylor expansions

We here study the Taylor expansions of the Dirichlet-Neumann operator G(η) with respect

to the free surface elevation η. Craig, Schanz and Sulem (see [19] and [46, Chapter 11]) have

shown that one can expand the Dirichlet-Neumann operator as a sum of pseudo-differential

operators and gave precise estimates for the remainders. We present now another demon-

stration of this property which gives tame estimates. Tame estimates are proved in [19] and

[8, 29]. Our approach depends on the paralinearization of the Dirichlet-Neumann operator

with tame estimates. Furthermore, the scheme of proof allows us to prove similar expan-

sions for the operators B(η), V (η). The key result of this section is the estimate (2.6.3)

for F (η)ψ − F(≤2)(η)ψ.

Denote by A(η) either G(η) or one of the operators B(η), V (η) and F (η). In this section, we

compare A(η) to A(≤2)(η) where

G(≤2)(η)ψ := |Dx|ψ − |Dx| (η |Dx|ψ)− ∂x(η∂xψ),

B(≤2)(η)ψ := G(≤2)(η)ψ + ∂xη∂xψ,

V(≤2)(η)ψ := ∂xψ − ∂xη |Dx|ψ,
F(≤2)(η)ψ = − |Dx| (η |Dx|ψ) + |Dx| (T|Dx|ψη)− ∂x(η∂xψ) + ∂x(T∂xψη).(2.6.1)
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Remark. When we later compute the cubic resonances, we will be forced to study cubic ap-

proximations to the Dirichlet-Neumann operator. The proof of the next proposition contains

also the analysis of the cubic terms.

Proposition 2.6.1. Let (s, γ, µ) ∈ R3 be such that

s − 1/2 > γ ≥ 14, s ≥ µ ≥ 5, γ 6∈ 1

2
N,

and consider (η, ψ) ∈ Hs+ 1
2 (R) × (Cγ(R) ∩ Ḣ

1
2
,µ(R)) such that the condition (1.1.17) is

satisfied. Then the following estimates hold.

There exists a non decreasing function C : R → R such that, for any A ∈ {G,B, V },

(2.6.2)
∥∥A(η)ψ −A(≤2)(η)ψ

∥∥
Hµ−1

≤ C(‖η‖Cγ ) ‖η‖Cγ

{∥∥|Dx|
1
2 ψ
∥∥
Cγ− 1

2
‖η‖Hs + ‖η‖Cγ

∥∥|Dx|
1
2 ψ
∥∥
Hµ

}
,

and

(2.6.3)
∥∥F (η)ψ − F(≤2)(η)ψ

∥∥
Hµ+1

≤ C(‖η‖Cγ ) ‖η‖Cγ

{∥∥|Dx|
1
2 ψ
∥∥
Cγ− 1

2
‖η‖Hs + ‖η‖Cγ

∥∥|Dx|
1
2 ψ
∥∥
Hµ

}
·

Remark 2.6.2. The estimates (2.1.7) and (2.6.3) applied with µ = s − 1/2 imply that

(2.6.4)
∥∥F (η)ψ − F(≤2)(η)ψ

∥∥
Hs

≤ C(‖η‖Cγ ) ‖η‖Cγ

{∥∥|Dx|
1
2 ψ
∥∥
Cγ− 1

2
‖η‖Hs + ‖η‖Cγ

∥∥|Dx|
1
2 ω
∥∥
Hs

}
,

where recall that ω(η)ψ = ψ − TB(η)ψη.

Proof. We shall need to consider the cubic terms in the Taylor expansions of G(η), B(η)

and V (η). Set

G(≤3)(η)ψ := G(≤2)(η)ψ + |Dx| (η(|Dx| (η |Dx|ψ))) +
1

2
|Dx| (η2∂2xψ)

+
1

2
∂2x(η

2 |Dx|ψ),

B(≤3)(η)ψ := G(≤3)(η)ψ + ∂xη∂xψ − (∂xη)
2 |Dx|ψ,

V(≤3)(η)ψ := ∂xψ − ∂xηB(≤2)(η)ψ.

For k ∈ {1, 2, 3}, set

Tk := ‖η‖k−1
Cγ

{∥∥|Dx|
1
2 ψ
∥∥
Cγ− 1

2
‖η‖Hs + ‖η‖Cγ

∥∥|Dx|
1
2 ψ
∥∥
Hµ

}
.
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The proof is in four steps. In the first two steps we prove the weaker estimates:

∥∥A(η)ψ −A(≤k)(η)ψ
∥∥
Hµ−k−1 ≤ C(‖η‖Cγ )Tk,

for A ∈ {G,B, V } and k ∈ {2, 3}. (For k = 2, comparing this with (2.6.2) we see a loss

of 2 derivatives.) Then, in the second step, we prove (2.6.3). This is the key step. Indeed,

once (2.6.3) is granted, we show in the fourth step that one can obtain the optimal estimates

stated in the above proposition for A(η)−A(≤2)(η) with A ∈ {G,B, V }.

Step 1: First estimates for G(η)

In this step we prove that

‖G(η)ψ − |Dx|ψ‖Hµ−2 ≤ C(‖η‖Cγ )T1,(2.6.5)
∥∥G(η)ψ −G(≤2)(η)ψ

∥∥
Hµ−3 ≤ C(‖η‖Cγ )T2,(2.6.6)

∥∥G(η)ψ −G(≤3)(η)ψ
∥∥
Hµ−4 ≤ C(‖η‖Cγ )T3.(2.6.7)

To do so, we use the property, proved by Lannes [32], that one has an explicit expression of

the derivative of G(η)ψ with respect to η. Introduce g : [0, 1] → Hµ−1(R) defined by g(λ) =

G(λη)ψ. Then

(2.6.8) g′(λ) = −G(λη)(ηb0(λ)) − ∂x(ηv0(λ)),

where b0(λ) := B(λη)ψ and v0(λ) = V (λη)ψ. Since

b0(λ) := B(λη)ψ =
g(λ) + λ∂xη∂xψ

1 + λ2(∂xη)2
, v0(λ) = ∂xψ − λb0(λ)∂xη,

it follows that b0 and v0 are C1 from [0, 1] to Hµ−2(R), with

b′0(λ) =
1

1 + λ2(∂xη)2

(
g′(λ) + ∂xη∂xψ − 2λ(∂xη)

2b0(λ)
)
,

v′0(λ) = −b0(λ)∂xη − λb′0(λ)∂xη.

These expressions show that g′(λ), b′0(λ), v0(λ) may be written as sums of expressions of the

form a2(λ, η, η
′)A2(λη)a1(λ, η, η

′)A1(λη) where a1, a2 are analytic functions of their argument

with a1(λ, 0, 0) = 0 and A1(η), A2(η) belong to {G(η), B(η), V (η), ∂x}. Moreover, in the case

of g′(λ), one may assume that a2 is constant and that A2(η) belongs to {G(η), ∂x}.

We may thus iterate this computation, which shows that g(λ) is Ck with values in Hµ−1−k,
and g(ℓ)(λ) is a sum of expressions of the form

(2.6.9) Aℓ+1(λη)

ℓ∏

ℓ′=1

aℓ′(λ, η, η
′)Aℓ′(λη)
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where Aℓ′(η) is in {G(η), B(η), V (η), ∂x}, ℓ′ ≤ ℓ, Aℓ+1(η) in {G(η), ∂x} and aℓ′ are analytic

functions vanishing at (η, η′) = (0, 0). To compute the first terms in the Taylor expansion of

g, we need to compute explicitly

g′′(λ) = −G(λη)
(
ηb1(λ))− ∂x(ηv1(λ)),

b1(λ) = b′0(λ)−B(λη)(ηb0(λ)),

v1(λ) = v′0(λ)− V (λη)(ηb0(λ)).

Since g(0) = |Dx|, B(0) = |Dx|, V (0) = ∂x, it follows from (2.6.8) and the above equalities

that

g′(0) = − |Dx| (η |Dx|ψ)− ∂x(η∂xψ),

and

g′′(0) = 2 |Dx| (η(|Dx| (η |Dx|ψ))) + |Dx| (η2∂2xψ) + ∂2x(η
2 |Dx|ψ).

If (1.1.17) is satisfied then (η, ψ) belongs to the set Eγ introduced after the statement of

Proposition 1.1.6. Using the Hölder estimates (2.0.4) we successively prove that, for k = 0, 1, 2,

we have (λη, ηbk(λ)) ∈ Eγ−k−1 and according to (2.6.9)

(2.6.10)
∥∥g(k+1)(λ)

∥∥
Cγ−k−2 ≤ C(‖η‖Cγ ) ‖η‖k+1

Cγ

∥∥|Dx|
1
2 ψ
∥∥
Cγ− 1

2
.

Using the tame estimate for product (A.1.18) and the tame estimates for G(η), B(η) and V (η)

(see (2.3.2), (2.0.4), and (2.3.1) applied with µ replaced with µ− 1/2 together with (2.3.7)),

we obtain ∥∥g(k)(λ)
∥∥
Hµ−k−1 ≤ C(‖η‖Cγ )Tk for k ∈ {1, 2, 3}.

The desired estimates (2.6.5)–(2.6.7) are then obtained by writing that, for n = 0, 1, 2,

(2.6.11) G(η)ψ = g(1) =

n∑

k=0

1

k!
g(k)(0) +

∫ 1

0

(λ− 1)n

n!
g(n+1)(λ) dλ.

This completes the proof of (2.6.6) and (2.6.7).

Also, by using (2.6.10) with k = 0, 1 and (2.6.11) with n = 0, 1 we have

‖G(η)ψ − |Dx|ψ‖Cγ−2 ≤ C(‖η‖Cγ ) ‖η‖Cγ

∥∥|Dx|
1
2 ψ
∥∥
Cγ− 1

2
,(2.6.12)

∥∥G(η)ψ −G(≤2)(η)ψ
∥∥
Cγ−3 ≤ C(‖η‖Cγ ) ‖η‖2Cγ

∥∥|Dx|
1
2 ψ
∥∥
Cγ− 1

2
.(2.6.13)

Notice that (2.6.12) (resp. (2.6.13)) holds for any γ > 4 (resp. γ > 5) with γ 6∈ 1
2N

Step 2: First estimates for B(η) and V (η)

In this step we prove that
∥∥B(η)ψ −B(≤2)(η)ψ

∥∥
Hµ−3 ≤ C(‖η‖Cγ )T2,(2.6.14)

∥∥B(η)ψ −B(≤3)(η)ψ
∥∥
Hµ−4 ≤ C(‖η‖Cγ )T3,(2.6.15)

∥∥V (η)ψ − V(≤2)(η)ψ
∥∥
Hµ−3 ≤ C(‖η‖Cγ )T2,(2.6.16)

∥∥V (η)ψ − V(≤3)(η)ψ
∥∥
Hµ−4 ≤ C(‖η‖Cγ )T3.(2.6.17)
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By definition of B(η)ψ we have

B(η)ψ =
1

1 + (∂xη)2
(
G(η)ψ + ∂xη∂xψ

)

= G(η)ψ + ∂xη∂xψ − (∂xη)
2B(η)ψ.

Therefore

(2.6.18) B(η)ψ −B(≤2)(η)ψ = G(η)ψ −G(≤2)(η)ψ − (∂xη)
2B(η)ψ.

The estimate (2.6.14) for B(η)ψ − B(≤2)(η)ψ then easily follows from the previous estimate

for G(η)ψ−G(≤2)(η)ψ (see (2.6.6)); indeed the tame estimate for products (see (A.1.18)) and

the estimates (2.0.4) and (2.3.1) for B(η)ψ imply that

(2.6.19)

∥∥(∂xη)2B(η)ψ
∥∥
Hµ−1

.
∥∥(∂xη)2

∥∥
L∞ ‖B(η)ψ‖Hµ−1 + ‖B(η)ψ‖L∞ ‖∂xη‖L∞ ‖∂xη‖Hµ−1

≤ C(‖η‖Cγ )
{
‖η‖2Cγ

∥∥|Dx|
1
2 ω
∥∥
Hµ− 1

2
+ ‖η‖Cγ

∥∥|Dx|
1
2 ψ
∥∥
Cγ− 1

2
‖η‖Hs

}

≤ C(‖η‖Cγ )T2.

where we used (2.3.7) in the last inequality. Consequently, (2.6.14) follows from (2.6.6).

To prove (2.6.15) we begin by noting that, directly from the definition of B(η)ψ, the estimate

(2.6.5) implies that

(2.6.20) ‖B(η)ψ − |Dx|ψ‖Hµ−2 ≤ C(‖η‖Cγ )T1,

Similarly, the estimate (2.6.12) implies that

(2.6.21) ‖B(η)ψ − |Dx|ψ‖Cγ−2 ≤ C(‖η‖Cγ ) ‖η‖Cγ

∥∥|Dx|
1
2 ψ
∥∥
Cγ− 1

2
.

By definition (B(η) − B(≤3)(η))ψ = (G(η) − G(≤3)(η))ψ − (∂xη)
2[B(η) − |Dx|]ψ. The first

term is estimated in (2.6.7) by the right hand side of (2.6.15). The second one is bounded

using (2.6.20), (2.6.21) and the tame estimate (A.1.18). This proves (2.6.15).

Since V (η)ψ = ∂xψ− (B(η)ψ)∂xη, the estimates (2.6.16) and (2.6.17) are consequences of the

tame product rule in Sobolev spaces (see (A.1.18)) and the estimates (2.6.14), (2.6.15).

For later references, we also record the following estimates

‖V (η)ψ − ∂xψ‖Cγ−2 ≤ C(‖η‖Cγ ) ‖η‖Cγ

∥∥|Dx|
1
2 ψ
∥∥
Cγ− 1

2
,(2.6.22)

∥∥B(η)ψ −B(≤2)(η)ψ
∥∥
Cγ−3 ≤ C(‖η‖Cγ ) ‖η‖2Cγ

∥∥|Dx|
1
2 ψ
∥∥
Cγ− 1

2
,(2.6.23)

∥∥V (η)ψ − V(≤2)(η)ψ
∥∥
Cγ−3 ≤ C(‖η‖Cγ ) ‖η‖2Cγ

∥∥|Dx|
1
2 ψ
∥∥
Cγ− 1

2
.(2.6.24)
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The estimates (2.6.22) and (2.6.24) follow from the definition of V (η)ψ = ∂xψ − (B(η)ψ)∂xη

and (2.6.21). The estimate (2.6.23) follows from (2.6.18) and (2.6.13).

Step 3: Key estimate

In this step we prove that

(2.6.25)
∥∥F (η)ψ − F(≤2)(η)ψ

∥∥
Hµ+1 ≤ C (‖η‖Cγ )T2.

The proof is based on an interpolation inequality which requires to take into account the

cubic terms. Introduce F(≤3)(η) defined by

F(≤3)(η)ψ = G(≤3)(η)ψ −
{
|Dx| (ψ − TB(≤2)(η)ψη)− ∂x(TV(≤2)(η)ψη)

}
.

Lemma 2.6.3. There exist a constant K > 0 such that for all (η, ψ) ∈ Hs(R)× Ḣ
1
2
,µ− 1

2 (R),

∥∥F(≤2)(η)ψ
∥∥
Hµ+γ−2 ≤ K ‖η‖Cγ ‖∂xψ‖Hµ−1 ,(2.6.26)

∥∥F(≤3)(η)ψ − F(≤2)(η)ψ
∥∥
Hµ+γ−3 ≤ KT2.(2.6.27)

Remark. It follows from (2.6.26), (2.6.27) and the triangle inequality that

(2.6.28)
∥∥F(≤3)(η)ψ

∥∥
Hµ+γ−3 ≤ C(‖η‖Cγ )T1.

Proof. Notice that one can write F(≤2)(η)ψ under the form

F(≤2)(η)ψ = − |Dx| (η |Dx|ψ) + |Dx| (T|Dx|ψη)− ∂x(η∂xψ) + ∂x(T∂xψη)

= − |Dx| (Tη |Dx|ψ)− ∂x(Tη∂xψ)

− |Dx|RB(η, |Dx|ψ)− ∂xRB(η, ∂xψ).

Now the identity (A.1.22) in Lemma A.1.11 of Appendix A.1 implies that

(2.6.29) |Dx|Tη |Dx|+ ∂xTη∂x = 0.

Thus

(2.6.30) F(≤2)(η)ψ = − |Dx|RB(η, |Dx|ψ)− ∂xRB(η, ∂xψ),

and the estimate (2.6.26) thus follows from (A.1.17).

It remains to prove (2.6.27). Below, for A ∈ {G,B, V, F}, we set A(k) := A(≤k)(η)ψ −
A(≤k−1)(η)ψ. We begin by noticing that

G(3) = − |Dx| (ηB(2))− ∂x(ηV(2)) +D,

D :=
1

2
|Dx| (η2 |Dx|2 ψ) +

1

2
∂x(η

2∂x |Dx|ψ),
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which can be checked by direct computations from the definitions of B(2), V(2) and G(3). Thus,

(2.6.31) F(3) = − |Dx|TηB(2) − ∂xTηV(2) +D +R1,

where R1 := − |Dx|RB(η,B(2))− ∂xRB(η, V(2)) is estimated by means of (A.1.17).

Now observe that

B(2) = G(2) + ∂xη∂xψ = F(2) − |Dx|T|Dx|ψη − ∂xT∂xψη + ∂xη∂xψ.

Setting this and V(2) = −∂xη |Dx|ψ into (2.6.31) yields

F(3) = − |Dx|TηF(2) +D +R1

+ |Dx|Tη |Dx|T|Dx|ψη + |Dx|Tη∂xT∂xψη
− |Dx|Tη∂xη∂xψ + ∂xTη∂xη |Dx|ψ.

Since D = −1
2(G(≤2)(η

2) |Dx|ψ − |Dx|2 ψ) we have

D =
1

2
|Dx|T|Dx|2ψη

2 +
1

2
∂xT∂x|Dx|ψη

2 − 1

2
F(≤2)(η

2) |Dx|ψ.

The cancellation (2.6.29) implies that

|Dx|Tη |Dx|T|Dx|ψη = −∂xTη∂xT|Dx|ψη.

Using this identity and replacing η2 by 2Tηη +RB(η, η), we obtain after some simplifications

that

(2.6.32)

F(3) = − |Dx|TηF(≤2)(η)ψ − 1

2
F(≤2)(η

2) |Dx|ψ

− |Dx|TηT∂xη∂xψ + ∂xTηT∂xη |Dx|ψ
+ |Dx|TηT∂2xψη + |Dx|T|Dx|2ψTηη

+R1 +R2,

with

R2 =
1

2
|Dx|T|Dx|2ψRB(η, η) +

1

2
∂xT∂x|Dx|ψRB(η, η)

+ ∂xTηRB(∂xη, |Dx|ψ)− |Dx|TηRB(∂xη, ∂xψ).

The remainder R2 is estimated by means of (A.1.17). The first two terms in the right-hand

side of (2.6.32) are estimated by means of the estimate (2.6.26) for F(≤2)(η). The fifth and

the sixth terms are estimated by means of symbolic calculus (using the estimate (A.1.14) and

|Dx|2 = −∂2x). To conclude the proof it remains only to estimate the sum of the third and

fourth term, denoted by Σ. Modulo a term which is estimated by means of (A.1.7), Σ = Σ′

with

Σ′ = − |Dx|Tη∂xη∂xψ + ∂xTη∂xη |Dx|ψ.
Now the cancellation (A.1.23) in Lemma A.1.11 implies that Σ′ = 0. This concludes the

proof.
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It follows from (2.6.7), (2.6.23)-(2.6.24) and (A.1.12) that F(≥4)(η) := F (η)−F(≤3)(η) satisfies

(2.6.33)
∥∥F(≥4)(η)ψ

∥∥
Hµ−4 ≤ C(‖η‖Cγ )T3.

On the other hand, by using the triangle inequality and the estimates (2.4.2) for F (η)ψ and

(2.6.28) for F(≤3)(η)ψ, we have

(2.6.34)
∥∥F(≥4)ψ

∥∥
Hµ+6 ≤ ‖F (η)ψ‖Hµ+6 +

∥∥F(≤3)(η)ψ
∥∥
Hµ+6 ≤ C(‖η‖Cγ )T1,

where, as already done, we used (2.3.7) and the fact that µ + γ − 3 > µ + 7 to apply (2.4.1)

with (µ, s) replaced by (µ− 1/2, s − 1/2).

We complete the proof by means of an interpolation inequality. Namely, write

∥∥F(≥4)(η)ψ
∥∥
Hµ+1 ≤

∥∥F(≥4)(η)ψ
∥∥1/2
Hµ−4

∥∥F(≥4)(η)ψ
∥∥1/2
Hµ+6 ,

to deduce, from (2.6.33) and (2.6.34),

∥∥F(≥4)(η)ψ
∥∥
Hµ+1 ≤ C(‖η‖Cγ )T

1/2
1 T

1/2
3 = C(‖η‖Cγ )T2.

Then write

F (η)ψ − F(≤2)(η) = F(≥4)(η)ψ + F(≤3)(η)ψ − F(≤2)(η)ψ,

and use (2.6.27) to complete the proof of (2.6.25).

Step 4: Optimal estimates

Now we return to the estimate of G(η)−G(≤2)(η). By definition (see (2.6.1)), we have

F (η)ψ = G(η)ψ − |Dx| (ψ − TB(η)ψη) + ∂x(TV η),

F(≤2)(η)ψ = G(≤2)(η)ψ − |Dx|ψ + |Dx|T|Dx|ψη + ∂x(T∂xψη).

Subtracting and using (2.6.25), (2.6.21) and (2.6.22), we find that G(η) − G(≤2)(η) can be

written as the sum of two differences which are well-estimated in Hs−1(R) ∪ Hµ+1(R) ⊂
Hµ−1(R). This proves (2.6.2) for A = G.

Now, using (2.6.19) and the previous control of G(η) − G(≤2)(η) in Hµ−1(R), an inspection

of the second step yields the desired estimate for B(η)− B(≤2)(η) in H
µ−1(R). This in turn

implies the estimate for V (η)−V(≤2)(η) in H
µ−1(R). This completes the proof of (2.6.2) and

hence the proof of the proposition.

2.7 Smooth domains

In this section, we estimate G(η)ψ, B(η)ψ and V (η)ψ in the case where ψ ∈ Hµ(R) and η ∈
Cγ(R) with γ larger than µ. We study the action of these operators and prove approximation

results.
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The main new point is the following approximation result for B(η)ψ:

(2.7.1) ‖B(η)ψ − P+(η)ψ‖Hγ−3 ≤ C (‖η‖Cγ ) ‖η‖Cγ

∥∥|Dx|
1
2 ψ
∥∥
L2

where P+(η) is given by

(2.7.2) P+(η) = |Dx|+ TP−|ξ| with P =
1

1 + (∂xη)2
(i∂xηξ + |ξ|).

The key point is that the right-hand side of (2.7.1) is at least quadratic in (η, |Dx|
1
2 ψ) and

involves only the L2-norm of |Dx|
1
2 ψ, while one bounds B(η)ψ−P+(η)ψ in Hγ−3(R) where γ

might be arbitrarily large. This is not a linearization result for B(η)ψ because P+(η) 6= |Dx|
(except for η = 0). However, (2.7.1) will allow us to prove a sharp linearization estimate for

G(η) as well as to bound G(η)ψ −G(≤2)(η)ψ.

Proposition 2.7.1. Let (γ, µ) ∈ R3 be such that

γ ≥ 3 +
1

2
,

1

2
≤ µ ≤ γ − 2, γ 6∈ 1

2
N.

(i) Let η ∈ Cγ(R) and ψ ∈ Ḣ
1
2
,µ− 1

2 (R) with the assumption that ‖η‖Cγ is small enough.

Then G(η)ψ, B(η)ψ and V (η)ψ belong to Hµ−1(R). Moreover, there exists a non decreasing

function C : R+ → R+ depending only on (γ, µ) such that:

(2.7.3) ‖G(η)ψ‖Hµ−1 + ‖B(η)ψ‖Hµ−1 + ‖V (η)ψ‖Hµ−1 ≤ C (‖η‖Cγ )
∥∥|Dx|

1
2 ψ
∥∥
Hµ− 1

2
.

(ii) Let η ∈ Cγ(R) and ψ ∈ Ḣ
1
2 (R) with the assumption that ‖η‖Cγ is small enough. Let

P+(η) be as given by (2.7.2). Then G(η)ψ − |Dx|ψ and B(η)ψ−P+(η)ψ belong to Hγ−3(R).

Moreover, there exists a non decreasing function C : R+ → R+ depending only on γ such that:

(2.7.4)
‖G(η)ψ − |Dx|ψ‖Hγ−3 ≤ C (‖η‖Cγ ) ‖η‖Cγ

∥∥|Dx|
1
2 ψ
∥∥
L2 ,

‖B(η)ψ − P+(η)ψ‖Hγ−3 ≤ C (‖η‖Cγ ) ‖η‖Cγ

∥∥|Dx|
1
2 ψ
∥∥
L2 .

Remark 2.7.2. (i) As already mentioned in Remark 2.5.2, the estimate (2.7.4) means that

G(η) − |Dx| is a smoothing operator.

(ii) With the assumptions and notations of statement (ii), notice that (2.7.4) implies that

(2.7.5) ‖B(η)ψ − |Dx|ψ‖Hµ−1 ≤ C (‖η‖Cγ ) ‖η‖Cγ

∥∥|Dx|
1
2 ψ
∥∥
Hµ− 1

2
.

Indeed, it follows from (A.1.10)that

‖P+(η)ψ − |Dx|ψ‖Hµ−1 ≤ C
(
‖η‖Cγ

)
‖η‖Cγ

∥∥|Dx|
1
2 ψ
∥∥
Hµ− 1

2
.
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Proof. Notice that statement (i) is a corollary of statement (ii). This is clear for the regularity

results and the estimates for G(η)ψ and B(η)ψ, using the triangle inequality and (2.7.5). For

V (η)ψ, this follows from the definition V (η)ψ = ∂xψ − (∂xη)B(η)ψ and the product rule

(A.1.21) (applied with ρ′ = µ+ 1 > |µ− 1| = ρ) which yields

‖(∂xη)B(η)ψ‖Hµ−1 . ‖∂xη‖Cµ+1 ‖B(η)ψ‖Hµ−1 ≤ C (‖η‖Cγ ) ‖∂xη‖Cγ−1

∥∥|Dx|
1
2 ψ
∥∥
Hµ− 1

2
,

where we used the estimate (2.7.3) for B(η)ψ and the assumption γ ≥ µ− 2.

To prove statement (ii) we use the strategy used previously to study G(η)ψ. Recall that

(2.7.6)

{
G(η)ψ = (1 + (∂xη)

2)∂zϕ− ∂xη∂xϕ

z=0

,

B(η)ψ = ∂zϕ|z=0,

where ϕ = ϕ(x, z) solves the Dirichlet problem:

∂2zϕ+ a∂2xϕ+ b∂x∂zϕ− c∂zϕ = 0 in {z < 0},(2.7.7)

ϕ = ψ on {z = 0},(2.7.8)

where a = (1 + (∂xη)
2)−1, b = −2a∂xη, c = a∂2xη. It follows from Proposition 1.1.6 that,

if ‖η‖Cγ is small enough, then there exists indeed a unique solution ϕ to (2.7.7)–(2.7.8).

Moreover, ∇x,zϕ is continuous in z ∈]−∞, 0] with values in H−1/2(R) and there exists a non

decreasing function C : R+ → R+ independent of η, ψ such that

(2.7.9) sup
z∈]−∞,0]

∥∥∇x,z(ϕ(z) − ez|Dx|ψ)
∥∥
H−1/2 ≤ C(‖η‖Cγ )

∥∥η′
∥∥
L∞

∥∥|Dx|
1
2 ψ
∥∥
L2

and

(2.7.10) sup
z∈]−∞,0]

‖∇x,zϕ(z)‖H−1/2 ≤ C(‖η‖Cγ )
∥∥|Dx|

1
2 ψ
∥∥
L2 .

To prove statement (ii) we paralinearize (2.7.7) and factor out the paradifferential equation

thus obtained. The desired result then follows from a parabolic regularity result.

We begin with the paralinearization lemma.

Lemma 2.7.3. There exists a non decreasing function C : R+ → R+ such that

(2.7.11) ∂2zϕ+ (Id+ Ta−1)∂
2
xϕ+ Tb∂x∂zϕ− Tc∂zϕ = f0

with

(2.7.12) sup
z∈]−∞,0]

‖f0(z)‖Hγ−3 ≤ C(‖η‖Cγ ) ‖η‖Cγ

∥∥|Dx|
1
2 ψ
∥∥
L2 .
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Proof. We follow the beginning of the proof of Lemma 2.2.2. Write

(a− 1)∂2xϕ = Ta−1∂
2
xϕ+ T∂2xϕ(a− 1) +RB(a− 1, ∂2xϕ),

b∂x∂zϕ = Tb∂x∂zϕ+ T∂x∂zϕb+RB(b, ∂x∂zϕ),

c∂zϕ = Tc∂zϕ+ T∂zϕc+RB(c, ∂zϕ),

so that (2.7.11) holds with

f0 := −
(
T∂2xϕ(a− 1) +RB(a− 1, ∂2xϕ)

)
−
(
T∂x∂zϕb+RB(b, ∂x∂zϕ)

)

+ T∂zϕc+RB(c, ∂zϕ).

It follows from (A.1.20), (A.1.17) and the assumption γ − 3 > 0 that

∥∥T∂2xϕ(a− 1)
∥∥
Hγ−3 . ‖a− 1‖Cγ−1

∥∥∂2xϕ
∥∥
H−3/2 ,

‖T∂x∂zϕb‖Hγ−3 . ‖b‖Cγ−1 ‖∂x∂zϕ‖H−3/2 ,

‖T∂zϕc‖Hγ−3 . ‖c‖Cγ−2 ‖∂zϕ‖H−1/2 ,

and

∥∥RB(a− 1, ∂2xϕ)
∥∥
Hγ−3 . ‖a− 1‖Cγ−1

∥∥∂2xϕ
∥∥
H−3/2 ,

‖RB(b, ∂x∂zϕ)‖Hγ−3 . ‖b‖Cγ−1 ‖∂x∂zϕ‖H−3/2 ,

‖RB(c, ∂zϕ)‖Hγ−3 . ‖c‖Cγ−2 ‖∂zϕ‖H−1/2 .

Now use (2.7.10) and write

‖a− 1‖Cγ−1 + ‖b‖Cγ−1 + ‖c‖Cγ−1 ≤ C(‖η‖Cγ ) ‖η‖Cγ

to complete the proof.

Let P− = P−(η), P+ = P+(η) and R0 = R0(η) be as given by Lemma 2.2.6, so that (∂z −
P−)(∂z − P+)ϕ = f0 +R0ϕ, where R0 is a smoothing operator, satisfying

‖R0u‖Hr+γ−3 ≤ C(‖η‖Cγ ) ‖η‖Cγ ‖∂xu‖Hr−1 ,

for any r ∈ R and any u ∈ Hr(R). The key point consists in proving that one can express,

on z = 0, the trace of the normal derivative ∂zϕ in terms of the tangential derivative. To do

so, as above, we exploit the fact that ϕ = ∂zϕ− P+ϕ satisfies a parabolic equation.

Lemma 2.7.4. For any τ < 0, the function ϕ := (∂z − P+)ϕ is continuous in z ∈ [τ, 0] with

values in Hγ−3(R). Moreover, there exists a non decreasing function C such that

(2.7.13) sup
z∈[τ,0]

∥∥ϕ(z)
∥∥
Hγ−3 ≤ C

(
‖η‖Cγ

)
‖η‖Cγ

∥∥|Dx|
1
2 ψ
∥∥
L2 .
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Proof. We prove only an a priori estimate. The regularity result is an immediate consequence

of the method used to prove the estimate. We shall prove a slightly stronger result. Namely

we shall prove that, for any ε ∈]0, 1], (2.7.13) holds with supz∈[τ,0]
∥∥ϕ
∥∥
Hγ−3 replaced with

supz∈[τ,0]
∥∥ϕ
∥∥
Hγ−2+ε .

Since

(∂z − P−)ϕ = f0 +R0ϕ,

the parabolic estimate (2.2.27) asserts that, for any τ1 < τ2 < 0 and any µ ∈ R,

∥∥ϕ
∥∥
L∞([τ2,0];Hµ+1−ǫ)

≤ C(‖η‖Cγ )
(
‖f0‖L∞([τ1,0];Hµ) +

∥∥ϕ
∥∥
L∞([τ1,0];Hµ)

)

+ C(‖η‖Cγ ) ‖η‖Cγ ‖∇x,zϕ‖L∞([τ1,0];Hµ−1−(γ−3)) .

Consequently, for any µ ≤ γ − 3,

∥∥ϕ
∥∥
L∞([τ2,0];Hµ+1−ǫ)

≤ C(‖η‖Cγ )
(
‖f0‖L∞([τ1,0];Hγ−3) +

∥∥ϕ
∥∥
L∞([τ1,0];Hµ)

)

+ C(‖η‖Cγ ) ‖η‖Cγ ‖∇x,zϕ‖L∞([τ1,0];H−1) ,

so, the estimate (2.7.12) for f0 and the estimate (2.7.10) imply that

∥∥ϕ
∥∥
L∞([τ2,0];Hµ+1−ǫ)

≤ C(‖η‖Cγ ) ‖η‖Cγ

∥∥|Dx|
1
2 ψ
∥∥
L2

+C(‖η‖Cγ )
∥∥ϕ
∥∥
L∞([τ1,0];Hµ)

.

Hence, by an immediate bootstrap argument, it is sufficient to prove that, for any τ < 0,

∥∥ϕ
∥∥
L∞([τ,0];H−1/2)

≤ C
(
‖η‖Cγ

)
‖η‖Cγ

∥∥|Dx|
1
2 ψ
∥∥
L2 .

This in turn follows from the fact that ϕ = (∂z − |Dx|)ϕ − TP−|ξ|ϕ, by definition of P+, and

the estimates (2.7.10), (2.7.9) and the operator norm estimate for paradifferential operators

(see (A.1.10)):

∥∥TP−|ξ|ϕ
∥∥
H− 1

2
.M1

0 (P − |ξ|) ‖∂xϕ‖
H− 1

2
≤ C(‖η‖Cγ ) ‖η‖Cγ ‖∂xϕ‖

H− 1
2
.

This completes the proof of Lemma 2.7.4.

Since B(η)ψ−P+(η)ψ = (∂z−P+(η))ϕ|z=0 = ϕ(0), it immediately follows from (2.7.13) that

‖B(η)ψ − P+(η)ψ‖Hγ−3 ≤ C
(
‖η‖Cγ

)
‖η‖Cγ

∥∥|Dx|
1
2 ψ
∥∥
L2 .

To estimate G(η) − |Dx|ψ, starting from (2.7.6), we write

(1 + (∂xη)
2)∂zϕ− ∂xη∂xϕ = ∂zϕ+ T(∂xη)2∂zϕ− T∂xη∂xϕ+R′,

R′ = T∂zϕ(∂xη)
2 +RB(∂zϕ, (∂xη)

2)− T∂xϕ∂xη −RB(∂xϕ, ∂xη).
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Again, it follows from the paraproduct rules (A.1.20) and (A.1.17) that, for any τ < 0,

the C0([τ, 0];Hγ−3)-norm of R′ is estimated by the right-hand side of (2.7.4).

Furthermore, since (1 + (∂xη)
2)P − i(∂xη)ξ = |ξ|, by using the symbolic calculus estimate

(see (A.1.7)), it follows from (2.7.13) that

∂zϕ+ T(∂xη)2∂zϕ− T∂xη∂xϕ = |Dx|ϕ+ r,

where the C0([τ, 0];Hγ−3)-norm of r is estimated by the right-hand side of (2.7.4). This

concludes the proof of Proposition 2.7.1.

We next study the Taylor expansion of the Dirichlet-Neumann operator. We recall that the

sum of the linear part and the quadratic part is

G(≤2)(η)ψ := |Dx|ψ − |Dx| (η |Dx|ψ)− ∂x(η∂xψ).

We shall prove an estimate for G(η)ψ−G(≤2)(η)ψ similar to the linearization estimate (2.7.4)

proved above. Namely, we shall prove that G(η)ψ −G(≤2)(η)ψ is a smoothing operator, such

that if η ∈ Cγ(R) with γ large enough, then one can estimate G(η)ψ−G(≤2)(η)ψ in Hγ−4 by

means of a low Sobolev norm of |Dx|
1
2 ψ only.

Proposition 2.7.5. Let γ ∈ R3 be such that γ > 4 + 1
2 , γ 6∈ 1

2N. Consider η ∈ Cγ(R)

and ψ ∈ Ḣ
1
2
,1(R) with the assumption that ‖η‖Cγ is small enough. Then G(η)ψ −G(≤2)(η)ψ

belongs to Hγ−4(R). Moreover, there exists a non decreasing function C : R+ → R+ depending

only on γ such that

(2.7.14)
∥∥G(η)ψ −G(≤2)(η)ψ

∥∥
Hγ−4 ≤ C (‖η‖Cγ ) ‖η‖2Cγ

∥∥|Dx|
1
2 ψ
∥∥
H1 .

Proof. As in the proof of Proposition 2.6.1, there holds

G(η)ψ −G(0)ψ = −
∫ 1

0
G(λ) dλ, G(λ) = G(λη)(ηB(λη)ψ) + ∂x(ηV (λη)ψ).

Let us fix some notations. We denote by

Pλ =
1

1 + (λ∂xη)2
(iλ∂xηξ + |ξ|),

the symbol obtained by replacing η with λη in (2.7.2). Hereafter, we denote by C various

constants depending only on ‖η‖Cγ and we set Ω := ‖η‖2Cγ

∥∥|Dx|
1
2 ψ
∥∥
H1 .

Notice that G(0) = |Dx| and G(0) = |Dx| (η |Dx|ψ) + ∂x(η∂xψ). One has to prove that there

exists a constant C depending only on ‖η‖Cγ such that

‖G(λ)− G(0)‖Hγ−4 ≤ CΩ.
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To prove this estimate we shall prove that

(2.7.15)
∥∥G(λη)(ηB(λη)ψ) − |Dx| (η |Dx|ψ)− |Dx| (Tη(Pλ−|ξ|)ψ)

∥∥
Hγ−4 ≤ CΩ,

and

∥∥∂x(ηV (λη)ψ)) − ∂x(η∂xψ) + λ∂x(Tη(∂xη)Pλ
ψ)
∥∥
Hγ−4 ≤ CΩ,(2.7.16)

|Dx| (Tη(Pλ−|ξ|)ψ) = λ∂x(Tη(∂xη)Pλ
ψ).(2.7.17)

We begin by proving (2.7.15). To do so, we use (2.7.4) to replace G(λη) by |Dx| and B(λη)

by P+(λη). Write

‖G(λη)(ηB(λη)ψ) − |Dx| (ηB(λη)ψ)‖Hγ−4 ≤ C ‖η‖Cγ ‖ηB(λη)ψ‖H1/2

≤ C ‖η‖2Cγ ‖B(λη)ψ‖H1/2 ≤ CΩ,

and

‖|Dx| (ηB(λη)ψ) − |Dx| (ηP+(λη)ψ)‖Hγ−4 ≤
∥∥η
(
B(λη)ψ − P+(λη)ψ

)∥∥
Hγ−3

≤ ‖η‖Cγ ‖B(λη)ψ − P+(λη)ψ‖Hγ−3

≤ CΩ,

where we used the product rule (A.1.21).

Now, by definition of P+(η) we have

|Dx| (ηP+(λη)ψ) − |Dx| (η |Dx|ψ) = |Dx| (ηTPλ−|ξ|ψ),

so, to prove (2.7.15) it remains only to prove that

(2.7.18)
∥∥|Dx| (ηTPλ−|ξ|ψ)− |Dx| (Tη(Pλ−|ξ|)ψ)

∥∥
Hγ−4 ≤ CΩ.

Set ℘λ := TPλ−|ξ|ψ. We first simplify |Dx| (ηTPλ−|ξ|ψ) by paralinearizing the product η℘λ.

That is, we write η℘λ = Tη℘λ + (T℘λ
η + RB(η, ℘λ)) and use (A.1.20) and (A.1.17) to obtain

that

‖T℘λ
η‖Hγ−3 + ‖RB(η, ℘λ)‖Hγ−3 . ‖℘λ‖

H− 1
2
‖η‖Cγ .

Now it follows from (A.1.10) that

‖℘λ‖
H− 1

2
≤ C ‖η‖Cγ ‖∂xψ‖H−1/2 ≤ C ‖η‖Cγ

∥∥|Dx|
1
2 ψ
∥∥
L2 .

Therefore

|Dx| (ηTPλ−|ξ|ψ) = |Dx| (TηTPλ−|ξ|ψ) +R1

with ‖R1‖Hγ−4 ≤ CΩ. Next, since ∂kξ η = 0 for k ≥ 1, it follows from symbolic calculus

(see (A.1.11) applied with (m,m′, ρ) = (0, 1, γ − 1)) that

|Dx| (ηTPλ−|ξ|ψ) = |Dx|Tη(Pλ−|ξ|)ψ +R2
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where R2 = R1+ |Dx| (TηTPλ−|ξ|−Tη(Pλ−|ξ|))ψ satisfies ‖R2‖Hγ−4 ≤ CΩ. This proves (2.7.18)

and hence completes the proof of (2.7.15).

The proof of (2.7.16) is similar. By definition V (λη)ψ = ∂xψ − λ(∂xη)B(λη)ψ so (2.7.4) and

the product rule (A.1.21) imply that

‖∂x(ηV (λη)ψ) − ∂x(η∂xψ) + λ∂x(η(∂xη)P+(λη)ψ)‖Hγ−4 ≤ CΩ.

Thus to obtain (2.7.16) it is sufficient to prove that

∥∥∂x(η(∂xη)P+(λη)ψ) − ∂x(Tη(∂xη)Pλ
ψ)
∥∥
Hγ−4 ≤ CΩ.

As above, this follows from (A.1.20), (A.1.17) and (A.1.11).

To prove (2.7.17), notice that

η(Pλ − |ξ|) = iα(x)ξ − β(x)|ξ|, η(∂xη)Pλ = iβ(x)ξ + α|ξ|

with

α =
η(λ∂xη)

1 + (λ∂xη)2
, β =

η(λ∂xη)
2

1 + (λ∂xη)2
.

Therefore

|Dx|Tη(Pλ−|ξ|) = |Dx|Tα∂x − |Dx|Tβ |Dx| , ∂xTη(∂xη)Pλ
= ∂xTβ∂x + ∂xTα |Dx| ,

and the desired identity (2.7.17) follows from Lemma A.1.11 in Appendix A.1.

Corollary 2.7.6. Let γ ∈ R3 be such that γ > 4 + 1
2 , γ 6∈ 1

2N. Consider η ∈ Cγ(R) and

ψ ∈ Ḣ
1
2
,1(R) with the assumption that ‖η‖Cγ is small enough. Then F (η)ψ−F(≤2)(η)ψ belongs

to Hγ−4(R). Moreover, there exists a non decreasing function C : R+ → R+ depending only

on γ such that

∥∥F (η)ψ − F(≤2)(η)ψ
∥∥
Hγ−4 ≤ C (‖η‖Cγ ) ‖η‖2Cγ

∥∥|Dx|
1
2 ψ
∥∥
H1 .

Proof. By definition F(≤2)(η)ψ = G(≤2)(η)ψ − |Dx|ψ + |Dx|T|Dx|ψη + ∂xT∂xψη, so

F (η)ψ − F(≤2)(η)ψ = G(η)ψ −G(≤2)(η)ψ

+ |Dx|TB(η)ψ−|Dx|ψη + ∂x(TV (η)ψ−∂xψη).

The difference G(η)ψ−G(≤2)(η)ψ is estimated by (2.7.14). To estimate the last two terms in

the right-hand side above, we use (A.1.20) to deduce that

∥∥|Dx|TB(η)ψ−|Dx|ψη
∥∥
Hγ−4 . ‖B(η)ψ − |Dx|ψ‖H−1/2 ‖η‖Cγ ,

∥∥∂xTV (η)ψ−∂xψη
∥∥
Hγ−4 . ‖V (η)ψ − ∂xψ‖H−1/2 ‖η‖Cγ ,

Now write

‖B(η)ψ − |Dx|ψ‖H−1/2 ≤ ‖B(η)ψ − P+(η)ψ‖H−1/2 + ‖P+(η)ψ − |Dx|ψ‖H−1/2 .
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The first term in the right-hand side above is estimated by means of (2.7.4). To bound the

second term, observe that, since P+(η) − |Dx| = TP−|ξ|, (A.1.10) implies that

‖P+(η)ψ − |Dx|ψ‖H−1/2 . CM1
0 (P − |ξ|) ‖∂xψ‖H−1/2 ≤ C ‖η‖Cγ

∥∥|Dx|
1
2 ψ
∥∥
L2 .

On the other hand V (η)ψ − ∂xψ = (∂xη)B(η)ψ so the product rule (A.1.21) implies that

‖V (η)ψ − ∂xψ‖H−1/2 . ‖∂xη‖Cγ−1 ‖B(η)ψ‖H−1/2 ≤ C ‖η‖Cγ

∥∥|Dx|
1
2 ψ
∥∥
L2

where we used the product rule (A.1.21) and the estimate (2.7.3) applied with µ = 1/2. This

completes the proof.
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Chapter 3

Normal form for the water waves

equation

The main goal of this paper is to prove that, given an a priori bound of some Hölder norms

of Zk
′

(η + i |Dx|
1
2 ψ) for k′ ≤ s/2 + k0, we have an a priori estimate of some Sobolev norms

of Zk(η + i |Dx|
1
2 ω) for k ≤ s, where recall that ω = ψ − TB(η)ψη. The proof is by induction

on k ≥ 0. Each step is divided into two parts.

1. Quadratic approximations: in this step we paralinearize and symmetrize the equations.

In addition, we identify the principal and subprincipal terms in the analysis of both the

regularity and the homogeneity.

2. Normal form: in this step we use a bilinear normal form transformation to compensate

for the quadratic terms in the energy estimates.

Since the case k = 0 is interesting in its own, we shall consider the case k = 0 and the case

k > 0 separately. In this chapter, we consider the case k = 0. The case k > 0 will be

considered in the next chapters. The overlap between this two cases will be small. Moreover,

we will prove a slightly better result in the case k = 0 then in the case k > 0 (compare

Proposition 3.6.4 with Proposition 5.2.1).

3.1 Quadratic approximations without losses

We now consider the Craig-Sulem-Zakharov system

(3.1.1)





∂tη = G(η)ψ,

∂tψ + η +
1

2
(∂xψ)

2 − 1

2(1 + (∂xη)2)

(
G(η)ψ + ∂xη∂xψ

)2
= 0.
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In this section we use the abbreviated notations

(3.1.2) B =
G(η)ψ + ∂xη∂xψ

1 + (∂xη)2
, V = ∂xψ −B∂xη, ω = ψ − TBη.

Assumption 3.1.1. Let T > 0 and fix (s, ̺) such that

s > ̺+ 1 > 14, ̺ 6∈ 1

2
N.

It is always assumed in the rest of this chapter that :

i) (η, ψ) ∈ C0
(
[0, T ];Hs(R)× Ḣ

1
2
,s− 1

2 (R)) is such that ω ∈ C0
(
[0, T ]; Ḣ

1
2
,s(R)).

ii) The condition (1.1.17) is satisfied uniformly in time. Namely we assume that

(3.1.3) sup
t∈[0,T ]

{
‖∂xη(t)‖C̺−1 + ‖∂xη(t)‖1/2C−1

∥∥η′(t)
∥∥1/2
H−1

}

is small enough, so that we are in position to apply Proposition 1.1.6 as well as the results

proved in the previous chapter.

Remark. Let us comment on the smallness condition. For our purposes ‖∂xη(t)‖C̺−1 =

O(εt−1/2) and ‖η′(t)‖H−1 ≤ ‖η‖Hs = O(εtδ) for some δ < 1/2 so that (3.1.3) will be satisfied.

One can also notice that, for smooth solutions, we have (see [20])

d

dt

(∫
η2 dx+

∫
ψG(η)ψ dx

)
= 0.

Now it follows from Corollary 1.1.8 that

0 ≤
∫
ψG(η)ψ dx =

∫
(|Dx|

1
2 ψ)G1/2(η)ψ dx ≤ C

(
‖η′‖L∞

)∥∥|Dx|
1
2 ψ
∥∥2
L2 ,

so that

‖η‖2L∞([T0,T ];L2) ≤ ‖η0‖2L2 + C(
∥∥η′0
∥∥
L∞)

∥∥|Dx|
1
2 ψ0

∥∥2
L2 .

Thus, for (3.1.3) to be small it is sufficient to require that supt∈[0,T ] ‖η(t)‖C̺ , ‖η0‖L2 , and
∥∥|Dx|

1
2 ψ0

∥∥
L2 are small enough.

For t ∈ [0, T ], we set

Ms(t) := ‖η(t)‖Hs +
∥∥|Dx|

1
2 ω(t)

∥∥
Hs
,

N̺(t) := ‖η(t)‖C̺ +
∥∥|Dx|

1
2 ψ(t)

∥∥
C̺ .

From (2.0.4), (2.1.2) and (2.1.7) we know that

(3.1.4)
‖B‖Hs−1 + ‖V ‖Hs−1 ≤ C (N̺)Ms,

‖B‖C̺−1 + ‖V ‖C̺−1 ≤ C (N̺)N̺.

We start with some basic remarks about the Taylor coefficient a which is defined as follows.
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Notation 3.1.2. Define

(3.1.5) a = 1 + ∂tB + V ∂xB.

If (η, ψ) ∈ C0
(
[0, T ];Hs(R)× Ḣ

1
2
,s− 1

2 (R)) solves (3.1.1) then

(η, ψ) ∈ C1
(
[0, T ];Hs−1(R)× Ḣ

1
2
,s− 3

2 (R)),

(B,V ) ∈ C0
(
[0, T ];Hs−1(R)×Hs−1(R)).

In addition, it follows from the shape derivative formula for the Dirichlet-Neumann (see [35])

that G(η)ψ ∈ C1
(
[0, T ];Hs−1(R)) together with

(3.1.6) ∂tG(η)ψ = G(η)
(
∂tψ − (B(η)ψ)∂tη

)
− ∂x

(
(V (η)ψ)∂tη

)
.

Then it follows from the definition (3.1.2) that ∂tB ∈ C0
(
[0, T ];Hs−2(R)). Consequently, a is

well-defined and belongs to C0
(
[0, T ];Hs−2(R)). It is known (see [4, 32]) that a = −∂yP |y=η

where P is the pressure. Here, we shall use the following identity for a which is proved in the

appendix (see (A.3.9)):

(3.1.7) a =
1

1 + (∂xη)2

(
1 + V ∂xB −B∂xV − 1

2
G(η)V 2 − 1

2
G(η)B2 −G(η)η

)
.

Lemma 3.1.3. i) For any γ > 3, there exists a nondecreasing function C such that,

(3.1.8) ‖a− 1‖C1 ≤ C
(
‖η‖Cγ

)[
‖η‖Cγ +

∥∥|Dx|
1
2 ψ
∥∥
Cγ− 1

2

]
.

Using the notation N̺, this means that ‖a− 1‖C1 ≤ C(N̺)N̺.

ii) There exists a nondecreasing function C such that

∥∥∂ta− ∂2xψ
∥∥
L∞ ≤ C(N̺)N

2
̺ ,(3.1.9)

‖a− 1 + |Dx| η‖C1 ≤ C(N̺)N
2
̺ .(3.1.10)

Proof. Let us prove (3.1.8). By (3.1.7), we know that

‖a− 1‖C1 ≤ C
(
‖η‖C1

)[
‖∂xη‖2C1 + ‖V ‖C1 ‖∂xB‖C1 + ‖B‖C1 ‖∂xV ‖C1

+
∥∥G(η)V 2

∥∥
C1 +

∥∥G(η)B2
∥∥
C1 + ‖G(η)η‖C1

]
.

By (1.1.44) applied with γ replaced by γ − 1, we may write

‖G(η)η‖C1 ≤ C
(
‖η‖Cγ−1

)
‖η‖Cγ−1 ,∥∥G(η)B2

∥∥
C1 ≤ C

(
‖η‖Cγ−1

)
‖B‖2Cγ−1 ,∥∥G(η)V 2

∥∥
C1 ≤ C

(
‖η‖Cγ−1

)
‖V ‖2Cγ−1 ,
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where we used that Cγ−1 is an algebra to obtain
∥∥B2

∥∥
Cγ−1 . ‖B‖2Cγ−1 ,

∥∥V 2
∥∥
Cγ−1 . ‖V ‖2Cγ−1 .

Since Cγ−2 is an algebra, we get from the definitions (3.1.2) of V,B,

‖V ‖C1 + ‖∂xV ‖C1 ≤
∥∥|Dx|

1
2 ψ
∥∥
Cγ− 1

2
+ ‖η‖Cγ ‖B‖Cγ−1 ,

and

‖B‖Cγ−1 ≤ C
(
‖η‖Cγ

)[
‖G(η)ψ‖Cγ−1 +

∥∥|Dx|
1
2 ψ
∥∥
Cγ− 1

2

]
.

Combining the inequalities and (1.1.44), we get finally (3.1.8).

The proof of the second estimate is similar. By using the identity (3.1.7) and (3.1.6) applied

with ψ replaced with V 2, B2 or η, together with the following expressions (see (3.1.5) and

Lemma A.3.1 in Appendix A.3)

∂tB = −V ∂xB + a− 1, ∂tV = −V ∂xV − a∂xη, ∂tη = G(η)ψ,

we obtain that ∂t(a+G(η)η) is bounded by C(N̺)N
2
̺ . Using again (3.1.6) to compute ∂tG(η)η

we find that ∂tG(η)η − G(η)∂tη is bounded by C(N̺)N
2
̺ . Since G(η)∂tη = G(η)G(η)ψ, we

deduce from (2.6.12) that modulo quadratic terms which are estimated as above, G(η)∂tη is

given by |Dx|2 ψ.

Eventually it follows from the identity (3.1.7) and the estimates (2.0.4) that

‖a− 1 +G(η)η‖C1 ≤ C(N̺)N
2
̺ .

So (3.1.10) follows from (2.6.12).

Notice that (3.1.8) implies that a is a positive function under a smallness assumption:

Corollary 3.1.4. If N̺ is small enough then

(3.1.11) a(t, x) ≥ 1/2, ∀(t, x) ∈ [0, T ]× R.

Assumption 3.1.5. Hereafter, it is assumed that N̺ is small enough, so that (3.1.11) holds.

Remark 3.1.6. Wu proved that a is a positive function (see [53, 52] and also [32]) without

smallness assumption.

Notation 3.1.7. Given two functions f, g defined on the time interval [0, T ], we write

(3.1.12) f ≡ g mod [Hσ],

to say that there exists an increasing function C, independent of (η, ψ, T ) such that for

all t ∈ [0, T ],

‖f(t)− g(t)‖Hσ ≤ C
(
N̺(t)

)
N̺(t)

2Ms(t).

We say then that f is equal to g modulo admissible cubic terms.
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We write now the water waves system as a paradifferential system of quasi-linear dispersive

equations. This will allow us to get energy estimates for the good unknowns η and ω.

Proposition 3.1.8. Use Notation 3.1.7 and Assumptions 3.1.1 and 3.1.5. Introduce

α =
√
a− 1, U1 = η + Tαη, U2 = |Dx|

1
2 ω.

Then

(3.1.13)




∂tU

1 + TV ∂xU
1 − (Id+ Tα) |Dx|

1
2 U2 = F 1,

∂tU
2 + |Dx|

1
2 T

V |ξ|−1/2∂xU
2 + |Dx|

1
2
(
(Id+ Tα)U

1
)
= F 2,

for some source terms F 1, F 2 satisfying

F 1 ≡ F(≤2)(η)ψ − 1

2
T∂2xψη mod [Hs],(3.1.14)

F 2 ≡ 1

2
|Dx|

1
2 RB(|Dx|ψ, |Dx|ω)−

1

2
|Dx|

1
2 RB(∂xψ, ∂xω) mod [Hs],(3.1.15)

where F(≤2)(η)ψ is given by (2.6.1).

Proof. The proof is in two steps.

Step 1: Paralinearization of the equations

We begin the proof of Proposition 3.1.8 by proving that

(3.1.16)

{
∂tη + TV ∂xη − |Dx|ω = f1,

∂tω + TV ∂xω + (Id+ Ta−1)η = f2,

with

f1 ≡ F(≤2)(η)ψ − T∂2xψη mod [Hs],(3.1.17)

f2 ≡ 1

2
RB(|Dx|ψ, |Dx|ω)−

1

2
RB(∂xψ, ∂xω) mod [Hs+1/2].(3.1.18)

The first half of this result is already proved. Indeed, by definition (2.1.3) of F (η)ψ, the first

equation of (3.1.16) holds with f1 := F (η)ψ − T∂xV η. Consequently, the previous estimates

for F (η)ψ − F(≤2)(η)ψ (see (2.6.4)) and V (η)ψ − ∂xψ (see (2.6.22)) imply (3.1.17).

To prove (3.1.18), we use the elementary identity

1

2
(∂xψ)

2 − 1

2

(∂xη∂xψ +G(η)ψ)2

1 + (∂xη)2
=

1

2
V 2 +BV ∂xη −

1

2
B2,
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which is proved in the appendix (see (A.3.8)). The paralinearization formula ab = Tab+Tba+

RB(a, b) then implies that

1

2
(∂xψ)

2 − 1

2

(∂xη∂xψ +G(η)ψ)2

1 + (∂xη)2

= TV V − TBB + TV ∂xηB + TBV ∂xη

+
1

2
RB(V, V ) +RB(B,V ∂xη)−

1

2
RB(B,B).

By using the identity B − V ∂xη = ∂tη (see (A.3.2)), one obtains

−TBB + TBV ∂xη = −TB∂tη.

On the other hand, starting from the definition of V = ∂xψ −B∂xη we have

TV V = TV (∂xψ −B∂xη)

= TV (∂xψ − TB∂xη − T∂xηB −RB(B, ∂xη))

= TV ∂x(ψ − TBη) + TV T∂xBη − TV T∂xηB − TVRB(B, ∂xη)

= TV ∂xω + TV T∂xBη − TV T∂xηB − TV RB(B, ∂xη).

Consequently,

TV V + TV ∂xηB = TV ∂xω + TV T∂xBη + (TV ∂xη − TV T∂xη)B − TVRB(B, ∂xη).

By writing ∂tψ − TB∂tη = ∂tω + T∂tBη and using (3.1.1), the expression of a− 1 in terms of

B,V given in (3.1.5) and the preceding expressions we thus end up with

∂tω + TV ∂xω + (Id+ Ta−1)η = f2,

where

f2 = (TV T∂xη − TV ∂xη)B + (TV ∂xB − TV T∂xB)η

+
1

2
RB(B,B)− 1

2
RB(V, V ) + TVRB(B, ∂xη)−RB(B,V ∂xη).

The end of the proof is simple: (i) we use the paralinearization theorem to estimate all the

remainders RB(a, b); (ii) we use the symbolic calculus theorem to estimate the two terms of

the form TaTb− Tab. More precisely, it follows from the symbolic calculus (see (A.1.14)) that

‖(TV ∂xη − TV T∂xη)B‖
Hs+1

2
. ‖V ‖

C
3
2
‖∂xη‖

C
3
2
‖B‖Hs−1 ,

‖(TV ∂xB − TV T∂xB)η‖Hs+1
2
. ‖V ‖C1/2 ‖∂xB‖C1/2 ‖η‖Hs .

On the other hand (A.1.12) and (A.1.17) imply that

‖TVRB(B, ∂xη)‖
Hs+1

2
. ‖V ‖L∞ ‖RB(B, ∂xη)‖

Hs+1
2

. ‖V ‖L∞ ‖∂xη‖
C

3
2
‖B‖Hs−1 .
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By using (A.1.17) with β = s − 1 and α = 3/2, we obtain that

‖RB(B,V ∂xη)‖
Hs+1

2
. ‖V ∂xη‖

C
3
2
‖B‖Hs−1 .

Using the bounds (3.1.4) for B and V , we thus find that

‖(TV ∂xη − TV T∂xη)B‖
Hs+1

2
. N2

̺Ms,

‖(TV ∂xB − TV T∂xB)η‖Hs+1
2
. N2

̺Ms,

‖TVRB(B, ∂xη)‖
Hs+1

2
. N2

̺Ms.

It immediately follows from the previous analysis that

f2 ≡ 1

2
RB(B,B)− 1

2
RB(V, V ) mod [Hs+ 1

2 ].

Now write

RB(B,B) = RB(B − |Dx|ψ,B) +RB(|Dx|ψ,B − |Dx|ω) +RB(|Dx|ψ, |Dx|ω),

and

RB(V, V ) = RB(V − ∂xψ, V ) +RB(∂xψ, V − ∂xω) +RB(∂xψ, ∂xω).

Using Proposition 2.5.1, (2.6.21), (2.6.22) and (A.1.17) we obtain

(3.1.19) f2 ≡ 1

2
RB(|Dx|ψ, |Dx|ω)−

1

2
RB(∂xψ, ∂xω) mod [Hs+ 1

2 ],

as asserted.

Step 2: Symmetrization

Since ∂Tab = T∂ab+ Ta∂b with ∂ = ∂t or ∂ = ∂x, we find that

(∂t + TV ∂x)U
1 = (∂t + TV ∂x)(η + Tαη)

= (Id+ Tα)(∂t + TV ∂x)η +
{
T∂tα + TV T∂xα +

[
TV , Tα

]
∂x

}
η

and hence (3.1.13) holds with

F 1 := (Id+ Tα)f
1 +

{
T∂tα + TV T∂xα +

[
TV , Tα

]
∂x

}
η,

where f1 is given by (3.1.16).

Clearly, from the assumption a ≥ 1/2 and the estimate of the C1-norm of a (see (3.1.8)) we

obtain that the C1-norm of α =
√
a− 1 is bounded by

(3.1.20) ‖α‖C1 ≤ C(N̺)N̺.
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Recall that we have proved that
∥∥f1

∥∥
Hs

≤ C(N̺)N̺Ms so, using (A.1.12), the previous

estimate for α implies that

(3.1.21) Tαf
1 ≡ 0 mod [Hs].

Using the symbolic calculus estimates (A.1.12) and (A.1.8) applied with ρ = 1, we next deduce

that

TV T∂xαη ≡ 0 mod [Hs],
[
TV , Tα

]
∂xη ≡ 0 mod [Hs].

Together with (3.1.21) this implies that

F 1 ≡ f1 + T∂tαη mod [Hs].

Now (3.1.9) implies that T∂tαη ≡ 1
2T∂2xψη mod [Hs], so (3.1.17) yields the claim

F 1 ≡ F(≤2)(η)ψ − 1

2
T∂2xψη mod [Hs].

It remains to prove the second identity (3.1.15). Since

∂tU
2 + |Dx|

1
2 T

V |ξ|−1/2∂xU
2 = |Dx|

1
2 (∂tω + TV ∂xω)

= |Dx|
1
2
(
f2 − (Id+ Ta−1)η

)
,

and since, by definition of α =
√
a− 1,

(Id+ Tα)(Id+ Tα) = Id+ TαTα + 2Tα

= Id+ Tα2+2α + (TαTα − Tα2)

= Id+ Ta−1 + (TαTα − Tα2),

we find that the second equation in (3.1.13) holds with

F 2 = |Dx|
1
2 f2 + |Dx|

1
2 (TαTα − Tα2)η.

It follows from (A.1.8) (applied with ρ = 1/2) that

∥∥|Dx|
1
2 (TαTα − Tα2)η

∥∥
Hs

. ‖α‖2C1/2 ‖η‖Hs .

This implies, since, as already mentioned, the C1 norm of α is bounded by C(N̺)N̺, that

|Dx|
1
2 (TαTα − Tα2)η ≡ 0 mod [Hs],

and hence F 2 ≡ |Dx|
1
2 f2 mod [Hs]. The identity (3.1.15) then follows from (3.1.19).
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3.2 Quadratic and cubic terms in the equations

Previously in §3.1 we paralinearized the water waves equations and identified the quadratic

terms, with tame estimates for the remainders. Our next goal is to prove that one can further

simplify the equations. We want either to eliminate the quadratic terms from the equations,

or to eliminate the cubic terms from the energy estimates. In this section we introduce some

notations. The strategy of the proof is explained in Section 3 of the chapter of introduction.

Set

u =

(
u1

u2

)
=

(
η

|Dx|
1
2 ψ

)
, U =

(
U1

U2

)
=

(
η + Tαη

|Dx|
1
2 ω

)
,

with α =
√
a − 1 where a is as given by (3.1.5) (see also (3.1.7)). Assuming that Assump-

tions 3.1.1 and 3.1.5 hold, our goal is to estimate the Sobolev norms Hs of U given an a priori

estimate of some Hölder norm C̺ of u. Recall that we fixed s and ̺ such that

s > ̺+ 1 > 14, ̺ 6∈ 1

2
N.

In this section, we introduce some notations in order to rewrite the water waves system under

the form

(3.2.1) ∂tU +DU +Q(u)U + S(u)U + C(u)U = G,

where G is a cubic term of order 0, satisfying

(3.2.2) ‖G‖Hs ≤ C(‖u‖C̺) ‖u‖2C̺ ‖U‖Hs

and where (u,U) 7→ Q(u)U and (u,U) 7→ S(u)U are bilinear while C(u)U contains cubic and

higher order terms. In addition

• U 7→ Q(u)U and U 7→ C(u)U are linear operators of order 1 with tame dependence on

u: this means that for any µ ∈ R, if u ∈ C̺(R) then U 7→ Q(u)U ∈ L(Hµ,Hµ−1) and

U 7→ C(u)U ∈ L(Hµ,Hµ−1), together with the estimates

‖Q(u)‖L(Hµ,Hµ−1) ≤ C(‖u‖C̺) ‖u‖C̺ ,

‖C(u)‖L(Hµ,Hµ−1) ≤ C(‖u‖C̺) ‖u‖2C̺ ,

for some nondecreasing function C depending only on ̺ and µ.

• the linear operator U 7→ S(u)U is a smoothing operator with tame dependence on u:

this means that for any m ≥ 0 there exists ρ > 0 such that, for any µ ∈ R, if u ∈ Cρ(R)

then U 7→ S(u)U ∈ L(Hµ,Hµ+m) together with the estimates

‖S(u)‖L(Hµ,Hµ+m) ≤ C(‖u‖Cρ) ‖u‖Cρ ,

for some nondecreasing function C depending only on m,ρ, µ.
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To do so, we rewrite the conclusion of Proposition 3.1.8 as

∂tU +DU +A1 = F,

where F = (F 1, F 2) was computed in the proof of Proposition 3.1.8, and where

(3.2.3) D =

(
0 − |Dx|

1
2

|Dx|
1
2 0

)
, A1 =


 TV ∂xU

1 − Tα |Dx|
1
2 U2

|Dx|
1
2 T

V |ξ|−1/2∂xU
2 + |Dx|

1
2 TαU

1


 .

We set

G = F +A0 + S,

with

(3.2.4) A0 =

(
1
2T∂2xψη

0

)
, S = −

(
F(≤2)(η)ψ

1
2 |Dx|

1
2 RB(|Dx|ψ, |Dx|ω)− 1

2 |Dx|
1
2 RB(∂xψ, ∂xω),

)

where F(≤2)(η)ψ is given by (see (2.6.30))

F(≤2)(η)ψ = − |Dx|RB(η, |Dx|ψ)− ∂xRB(η, ∂xψ).

Then we may rewrite the equation for U as

∂tU +DU +A1 +A0 + S = G,

where G ≡ 0 mod [Hs] by Proposition 3.1.8.

For later purposes, we write the explicit expression of G = (G1,G2):

(3.2.5)

G1 = (Id+ Tα)F (η)ψ − F(≤2)(η)ψ + T∂tα−∂xV+ 1
2
∂2xψ

η

+
{
−TαT∂xV + TV T∂xαη +

[
TV , Tα

]}
η,

G2 = |Dx|
1
2

(1
2
RB(B,B)− 1

2
RB(|Dx|ψ, |Dx|ω)

)

− |Dx|
1
2

(1
2
RB(V, V )− 1

2
RB(∂xψ, ∂xω)

)

+ |Dx|
1
2
(
(TV T∂xη − TV ∂xη)B + (TV ∂xB − TV T∂xB)η

)

+ |Dx|
1
2 TVRB(B, ∂xη)− |Dx|

1
2 RB(B,V ∂xη)

+ |Dx|
1
2 (TαTα − Tα2)η.
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Definition of Q(u) and C(u).

Here we define the terms Q(u) and C(u) which appear in (3.2.1). They arise when one splits

A0 and A1 to isolate quadratic terms. Write A1 = Q1 + C where

Q1 =


 T∂xψ∂xU

1 − T− 1
2
|Dx|η |Dx|

1
2 U2

|Dx|
1
2 T

∂xψ|ξ|−1/2∂xU
2 + |Dx|

1
2 T− 1

2
|Dx|ηU

1


 ,

C =


 TV−∂xψ∂xU

1 − Tα+ 1
2
|Dx|η |Dx|

1
2 U2

|Dx|
1
2 T

(V−∂xψ)|ξ|−1/2∂xU
2 + |Dx|

1
2 Tα+ 1

2
|Dx|ηU

1


 .(3.2.6)

Moreover, the quadratic term Q1 can be written under a form involving only the unknowns

u and U . We have

Q1 = Q1(u)U :=




T
∂x|Dx|−

1
2 u2

∂xU
1 − T− 1

2
|Dx|u1 |Dx|

1
2 U2

|Dx|
1
2 T

∂x|Dx|−
1
2 u2|ξ|−1/2∂xU

2 + |Dx|
1
2 T− 1

2
|Dx|u1U

1


 .

We write below C as given by (3.2.6) under the form C(u)U . This is an abuse of notations

since C cannot be directly written under the form of a function of u = (η, |Dx|
1
2 ψ) and

U . Instead, C is an operator acting on U whose coefficients depend on (η, ψ). This abuse of

notations will not introduce confusion since the estimates for this operator will always involved

only u and U . This is because the nonlinear estimates we proved for the Dirichlet-Neumann

operator involved only |Dx|
1
2 ψ and never ψ itself.

Similarly, write

1

2
T∂2xψη = −1

2
T
|Dx|

3
2 u2

η = −1

2
T
|Dx|

3
2 u2

U1 +
1

2
T
|Dx|

3
2 u2

Tαη.

to decompose A0 as a sum A0 = Q0 + C0 of a quadratic term and a cubic term. The cubic

term C0, being of order 0 will contribute to the remainder G in equation (3.2.1). Eventually,

we set

(3.2.7) Q = Q1 +Q0 =



T
∂x|Dx|−

1
2 u2

∂xU
1 − 1

2T|Dx|
3
2 u2

U1 − T− 1
2
|Dx|u1 |Dx|

1
2 U2

|Dx|
1
2 T

∂x|Dx|−
1
2 u2|ξ|−1/2∂xU

2 + |Dx|
1
2 T− 1

2
|Dx|u1U

1


 .

Definition of S(u).

Here we define the term S(u) which appears in (3.2.1). To do so, with regards to S, write
η = U1 − Tαη and

|Dx|ψ = |Dx|
1
2 u2, ∂xψ = ∂x |Dx|−

1
2 u2,

|Dx|ω = |Dx|
1
2 U2, ∂xω = ∂x |Dx|−

1
2 U2,
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to obtain S = S(u)U + S̃ where S(u)U =
(

(S(u)U)1

(S(u)U)2

)
with

(S(u)U)1 = |Dx|RB(|Dx|
1
2 u2, U1) + ∂xRB(∂x |Dx|−

1
2 u2, U1),

(S(v)f)2 = −1

2
|Dx|

1
2 RB(|Dx|

1
2 u2, |Dx|

1
2 U2)

+
1

2
|Dx|

1
2 RB(∂x |Dx|−

1
2 u2, ∂x |Dx|−

1
2 U2),

and

(3.2.8) S̃ =

(
− |Dx|RB(|Dx|ψ, Tαη)− ∂xRB(∂xψ, Tαη)

0

)
.

Definition of G.

It follows from the computations above that (3.2.1) holds with

(3.2.9) G = G − S̃ −C0

where G is given by (3.2.5), S̃ is given by (3.2.8) and C0 =
(
1
2T|Dx|

3
2 u2

Tαη, 0
)
arises when we

rewrite A0 in terms of u and U . We have proved in Proposition 3.1.8 that G ≡ 0 mod [Hs].

On the other hand, it follows from (A.1.17) (resp. (A.1.12)) and the estimate (3.1.20) for α

that S̃ ≡ 0 mod [Hs] (resp. C0 ≡ 0 mod [Hs]). This proves that G ≡ 0 mod [Hs] as asserted

in (3.2.2).

3.3 Quadratic normal form: strategy of the proof

To help the reader, let us reproduce here the explanations given in Section 3 of the in-

troduction. We want to implement the normal form approach by introducing a quadratic

perturbation of U of the form

Φ = U + E(u)U,

where (u,U) 7→ E(u)U is bilinear and chosen in such a way that the quadratic terms in the

equation for Φ do not contribute to a Sobolev energy estimate.

Writing

∂tΦ = ∂tU + E(∂tu)U + E(u)∂tU.

and replacing ∂tU by −DU − (Q(u) + S(u))U , we obtain that modulo cubic terms,

∂tΦ = −DU − (Q(u) + S(u))U −E(Du)U −E(u)DU

= −DΦ+DE(u)U − (Q(u) + S(u))U − E(Du)U − E(u)DU.
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It is thus tempting to seek E under the form E = E1 + E2 such that

Q(u)U + E1(Du)U + E1(u)DU = DE1(u)U,(3.3.1)

S(u)U + E2(Du)U + E2(u)DU = DE2(u)U,(3.3.2)

to eliminate the quadratic terms in the equation for Φ. However, one cannot solve these two

equations directly for two different reasons. The equation (3.3.1) leads to a loss of derivative:

for a general u ∈ H∞ and s ≥ 0, it is not possible to eliminate the quadratic terms Q(u)U by

means of a bilinear Fourier multiplier E1 such that U 7→ E1(u)U is bounded from Hs to Hs.

Instead we shall add other quadratic terms to the equation to compensate the worst terms.

More precisely, our strategy consists in seeking a bounded bilinear Fourier multiplier Ẽ1 (such

that U 7→ Ẽ1(u)U is bounded from Hs to Hs) such that the operator B1(u) given by

(3.3.3) B1(u)U := DẼ1(u)U − Ẽ1(Du)U − Ẽ1(u)DU,

satisfies

Re〈Q(u)U −B1(u)U,U〉Hs×Hs = 0.

The key point is that one can find B1(u) such that U 7→ B1(u)U is bounded from Hs to Hs.

This follows from the fact that, while U 7→ Q(u)U is an operator of order 1, the operator

Q(u) + Q(u)∗ is an operator of order 0. Once B1 is so determined, we find a bounded

bilinear transformation Ẽ1 such that (3.3.3) is satisfied. We here use the fact that Q is a

paradifferential operator so that one has some restrictions on the support of the symbols.

As explained in the introduction, the problem (3.3.2) leads to another technical issue. Again,

we shall verify that one can find Ẽ2(u) such that

∥∥Ẽ2(u)
∥∥
L(Hs ,Hs)

≤ K ‖u‖C̺ .

and such that the operator B2(u) defined by

B2(u)U := DẼ2(u)U − Ẽ2(Du)U − Ẽ2(u)DU,

satisfies

(3.3.4) Re〈S(u)U −B2(u)U,U〉Hs×Hs = 0.

3.4 Paradifferential operators

Below we shall consider the equation

(3.4.1) E(Du)U + E(u)DU −D
[
E(u)U

]
= Π(u)U,
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where (u,U) 7→ E(u)U and (u,U) 7→ Π(u)U are bilinear operators of the form

E(u)U =
∑

1≤k≤2

1

(2π)2

∫
eix(ξ1+ξ2)ûk(ξ1)A

k(ξ1, ξ2)Û(ξ2) dξ1 dξ2,

Π(u)U =
∑

1≤k≤2

1

(2π)2

∫
eix(ξ1+ξ2)ûk(ξ1)M

k(ξ1, ξ2)Û(ξ2) dξ1 dξ2,

where Ak and Mk are 2× 2 matrices of symbols.

We shall consider the problem (3.4.1) in two different cases according to the frequency inter-

actions which are permitted in E(u)U and Π(u)U . These cases are the following.

(i) The case where Π(u)U is a paraproduct of the form Tab. Namely, the case where there

exists a constant c ∈]0, 1/2[ such that

SuppMk ⊂
{
(ξ1, ξ2) ∈ R

2 : |ξ2| ≥ 1, |ξ1| ≤ c |ξ2|
}
.

(ii) The case where Π(u)U is a remainder of the form RB(a, b). Which means that there

exists a constant C > 0 such that

SuppMk ⊂
{
(ξ1, ξ2) ∈ R

2 : |ξ1 + ξ2| ≤ C(1 + min(|ξ1| , |ξ2|))
}
.

There is another important property of the symbols which have to be taken into account.

Indeed, when solving the equation E(Du)U + E(u)DU −D
[
E(u)U

]
= Π(u)U , we will have

to invert a matrix which yields a small divisors issue. Here this problem arrises only for low

frequencies. Therefore, we need to quantify the order of vanishing of the symbols on ξ1 = 0,

ξ2 = 0 or ξ1 + ξ2 = 0. For the analysis of the first case, for instance, since |ξ2| ≥ 1 and

|ξ1 + ξ2| ≥ 1/2 on the support of Mk, it is sufficient to quantify the order of vanishing in ξ1.

We are thus lead to the following definition.

Definition 3.4.1. Let (m,γ, ν) ∈ [0,+∞[3. One denotes by Sm,γν the space of functions

(ξ1, ξ2) 7→ A(ξ1, ξ2) with values in 2 × 2 matrices, C∞ for (ξ1, ξ2) ∈ (R \ {0}) × R and

satisfying

(3.4.2) ∃c ∈]0, 1/2[ such that SuppA(ξ1, ξ2) ⊂
{
(ξ1, ξ2) : |ξ2| ≥ 1, |ξ1| ≤ c |ξ2|

}
,

and, for all (α, β) ∈ N2,

(3.4.3)
∣∣∣∂αξ1∂

β
ξ2
A(ξ1, ξ2)

∣∣∣ ≤ Cαβ |ξ1|−α+ν 〈ξ2〉m−β〈ξ1〉γ .

If a = a(ξ1, ξ2) is a scalar valued function, we shall say that a ∈ Sm,γν if aI2 ∈ Sm,γν where I2
the identity matrix.
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To analyze the remainders terms it is convenient to introduce the following definition.

Definition 3.4.2. Let (m, ν1, ν2) ∈ [0,+∞[3. One denotes by SRmν1,ν2 the space of func-

tions (ξ1, ξ2) 7→ R(ξ1, ξ2) with values in 2× 2 matrices, C∞ for (ξ1, ξ2) ∈ (R \{0})× (R \{0})
and satisfying

(3.4.4) ∃C > 0 s.t. SuppR(ξ1, ξ2) ⊂
{
(ξ1, ξ2) : |ξ1 + ξ2| ≤ C(1 + min(|ξ1| , |ξ2|))

}
,

and

(3.4.5)
∣∣∣∂αξ1∂

β
ξ2
R(ξ1, ξ2)

∣∣∣ ≤ Cαβ |ξ1|−α+ν1 |ξ2|−β+ν2 (1 + |ξ1|+ |ξ2|)m.

Notation 3.4.3. Given a scalar function v, a matrix A in one of these two classes of symbols

and f with values in C2, we set

(3.4.6) OpB[v,A]f =
1

(2π)2

∫
eix(ξ1+ξ2)v̂(ξ1)A(ξ1, ξ2)f̂(ξ2) dξ1 dξ2.

When there is no risk of confusion, we will use the notation OpB[v,A]f also for scalar sym-

bols A and scalar unknowns f .

Proposition 3.4.4. i) Given m ∈ R, one denotes by SRmreg the space of functions (ξ1, ξ2) 7→
R(ξ1, ξ2) with values in 2× 2 matrices, C∞ for (ξ1, ξ2) ∈ R2 satisfying (3.4.4) and

(3.4.7)
∣∣∣∂αξ1∂

β
ξ2
R(ξ1, ξ2)

∣∣∣ ≤ Cαβ(1 + |ξ1|+ |ξ2|)m−α−β .

Then for any a ∈ [0,+∞[ and any σ ∈ [0,+∞[ such that a+ σ > m,

(3.4.8)
∥∥OpB[v,R]f

∥∥
Hσ+a−m ≤ K ‖v‖Hσ ‖f‖Ca

and

(3.4.9)
∥∥OpB[v,R]f

∥∥
Hσ+a−m ≤ K ‖v‖Ca ‖f‖Hσ .

ii) Let m in R and let ν1, ν2 in ]0,+∞[. Consider two real numbers a ∈ [0,+∞[ and σ ∈
[0,+∞[ such that a+ σ > m+ ν1 + ν2. If R belongs to SRmν1,ν2 then

∥∥OpB[v,R]f
∥∥
Hσ+a−m−ν1−ν2

≤ K ‖v‖Hσ ‖f‖Ca

and ∥∥OpB[v,R]f
∥∥
Hσ+a−m−ν1−ν2

≤ K ‖v‖Ca ‖f‖Hσ .

Proof. i) Notice that (3.4.4) implies that there holds C−1
0 〈ξ1〉 ≤ 〈ξ2〉 ≤ C0〈ξ1〉 on the support

of R(ξ1, ξ2).
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Consider a dyadic decomposition of the identity (see Appendix A.2) and write

∆j OpB[v,R]f =
∑

k>0

∑

ℓ>0

∆j OpB
[
∆kv,R

]
∆ℓf

+
∑

k>0

∆j OpB
[
∆kv,R

]
S0f

+
∑

ℓ>0

∆j OpB
[
S0v,R

]
∆ℓf

+∆j OpB[S0v,R]S0f.

By using the previous remark and (3.4.4) one can assume that |k − ℓ| ≤ N0 and j ≥ k −N0

in the first sum and the two other sums are non zero only if j ≤ N0, k ≤ N0, ℓ ≤ N0.

The summand of the first sum can be written

Ak,ℓj = ∆j

∫
Kk,ℓ(x− y1, x− y2)∆kv(y1)∆ℓf(y2) dy1dy2

with

Kk,ℓ =
2k+ℓ

(2π)2

∫
ei(2

kz1ξ1+2ℓz2ξ2)ϕ(ξ1)ϕ(ξ2)R
(
2kξ1, 2

ℓξ2
)
dξ1dξ2.

Since R satisfies (3.4.7), the partial derivatives of the non oscillating term are O(1) (since

|k − ℓ| ≤ N0), whence the estimate

|Kk,ℓ(z1, z2)| ≤ CN2
k+ℓ+km

(
1 + 2k|z1|+ 2ℓ|z2|

)−N

for any N . Therefore

∣∣Ak,ℓj
∣∣ ≤ ‖∆jf‖L∞

∫
2k
(
1 + 2k|x− y1|

)−N |∆kv(y1)| dy1 · 2km

so ∥∥Ak,ℓj
∥∥
L2 ≤ C2km ‖∆jf‖L∞ ‖∆kv‖L2 ≤ C2−ℓa−kσ+kmck ‖f‖Ca ‖v‖Hσ .

Since we sum for |k − ℓ| ≤ N0, k ≥ j, we obtain for a+ σ > m
∑

k,ℓ

∥∥Ak,ℓj
∥∥
L2 ≤ cj2

−j(a+σ) ‖f‖Ca ‖v‖Hσ 2jm.

The analysis of the other terms is trivial. This proves (3.4.8). The proof of (3.4.9) is similar.

ii) Since we assume that (3.4.7) holds, if |ξ1| ≫ 1 or |ξ2| ≫ 1, the other term is large, and

they are of comparable size. Then we have

OpB[v,R]f = OpB
[
S̃0v,R

](
S̃0f) + OpB

[
v, R̃

]
f

where S̃0 cut-offs on a ball with a large enough radius and where R̃ is in SRm+ν1+ν2
reg . It

suffices to study the first term, in which we decompose

v =
∑

k<N0

∆kv, f =
∑

ℓ<N0

∆ℓf.
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If we set

Ak,ℓ =

∫
Kk,ℓ(x− y1, x− y2)∆kv(y1)∆ℓf(y2) dy1dy2

then the kernel Kk,ℓ satisfies

|Kk,ℓ(z1, z2)| ≤ C2k(1+ν1)+ℓ(1+ν2)
(
1 + 2k|z1|+ 2ℓ|z2|

)−N

whence

∥∥Ak,ℓ
∥∥
L2 ≤ C ‖∆ℓf‖L∞ ‖∆kv‖L2 2

kν1+ℓν2 ≤ C ‖f‖L∞ ‖v‖L2 ck2
kν1+ℓν2 .

To be able to sum on k < 0, ℓ < 0, we need the assumption ν1 > 0, ν2 > 0. We then

obtain that
∥∥OpB

[
S̃0v,R

](
S̃0f)

∥∥
L2 ≤ C ‖f‖L∞ ‖v‖L2 (together with a similar estimate in

‖f‖L2 ‖v‖L∞).

In the rest of this section, we study the case where A ∈ Sm,γν . In particular, we shall prove

that, for all v ∈ Cρ ∩ L2(R) and all A ∈ Sm,γν , the operator OpB[v,A] is well-defined and

bounded from Hµ+m(R) to Hµ(R) for any µ ∈ R. To prove this result, we first notice

that OpB[v,A] is a pseudo-differential operator. Indeed,

OpB[v,A]f =
1

2π

∫

R

eixξa(x, ξ)f̂(ξ) dξ,

where the symbol a is defined by

(3.4.10) a(x, ξ) =
1

2π

∫
eixξ1 v̂(ξ1)A(ξ1, ξ) dξ1.

Since v ∈ L2(R) and A(·, ξ) is bounded, a(·, ξ) is well-defined and belongs to L2(R; dx) by

Plancherel’s theorem.

The following two lemmas state that, in fact, if A ∈ Sm,γν , then a is a paradifferential symbol

of order m and regularity Cρ−γ−ν . We first consider the case ν = 0 and then the case ν > 0.

Lemma 3.4.5. (i) Let (m,γ) ∈ [0,+∞[2, A ∈ Sm,γ0 and consider a scalar function v ∈ Cρ∩L2

where ρ is such that ρ ≥ γ, ρ 6∈ N, ρ − γ 6∈ N. Then, for all β ∈ N and for all ǫ ∈]0, 1], there
exists a constant K such that the symbol a defined by (3.4.10) satisfies

sup
ξ

∥∥∥〈ξ〉β−m∂βξ a(·, ξ)
∥∥∥
Cρ−γ

≤ K
{
‖v‖Cρ +

1

ǫ
‖v‖1−ǫCρ ‖v‖ǫL2

}
·

(ii) Let (m,γ, ν) ∈ [0,+∞[3 and assume that ν > 0. Consider A ∈ Sm,γν and a scalar function

v ∈ Cρ ∩ L2(R) where ρ is such that ρ ≥ γ + ν, ρ 6∈ N, ρ − γ − ν 6∈ N. Then, for all β ∈ N,

there exists a constant K such that the symbol a defined by (3.4.10) satisfies

sup
ξ

∥∥∥〈ξ〉β−m∂βξ a(·, ξ)
∥∥∥
Cρ−γ−ν

≤ K ‖v‖Cρ .
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Proof. Let us prove statement (i). Consider the dyadic decomposition of the identity Id =

Φ(Dx) +
∑∞

j=1∆j introduced in (A.2.1). We have to prove, for j ∈ N∗ and β ∈ N,

∥∥∥∆j∂
β
ξ a(·, ξ)

∥∥∥
L∞(dx)

≤ K ‖v‖Cρ 〈ξ〉m−β2−j(ρ−γ),

and an analogous estimate for the low frequencies. One can assume without loss of generality

that β = 0.

Consider j ∈ Z and a C∞ function φ̃ with compact support such that φ̃ = 1 on the support

of φ and φ̃ = 0 on a neighborhood of the origin. Then

∆ja(x, ξ) =
1

2π

∫
eixξ1φ(2−jξ1)v̂(ξ1)A(ξ1, ξ) dξ1

=
2j

2π

∫
ei2

j(x−x′)ξ1 φ̃(ξ1)∆jv(x
′)A(2jξ1, ξ) dx

′ dξ1

= 2j
∫
Ej(2

j(x− x′), ξ)∆jv(x
′) dx′

where

(3.4.11) Ej(z, ξ) =
1

2π

∫
eizξ1 φ̃(ξ1)A(2

jξ1, ξ) dξ1.

Then, integrating by parts, the inequalities (3.4.3) and the support condition (3.4.2) imply

that for all n ∈ N there is a constant Cn such that, for all (z, ξ) ∈ R2 and all j ∈ Z,

|znEj(z, ξ)| ≤ Cn〈2jγ〉〈ξ〉m.

Consequently, the kernel satisfies ‖Ej(·, ξ)‖L1(dz) ≤ K〈2jγ〉〈ξ〉m. For j > 0, we deduce that

‖∆ja(·, ξ)‖L∞(dx) . 〈ξ〉m ‖∆jv‖L∞ 2jγ . 〈ξ〉m2−j(ρ−γ) ‖v‖Cρ .

On the other hand, for j < 0, write

(3.4.12) ‖∆ja(·, ξ)‖L∞ ≤ K〈ξ〉m ‖∆jv‖L∞ = K〈ξ〉m ‖∆jv‖1−ǫL∞ ‖∆jv‖ǫL∞ .

Estimating ‖∆jv‖L∞ . 2j/2 ‖∆jv‖L2 , we get

‖∆ja(·, ξ)‖L∞ ≤ K2jǫ/2〈ξ〉m ‖∆jv‖1−ǫL∞ ‖∆jv‖ǫL2 .

Since a(·, ξ) ∈ L2(R) and since
∑−1

−∞ 2jǫ/2 = O(ǫ−1), summing on j < 0 (using Remark A.2.1),

we obtain that

‖Φ(Dx)a(·, ξ)‖Cρ−γ . ‖Φ(Dx)a(·, ξ)‖L∞ .
〈ξ〉m
ǫ

‖v‖1−ǫL∞ ‖v‖ǫL2 ,

which completes the proof of statement (i).
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We now prove statement (ii). Since Sm,γν ⊂ Sm,γ+ν0 , the analysis of the high-frequency

component follows from the previous proof. It remains only to bound the low-frequency

component. Namely, it remains to estimate
∥∥Φ(Dx)∂

β
ξ a(·, ξ)

∥∥
L∞ . Again, it is sufficient to

consider the case β = 0. As above,

Φ(Dx)a(x, ξ) =

∫
E(x− x′, ξ)(Φ(Dx)v)(x

′) dx′

with

E(z, ξ) =
1

2π

∫
eizξ1Φ̃(ξ1)A(ξ1, ξ) dξ1,

where Φ̃ ∈ C∞
0 (R) satisfies Φ̃ = 1 on the support of Φ. To conclude the proof, we have to

estimate the L1(R; dz)-norm of E(·, ξ). This will follow from the following fact: if g = g(ξ) is

a compactly supported function, C∞ for ξ ∈ R \ {0} and such that its derivatives satisfy

|g(ξ)| ≤ |ξ|ν ,
∣∣g′(ξ)

∣∣ ≤ |ξ|ν−1 ,
∣∣g′′(ξ)

∣∣ ≤ |ξ|ν−2 ,

with ν > 0, then its inverse Fourier transform g̃ belongs to L1(R).

We thus have proved that OpB[v,A]U = 1
2π

∫
R
eixξa(x, ξ)Û (ξ) dξ where a is a paradifferential

symbol. We now claim that OpB[v,A] is a paradifferential operator.

Lemma 3.4.6. Let (m,γ, ν) ∈ [0,+∞[3. Consider A ∈ Sm,γν and a scalar function v ∈
Cρ ∩ L2(R) with ρ ≥ γ + ν, ρ 6∈ N, ρ− γ − ν 6∈ N. Then

OpB[v,A] = Ta +R,

where Ta is the paradifferential operator with symbol a given by (3.4.10) and R is a smoothing

operator of order m− (ρ− γ − ν), satisfying

‖Rf‖Hµ−m+(ρ−γ−ν) ≤ K
(

sup
|ξ|≥1/2

∥∥∥〈ξ〉β−m∂βξ a(·, ξ)
∥∥∥
Cρ−γ−ν

)
‖f‖Hµ .

Proof. By virtue of the support condition (3.4.2), there exists a C∞ function Θ satisfying the

same properties as θ does in Definition A.1.2, except that

Θ(ξ1, ξ2) = 1 if |ξ1| ≤ ε̃1(1 + |ξ2|) and |ξ2| ≥ 2,

Θ(ξ1, ξ2) = 0 if |ξ1| ≥ ε̃2(1 + |ξ2|) or |ξ2| ≤ 1,

for some 0 < ε̃1 < ε1 < ε2 < ε̃2 < 1/2 with the additional assumption that c < ε̃2 where c is

the small constant which appears in (3.4.2). Denote by TΘ
a the operator defined by

TΘ
a f =

1

(2π)2

∫
eix(ξ1+ξ2)Θ(ξ1, ξ2)â(ξ1, ξ2)f̂(ξ2) dξ1 dξ2,

where â(ξ1, ξ2) =
∫
e−ixξ1a(x, ξ2) dx. Now, OpB[v,A] = TΘ

a , which is better written as

OpB[v,A] = Ta+R with R := TΘ
a −Ta. Since θ are Θ are two admissible cut-off functions (in

the sense of Remark A.1.4) it follows from [38, Prop. 5.1.17] that R = TΘ
a − Ta = TΘ

a − T θa is

of order m− r if a is a symbol of order m in ξ with regularity Cr in x.
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We conclude this part by establishing two identities.

Lemma 3.4.7. Let (m,γ, ν) ∈ [0,+∞[3. Consider A ∈ Sm,γν and a real-valued function

v ∈ Cρ ∩ L2(R) with ρ ≥ γ + ν, ρ 6∈ N, ρ− γ − ν 6∈ N. Then

(
OpB[v,A]

)∗
= OpB[v,B],

with B(ξ1, ξ2) = AT (−ξ1, ξ1 + ξ2) where A
T is the transpose of A.

Proof. We have

̂OpB[v,A]W (η) =
1

2π

∫
v̂(ξ1)A(ξ1, η − ξ1)Ŵ (η − ξ1) dξ1,

so that

〈
OpB[v,A]∗U,W

〉
=

1

(2π)2

∫
Û(ξ2)v̂(ξ1)A(ξ1, ξ2 − ξ1)Ŵ (ξ2 − ξ1) dξ2 dξ1

=
1

(2π)2

∫
v̂(ξ1)AT (−ξ1, ξ2)Û(ξ2 − ξ1)Ŵ (ξ2) dξ2 dξ1

=
1

2π

∫
̂OpB[v,B]U (ξ2)Ŵ (ξ2) dξ2,

with B(ξ1, ξ2) = AT (−ξ1, ξ1 + ξ2).

We shall also use the identity

(3.4.13) x∂xOpB[v,A]f = OpB[x∂xv,A]f +OpB[v,A](x∂xf)−OpB[v, ξ · ∇ξA]f.

Indeed, this follows from an integration by parts, using

x∂xe
ix(ξ1+ξ2) = ξ1∂ξ1e

ix(ξ1+ξ2) + ξ2∂ξ2e
ix(ξ1+ξ2).

In particular,

(3.4.14) x∂xTab = Tx∂xab+ Ta(x∂xb) + SB(a, b),

where SB(a, b) = OpB[a,R]b with R = −ξ · ∇ξθ where θ is given by Definition A.1.2.

3.5 The main equations

We continue our normal form analysis by studying the equation

(3.5.1) E(Dv)f +E(v)Df −D
[
E(v)f

]
= Π(v)f,
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where v = (v1, v2), f = (f1, f2) and (v, f) 7→ E(v)f and (v, f) 7→ Π(v)f are bilinear operators

of the form

E(v)f = OpB
[
v1, A1

]
f +OpB

[
v2, A2

]
f,

Π(v)f = OpB
[
v1,M1

]
f +OpB

[
v2,M2

]
f.

We first consider the case where (M1,M2) ∈ Sm,γν × Sm,γν .

Proposition 3.5.1. Let (m,γ) ∈ ([0,+∞[)2, ν ∈ [1,+∞[ and consider (M1,M2) in Sm,γν ×
Sm,γν . Then there exist A1 ∈ Sm,γν−1/2 and A2 ∈ Sm,γν−1/2 such that

E(v)f = OpB[v1, A1]f +OpB[v2, A2]f,

satisfies (3.5.1) and (M1,M2) 7→ (A1, A2) is continuous from Sm,γν ×Sm,γν to Sm,γ
ν−1/2

×Sm,γ
ν−1/2

.

Proof. We have

DE(v)f = OpB
[
v1,D(ξ1 + ξ2)A

1(ξ1, ξ2)
]
f +OpB

[
v2,D(ξ1 + ξ2)A

2(ξ1, ξ2)
]
f,

E(Dv)f = OpB
[
− |Dx|

1
2 v2, A1(ξ1, ξ2)

]
f +OpB

[
|Dx|

1
2 v1, A2(ξ1, ξ2)

]
f,

E(v)Df = OpB
[
v1, A1(ξ1, ξ2)D(ξ2)

]
f +OpB

[
v2, A2(ξ1, ξ2)D(ξ2)

]
f,

where D(ξ) =
(
0 −1
1 0

)
|ξ| 12 is the matrix-valued symbol of the operator D. To solve

E(Dv)f + E(v)Df −D
[
E(v)f

]
= Π(v)f = OpB

[
v1,M1

]
f +OpB

[
v2,M2

]
f,

we thus have to solve

(3.5.2)





−D(ξ1 + ξ2)A
1 +A1D(ξ2) + |ξ1|

1
2 A2 =M1,

−D(ξ1 + ξ2)A
2 +A2D(ξ2)− |ξ1|

1
2 A1 =M2.

Denote by akij (resp. m
k
ij), 1 ≤ i, j ≤ 2, the coefficients of the matrix Ak (resp. Mk), k = 1, 2.

To solve (3.5.2), we have to solve two 4× 4 systems for the 8 unknowns akij. To simplify the

computations, it is convenient to observe that this 8×8 system can be decoupled into two other

4 × 4 systems: one system for (a211, a
1
12, a

1
21, a

2
22) and another system for (a111, a

2
12, a

1
22, a

2
21).

They read

|ξ1 + ξ2|
1
2 a121 + |ξ1|

1
2 a211 + |ξ2|

1
2 a112 = m1

11,

− |ξ1 + ξ2|
1
2 a211 − |ξ1|

1
2 a121 + |ξ2|

1
2 a222 = m2

21,

− |ξ1 + ξ2|
1
2 a112 + |ξ1|

1
2 a222 − |ξ2|

1
2 a121 = m1

22,

|ξ1 + ξ2|
1
2 a222 − |ξ1|

1
2 a112 − |ξ2|

1
2 a211 = m2

12,
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and

−|ξ1 + ξ2|
1
2 a111 + |ξ1|

1
2a221 + |ξ2|

1
2 a122 = m1

21,(3.5.3)

|ξ1 + ξ2|
1
2 a221 − |ξ1|

1
2a111 + |ξ2|

1
2 a212 = m2

11,(3.5.4)

|ξ1 + ξ2|
1
2 a122 + |ξ1|

1
2a212 − |ξ2|

1
2 a111 = m1

12,(3.5.5)

−|ξ1 + ξ2|
1
2 a212 − |ξ1|

1
2a122 − |ξ2|

1
2 a221 = m2

22.(3.5.6)

Clearly, these two systems are equivalent and it is enough to solve one of them.

Let us solve (3.5.3)–(3.5.6). By using (3.5.3) and (3.5.6) one can determine a212 and a111 by

means of a122 and a221. It remains only a 2× 2 system for (a122, a
2
21). Set

δ := |ξ1 + ξ2| − |ξ1| − |ξ2| , D := δ2 − 4 |ξ1| |ξ2| .

It is found that

δa221 − 2 |ξ1|
1
2 |ξ2|

1
2 a122 = − |ξ1|

1
2 m1

21 + |ξ2|
1
2 m2

22 + |ξ1 + ξ2|
1
2m2

11,

δa122 − 2 |ξ1|
1
2 |ξ2|

1
2 a221 = |ξ1|

1
2 m2

22 − |ξ2|
1
2 m1

21 + |ξ1 + ξ2|
1
2m1

12,

thus

(3.5.7)

a221 =
δ

D

(
|ξ1 + ξ2|

1
2m2

11 − |ξ1|
1
2 m1

21 + |ξ2|
1
2 m2

22

)

+
2

D
|ξ1|

1
2 |ξ2|

1
2
(
|ξ1 + ξ2|

1
2m1

12 + |ξ1|
1
2 m2

22 − |ξ2|
1
2 m1

21

)
,

a122 =
δ

D

(
|ξ1 + ξ2|

1
2m1

12 + |ξ1|
1
2 m2

22 − |ξ2|
1
2 m1

21

)

+
2

D
|ξ1|

1
2 |ξ2|

1
2
(
|ξ1 + ξ2|

1
2m2

11 − |ξ1|
1
2 m1

21 + |ξ2|
1
2 m2

22

)
,

a212 = − 1

|ξ1 + ξ2|
1
2

(
|ξ1|

1
2a122 + |ξ2|

1
2a221 +m2

22

)
,

a111 =
1

|ξ1 + ξ2|
1
2

(
|ξ1|

1
2a221 + |ξ2|

1
2a122 −m1

21

)
.

We here give simplified expressions for δ and D on the support of the symbols mk
ij. Notice

that, by definition of the spaces Sm,γν , we have |ξ1| < |ξ2| /2 on the support of the symbolsmk
ij .

We then observe that

ξ1ξ2 > 0 ⇒ δ = 0 and D = −4 |ξ1| |ξ2| ,
ξ1ξ2 < 0 and |ξ1| < |ξ2| ⇒ δ = −2 |ξ1| and D = −4 |ξ1| |ξ1 + ξ2| .

Thus, for all (ξ1, ξ2) ∈ R2, if |ξ1| ≤ |ξ2| /2 then |D| ≥ |ξ1| |ξ2|. Consequently, since |ξ2| ∼ 〈ξ2〉
on the supports of mk

ij, we have |D| ≥ |ξ1| 〈ξ2〉 on the supports of mk
ij.
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Now, since mk
ij ∈ Sm,γν for some ν ≥ 1/2 by assumptions, one can write mk

ij = |ξ1|1/2 m̃k
ij

with m̃k
ij ∈ Sm,γν−1/2. Furthermore there exists a C∞ function θ̃ : R2 → R satisfying

(3.5.8) θ̃(ξ1, ξ2) = 0 for |ξ1| ≥
1

2
|ξ2| or |ξ2| ≤

1

2
,

such that m̃k
ij = θ̃(ξ1, ξ2)m̃

k
ij .

Introduce the coefficients

c1 := θ̃
δ

D
|ξ1|

1
2 |ξ1 + ξ2|

1
2 , c2 := θ̃

δ

D
|ξ1|

1
2 |ξ2|

1
2 , c3 := θ̃

δ

D
|ξ1| ,

c4 := θ̃
2

D
|ξ1| |ξ2|

1
2 |ξ1 + ξ2|

1
2 , c5 := θ̃

2

D
|ξ1|

3
2 |ξ2|

1
2 , c6 := θ̃

2

D
|ξ1| |ξ2| ,

In view of the support restrictions (3.5.8) and the simplified expressions for δ and D given

above, these coefficients belong to S0,0
0 .

Thus, for any coefficient cℓ (ℓ = 1, . . . , 6) and any symbol m̃k
ij, one has cℓm̃

k
ij ∈ Sm,γν−1/2. Now,

using the formulas (3.5.7), we obtain that a221 and a122 can be written as linear combinations

of terms of the form cℓm̃
k
ij. This implies that the symbols a221 and a122 belong to Sm,γν−1/2. This

in turn implies that a212, a
1
11 belong to Sm,γν−1/2, which concludes the proof.

We next consider the following problem:

ER(Dv)f + ER(v)Df −D
[
ER(v)f

]
= S(v)f,

where we recall that S(v)f =
(

(S(v)f)1

(S(v)f)2

)
with

(S(v)f)1 = |Dx|RB(|Dx|
1
2 v2, f1) + ∂xRB(∂x |Dx|−

1
2 v2, f1),

(S(v)f)2 = −1

2
|Dx|

1
2 RB(|Dx|

1
2 v2, |Dx|

1
2 f2)

+
1

2
|Dx|

1
2 RB(∂x |Dx|−

1
2 v2, ∂x |Dx|−

1
2 f2).

We shall see that it is useful to split S(v)f into two parts. Introduce

(3.5.9) S♯(v)f =

(
(S(v)f)1

0

)
, S♭(v)f =

1

2

(
0

(S(v)f)2

)
.

These two operators are different because S♭(v)f satisfies S♭(v)f = S♭(f)v, while S♯(v)f does

not satisfy this symmetry.

Our purpose is to study the equations

E♯(Dv)f +E♯(v)Df −D
[
E♯(v)f

]
= S♯(v)f,

E♭(Dv)f +E♭(v)Df −D
[
E♭(v)f

]
= S♭(v)f.
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The next proposition states that one can solve these equations, and that the solutions E♯(v)

and E♭(v)f are smoothing operators depending tamely on v. Recall that the spaces of symbols

SRmν1,ν2 have been introduced in Definition 3.4.2.

Proposition 3.5.2. There exist four matrices of symbols R♯,1, R♯,2, R♭,1, R♭,2 in SR1
0,0 such

that the following properties hold.

i) Let (µ, ρ) ∈ R× R+ be such that µ+ ρ > 1. The bilinear operators given by

(v, f) 7→ E♯(v)f = OpB[v1, R♯,1]f +OpB[v2, R♯,2]f,

(v, f) 7→ E♭(v)f = Op♭[v1, R♭,1]f +OpB[v2, R♭,2]f,

are well-defined for any (v, f) in (Cρ ∩ L2(R))×Hµ(R) or in Hµ(R)× (Cρ(R) ∩ L2(R)).

ii) There holds

E♯(Dv) + E♯(v)D −DE♯(v) = S♯(v),(3.5.10)

E♭(Dv) + E♭(v)D −DE♭(v) = S♭(v).(3.5.11)

iii) The following estimates hold.

• For all (µ, ρ) ∈ R×R+ such that µ+ ρ > 1 and ρ 6∈ 1
2N, there exists a positive constant K

such that, for any f ∈ Cρ(R) ∩ L2(R) and any v ∈ Hµ(R)

∥∥E♯(v)f
∥∥
Hµ+ρ−1 ≤ K ‖f‖Cρ ‖v‖Hµ ,(3.5.12)

∥∥E♭(v)f
∥∥
Hµ+ρ−1 ≤ K

(
‖f‖Cρ + ‖Hf‖Cρ

)
‖v‖Hµ ,(3.5.13)

where Hv is the Hilbert transform of v.

• for all (µ, ρ) ∈ R × R+ such that µ + ρ > 1 and ρ 6∈ 1
2N there exists a positive constant K

such that

(3.5.14)
∥∥E♯(v)f

∥∥
Hµ+ρ−1 +

∥∥E♭(v)f
∥∥
Hµ+ρ−1 ≤ K (‖v‖Cρ + ‖Hv‖Cρ) ‖f‖Hµ .

iv) The operators ReE♯(v) = 1
2(E

♯(v) + E♯(v)∗) and ReE♭(v) satisfy

ReE♯(Dv) + ReE♯(v)D −DReE♯(v) = ReS♯(v),(3.5.15)

ReE♭(Dv) + ReE♭(v)D −DReE♭(v) = ReS♭(v).(3.5.16)

Moreover, for all (µ, ρ) ∈ R × R+ such that µ + ρ > 1 and ρ 6∈ 1
2N, there exists a positive

constant K such that for any f ∈ Hµ(R) and any function v ∈ Cρ(R) ∩ L2(R) such that

v̂(ξ) = 0 for |ξ| ≥ 1,

(3.5.17)
∥∥ReE♯(v)f

∥∥
Hµ+ρ−1 +

∥∥ReE♭(v)f
∥∥
Hµ+ρ−1 ≤ K ‖v‖Cρ ‖f‖Hµ .
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Remarks. Some technical remarks are in order. Had we instead obtained symbols R♯,1, R♯,2,

R♭,1, R♭,2 in SR1
ν1,0

for some ν1 > 0, then we would have obtained the bound

∥∥E♯(v)f
∥∥
Hµ+ρ−ν1−1 +

∥∥E♭(v)f
∥∥
Hµ+ρ−ν1−1 ≤ K ‖v‖Cρ ‖f‖Hµ ,

that is, up to the harmless loss of ν1 derivative, the estimate (3.5.14) without the extra term

‖Hv‖Cρ . However we shall see that our symbols only belong to SR1
0,0 (see (3.5.19)). For such

symbols, in general, one cannot expect a better estimate than (3.5.14). For our purpose, it

is crucial to have an estimate which involves only ‖v‖Cρ . To overcome this difficulty, the key

point is that, on the one hand, the right-hand side of (3.5.12) does not involve ‖v‖Cρ ‖f‖Hµ

and on the other hand the estimates (3.5.14) and (3.5.17) are sharp. The latter estimates

will be used in the proof of Proposition 5.2.1. Finally an estimate analogous to (3.5.12) for

E♭(v)f does not hold. We shall circumvent this by using the symmetry S♭(v)f = S♭(f)v, so

that the estimate (3.5.13) is enough for E♭(v)f . As already mentioned, this is the reason why

it is convenient to split S(v)f as the sum of S♯(v)f and S♭(v)f .

Proof. The proof is divided into two parts. We first study E♯(v), then we study E♭(v).

Step 1: Analysis of E♯(v)

Set ζ(ξ1, ξ2) = 1− θ(ξ1, ξ2)− θ(ξ2, ξ1) where θ is the cutoff function used in the definition of

paradifferential operators (see Definition A.1.2). Then

RB(a, b) =
1

(2π)2

∫
eix(ξ1+ξ2)ζ(ξ1, ξ2)â(ξ1)̂b(ξ2) dξ1 dξ2.

Introduce

(3.5.18) m2
11(ξ1, ξ2) = |ξ1|−

1
2
(
|ξ1 + ξ2| |ξ1| − (ξ1 + ξ2)ξ1

)
ζ(ξ1, ξ2).

Then

S♯(v)f = OpB[v2,M2]f with M2 =

(
m2

11 0

0 0

)
.

We seek E♯(v)f under the form OpB[v1, R♯,1]f + OpB[v2, R♯,2]f satisfying (3.5.10). Denote

by rkij the coefficients of the matrix R♯,k. It follows from the proof of Proposition 3.5.1 that,

to solve (3.5.10), it suffices to set r211 = r112 = r121 = r222 = 0 and to solve

−|ξ1 + ξ2|
1
2 r111 + |ξ1|

1
2 r221 + |ξ2|

1
2 r122 = 0,

|ξ1 + ξ2|
1
2 r221 − |ξ1|

1
2 r111 + |ξ2|

1
2 r212 = m2

11,

|ξ1 + ξ2|
1
2 r122 + |ξ1|

1
2 r212 − |ξ2|

1
2 r111 = 0,

−|ξ1 + ξ2|
1
2 r212 − |ξ1|

1
2 r122 − |ξ2|

1
2 r221 = 0.
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As already seen in the proof of Proposition 3.5.1, we have

r221 =
δ

D
|ξ1 + ξ2|

1
2m2

11,

r122 =
2

D
|ξ1|

1
2 |ξ2|

1
2 |ξ1 + ξ2|

1
2m2

11,

r212 = −2 |ξ1|+ δ

D
|ξ2|

1
2 m2

11,

r111 =
δ + 2 |ξ2|

D
|ξ1|

1
2m2

11.

where δ := |ξ1 + ξ2| − |ξ1| − |ξ2| and D := δ2 − 4 |ξ1| |ξ2|.

Notice that on the support of m2
11 we have (ξ1 + ξ2)ξ1 ≤ 0 so that ξ1ξ2 ≤ 0 and |ξ1| ≤ |ξ2|.

Then |ξ1 + ξ2| = ||ξ2| − |ξ1|| = |ξ2| − |ξ1| and we have

δ = −2 |ξ1| and D = 4 |ξ1|
(
|ξ1| − |ξ2|

)
= −4 |ξ1| |ξ1 + ξ2| .

This allows us to simplify the computations. It is found that

r221 =
1

2 |ξ1 + ξ2|
1
2

m2
11,

r122 = − |ξ2|
1
2

2 |ξ1|
1
2 |ξ1 + ξ2|

1
2

m2
11,

r212 = 0,

r111 = − 1

2 |ξ1|
1
2

m2
11,

so

r221 =
1

2
|ξ1|

1
2 |ξ1 + ξ2|

1
2

(
1− ξ1 + ξ2

|ξ1 + ξ2|
ξ1
|ξ1|

)
ζ(ξ1, ξ2),

r122 = −1

2
|ξ2|

1
2 |ξ1 + ξ2|

1
2

(
1− ξ1 + ξ2

|ξ1 + ξ2|
ξ1
|ξ1|

)
ζ(ξ1, ξ2),

r212 = 0,

r111 = −1

2
|ξ1 + ξ2|

(
1− ξ1 + ξ2

|ξ1 + ξ2|
ξ1
|ξ1|

)
ζ(ξ1, ξ2).

We thus obtain the desired result (3.5.10) with

(3.5.19)

R♯,1 := −1

2

(
1− (ξ1 + ξ2)

|ξ1 + ξ2|
ξ1
|ξ1|

)
ζ(ξ1, ξ2)

(
|ξ1 + ξ2| 0

0 |ξ2|
1
2 |ξ1 + ξ2|

1
2

)
,

R♯,2 :=
1

2

(
1− (ξ1 + ξ2)

|ξ1 + ξ2|
ξ1
|ξ1|

)
ζ(ξ1, ξ2)

(
0 0

|ξ1|
1
2 |ξ1 + ξ2|

1
2 0

)
.
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Set H = −i∂x |Dx|−1. Then OpB
[
v1, R♯,1

]
f is given by

1

2

(
− |Dx|RB(v1, f1) +H |Dx|RB(Hv1, f1)

− |Dx|
1
2 RB(v1, |Dx|

1
2 f2) +H |Dx|

1
2 RB(Hv1, |Dx|

1
2 f2)

)
,

and OpB
[
v2, R♯,2

]
f is given by

1

2

(
0

|Dx|
1
2 RB(|Dx|

1
2 v2, f1)−H |Dx|

1
2 RB(H |Dx|

1
2 v2, f1)

)
.

To prove (3.5.12) we have to estimate various terms of the form

A1 |Dx|aRB(A2 |Dx|b V, |Dx|c F ), Aj ∈ {H, Id}, a+ b+ c = 1, c ∈ {0, 1
2
}, a, b ≥ 0.

Since RB(a, b) = RB(b, a), the estimate (A.1.17) and the fact that H is bounded on Sobolev

spaces imply that

(3.5.20)

∥∥A1 |Dx|aRB(A2 |Dx|b V, |Dx|c F )
∥∥
Hµ+ρ−1

.
∥∥RB(A2 |Dx|b V, |Dx|c F )

∥∥
Hµ+ρ−1+a

.
∥∥A2 |Dx|b V

∥∥
Hµ−1+a+c

∥∥|Dx|c F
∥∥
Cρ−c

. ‖V ‖Hµ ‖F‖Cρ

where we used (A.2.4) in the third inequality. This proves that
∥∥OpB

[
v1, R♯,1

]
f
∥∥
Hµ+ρ−1 .

∥∥v1
∥∥
Hµ ‖f‖Cρ ,∥∥OpB

[
v2, R♯,2

]
f
∥∥
Hµ+ρ−1 .

∥∥v2
∥∥
Hµ ‖f‖Cρ ,

which imply (3.5.12). Similarly, we have
∥∥OpB

[
v1, R♯,1

]
f
∥∥
Hµ+ρ−1 .

(∥∥v1
∥∥
Cρ +

∥∥Hv1
∥∥
Cρ

)
‖f‖Hµ ,∥∥OpB

[
v2, R♯,2

]
f
∥∥
Hµ+ρ−1 .

∥∥v2
∥∥
Cρ ‖f‖Hµ ,(3.5.21)

which proves (3.5.14).

It remains to prove statement iv). Notice that, since D∗ = −D, (3.5.10) implies that

E♯(Dv)∗ + E♯(v)∗D −DE♯(v)∗ = S♯(v)∗.

This and (3.5.10) implies that ReE♯(v) satisfies (3.5.15). We now have to prove that

(3.5.22)
∥∥ReE♯(v)f

∥∥
Hµ+ρ−1 ≤ K ‖v‖Cρ ‖f‖Hµ ,

provided that the Fourier transform of v is supported in the unit ball. To do so we begin by

noting that Lemma 3.4.7 implies that

ReE♯(v) = OpB
[
v1, R♯,1(ξ1, ξ2) +R♯,1(−ξ1, ξ1 + ξ2)

T
]

+OpB
[
v2, R♯,2(ξ1, ξ2) +R♯,2(−ξ1, ξ1 + ξ2)

T
]
.
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We begin by proving that

(3.5.23)
∥∥OpB

[
v1, R♯,1(ξ1, ξ2) +R♯,1(−ξ1, ξ1 + ξ2)

T
]∥∥

L(Hµ,Hµ+ρ−1)
.
∥∥v1
∥∥
Cρ .

Below we use the following notation : given a scalar symbol p = p(ξ1, ξ2) we denote by p̃ the

symbol defined by p̃(ξ1, ξ2) = p(−ξ1, ξ1 + ξ2).

To prove (3.5.23) we write R♯,1 under the form R♯,1 = 1
2ζ
(
a 0
0 b

)
. Then

R♯,1(ξ1, ξ2) +R♯,1(−ξ1, ξ1 + ξ2)
T =

1

2
ζ

(
a+ ã 0

0 b+ b̃

)
+

1

2

(
ζ̃ − ζ

)
(
ã 0

0 b̃

)
,

with

a = − |ξ1 + ξ2|
(
1− ξ1 + ξ2

|ξ1 + ξ2|
ξ1
|ξ1|

)
,

ã = − |ξ2|
(
1 +

ξ2
|ξ2|

ξ1
|ξ1|

)
,(3.5.24)

b = −|ξ2|
1
2 |ξ1 + ξ2|

1
2

(
1− ξ1 + ξ2

|ξ1 + ξ2|
ξ1
|ξ1|

)
,

b̃ = −|ξ1 + ξ2|
1
2 |ξ2|

1
2

(
1 +

ξ2
|ξ2|

ξ1
|ξ1|

)
,(3.5.25)

so that

a+ ã = − |ξ1 + ξ2| − |ξ2|+ |ξ1|,

b+ b̃ = −2 |ξ2|
1
2 |ξ1 + ξ2|

1
2 + |ξ2|

1
2 |ξ1 + ξ2|

1
2

(
ξ1 + ξ2
|ξ1 + ξ2|

− ξ2
|ξ2|

)
ξ1
|ξ1|

.

As above it follows from (A.1.17), (A.2.3) and (A.2.4) that

∥∥∥OpB
[
v1,

1

2
ζ
(−|ξ1+ξ2|−|ξ2|+|ξ1| 0

0 −2|ξ2|
1
2 |ξ1+ξ2|

1
2

)]∥∥∥
L(Hµ,Hµ+ρ−1)

.
∥∥v1
∥∥
Cρ .

Set

(3.5.26) β(ξ1, ξ2) =
1

2
ζ(ξ1, ξ2)

(
ξ1 + ξ2
|ξ1 + ξ2|

− ξ2
|ξ2|

)
ξ1
|ξ1|

|ξ2|
1
2 |ξ1 + ξ2|

1
2 .

We have to prove that similarly

(3.5.27)
∥∥OpB

[
v1, β

]
‖L(Hµ,Hµ+ρ−1) .

∥∥v1
∥∥
Cρ .

Notice that on the support of (
ξ1 + ξ2
|ξ1 + ξ2|

− ξ2
|ξ2|

)
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we have |ξ1| > |ξ2|. Introduce now Υ ∈ C∞(R2 \ {0}), to be chosen later on, such that

Υ(ξ1, ξ2) = 1 for |ξ1| ≥ |ξ2| and Υ(ξ1, ξ2) = 0 for |ξ1| < |ξ2| /2. Then
(
ξ1 + ξ2
|ξ1 + ξ2|

− ξ2
|ξ2|

)
=

(
ξ1 + ξ2
|ξ1 + ξ2|

− ξ2
|ξ2|

)
Υ(ξ1, ξ2)

and we can decompose β as

β =
ξ1 + ξ2

|ξ1 + ξ2|
1
2

β1 + |ξ1 + ξ2|
1
2 β2 where

β1 =
1

2
ζ(ξ1, ξ2)

ξ1
|ξ1|

|ξ1|
1
4 |ξ2|

1
4

(
|ξ2|

1
4

|ξ1|
1
4

Υ(ξ1, ξ2)

)
,

β2 = −1

2
ζ(ξ1, ξ2)

ξ2
|ξ2|

ξ1
|ξ1|

|ξ1|
1
4 |ξ2|

1
4

(
|ξ2|

1
4

|ξ1|
1
4

Υ(ξ1, ξ2)

)
.

Then OpB
[
v1, β

]
= H |Dx|

1
2 OpB[v1, β1] + |Dx|

1
2 OpB[v1, β2]. We claim that Υ can be so

chosen that β1 ∈ SR0
1/4,1/4 and similarly β2 ∈ SR0

1/4,1/4 so the result (3.5.27) follows from

statement ii) in Proposition 3.4.4. To do so we consider a function υ ∈ C∞(R) such that

υ(t) = 1 for |t| ≤ 1 and υ(t) = 0 for |t| ≥ 2. Then we set Υ(ξ1, ξ2) = υ(ξ2/ξ1) and it is easily

verified that ∣∣∣∣∣∂
α
ξ1∂

β
ξ2

(
|ξ2|

1
4

|ξ1|
1
4

Υ(ξ1, ξ2)

)∣∣∣∣∣ ≤ Cα,β |ξ1|−α |ξ2|−β .

This concludes the proof of (3.5.27).

To prove (3.5.23) it remains only to prove that

(3.5.28)
∥∥∥OpB

[
v1,
(
ζ̃ − ζ

)(
ã 0
0 b̃

)]∥∥∥
L(Hµ,Hµ+ρ−1)

.
∥∥v1
∥∥
Cρ .

Here we use our assumption on the spectrum of v to write v = χ(Dx)v for some function χ

in C∞
0 (R). Then

OpB
[
v1,
(
ζ̃ − ζ

) (
ã 0
0 b̃

)]
= OpB

[
v1, χ(ξ1)

(
ζ̃ − ζ

)(
ã 0
0 b̃

)]

Since θ(−ξ1, ξ2) = θ(ξ1, ξ2) = θ(ξ1,−ξ2) we have

ζ̃(ξ1, ξ2) = ζ(−ξ1, ξ1 + ξ2) = ζ(ξ1, ξ1 + ξ2) = ζ(ξ1, ξ2) + ξ1ζ
′(ξ1, ξ2),

where ζ ′(ξ1, ξ2) =
∫ 1
0 ∂ξ2ζ(ξ1, yξ1 + ξ2) dy is such that χ(ξ1)ζ

′(ξ1, ξ2) belongs to the symbol

class SR−1
reg introduced in the statement of Proposition 3.4.4 (in fact this symbol belongs to

SR−∞
reg since it has compact support in (ξ1, ξ2), which also insures that (3.4.4) holds).

Therefore directly from the definition (3.5.24) of ã we have χ(ξ1)
(
ζ̃− ζ

)
ã ∈ SR0

1,1. Statement

ii) in Proposition 3.4.4 then implies that
∥∥OpB

[
v1, χ(ξ1)

(
ζ̃ − ζ

)
ã
]∥∥

L(Hµ,Hµ+ρ−1)
.
∥∥χ̃(Dx)v

1
∥∥
Cρ+1 .

∥∥v1
∥∥
Cρ ,
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where χ̃ ∈ C∞
0 (R) is equal to one on the support of χ. Similarly

OpB
[
χ(Dx)v

1,
(
ζ̃ − ζ

)̃
b
]
= |Dx|

1
2 OpB

[
v1, b′

]

with

b′ = −1

2

(
ξ1 |ξ2|

1
2 + |ξ2|

1
2
ξ2
|ξ2|

|ξ1|
)
χ(ξ1)ζ

′(ξ1, ξ2) ∈ SR−1
1,1/2.

Statement ii) in Proposition 3.4.4 implies that
∥∥OpB

[
v1, b′

]∥∥
L(Hµ,Hµ+ρ−1/2)

.
∥∥v1
∥∥
Cρ . This

proves (3.5.28) and hence this completes the proof of (3.5.23).

To complete the proof of (3.5.22) it remains to prove that

∥∥OpB
[
v2, R♯,2(ξ1, ξ2) +R♯,2(−ξ1, ξ1 + ξ2)

T
]∥∥

L(Hµ,Hµ+ρ−2)
.
∥∥v2
∥∥
Cρ .

In view of (3.5.21), to prove this estimate it is sufficient to prove that

(3.5.29)
∥∥OpB

[
v2, R♯,2(−ξ1, ξ1 + ξ2)

T
]∥∥

L(Hµ,Hµ+ρ−2)
.
∥∥v2
∥∥
Cρ .

Since

R♯,2(−ξ1, ξ1 + ξ2)
T =

1

2

(
1 +

ξ2
ξ2

ξ1
|ξ1|

)
ζ(ξ1, ξ1 + ξ2)

(
0 |ξ1|

1
2 |ξ2|

1
2

0 0

)
,

and since χ(ξ1)ζ(ξ1, ξ1+ξ2) has compact support, we have χ(ξ1)R
♯,2(−ξ1, ξ1+ξ2)T ∈ SR0

1/2,1/2

so (3.5.29) follows from Proposition 3.4.4.

Step 2: Analysis of E♭(v)

Introduce

(3.5.30) m2
22(ξ1, ξ2) = −1

2

|ξ1 + ξ2|
1
2

|ξ1|
1
2 |ξ2|

1
2

(
|ξ1| |ξ2|+ ξ1ξ2

)
ζ(ξ1, ξ2),

so that S♭(v)f = OpB[v2,M2] with M2 =

(
0 0

0 m2
22

)
.

We seek E♭(v)f under the form OpB[v2, R♭,1]f + OpB[v2, R♭,2]f satisfying (3.5.11). We still

denote by rkij the coefficients of the matrix R♭,k. Again, it follows from the proof of Proposi-

tion 3.5.1 that, to solve (3.5.10), it suffices to set r211 = r112 = r121 = r222 = 0 and to solve

−|ξ1 + ξ2|
1
2 r111 + |ξ1|

1
2 r221 + |ξ2|

1
2 r122 = 0,

|ξ1 + ξ2|
1
2 r221 − |ξ1|

1
2 r111 + |ξ2|

1
2 r212 = 0,

|ξ1 + ξ2|
1
2 r122 + |ξ1|

1
2 r212 − |ξ2|

1
2 r111 = 0,

−|ξ1 + ξ2|
1
2 r212 − |ξ1|

1
2 r122 − |ξ2|

1
2 r221 = m2

22.
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As already seen in the proof of Proposition 3.5.1, we have

r221 =
δ

D
|ξ2|

1
2 m2

22 +
2

D
|ξ1| |ξ2|

1
2 m2

22,

r122 =
δ

D
|ξ1|

1
2 m2

22 +
2

D
|ξ1|

1
2 |ξ2|m2

22,

r212 = − 1

|ξ1 + ξ2|
1
2

(
|ξ1|

1
2 r122 + |ξ2|

1
2 r221 +m2

22

)
,

r111 =
1

|ξ1 + ξ2|
1
2

(
|ξ1|

1
2 r221 + |ξ2|

1
2 r122

)
,

where δ := |ξ1 + ξ2| − |ξ1| − |ξ2| and D := δ2 − 4 |ξ1| |ξ2|.

Consequently,

r221 =
(δ + 2 |ξ1|) |ξ2|

1
2

D
m2

22,

r122 =
(δ + 2 |ξ2|) |ξ1|

1
2

D
m2

22,

r212 = −δ |ξ1 + ξ2|
1
2

D
m2

22,

r111 =
|ξ1|

1
2 |ξ2|

1
2

|ξ1 + ξ2|
1
2

2δ + 2 |ξ1|+ 2 |ξ2|
D

m2
22.

On the support of m2
22 there holds ξ1ξ2 > 0 and we have δ = 0 and D = −4 |ξ1| |ξ2|. Therefore

r111 = − |ξ1 + ξ2|
1
2

2 |ξ1|
1
2 |ξ2|

1
2

m2
22, r122 = − 1

2 |ξ1|
1
2

m2
22,

r212 = 0, r221 = − 1

2 |ξ2|
1
2

m2
22,

We next give a simplified expression for m2
22 based on the identity

|ξ1| |ξ2|+ ξ1ξ2
|ξ1| |ξ2|

= (sign(ξ1) + sign(ξ2)) sign(ξ1 + ξ2) =

(
ξ1
|ξ1|

+
ξ2
|ξ2|

)
ξ1 + ξ2
|ξ1 + ξ2|

·

Then, by definition of m2
22 (cf. (3.5.30)), we have

m2
22 = −1

2
|ξ1 + ξ2|

1
2 |ξ1|

1
2 |ξ2|

1
2

(
ξ1
|ξ1|

+
ξ2
|ξ2|

)
ξ1 + ξ2
|ξ1 + ξ2|

ζ(ξ1, ξ2).
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Therefore

(3.5.31)

r111 =
1

4

(
ξ1
|ξ1|

+
ξ2
|ξ2|

)
(ξ1 + ξ2)ζ,

r122 =
1

4
|ξ1 + ξ2|

1
2 |ξ2|

1
2

(
ξ1
|ξ1|

+
ξ2
|ξ2|

)
ξ1 + ξ2
|ξ1 + ξ2|

ζ,

r212 = 0,

r221 =
1

4
|ξ1 + ξ2|

1
2 |ξ1|

1
2

(
ξ1
|ξ1|

+
ξ2
|ξ2|

)
ξ1 + ξ2
|ξ1 + ξ2|

ζ,

Then OpB
[
v1, R♭,1

]
f is given by

1

4

(
H |Dx|RB(Hv1, f1) +H |Dx|RB(v1,Hf1)

H |Dx|
1
2 RB(Hv1, |Dx|

1
2 f2) +H |Dx|

1
2 RB(v1,H |Dx|

1
2 f2)

)

and OpB
[
v2, R♭,2

]
f is given by

1

4

(
0

H|Dx|
1
2 RB(H |Dx|

1
2 v2, f1) +H|Dx|

1
2 RB(|Dx|

1
2 v2,Hf1)

)
.

Then it follows from (A.1.17) and (A.2.5) that

∥∥E♭(v)f
∥∥
Hµ+ρ−1 ≤ K

(
‖v‖Cρ + ‖Hv‖Cρ

)
‖f‖Hµ ,

∥∥E♭(v)f
∥∥
Hµ+ρ−1 ≤ K

(
‖f‖Cρ + ‖Hf‖Cρ

)
‖v‖Hµ .

It remains to prove statement iv). As in the previous step, since D∗ = −D, (3.5.11)implies

that

E♭(Dv)∗ + E♭(v)∗D −DE♭(v)∗ = S♭(v)∗.

This and (3.5.11) implies that ReE♭(v) satisfies (3.5.16). We now have to prove

∥∥ReE♭(v)f
∥∥
Hµ+ρ−1 ≤ K ‖v‖Cρ ‖f‖Hµ .

Again, Lemma 3.4.7 implies that

ReE♭(v) = OpB
[
v1, R♭,1(ξ1, ξ2) +R♭,1(−ξ1, ξ1 + ξ2)

T
]

+OpB
[
v2, R♭,2(ξ1, ξ2) +R♭,2(−ξ1, ξ1 + ξ2)

T
]
.

The L(Hµ,Hµ+ρ−1)-norm of OpB
[
v1, R♭,1(ξ1, ξ2) +R♭,1(−ξ1, ξ1 + ξ2)

T
]
is estimated from the

fact that

R♭,1(ξ1, ξ2) +R♭,1(−ξ1, ξ1 + ξ2) =

(
a 0

0 b

)
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with

a =
1

4
ζ

(
|ξ1|+ |ξ2|+ ξ1

ξ2
|ξ2|

)
− 1

4
(ζ̃ − ζ)ξ2

ξ1
|ξ1|

+
1

4
ζ̃ξ2

ξ1 + ξ2
|ξ1 + ξ2|

,(3.5.32)

b =
1

2
β +

1

4

(
ζ + ζ̃

) ξ1 + ξ2
|ξ1 + ξ2|

ξ2
|ξ2|

|ξ2|
1
2 |ξ1 + ξ2|

1
2 ,(3.5.33)

where β is given by (3.5.26). We estimate the L(Hµ,Hµ+ρ−1)-norms of OpB[v1, a] and

OpB[v1, b] separately.

Let us estimate the L(Hµ,Hµ+ρ−1)-norm of OpB[v1, a]. To do so it is convenient to rewrite

the third term in the right hand side of (3.5.32) as

ζ̃ξ2
ξ1 + ξ2
|ξ1 + ξ2|

= (ζ̃ − ζ)ξ2
ξ1 + ξ2
|ξ1 + ξ2|

+ ζξ2
ξ1 + ξ2
|ξ1 + ξ2|

,

so that a = a1 + a2 with

a1 :=
1

4
ζ

(
|ξ1|+ |ξ2|+ ξ1

ξ2
|ξ2|

+ ξ2
ξ1 + ξ2
|ξ1 + ξ2|

)
,

a2 := −1

4
(ζ̃ − ζ)ξ2

ξ1
|ξ1|

+
1

4
(ζ̃ − ζ)ξ2

ξ1 + ξ2
|ξ1 + ξ2|

.

We begin by estimating the contribution due to a1. To do so we notice that

OpB
[
v1, ζ

(
|ξ1|+ |ξ2|+ ξ1

ξ2
|ξ2|

)
+ ξ2

ξ1 + ξ2
|ξ1 + ξ2|

]
f

= RB(|Dx| v1, f) +RB(v
1, |Dx| f) +RB(Dxv

1,Hf) +HRB(v
1,Dxf),

where Dx = −i∂x, and then we use arguments similar to those used to prove (3.5.20). To

estimate the contribution due to a2, notice that we have already seen that χ(ξ1)(ζ̃−ζ) belongs
to SR−1

1,0 so that

χ(ξ1)(ζ̃ − ζ)ξ2
ξ1
|ξ1|

∈ SR−1
1,1, χ(ξ1)(ζ̃ − ζ)ξ2 ∈ SR−1

1,1

and hence one may apply the arguments used to prove (3.5.28).

One can estimate the L(Hµ,Hµ+ρ−1)-norm of OpB[v1, b] in a similar way (using (3.5.27) to

estimate the contribution due to 1
2β).

The L(Hµ,Hµ+ρ−1)-norm of OpB[v2, R♭,2(ξ1, ξ2)+R♭,2(−ξ1, ξ1+ ξ2)T ] is estimated by similar

arguments.

We need also the following variant of Proposition 3.5.2.
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Proposition 3.5.3. Consider a real number β in [0,∞[. There exist four matrices of symbols

R♯,1β , R♯,2β , R♭,1β , R♭,2β in SR1
0,0 such that the following properties hold.

i) Let (µ, ρ) ∈ R× R+ with µ+ ρ > 1. The bilinear operators given by

(v, f) 7→ E♯β(v)f = OpB
[
v1, R♯,1β

]
f +OpB

[
v2, R♯,2β

]
f,

(v, f) 7→ E♭β(v)f = Op♭
[
v1, R♭,1β

]
f +OpB

[
v2, R♭,2β

]
f,

are well-defined for any (v, f) in (Cρ ∩ L2(R))×Hµ(R) or in Hµ(R)× Cρ(R).

ii) There holds

E♯β(Dv) + E♯β(v)D −DE♯β(v) = S
♯
β(v),(3.5.34)

E♭β(Dv) + E♭β(v)D −DE♭β(v) = S
♭
β(v),(3.5.35)

where S
♯
β and S

♭
β are such that

Re〈S♯(v)f −S
♯
β(v)f, f〉Hβ×Hβ = 0,(3.5.36)

Re〈S♭(v)f −S
♭
β(v)f, f〉Hβ×Hβ = 0,(3.5.37)

for any f ∈ Hβ(R)2, and satisfy

∥∥S♯
β(v)

∥∥
L(Hµ,Hµ+ρ−1)

≤ K ‖v‖Cρ ,(3.5.38)

∥∥S♭
β(v)

∥∥
L(Hµ,Hµ+ρ−1)

≤ K ‖v‖Cρ .(3.5.39)

iii) The following estimates hold. For all (µ, ρ) ∈ R × R+ such that µ + ρ > 1 and ρ 6∈ 1
2N,

there exists a positive constant K such that

∥∥E♯β(v)f
∥∥
Hµ+ρ−1 ≤ K ‖v‖Cρ ‖f‖Hµ ,(3.5.40)

∥∥E♭β(v)f
∥∥
Hµ+ρ−1 ≤ K ‖v‖Cρ ‖f‖Hµ .(3.5.41)

Proof. We begin by studying E♯β(v) under the additional assumption that v̂(ξ) = 0 for |ξ| ≥ 1.

We have S♯(v) = OpB[v2,M2]f with M2 =

(
m2

11 0

0 0

)
where m2

11 is given by (3.5.18).

Introduce the following weight

w(ξ1, ξ2) =
〈ξ1 + ξ2〉2β

〈ξ1 + ξ2〉2β + 〈ξ2〉2β

and set

M(ξ1, ξ2) := w(ξ1, ξ2)M
2(ξ1, ξ2) + w(−ξ1, ξ1 + ξ2)M

2(−ξ1, ξ1 + ξ2)
T ,

114



so that S
♯
β(v) = OpB[v2,M] satisfies (3.5.36). Let us prove the estimate (3.5.38). To do so

introduce Rw(v, f) = OpB[v,wζ]f where ζ is the cut-off function 1−θ(ξ1, ξ2)−θ(ξ2, ξ1). Then
Proposition 3.4.4 implies that Rw(v, f) satisfies the same estimates as RB(v, f) does. Now

OpB[v2, wM2] is given by

(
|Dx|Rw(|Dx|

1
2 v2, f1) + ∂xRw(∂x |Dx|−

1
2 v2, f1)

0

)

and hence OpB[v2, wM2] satisfies the same estimate as S(v) does. Proceeding similarly, one

estimates OpB[v2, w(−ξ1, ξ1 + ξ2)M
2(−ξ1, ξ1 + ξ2)

T
]
which completes the proof of (3.5.38).

Then to solve (3.5.34) it is sufficient to seek E(v) such that

(3.5.42) E(Dv) + E(v)D −DE(v) = OpB
[
v2, wM2

]

and then to set E♯β(v) = E(v) +
(
E(v)

)∗
. Now we recall that E♯(v) = OpB[v1, R♯,1] +

OpB[v2, R♯,2], as given by Proposition 3.5.2, solves

E♯(Dv) + E♯(v)D −DE♯(v) = OpB[v2,M2].

Therefore

E(v) := OpB
[
v1, wR♯,1

]
+OpB

[
v2, wR♯,2

]
.

satisfies (3.5.34). Therefore one obtains the desired result with E♯β(v) = OpB[v1, R♯,1β ] +

OpB[v2, R♯,2β ] where

R♯,kβ (ξ1, ξ2) = w(ξ1, ξ2)R
♯,k(ξ1, ξ2) + w(−ξ1, ξ1 + ξ2)R

♯,k(−ξ1, ξ1 + ξ2)
T .

We have symbols of exactly the same form as those found in the proof of Proposition 3.5.2

except that the cut-off function ζ is replaced with wζ. Thus E♯β(v) satisfies the same estimates

as ReE♯(v) does. In particular, for any function χ in C∞
0 (R) such that χ(ξ) = 0 for |ξ| ≥ 1/2,

there holds ∥∥E♯β
(
χ(Dx)v

)
f
∥∥
Hµ+ρ−1 ≤ K ‖v‖Cρ ‖f‖Hµ .

This completes the analysis of E♯β(v) in the case when the spectrum of v is contained in the

unit ball. Now consider a general function v ∈ Cρ(R) ∩ L2(R). Introduce a function χ in

C∞
0 (R) such that χ(ξ) = 0 for |ξ| ≥ 1/2 and χ(ξ) = 1 on a neighborhood of the origin. We

then set

E♯β(v) = E♯
(
(1− χ(Dx))v

)
+ E♯β

(
χ(Dx)v

)
,

where E♯β
(
χ(Dx)v

)
is as given by the previous step and where E♯ is given by Proposition 3.5.2.

It follows from (3.5.10) and the previous analysis that (3.5.34) and (3.5.36) are satisfied. On

the other hand, (3.5.14) and the fact that the (1− χ(Dx))H is bounded on Hölder spaces Cρ

(with ρ 6∈ N) imply that

∥∥E♯β
(
(1− χ(Dx))v

)
f
∥∥
Hµ+ρ−1 ≤ K ‖v‖Cρ ‖f‖Hµ .
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We thus obtain (3.5.40) by combining the two previous inequalities.

The analysis of E♭β(v) is similar.

3.6 System for the new unknown

Recall that

(3.6.1) ∂tU +DU +Q(u)U + C(u)U + S(u)U ≡ 0 mod [Hs].

As explained above, our first task is to prove that there exists an operator of order 0, denoted

B(v), such that

Re〈Q(v)f −B(v)f, f〉Hs×Hs = 0,

where 〈·, ·〉Hs×Hs denotes the scalar product in Hs(R)2.

Lemma 3.6.1. There exists B1 ∈ S0,0
2 and B2 ∈ S0,0

3/2 such that for all v = (v1, v2) ∈ Cρ(R)2

B(v) := OpB[v1, B1] + OpB[v2, B2],

satisfies B(v) = B(v)∗ and Re〈Q(v)f −B(v)f, f〉Hs×Hs = 0 for any f ∈ Hs+1(R)2.

Proof. Write

2Re〈Q(v)f −B(v)f, f〉Hs×Hs

= 2Re〈Λs(Q(v)f −B(v)f),Λsf〉L2×L2

= 〈Λs(Q(v)f −B(v)f),Λsf〉L2×L2 + 〈Λsf,Λs(Q(v)f −B(v)f)〉L2×L2

= 〈
(
Λ2sQ(v) +Q(v)∗Λ2s

)
f, f〉L2×L2 − 〈

(
Λ2sB(v) +B(v)∗Λ2s

)
f, f〉L2×L2

where Λ = (Id−∆)1/2. Since we seek B(v) such that B(v) = B(v)∗, this means that we have

to solve

(3.6.2) Λ2sB(v) +B(v)Λ2s = Λ2sQ(v) +Q(v)∗Λ2s.

We first rewrite Q(v)f as OpB[v1, Q1]f +OpB[v2, Q2]f . Recall from (3.2.7) that

Q(u)U =



T
∂x|Dx|−

1
2 u2

∂xU
1 − 1

2T|Dx|
3
2 u2

U1 − T− 1
2
|Dx|u1 |Dx|

1
2 U2

|Dx|
1
2 T

∂x|Dx|−
1
2 u2|ξ|−1/2∂xU

2 + |Dx|
1
2 T− 1

2
|Dx|u1U

1


 .

Then set

(3.6.3)

Q1 =
1

2
|ξ1| θ(ξ1, ξ2)

(
0 |ξ2|

1
2

− |ξ1 + ξ2|
1
2 0

)
,

Q2 = ξ1 |ξ1|−
1
2 θ(ξ1, ξ2)

(
−ξ2 − 1

2ξ1 0

0 − |ξ1 + ξ2|
1
2 ξ2 |ξ2|−

1
2

)
,
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where θ is given by Definition A.1.2. We have

OpB[v1, Q1]f =


 0 −T− 1

2
|Dx|v1 |Dx|

1
2 f2

|Dx|
1
2 T− 1

2
|Dx|v1f

1 0


 ,

OpB[v2, Q2]f =

(
T
∂x|Dx|−1/2v2

∂xf
1 − 1

2T|Dx|
3
2 u2

f1 0

0 |Dx|1/2 T(∂x|Dx|−1/2v2)|ξ|−1/2∂xf
2

)
.

Then Q1 ∈ S
1/2,0
1 and

Λ2s OpB[v1, Q1] +
(
OpB[v1, Q1]

)∗
Λ2s = OpB[v1,Q1]

where Q1 is given by (see Lemma 3.4.7)

Q1(ξ1, ξ2) = 〈ξ1 + ξ2〉2sQ1(ξ1, ξ2) + 〈ξ2〉2sQ1(−ξ1, ξ1 + ξ2)
T

=
1

2
〈ξ1 + ξ2〉2s |ξ1| θ(ξ1, ξ2)

(
0 |ξ2|1/2

− |ξ1 + ξ2|1/2 0

)

+
1

2
〈ξ2〉2s |ξ1| θ(−ξ1, ξ1 + ξ2)

(
0 − |ξ2|

1
2

|ξ1 + ξ2|1/2 0

)
.

Since θ is even in ξ1 (by assumption (A.1.2)) and since

θ(ξ1, ξ1 + ξ2) = θ(ξ1, ξ2) + ξ1

∫ 1

0

∂θ

∂ξ2
(ξ1, ξ2 + yξ1) dy, and

∂θ

∂ξ2
∈ S−1,0

0 ,

we obtain that Q1 ∈ S2s−1/2,0
2 .

Similarly Q2 ∈ S1,0
1/2

and Λ2s OpB[v2, Q2]+
(
OpB[v2, C2]

)∗
Λ2s = OpB[v2,Q2] where Q2 ∈ S2s,0

3/2

is given by

Q2 = 〈ξ1 + ξ2〉2sQ2(ξ1, ξ2) + 〈ξ2〉2sQ2(−ξ1, ξ1 + ξ2)
T

= 〈ξ1 + ξ2〉2sξ1 |ξ1|−
1
2 θ(ξ1, ξ2)

(
−ξ2 − 1

2ξ1 0

0 − |ξ1 + ξ2|
1
2 ξ2 |ξ2|−

1
2

)

+ 〈ξ2〉2sξ1 |ξ1|−
1
2 θ(−ξ1, ξ1 + ξ2)

(
1
2ξ1 + ξ2 0

0 |ξ2|
1
2 (ξ1 + ξ2) |ξ1 + ξ2|−

1
2

)
.

Now set

(3.6.4) B1 :=
1

〈ξ1 + ξ2〉2s + 〈ξ2〉2s
Q1 ∈ S

−1/2,0
2
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and

(3.6.5) B2 :=
1

〈ξ1 + ξ2〉2s + 〈ξ2〉2s
Q2 ∈ S0,0

3/2.

Then B(v) solves (3.6.2). Moreover, since Qk(−ξ1, ξ1 + ξ2)T = Qk(ξ1, ξ2)
T for k = 1, 2 and

since 〈ξ1 + ξ2〉2s + 〈ξ2〉2s = 〈(−ξ1) + (ξ1 + ξ2)〉2s + 〈ξ1 + ξ2〉2s we check that OpB[v1, B1]

and OpB[v2, B2] are self-adjoint, so is B(v).

We next study the equation

EA(Dv) + EA(v)D −DEA(v) = −B(v)

where B(v) is given by the previous lemma.

Lemma 3.6.2. There exist A1, A2 in S
0,1/2
1 such that, for all v ∈ C3 ∩ L2(R) the operator

EA(v) = OpB
[
v1, A1

]
+OpB

[
v2, A2

]
satisfies

(3.6.6) EA(Dv) + EA(v)D −DEA(v) = −B(v)

and such that the following properties hold.

i) Let µ be a given real number. There exists K > 0 such that, for any scalar function

w ∈ C1(R), any v = (v1, v2) ∈ C3 ∩ L2(R) and any f = (f1, f2) ∈ Hµ(R),

∥∥[TwI2, EA(v)] f
∥∥
Hµ+1 ≤ K ‖w‖C1 ‖v‖C3 ‖f‖Hµ ,

where I2 = ( 1 0
0 1 ).

ii) Let µ be a given real number. There exists K > 0 such that, for any v = (v1, v2) ∈
C3 ∩ L2(R) and any f = (f1, f2) ∈ Hµ(R),

(3.6.7)
∥∥EA(v)f

∥∥
Hµ ≤ K ‖v‖C3 ‖f‖Hµ .

Proof. Since B1 ∈ S0,0
2 ⊂ S

0,1/2
3/2 and B2 ∈ S0,0

3/2 ⊂ S
0,1/2
3/2 , the fact that there exist A1 and A2

in S
0,1/2
1 such that EA(v) satisfies (3.6.6) follows from Proposition 3.5.1. Now, Lemma 3.4.6

applied with ρ = 3 − ǫ (with ǫ ∈]0, 1/2[) implies that, if v ∈ Cρ(R) ∩ L2(R), modulo a

smoothing operator, EA(u) is a paradifferential operator whose matrix-valued symbol a, given

by (3.4.10), has semi-norms in Γ0
ρ−3/2 estimated by statement (ii) in Lemma 3.4.5: this means

that EA(v) can be written as EA(v) = Ta +R with

sup
|ξ|≥1/2

∥∥∥〈ξ〉β∂βξ a(·, ξ)
∥∥∥
Cρ− 3

2
≤ K ‖v‖C3 〈ξ〉−β,

‖Rf‖
Hµ+ρ− 3

2
≤ K ‖v‖C3 ‖f‖Hµ .

Since ρ−3/2 ≥ 1, the statements i) and ii) now follow from Theorem A.1.7 in Appendix A.1.
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We next prove an analogous result for the quadratic term S(v).

Lemma 3.6.3. There exist two matrices of symbols R1, R2 in SR1
0,0 such that ER(v) =

OpB[v1, R1] + OpB[v2, R2] satisfies the following properties.

i) There holds

(3.6.8) ER(Dv) + ER(v)D −DER(v) = S(v)

where S is such that

(3.6.9) Re〈S(v)f −S(v)f, f〉Hs×Hs = 0,

for any f ∈ Hs(R)2, and satisfies

(3.6.10) ‖S(v)‖L(Hµ,Hµ+ρ−1) ≤ K ‖v‖Cρ .

ii) For all (µ, ρ) ∈ R×R+ such that µ+ ρ > 1 and ρ 6∈ N, there exists a positive constant K

such that

(3.6.11)
∥∥ER(v)f

∥∥
Hµ+ρ−1 ≤ K ‖v‖Cρ ‖f‖Hµ .

Proof. Set ER(v) = E♯s(v) + E♭
s
(v) where E♯s(v) and E♭s(v) are as given by Proposition 3.5.3

with β = s.

The main result of this chapter is the following proposition.

Proposition 3.6.4. Use Notation 3.1.7 and Assumptions 3.1.1 and 3.1.5. The new unknown

Φ = U + EA(u)U − ER(u)U

satisfies

∂tΦ+DΦ+ (Q(u)−B(u))Φ + (S(u)−S(u))Φ + C(u)Φ ≡ 0 mod [Hs].

Proof. Set E = EA − ER. Since

∂tΦ = ∂tU + E(∂tu)U + E(u)∂tU,

DΦ = DU +DE(u)U,

by using (3.6.6) and (3.6.8) we find that

∂tΦ+DΦ = ∂tU +DU +B(u)U +S(u)U + E(∂tu+Du)U + E(u)(∂tU +DU).

Thus,

∂tΦ+DΦ+ (Q(u)−B(u))Φ + (S(u)−S(u))Φ + C(u)Φ ≡ F mod [Hs]
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with

F =
(
Q(u) + S(u) + C(u)

)
E(u)U −B(u)E(u)U −S(u)E(u)U

+ E(∂tu+Du)U + E(u)(∂tU +DU).

Since ‖E(u)‖L(Hs ,Hs) ≤ C ‖u‖C̺ it follows from (3.6.1) that

E(u)(∂tU +DU) ≡ −E(u)
(
Q(u)U +C(u)U + S(u)U

)
mod [Hs]

and hence F ≡ F1 + F2 mod [Hs] with

F1 =
[
A(u), E(u)

]
U +

[
S(u), E(u)

]
U −

(
B(u) +S(u)

)
E(u)U

F2 = E(∂tu+Du)U,

where recall that A(u) = Q(u) + C(u).

We now have to prove that F1 ≡ 0 mod [Hs] and F2 ≡ 0 mod [Hs].

For this proof, we say that an operator f 7→ P (u)f is of order m if there exists µ0 ∈ R such

that for any real number µ ≥ µ0, it is bounded from Hµ to Hµ−m together with the estimate

‖P (u)‖L(Hµ,Hµ−m) ≤ C ‖u‖C̺

for some constant C depending only on ‖u‖C̺ . We shall use the fact that if P (u) is of order

m and L(u) is of order −m for some m ∈ [0, 1], then

P (u)L(u)U ≡ 0 mod [Hs],

provided that s is large enough (for our purposes, it is easily verified that the requirement that

s is large enough will hold true under our assumption on s imposed in Assumption 3.1.1).

With this definition, A(u) = Q(u) + C(u) is of order 1 (this is most easily seen by using

the expression (3.2.3) for A = A(u), the rule (A.1.5), the estimates (3.1.4) for ‖V ‖C0 and

(3.1.20) for ‖α‖C0). Lemma 3.6.2 implies that EA(u) is of order 0 (see (3.6.7)). Similarly,

since B(u) = OpB[u1, B1]+OpB[u2, B2] with B1, B2 in S
0,1/2
3/2 , Lemma 3.4.6, Lemma 3.4.5 (see

statement (ii)) and (A.1.5) imply that B(u) is of order 0. The estimate (A.1.17) implies that

S(u) is of order 3/2−̺ provided that ̺ is large enough. Similarly, (3.6.10) and (3.6.11) imply

that S and ER(u) are of order 1 − ̺. We shall only use the fact that, with our assumption

on ̺, S(u) and S(u) are of order 0 while ER(u) is of order −1.

Since E(u), B(u), S(u) and S(u) are of order 0, we obtain that

S(u)E(u)U ≡ 0 mod [Hs], E(u)S(u)U ≡ 0 mod [Hs],

B(u)E(u)U ≡ 0 mod [Hs], S(u)E(u)U ≡ 0 mod [Hs].

Now we claim that [A(u), E(u)]U ≡ 0 mod [Hs]. To prove this result we estimate separately

the contribution due to EA and the contribution due to ER. Firstly, notice that since ER(u)

is of order −1 and since A(u) is of order 1 we have

A(u)ER(u)U ≡ 0 mod [Hs],

ER(u)A(u)U ≡ 0 mod [Hs],
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which imply that [A(u), ER(u)]U ≡ 0 mod [Hs]. Now we claim that similarly

(3.6.12) A(u)EA(u)U − EA(u)A(u)U ≡ 0 mod [Hs].

This we prove by using symbolic calculus. We need some preparation and introduce Ã(u)

defined by

Ã(u) = A(u)− TV ∂x − TαD.

Directly from the definition of A(u), one can check that Ã(u) is an operator of order 0, so

that

Ã(u)EA(u)U ≡ 0 mod [Hs],

EA(u)Ã(u)U ≡ 0 mod [Hs].

It remains to estimate the commutators of EA(u) with TV ∂x and TαD. Since TV ∂x has a

scalar symbol, it follows from statement i) in Lemma 3.6.2 that

TV ∂x(EA(u)U) ≡ EA(u)TV ∂xU mod [Hs].

To estimate
[
TαD,EA(u)

]
, we use instead the equation (3.6.6) satisfied by EA to obtain:

TαDEA(u)U = Tα

(
EA(u)DU + EA(Du)U +B(u)U

)
.

Since Tα, EA(Du) and B(u) are of order 0 we directly find that

TαEA(Du)U + TαB(u)U ≡ 0 mod [Hs].

Since α is a scalar function, we can apply statement i) in Lemma 3.6.2 to obtain

TαEA(u)DU ≡ EA(u)TαDU mod [Hs].

This proves the claim (3.6.12) which completes the proof of F1 ≡ 0 mod [Hs].

It remains to prove that F2 ≡ 0 mod [Hs] where F2 = E(∂tu+Du)U . This will follow from

the operator norm estimate of E(v) (see (3.6.7) and (3.6.11)) and the estimate of the C3-norm

of ∂tu+Du. The key point is that, since

∂tu+Du =

(
∂tη − |Dx|ψ

|Dx|
1
2 (∂tψ + η)

)

directly from (3.1.1) and the definition of B(η)ψ we have

(3.6.13) ∂tu+Du =

(
G(η)ψ − |Dx|ψ

|Dx|
1
2
(
−1

2(∂xψ)
2 + 1

2(1 + (∂xη)
2)(B(η)ψ)2

)
)
.

Then (2.0.4), (2.6.12) and (A.2.4) imply that

(3.6.14) ‖∂tu+Du‖C3 ≤ C(‖u‖C6) ‖u‖2C6 .

As above mentioned, (3.6.7) and (3.6.11) then imply that F2 ≡ 0 mod [Hs].

This completes the proof of Proposition 3.6.4.
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3.7 Energy estimate

Proposition 3.7.1. Let T > T0 > 0 and fix (s, γ) such that

s > γ +
1

2
> 14, γ 6∈ 1

2
N.

There exists a constant C > 0 such that for any δ > 0, for any N1, there exists ε0 such that for

all ε ∈]0, ε0], for all M1 > 0, if a solution (η, ψ) to (3.1.1) satisfy the following assumptions

i) (η, ψ) ∈ C0
(
[T0, T ];H

s(R)× Ḣ
1
2
,s− 1

2 (R)
)
and ω ∈ C0

(
[T0, T ]; Ḣ

1
2
,s(R)

)
,

ii) for any t ∈ [T0, T ], ‖η(t)‖Cγ +
∥∥|Dx|

1
2 ψ(t)

∥∥
Cγ− 1

2
≤ N1εt

− 1
2 ,

iii) ‖η(T0)‖Hs +
∥∥|Dx|

1
2 ω(T0)

∥∥
Hs

≤M1ε,

then for any t ∈ [T0, T ],

(3.7.1) ‖η(t)‖Hs +
∥∥|Dx|

1
2 ω(t)

∥∥
Hs

≤ CM1εt
δ.

Proof. By using mollifiers and standard arguments, it is sufficient to prove this result under

the additional assumptions that η ∈ C1([T0, T ];H
s+1(R)) and ω ∈ C1([T0, T ]; Ḣ

1
2
,s+1(R)).

Set ̺ = γ − 1/2. Then it is obvious that

N̺(t) := ‖η(t)‖C̺ +
∥∥|Dx|

1
2 ψ(t)

∥∥
C̺ = ‖u(t)‖C̺

≤ ‖η(t)‖Cγ +
∥∥|Dx|

1
2 ψ(t)

∥∥
Cγ− 1

2
.

As already mentioned in the remark made after the statement of Assumption 3.1.1, it follows

from the assumptions ii) and iii) above that, if ε is small enough, then for any t in [T0, T ],

‖∂xη(t)‖Cγ−1 + ‖∂xη(t)‖1/2C−1

∥∥η′(t)
∥∥1/2
H−1 ≤ ε.

Therefore Assumptions 3.1.1 and 3.1.5 are satisfied (we can replace the time interval [0, T ]

by [T0, T ] without causing confusion since the equation (3.1.1) is invariant by translation in

time). Thus we may apply Proposition 3.6.4 which implies that Φ = U +EA(u)U −ER(u)U

satisfies

∂tΦ+DΦ+ (Q(u)−B(u))Φ + (S(u)−S(u))Φ + C(u)Φ = Γ

for some source term Γ such that ‖Γ‖Hs ≤ C(‖u‖C̺) ‖u‖2C̺ ‖U‖Hs . If ‖u‖C̺ is small enough,

it follows from (3.6.7) and (3.6.11) that

(3.7.2)
1

2
‖U‖Hs ≤ ‖Φ‖Hs ≤ 3

2
‖U‖Hs .

Similarly as already seen (cf. (2.1.6)) we have

(3.7.3)
1

2
‖U‖Hs ≤ ‖η‖Hs +

∥∥|Dx|
1
2 ω
∥∥
Hs

≤ 3

2
‖U‖Hs .
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Therefore,

(3.7.4) ‖Γ‖Hs ≤ C(‖u‖C̺) ‖u‖2C̺ ‖Φ‖Hs .

We want to estimate ‖η‖Hs +
∥∥|Dx|

1
2 ω
∥∥
Hs

. In view of (3.7.2) and (3.7.3) it is sufficient to

estimate the L2-norm of Φ̇ = ΛsΦ where Λ = (Id−∆)1/2. This unknown satisfies

(3.7.5) ∂tΦ̇ +DΦ̇ + L(u)Φ̇ + C(u)Φ̇ = Γ′

where

L(u) = Λs(Q(u) −B(u))Λ−s + Λs(S(u)−S(u))Λ−s ,

Γ′ = ΛsΓ +
[
C(u),Λs

]
Φ.

To estimate the L2-norm of Φ̇ we take the L2-scalar product of (3.7.5) with Φ̇. The key point

is that, by definition of B(u) and S(u), we have Re〈L(u)Φ̇, Φ̇〉 = 0 where 〈·, ·〉 is the L2-scalar

product.

We need also to estimate the L2-norm of the term
[
C(u),Λs

]
Φ as well as Re〈C(u)Φ̇, Φ̇〉. Both

estimates rely on the fact that, directly from the definition (3.2.6) of C(u), the estimates

(2.6.22) and (3.1.10) imply that C(u) is a matrix of paradifferential operators whose symbols

are estimated in the symbol class Γ1
1 by C(‖u‖C̺) ‖u‖2C̺ . Therefore it follows from (A.1.8)

that
∥∥[C(u),Λs

]
Φ
∥∥
L2 is bounded by C(‖u‖C̺) ‖u‖2C̺ ‖Φ‖Hs .

On the other hand, it follows from Lemma A.4.6 in Appendix A.4 that

(3.7.6)
∣∣Re〈C(u)Φ̇, Φ̇〉

∣∣ ≤ C(‖u‖C̺) ‖u‖2C̺

∥∥Φ̇
∥∥2
L2 .

Therefore, it follows from (3.7.4) and (3.7.6) that

(3.7.7)
∥∥Φ̇(t)

∥∥2
L2 ≤

∥∥Φ̇(T0)
∥∥2
L2 +

∫ t

T0

C(‖u(τ)‖C̺) ‖u(τ)‖2C̺

∥∥Φ̇(τ)
∥∥2
L2 dτ,

and hence
∥∥Φ̇(t)

∥∥2
L2 ≤

∥∥Φ̇(T0)
∥∥2
L2 +K

∫ t

T0

ε2

τ

∥∥Φ̇(τ)
∥∥2
L2 dτ,

for some constant K depending on the constant N1 which appears in assumption ii). The

Gronwall lemma then yields
∥∥Φ̇(t)

∥∥2
L2 ≤

∥∥Φ̇(T0)
∥∥2
L2t

ε2K .

Since
∥∥Φ̇
∥∥
L2 ∼ ‖η‖Hs +

∥∥|Dx|
1
2 ω
∥∥
Hs

, this gives the asserted estimate (3.7.1).

Remark. Notice that (3.7.7) implies the estimate (1.5) asserted in the introduction, as ex-

plained at the end of Section 3 of the introduction.
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Chapter 4

Commutation of the Z-field with

the equations

We begin the analysis of the Sobolev estimates for ZkU by establishing some identities which

allow us to commute Zk with the equations (recall that Z = t∂t + 2x∂x). This problem

has already been obtained by Wu [54] and Germain-Masmoudi-Shatah in [23]. We shall

prove sharp tame estimates tailored to our purposes. To find the quadratic terms in the

equations satisfied by ZkU , the main difficulty consists in estimating ZkF (η)ψ−ZkF(≤2)(η)ψ,

ZkG(η)ψ − Zk |Dx|ψ, ZkV (η)ψ − Zk∂xψ, Z
kB(η)ψ − Zk |Dx|ψ and Zk(a − 1). These will

be the main goals of this chapter.

The plan of this chapter is as follows. In section 4.1 we compute ZG(η)ψ. We then establish

some identities which allow us to commute the Z field with B(η)ψ, V (η)ψ and F (η)ψ. Next

we estimate the cubic terms.

4.1 Action of the Z-field on the Dirichlet-Neumann operator

The goal of this section is to compute the action of the vector field Z on G(η)ψ. We use the

abbreviated notation

B = B(η)ψ =
G(η)ψ + ∂xη∂xψ

1 + (∂xη)2
, V = V (η)ψ = ∂xψ −B∂xη.

We notice also that the time t plays here the role of a parameter (as soon as we assume we

may take derivatives relatively to it) that will not be written explicitly.

Proposition 4.1.1. Let (η, ψ) be in Cγ×Ḣ 1
2
,1, with γ in ]2,+∞[\1

2N. Assume that ‖η′‖L∞ <

δ, where δ is the constant in i) of Proposition 1.1.6, that Zψ ∈ Ḣ 1
2 , ∂t∂

α
x η, Z(∂

α
x η) ∈ L∞ for
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0 ≤ α ≤ 1, and that Zη is in Cγ−1. Then

(4.1.1) ZG(η)ψ = G(η)
(
Zψ − (B(η)ψ)Zη) − ∂x((Zη)V (η)ψ) +RG(η)ψ

where

RG(η)ψ = 2 [G(η)(ηB(η)ψ) − ηG(η)B(η)ψ] + 2(V (η)ψ)∂xη − 2G(η)ψ.

Let us introduce the following notation, where η′ stands for ∂xη,

(4.1.2)
P = (1 + η′2)∂2z + ∂2x − ∂xη

′∂z − ∂zη
′∂x,

Z = t∂t + 2x∂x + (2z + 2η − (Zη))∂z .

The operator P is the Laplace operator ∂2x + ∂2y written in (x, z)-coordinates (see (1.1.1)).

In the same way, Z is the vector field t∂t + 2(x∂x + y∂y) written in (x, z)-coordinates. As[
∆, t∂t + 2(x∂x + y∂y)

]
= 4∆, we have

(4.1.3) [P,Z] = 4P.

To prove Proposition 4.1.1, we shall show that, under its assumptions, if ϕ is the unique

solution in E to Pϕ = 0, ϕ|z=0 = ψ provided by i) of Proposition 1.1.6, then Zϕ, which

according to (4.1.3) solves P (Zϕ) = 0, belongs to E, so is the unique solution of that elliptic

equation in E with boundary data (Zϕ)|z=0. It follows then from the definition (1.1.41) of

G(η) that

G(η)
(
(Zϕ)|z=0

)
=
[(
(1 + η′2)∂z − η′∂x

)
Zϕ
]

z=0
.

Computing explicitly both sides from ψ, G(η)ψ, B, V , we shall get (4.1.1).

We start proving the regularity properties if Zϕ indicated above.

Lemma 4.1.2. Let (η, ψ) be in Cγ × Ḣ
1
2
,1 (at fixed t), with γ in ]2,+∞[\1

2N and ‖η′‖L∞

small enough. Assume moreover that Zη, ∂tη
′, Zη′ are in L∞ and that ∂tψ, Zψ are in

Ḣ
1
2 (R). Then the unique solution ϕ in the space E of Pϕ = 0, ϕ|z=0 = ψ provided by i) of

Proposition 1.1.6 satisfies ∇x,zϕ ∈ E, Zϕ ∈ E (at fixed t).

Proof. Assume given an action (λ, f) → Mλf of some abelian group Λ on the space of real

valued functions defined on {(t, x, z) ; z < 0}, sending E into E. Assume also that there is

some continuous function λ→ m(λ), R∗
+-valued, such that

∂x
[
Mλf

]
= m(λ)Mλ(∂xf), ∂z

[
Mλf

]
= m(λ)Mλ(∂zf)

and that

Mλ(f1f2) = (Mλf1)(Mλf2), (Mλf)|z=0 =Mλ(f |z=0).
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Let ϕ be a solution in E of Pϕ = 0. Then, using the preceding properties of Mλ,

P (Mλϕ) = m(λ)2Mλ

[(
1 + (M−1

λ η′)2
)
∂2zϕ+ ∂2xϕ

− ∂x
((
M−1
λ η′

)
∂zϕ

)
w − ∂z

((
M−1
λ η′

)
∂xϕ

)]
.

If, in the right hand side, we substitute η′ to M−1
λ η′ (resp. η′2 to

(
M−1
λ η′

)2
), we make appear

Pϕ = 0. Consequently, we may rewrite the preceding relation as

P
(
Mλϕ

)
= ∂zh

λ
1 + ∂xh

λ
2 .

with

hλ1 = m(λ)2Mλ

[((
M−1
λ η′

)2 − η′2
)
∂zϕ−

((
M−1
λ η′

)
− η′

)
∂xϕ

]
,

hλ2 = −m(λ)2Mλ

[((
M−1
λ η′

)
− η′

)
∂zϕ

]
.

Using again that Pϕ = 0 and that Mλ commutes to restriction to z = 0, we obtain finally

P
(
Mλϕ− ϕ

)
= ∂zh

λ
1 + ∂xh

λ
2 ,(

Mλϕ− ϕ
)

z=0 =Mλψ − ψ.

Since ϕ is in E, hλ1 , h
λ
2 are in L2(]−∞, 0[×R). Since η′ is in Cγ−1 and since by the equation

∂2zϕ is in L2(]−∞, 0[;H−1(R)), the same is true for ∂zh
λ
1 . Since moreover, at fixed λ,Mλϕ−ϕ

is in E, we may apply inequality (1.1.11) which implies that

(4.1.4)
∥∥∇x,z

(
Mλϕ− ϕ

)∥∥
L2L2 ≤ C

[∥∥|Dx|
1
2
(
Mλψ − ψ

)∥∥
L2 +

∥∥hλ
∥∥
L2L2

]

with a constant C independent of λ staying in a compact subset of Λ. We apply this inequality

first with Λ = R, Mλ being the action by translation relatively to the x-variable, so that

m(λ) ≡ 1. Then M0 = Id and we get

∥∥|Dx|
1
2
(
Mλψ − ψ

)∥∥
L2 ≤

∥∥|Dx|
1
2 ψ
∥∥
H1 |λ| ,∥∥hλ

∥∥
L2L2 ≤ C ‖∇ϕ‖L2L2 |λ| ,

where, for the second estimate, we used that η′ is lipschitz relatively to x. We deduce from

(4.1.4)

∥∥∇x,z

(
ϕ(t, x + λ, z) − ϕ(t, x, z)

)∥∥
L2
xL

2
z
≤ C |λ|

[∥∥|Dx|
1
2 ψ
∥∥
H1 + ‖∇x,zϕ‖L2L2

]
.

It follows that∇x,z(∂xϕ) is in L
2L2. Using the equation Pϕ = 0, we obtain as well ∂2zϕ ∈ L2L2

so that ∇x,zϕ is in E.

Applying the same reasoning to time translations, we get that ∂tϕ is in E.

Let us prove now that Zϕ belongs to E. Denote Z0 = t∂t+(2x∂x+2z∂z) so that (Z−Z0)ϕ =

(2η− (Zη))∂zϕ is in L2(]−∞, 0[×R) (at fixed t) as well as its (x, z)-gradient by what we just
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saw. This shows that (Z − Z0)ϕ is in E, so that we just need to check that Z0ϕ is in E, so

that ∇x,zZ0ϕ is in L2(] −∞, 0[×R). We use estimate (4.1.4) where Mλ is the action of R∗
+

on functions given by Mλϕ(t, x, z) = ϕ(λt, λ2x, λ2z) and where m(λ) = λ2. Then ∇
(
Mλϕ−ϕ
λ−1

)

converges in the sense of distributions to ∇Z0ϕ when λ goes to 1, and the assumptions

Zψ ∈ Ḣ
1
2 , Zη′ ∈ L∞, ∇ϕ ∈ L2L2 show that, when λ stays in a compact neighborhood of

1, the right hand side of (4.1.4) is bounded from above by C |λ− 1| (Notice that the action

by Mλ on functions of (t, x) has Z as infinitesimal generator). Dividing (4.1.4) by λ− 1, we

conclude that ∇x,z(Z0ϕ) is in L
2(]−∞, 0[×R) as wanted.

Proof of Proposition 4.1.1. We notice first that by the definition (1.1.41) of G(η) and the one

of B, ∂zϕ|z=0 = B(η)ψ, so that

Zϕ|z=0 = Zψ + (2η − (Zη))(B(η)ψ).

As G(η)ψ is in H1/2 as a function of x by Proposition 2.3.1, we see that under the assumptions

of the statement, B belongs toH1/2(R), so that Zϕ|z=0 is in Ḣ
1/2. Moreover, by Lemma 4.1.2,

Zϕ is in E. By uniqueness of solutions in E to P (Zϕ) = 0, Zϕ|z=0 ∈ Ḣ1/2 given by

Proposition 1.1.6, we deduce that

(4.1.5) G(η)
[
Zψ + (2η − (Zη))B

]
=
[
(1 + η′2)∂z(Zϕ)− η′∂x(Zϕ)

]z=0.

Let us deduce (4.1.1) from this equality. From the definition (4.1.2) of Z we get

∂z
(
Zϕ
)
= Z(∂zϕ) + 2∂zϕ+ (2z + 2η − (Zη))∂2zϕ.

Multiplying by (1 + η′2) and using that Pϕ = 0 to express the ∂2zϕ term, we get

(1 + η′2)∂z(Zϕ) = (1 + η′2)Z(∂zϕ) + 2(1 + η′2)∂zϕ

+ (2z + 2η − (Zη))
[
∂x(η

′∂zϕ− ∂xϕ) + ∂z(η
′∂xϕ)

]
.

We compute from that expression the right hand side of (4.1.5) remembering that ∂zϕ|z=0 = B

and that V = (∂xϕ− η′∂zϕ)|z=0.

We obtain

(4.1.6)

G(η)
[
Zψ + (2η − (Zη))B

]
= (1 + η′2)ZB + 2(1 + η′2)B

+ (2η − (Zη))
[
−∂xV + η′∂xB

]

− η′∂x
[
Zψ + (2η − (Zη))B

]
.

We are left with transforming this expression into (4.1.1). We notice first that ∂zϕ satisfies

P (∂zϕ) = 0, ∂zϕ|z=0 = B and that by Lemma 4.1.2, ∂zϕ is in E, while B has been seen

to belong to Ḣ
1
2 . We may thus apply again the uniqueness result of Proposition 1.1.6 to

conclude that

G(η)B =
[(
(1 + η′2)∂z − η′∂x

)
(∂zϕ)

]z=0.
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Expressing in the right hand side of this equality (1 + η′2)∂2zϕ from the equation Pϕ = 0, we

get

(4.1.7) G(η)B = −∂xV.

Using that formula, and, by definition of B

(1 + η′2)B = G(η)ψ + η′(∂xψ)

we rewrite (4.1.6) after simplifications as

G(η)
[
Zψ −B(Zη)

]
= Z

[
G(η)ψ

]
+ 2
[
ηG(η)B −G(η)(ηB)

]

+ 2G(η)ψ + (Zη)(∂xV ) + (Zη′)(∂xψ − η′B).

Expressing in the last term ∂xψ from V + B(∂xη), by definition of V , we get (4.1.1). This

concludes the proof.

4.2 Other identities

Next we notice that properties of ZB(η)ψ and ZV (η)ψ can be deduced using B(η)ψ −
(V (η)ψ)∂xη = G(η)ψ and the previous calculation result for ZG(η)ψ. The conclusion is

given by the following lemma.

Lemma 4.2.1. Use the same notations and assumptions as in Proposition 4.1.1. Then

ZB(η)ψ = B(η)
(
Zψ − (B(η)ψ)Zη

)
+RB(η)ψ,(4.2.1)

ZV (η)ψ = V (η)
(
Zψ − (B(η)ψ)Zη

)
+RV (η)ψ,(4.2.2)

with

RB(η)ψ =
1

1 + (∂xη)2

[
− 4(V (η)ψ)∂xη +

(
(∂xη)(∂xB(η)ψ) − (∂xV (η)ψ)

)
Zη
]

(4.2.3)

+
1

1 + (∂xη)2
RG(η)ψ,

and

(4.2.4) RV (η)ψ = −(RB(η)ψ)∂xη + (∂xB(η)ψ)Zη − 2V (η)ψ,

where recall that RG(η)ψ is given by (4.1.1).

Proof. We abbreviate B = B(η)ψ, V = V (η)ψ and RG = RG(η)ψ.

Starting from B − V ∂xη = G(η)ψ, we have

ZB − (ZV )∂xη − V Z∂xη = ZG(η)ψ.
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Since ZV = Z(∂xψ −B∂xη), we have

ZB − (ZV )∂xη = (1 + (∂xη)
2)ZB − (Z∂xψ)∂xη +B∂xηZ∂xη,

so

(1 + (∂xη)
2)ZB = ZG(η)ψ + (Z∂xψ)∂xη −B∂xηZ∂xη + V Z∂xη.

Now, according to the identity (4.1.1) for ZG(η)ψ, we obtain

(1 + (∂xη)
2)ZB = G(η)(Zψ −BZη)− ∂x((Zη)V ) +RG

+ (Z∂xψ)∂xη −B∂xηZ∂xη + V Z∂xη.

Then, it is a simple calculation using Z∂x = ∂xZ − 2∂x to verify that

(1 + (∂xη)
2)ZB = G(η)(Zψ −BZη)− Zη∂xV +RG

+ V (−2∂xη) + ∂xη∂xZψ − 2∂xη∂xψ

−B∂xη∂xZη + 2B(∂xη)
2

so

(1 + (∂xη)
2)ZB = G(η)(Zψ −BZη)− Zη∂xV +RG

+ ∂xη∂x(Zψ −BZη) + (∂xη)(∂xB)Zη

− 2V ∂xη − 2∂xψ∂xη + 2B(∂xη)
2.

On the other hand, by definition of B(η), we have

B(η)(Zψ −BZη) =
1

1 + (∂xη)2

(
G(η)(Zψ −BZη) + ∂xη∂x(Zψ −BZη)

)
.

Thus, we obtain that RB(η)ψ is given by

1

1 + (∂xη)2

[
− Zη∂xV +RG + ∂xη(∂xB)Zη − 2V ∂xη − 2∂xψ∂xη + 2B(∂xη)

2
]
.

Since

−2∂xψ∂xη + 2B(∂xη)
2 = −2(∂xψ −B∂xη)∂xη = −2V ∂xη

by definition of V , this yields the desired result (4.2.1).

It remains to prove (4.2.2). Starting from V = ∂xψ −B∂xη, we have

ZV = Z(∂xψ −B∂xη)

= ∂xZψ − 2∂xψ − (ZB)∂xη −BZ∂xη

= ∂xZψ − 2∂xψ − (ZB)∂xη −B∂xZη + 2B∂xη

= ∂x(Zψ −BZη) + (∂xB)Zη − (ZB)∂xη − 2V.

Since

V (η)(Zψ −BZη) = ∂x(Zψ −BZη)−
(
B(η)(Zψ −BZη)

)
∂xη,

the desired result follows from (4.2.1).
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The previous identities have been stated in a way which is convenient to compute ZF (η)ψ.

Our last identity is about ZF (η)ψ where recall that

F (η)ψ = G(η)ψ −
(
|Dx|

(
ψ − TB(η)ψη

)
− ∂x(TV (η)ψη)

)
.

Lemma 4.2.2. Use the same notations and assumptions as in Proposition 4.1.1. There holds

ZF (η)ψ = F (η)
(
Zψ − (B(η)ψ)Zη

)
− 2F (η)ψ

− |Dx|TZηB(η)ψ − ∂x
(
TZηV (η)ψ

)

− |Dx|RB(B(η)ψ,Zη) − ∂xRB(Zη, V (η)ψ)

+ 2G(η)(ηB(η)ψ) − 2ηG(η)B(η)ψ

+ |Dx|TRB(η)ψη + 2(V (η)ψ)∂xη + ∂x(TRV (η)ψη)

+ 2 |Dx|SB(B(η)ψ, η) + 2∂xSB(V (η)ψ, η),

where SB is given by (3.4.14); RB and RV are given by (4.2.3) and (4.2.4) and RB(a, b) =

ab− Tab− Tba.

Proof. We write simply A instead of A(η)ψ for A ∈ {B,V,RG, RB , RV }.

Recall that

ZG(η)ψ = G(η)(Zψ −BZη)− ∂x((Zη)V ) +RG,

with

RG = 2 [G(η)(ηB) − ηG(η)B] + 2V ∂xη − 2G(η)ψ.

Consequently,

ZF (η)ψ = G(η)(Zψ −BZη)− ∂x((Zη)V ) +RG − Z |Dx|
(
ψ − TBη

)
+ Z∂x(TV η).

We shall study the terms separately.

Start with Z |Dx|
(
ψ − TBη

)
. Since Z |Dx| = |Dx|Z − 2 |Dx|, we have

Z |Dx|
(
ψ − TBη

)
= |Dx|Z(ψ − TBη

)
− 2 |Dx| (ψ − TBη

)
,

By using the following consequence of (3.4.14):

(4.2.5) Z(Tab) = TZab+ TaZb+ 2SB(a, b),

we find that

Z |Dx|
(
ψ − TBη

)
= |Dx| (Zψ − TBZη

)
− |Dx|TZBη − 2 |Dx| (ψ − TBη

)

− 2 |Dx|SB(B, η).

Now set

C := B(η)(Zψ −BZη), W := V (η)(Zψ −BZη),
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to obtain, by definition of F (η),

G(η)(Zψ −BZη) = |Dx| (Zψ −BZη − TCη)− ∂x(TW η) + F (η)(Zψ −BZη).

Writing |Dx| (Zψ −BZη) under the form

|Dx| (Zψ −BZη) = |Dx| (Zψ − TBZη)− |Dx| (TZηB)− |Dx|RB(B,Zη),

and combining the previous identities, we conclude

(4.2.6)

ZF (η)ψ = − |Dx| (TZηB)− ∂x((Zη)V )

+ 2 |Dx| (ψ − TBη
)
− 2G(η)ψ

+ 2 [G(η)(ηB) − ηG(η)B]

+ |Dx|TZBη + 2V ∂xη − |Dx|TCη − ∂x(TW η) + Z∂x(TV η)

− |Dx|RB(B,Zη) + 2 |Dx|SB(B, η) + F (η)(Zψ −BZη).

To simplify this expression, we use three facts. Firstly, by definition of F (η), we have

2 |Dx| (ψ − TBη
)
− 2G(η)ψ = 2∂x(TV η)− 2F (η)ψ.

Secondly, we paralinearize the product (Zη)V to obtain

∂x((Zη)V ) = ∂x(TZηV + TV Zη +RB(Zη, V ))

= TZη∂xV + T∂xZηV + ∂x(TV Zη) + ∂xRB(Zη, V ).

Thirdly, since Z∂x − ∂xZ = −2∂x, (4.2.5) implies that

Z∂x(TV η) + 2∂x(TV η)− ∂x(TV Zη) = ∂x(TZV η) + 2∂xSB(V, η).

Now substitute the above relations into (4.2.6) and simplify. We conclude that

ZF (η)ψ = − |Dx|TZηB − ∂x(TZηV )

+ 2G(η)(ηB) − 2ηG(η)B + |Dx|TZB−Cη + 2V ∂xη + ∂x(TZV−Wη)

− |Dx|RB(B,Zη)− ∂xRB(Zη, V ) + 2 |Dx|SB(B, η) + 2∂xSB(V, η)

− 2F (η)ψ + F (η)(Zψ −BZη).

The desired result then follows from (4.2.1) and (4.2.2).

4.3 Estimates for the action of iterated vector fields

In this section, we shall estimate the action of iterated vector fields Z on the Dirichlet-

Neumann operator G(η), and on related operators. We shall express these actions in terms

of convenient classes of multilinear operators.
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We denote by E the algebra of operators generated by the operators of multiplication by

analytic functions (η, η′) → a(η, η′) (defined on a neighborhood of zero), by the operators

(4.3.1) G(η) |Dx|−
1
2 〈Dx〉−

1
2 , B(η) |Dx|−

1
2 〈Dx〉−

1
2 , V (η) |Dx|−

1
2 〈Dx〉−

1
2 , b0(Dx)

where b0(Dx) is any Fourier multiplier, continuous, smooth outside zero, and satisfying esti-

mates
∣∣∂αξ b0(ξ)

∣∣ = O
(
|ξ|c−α〈ξ〉−c

)
for some c > 0 or |∂αξ b0(ξ)| = O

(
〈ξ〉−α

)
. Notice that all

these operators are of order zero i.e. if η is in Cγ and if µ ≥ 0 is such that γ > µ+ 3
2 , the first

of these operators acts from Hµ to Hµ by Proposition 1.1.6. By the definition (2.0.1) of B(η)

and V (η), the same holds true for the second and third one. By Corollary 1.1.8 we have also

boundedness from Cγ−1 to itself.

We denote by Ẽ the right ideal of E given by these elements of E that may be written as linear

combinations of G(η) |Dx|−
1
2 〈Dx〉−

1
2E and b0(Dx)E where E is in E and b0(Dx) is a Fourier

multiplier as above, with c ≥ 1/2.

Definition 4.3.1. Let p ∈ N, q ∈ Z, p + q ≥ 0, N ∈ N. One denotes by Cpq [N ] the vector

space generated by operators of the form

(4.3.2) E0 ◦
[(
Zp1bq1(Dx)a1

)
E1

]
◦
[(
Zp2bq2(Dx)a2

)
E2

]
◦ · · · ◦

[(
ZpN′ bqN′ (Dx)aN ′

)
EN ′

]

where N ′ ≥ N , bj(Dx), j = 1, . . . , N ′, is a smooth Fourier multiplier of order qj, Ej is in E
for 1 ≤ j ≤ N ′, aj is some analytic function of (η, η′) vanishing at (η, η′) = (0, 0), and the

integers pj, qj satisfy the inequalities

(4.3.3)

N ′∑

r=1

(pr + qr) ≤ p+ q,

N ′∑

r=1

pr ≤ p, pr + qr ≥ 0, qr ≥ −1, r = 1, . . . , N ′.

We set Cpq for Cpq [0]. We denote by C̃pq [N ] the subspace of Cpq [N ] generated by operators of

the form (4.3.2) where E0 is in Ẽ.

We study first the composition of an element of Cpq [N ] and of (∂x, Z)-derivatives.

Proposition 4.3.2. Let C be an element of Cpq [N ], ℓ, k be in N. There are elements Cij,h of

Cp+k−iq+ℓ−h−j [N ] for i+ j ≤ k, h ≤ ℓ, i, j, h in N such that

(4.3.4) ∂ℓxZ
kC =

∑

i+j≤k
h≤ℓ

Cij,h∂
j+h
x Zi.

Moreover, if C is in C̃pq [N ], then Cij,h is in C̃p+k−iq+ℓ−h−j [N ].

We consider first the case when ℓ+ k = 1 and C is in E .
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Lemma 4.3.3. Let E be in E. Then

(4.3.5)
ZE = EZ + C1

0 + C1
−1∂x,

∂xE = E∂x + C0
1

where Cpq are in Cpq . If E is in Ẽ, the first equality holds with Cpq in C̃pq .

Proof. Consider the case when E = G(η) |Dx|−
1
2 〈Dx〉−

1
2 ∈ Ẽ . Writing G(η) = E |Dx|

1
2 〈Dx〉

1
2

and decomposing |Dx|
1
2 〈Dx〉

1
2 = b′0(Dx) + b′′0(Dx)∂x where b′0, b

′′
0 are symbols satisfying the

same conditions as b0 in (4.3.1), with b′′0 = 0 close to zero, we may write

(4.3.6) G(η) = E′ + E′′∂x

with E′, E′′ in Ẽ . Write

(4.3.7) [Z,E] = [Z,G(η)] |Dx|−
1
2 〈Dx〉−

1
2 + Eb0(Dx)

for some Fourier multiplier b0(Dx) as in (4.3.1), and express [Z,G(η)] using (4.1.1) and the

fact that G(η)B = −∂xV i.e.

(4.3.8)

[
Z,G(η)

]
ψ̃ = −G(η)

(
(Zη)B(η)ψ̃

)
− ∂x

(
(Zη)V (η)ψ̃

)

+ 2G(η)
(
ηB(η)ψ̃

)
+ 2∂x

(
ηV (η)ψ̃

)
− 2G(η)ψ̃.

If we express ψ̃ = |Dx|−
1
2 〈Dx〉−

1
2ψ and use (4.3.6), (4.3.7), we see finally that [Z,E]ψ may

be written from expression

(4.3.9)
Ẽ0∂x

(
(Zη)E0ψ

)
, Ẽ0

(
(Zη)E0ψ

)
,

Ẽ0∂x(E0ψ), Ẽ0ψ,

where Ẽ0 is in Ẽ and E0 is in E .

Since, on the other hand

(4.3.10)

[
∂x, G(η)

]
= 2η′η′′B(η)− η′′∂x,

[∂x, B(η)] = − 2η′η′′

(1 + η′2)2
G(η) +

η′′(1− η′2)
(1 + η′2)2

∂x +
1

1 + η′2
[∂x, G(η)],

[∂x, V (η)] = −η′[∂x, B(η)] − η′′B(η),

we see that, if E0 is in E , [∂x, E0] may be written as a linear combination of quantities

E′
0, ∂x

(
a(η, η′)

)
E′

0

with E′
0 in E , so that the second equality in (4.3.5) holds.
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Plugging this information in (4.3.9), we see finally that [Z,E]ψ is a linear combination of

quantities of the following type

(4.3.11)

Ẽ0

(
(Zη)E′

0∂xψ
)
, Ẽ0(∂xψ),

Ẽ0

(
(∂xZη)E

′
0ψ
)
, Ẽ0

(
(Zη)(∂xa)E

′
0ψ
)
,

Ẽ0

(
(Zη)E′

0ψ
)
, Ẽ0

(
(∂xa)E

′
0ψ
)
, Ẽ0ψ,

where a is some analytic function of (η, η′), Ẽ0 is in Ẽ and E′
0 is in E . We may write η in the

above formulas as η = b′0(Dx)η + b′′0(Dx)η
′ where b′0, b

′′
0 are Fourier multipliers of order −1.

It follows then from Definition 4.3.1 that the quantities on the first line of (4.3.11) may be

written C1
−1∂xψ with C1

−1 in C̃1
−1. Those one the second and third lines are of the form C1

0

with C1
0 in C̃1

0 . This gives the first formula in (4.3.5) when E = G(η) |Dx|−
1
2 〈Dx〉−

1
2 . If E is

the operator b0(Dx) in (4.3.1), the same conclusion holds.

Consider next the case when E = B(η) |Dx|−
1
2 〈Dx〉−

1
2 or E = V (η) |Dx|−

1
2 〈Dx〉−

1
2 . We may

express B(η), V (η) from G(η) and explicit quantities, which shows that [Z,E] may still be

written from expressions (4.3.11), but with Ẽ0 in E instead of Ẽ . We thus get an expression

C1
0 + C1

−1∂x, with C
p
q in Cpq .

We have thus shown both equalities (4.3.5) when E is any of the expressions (4.3.1). If E is

a general element of E , the conclusion follows by composition.

Remark. If E is in Ẽ , the expressions obtained above for [∂x, G(η)], [∂x, B(η)], [∂x, V (η)]

show that [∂x, E] will not be in C̃0
0 in general. Nevertheless we may write

∂xE = ∂xχ(Dx)E + (1− χ)(Dx)E∂x + (1− χ)(Dx)[∂x, E]

which shows that

(4.3.12) ∂xE = E′∂x + E′′

with E′, E′′ in Ẽ .

Proof of Proposition 4.3.2. We notice first that it follows from Definition 4.3.1 that, by con-

catenation of expressions (4.3.2), Cpq [N ] ◦ Cp′q′ [N ′] ⊂ Cp+p′q+q′ [N +N ′]. Let us prove that

(4.3.13)

[
∂x, Cpq [N ]

]
⊂ Cpq+1 [N ] ,

[
Z, Cpq [N ]

]
⊂ Cp+1

q [N ] + Cp+1
q−1 [N ] ◦ ∂x.

It is enough to consider operators of the form (4.3.2) and to argue by induction on N ′. If

N ′ = 0, we just get an element E0 of E , with p = q = 0, and the conclusion follows from

(4.3.5). Assume that the conclusion has been proved with N ′ replaced by N ′ − 1 in (4.3.2)

and for any p, q with p + q ≥ 0. We may write (4.3.2) as E0 ◦
((
Zp1bq1(Dx)a1

)
◦ C
)
where
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C is an element of Cp−p1q−q1 which is the product of N ′ − 1 factors, so to which the induction

assumption applies. We write
[
Z,E0 ◦

(
Zp1bq1(Dx)a1

)
◦ C
]
=
[
Z,E0

]
◦
(
Zp1bq1(Dx)a1

)
◦ C

+ E0 ◦
(
Zp1+1bq1(Dx)a1

)
◦ C +E0 ◦

(
Zp1bq1(Dx)a1

)
◦ [Z,C].

The assumption of induction implies that the last two terms belong to Cp+1
q + Cp+1

q−1 ◦ ∂x. By
(4.3.5), the first term in the right hand side may be written

C1
0 ◦
(
Zp1bq1(Dx)a1

)
◦ C + C1

−1 ◦
(
∂xZ

p1bq1(Dx)a1
)
◦ C

+
(
Zp1bq1(Dx)a1

)
◦ [∂x, C] +

(
Zp1bq1(Dx)a1

)
◦ C ◦ ∂x.

By the assumption of induction, the composition rule and (4.3.5), the first three terms belong

to Cp+1
q . The last term is in Cpq ◦ ∂x ⊂ Cp+1

q−1 ◦ ∂x. This gives the second inclusion in (4.3.13).

The proof of the first inclusion (4.3.13) is similar. Formula (4.3.4) follows then by induction,

using (4.3.13) and the fact that [Z, ∂x] = −2∂x.

We shall use the preceding results to obtain bounds for the action of vector fields on operator

of the form G(η), B(η), . . . Let us define some norms.

Definition 4.3.4. Given T > 0, n ∈ N and σ ∈ [0,+∞[, one denotes by Cn,σ([0, T ] × R)

(resp. Hn,σ([0, T ] × R)) the space of functions f : [0, T ] × R → C such that for any integer

p in [0, n], one has Zpf ∈ C0([0, T ];Cσ+n−p(R)) (resp. Zpf ∈ C0([0, T ];Hσ+n−p(R))). One

uses the notations

‖f(t)‖n,σ =

n∑

p=0

‖Zpf(t)‖Cσ+n−p(R) , ‖f‖n,σ = sup
t∈[0,T ]

‖f(t)‖n,σ ,

|f(t)|n,σ =

n∑

p=0

‖Zpf(t)‖Hσ+n−p(R) , |f |n,σ = sup
t∈[0,T ]

|f(t)|n,σ .

We shall use the variants Ċ
1
2
,n,σ([0, T ]×R) (resp. Ḣ

1
2
,n,σ([0, T ]×R)) for the spaces defined as

above, but with Cσ+n−p(R) (resp. Hσ+n−p(R)) replaced by Ċ
1
2
,σ+n−p(R) (resp. Ḣ

1
2
,σ+n−p(R)).

The norms on these spaces are
∥∥|Dx|

1
2 f
∥∥
n,σ

(resp.
∣∣|Dx|

1
2 f
∣∣
n,σ

).

We gather here some elementary estimates which follow from the definition of ‖·‖n,σ.

Lemma 4.3.5. Consider (n, σ1) ∈ N2 and σ ∈ [0,+∞[.

i) For any f ∈ Cn+σ1,σ([0, T ] × R),

(4.3.14) ‖f‖n,σ1+σ ≤ ‖f‖n+σ1,σ .

ii) There exists a constant c such that for any f, g in Cn,σ([0, T ] × R),

(4.3.15) ‖fg‖n,σ ≤ c ‖f‖n,σ ‖g‖n,σ .
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iii) For any F ∈ C∞(RN ) satisfying F (0) = 0, there exists a nondecreasing function C : R+ →
R+ such that for any f ∈ Cn,σ([0, T ] × R)N , one has

(4.3.16) ‖F (f)‖n,σ ≤ C(‖f‖n,σ) ‖f‖n,σ .

The bounds involving the preceding norms that we shall obtain below will be deduced from

estimates for the action of an element of Cpq on a function given in the following lemma.

Lemma 4.3.6. Let γ ∈]2,+∞[\1
2N, µ

′ ∈ [0, 1[.

i) Take ℓ, k′, p,N in N, q in Z with p+ q ≥ 0 and C an element of Cpq [N ]. For any N ′ ≥ N ,

any integer h with 0 ≤ h ≤ ℓ, any i′, j′ with i′ + j′ ≤ k′ define,

(4.3.17)

I(N ′, h, i′, j′) =
{
(p1, . . . , pN ′ , q1, . . . , qN ′) ∈ N

N ′ × Z
N ′

;

N ′∑

r=1

(pr + qr) + (i′ + j′ + h) ≤ p+ q + k′ + ℓ

N ′∑

r=1

pr + i′ ≤ p+ k′

pr + qr ≥ 0, qr ≥ −1, r = 1, . . . , N ′
}
.

For I an element of I(N ′, h, i′, j′) and (η, ψ̃) two functions, smooth enough so that the norms

below are finite, set MI,2(η, ψ̃) for the minimum of the following quantities

(4.3.18)

N ′∏

r=1

∥∥Zpr〈Dx〉qrη
∥∥
Cγ

∥∥∂j′+hx Zi
′

ψ̃
∥∥
Hµ′

( ∏

r 6=r′

∥∥Zpr〈Dx〉qrη
∥∥
Cγ

)∥∥Zpr′ 〈Dx〉qr′η
∥∥
Hµ′+1

∥∥∂j′+hx Zi
′

ψ̃
∥∥
Cγ−1 , 1 ≤ r′ ≤ r.

Then

(4.3.19)
∥∥∂ℓxZk

′

Cψ̃
∥∥
Hµ′ ≤ C(η)

∑

N ′≥N
finite

∑

h≤ℓ
i′+j′≤k′

∑

I∈I(N ′,h,i′,j′)

MI,2(η, ψ̃)

where the first sum is finite and where C(η) depends only on ‖η‖Cγ . If σ′ is a real number

with 0 < σ′ < 1, σ′ 6= 1
2 , if we define MI,∞(η, ψ̃) by the minimum of the quantities obtained

replacing Hµ′ by Cσ
′

and Hµ′+1 by Cσ
′+1 in (4.3.18) we have also

(4.3.20)
∥∥∂ℓxZk

′

Cψ̃
∥∥
Cσ′ ≤ C(η)

∑

N ′≥N
finite

∑

k≤ℓ
i′+j′≤k′

∑

I∈I(N ′,h,i′,j′)

MI,∞(η, ψ̃).
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ii) Assume that C is in C̃pq [N ]. Then
∥∥∂ℓxZk

′ |Dx|−
1
2 Cψ̃

∥∥
Hµ′− 1

2
is bounded from above by the

right hand side of (4.3.19) and, for any θ > 0,
∥∥∂ℓxZk

′ |Dx|−
1
2
+θ Cψ̃

∥∥
Cσ′− 1

2+θ is bounded from

above by the right hand side of (4.3.20).

Proof. i) Apply (4.3.4) to write

(4.3.21) ∂ℓxZ
k′Cψ̃ =

∑

i′+j′≤k′
h≤ℓ

Ci
′

j′,h∂
j′+h
x Zi

′

ψ̃

with Ci
′

j′,h ∈ Cp+k′−i′q+ℓ−h−j′ [N ]. Let us bound

∥∥Ci′j′,h∂j
′+h
x Zi

′

ψ̃
∥∥
Hµ′ .

By Definition 4.3.1, Ci
′

j′,h may be written from expressions of the form (4.3.2) with N ′ ≥ N

and with the indices (p1, . . . , pN ′ ; q1, . . . , qN ′) satisfying inequalities (4.3.17). Since γ > µ′+ 3
2 ,

the operators E0, . . . , EN ′ in (4.3.2) are bounded in Hµ′ and in Cγ−1 (see Proposition 1.1.6

and Corollary 1.1.8). Moreover, by property (A.1.21) of the appendix, we have the estimate

‖bv‖Hµ′ . ‖b‖Cγ−1 ‖v‖Hµ′ . We apply this to bound the action of (4.3.2) on ∂j
′+h
x Zi

′
ψ̃. If we

estimate the Zprbqr(Dx)ar terms in Cγ−1 and ∂j
′+h
x Zi

′
ψ̃ in Hµ′ , we get a bound by

(4.3.22) C(η)
N ′∏

r=1

∥∥Zprbqr(Dx)ar
∥∥
Cγ−1

∥∥∂j′+hx Zi
′

ψ
∥∥
Hµ′ .

On the other hand, if we estimate the Zpr′ 〈Dx〉qr′ar′-factor in Hµ′ and the other ones in Cγ−1,

we get as well a bound

(4.3.23) C(η)
∏

1≤r≤N ′

r 6=r′

∥∥Zprbqr(Dx)ar
∥∥
Cγ−1

∥∥Zpr′ bqr′ (Dx)ar′
∥∥
Hµ′

∥∥∂j′+hx Zi
′

ψ
∥∥
Cγ−1

with a constant C(η) depending only on ‖η‖Cγ . Let us remark that we have the estimates

∥∥Zprbqr(Dx)ar
∥∥
Cγ−1 ≤ C(η)

∑

pr1+···+prℓ≤pr∑
(prj+qrj )≤pr+qr

prj+qrj≥0, qrj≥−1

ℓ∏

j=1

∥∥Zprj 〈Dx〉qrj η
∥∥
Cγ

∥∥Zprbqr(Dx)ar
∥∥
Hµ′ ≤ C(η)

∑

pr1+···+prℓ≤pr∑
(prj+qrj )≤pr+qr

prj+qrj≥0, qrj≥−1

min
1≤j′≤ℓ

∏

1≤j≤ℓ
j 6=j′

∥∥Zprj 〈Dx〉qrj η
∥∥
Cγ

×
∥∥Zprj′ 〈Dx〉qrj′ η

∥∥
Hµ′+1 .

(4.3.24)

Actually, we notice first that [Z, bqr(Dx)] = b̃qr(Dx) for another symbol of the same order

as bqr . Consequently, we may as well estimate the norm of bqr(Dx)Z
p′rar for p′r ≤ pr. if
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qr ≥ 0, we are reduced to estimating
∥∥∂q

′
r
x Zp

′
rar
∥∥
Cγ−1 and

∥∥∂q
′
r
x Zp

′
rar
∥∥
Hµ′ for q

′
r ≤ qr, p

′
r ≤ pr.

Since ar is an analytic function of η, η′, we express the quantities inside the norm as a

sum of expressions ãr(η, η
′)
(
∂
q′1
x Z

p′r1 η̃
)
·
(
∂
q′rℓ
x Zp

′
rℓ η̃
)
where ãr is some new analytic function,

q′1+· · ·+q′rℓ ≤ q′r, p
′
1+· · ·+p′rℓ ≤ p′r, and η̃ = η or η′. Using that Cγ−1 is an algebra, we obtain

the first estimate. The second one follows from the inequality ‖ab‖Hµ′ ≤ C ‖a‖Cγ−1 ‖b‖Hµ′

which holds since γ − 1 > µ′ ≥ 0.

Consider now the case qr = −1, so that pr ≥ 1 and we have to estimate
∥∥Zprar

∥∥
Cγ−2 and∥∥Zprar

∥∥
Hµ′−1 . As C

γ−2 is also an algebra, the first estimate (4.3.24) follows. The second is a

consequence of the inclusions Cγ−1 ·Hµ′−1 ⊂ Hµ′−1 and Cγ−2 ·Hµ′ ⊂ Hµ′−1 which are true

since γ > 2 > µ′ + 1.

We plug estimates (4.3.24) in (4.3.22), (4.3.23) and obtain the bound (4.3.18). The inequalities

(4.3.17) follow from (4.3.3), where we replace (p, q) by (p + k′ − i′, q + ℓ − h − j′) and from

the conditions on the indices in the right hand side of (4.3.24). Estimate (4.3.20) is obtained

in the same way.

ii) If we cut-off C for non zero frequencies, then the estimate follows from i). Consequently,

we have to study
∥∥Zk′ |Dx|−

1
2 χ(Dx)Cψ̃

∥∥
L2 and

∥∥Zk′ |Dx|−
1
2
+θ χ(Dx)Cψ̃

∥∥
L∞ , where χ is in

C∞
0 (R), χ ≡ 1 close to zero. By (4.3.21), and the fact that [Z,χ(Dx)] = χ1(Dx) for some

C∞
0 (R \ {0}) function χ1, we are reduced to the study of |Dx|−

1
2
+θ χ(Dx)C

i′

j′∂
j′
x Zi

′

ψ̃, where

according to the last statement in Proposition 4.3.2, we may assume that Ci
′

j′ belongs to

C̃p+k′−i′q−j′ [N ]. This means that this operator may be written as a linear combination of ex-

pressions (4.3.2), with N ′ ≥ N , indices (p1, . . . , pN ′ , q1, . . . , qN ′) satisfying (4.3.3) and E0 in

Ẽ , i.e. E0 = G(η) |Dx|−
1
2 〈Dx〉−

1
2E or E0 = b0(Dx)E, where E is in E and b0(Dx) is a Fourier

multiplier homogeneous of degree larger or equal to 1/2 close to zero. It follows from Propo-

sition 1.1.6 that |Dx|−
1
2 χ(Dx)E0 is bounded on L2 and |Dx|−

1
2
+θ χ(Dx)E0 is bounded on

Hölder spaces if θ > 0. Consequently, estimates (4.3.22), (4.3.23) still hold for the building

blocks of |Dx|−
1
2 χ(Dx)C

i′

j′∂
j′
x Zi

′
ψ̃, which gives the wanted Sobolev estimate. The case of the

Hölder bound is similar for |Dx|−
1
2
+θ χ(Dx)C

i′

j′∂
j′
x Zi

′
ψ̃, θ > 0.

We may prove now the main result of this section, which gives estimates for the action of Zk

on G(η)ψ, B(η)ψ, V (η)ψ.

Proposition 4.3.7. Let γ, γ0 be given in ]0,+∞[\1
2N with γ ≥ γ0 > 2 and let s0, s1, s be

integers satisfying

s ≥ s1 ≥ s0 ≥
1

2
(s + 2γ − 1).

Let k be in N∗, µ in R+ with µ + k ≤ s − 1. Let (ψ, η) be in Eγ and in Ḣ
1
2
,k,µ+ 1

2 ×Hk,µ+1,

smooth enough so that the norms in the inequality below are all finite. Let A(η) be one of the

operators G(η), B(η), V (η). There is a non increasing function C(·) such that, for any (η, ψ)
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as above

(4.3.25)

∥∥(ZkA(η)−A(η)(Z − 2)k
)
ψ
∥∥
Hµ

≤ 1R+(µ + k − s0 + γ0)C
(
‖η‖Cγ

)∥∥|Dx|
1
2 ψ
∥∥
Cγ

∥∥Zkη
∥∥
Hµ+1

+ C
(
‖η‖k̄,s0−k̄

)
‖η‖k̄,s0−k̄

∣∣|Dx|
1
2 ψ
∣∣
k−1,µ+ 3

2

+ C
(
‖η‖k̄,s0−k̄

)∥∥|Dx|
1
2 ψ
∥∥
min(µ+k−s0+γ0,k),γ

|η|k−1,µ+2

+ 1R∗
+

(
[µ]− (γ − γ0)

)
C
(
‖η‖k̄,s0−k̄

)∥∥|Dx|
1
2 ψ
∥∥
min(µ+k−s0+γ0,k),γ

|η|k,µ

where we have denoted by ‖·‖∗,∗, |·|∗,∗ the norms defined in Definition 4.3.4, 1R+ is the indi-

cator function of R+,
∥∥|Dx|

1
2 ψ
∥∥
µ+k−s0−γ0,γ should be understood as zero if µ+k− s0+γ0 < 0

and where k̄ = min(k, s0).

Remark. The key properties in (4.3.25) is the fact that the terms involving kZ-derivatives

of η in the right hand side are multiplied by specific factors, well tailored for the induction

argument that will be used in section 4.5 and in Chapter 5.

Proof. Let us show first that

(4.3.26)
(
ZkA(η)−A(η)(Z − 2)k

)
ψ =

∑

i≤k−1
i+j≤k

Cij∂
j
xZ

i |Dx|
1
2 〈Dx〉

1
2ψ

where Cij belongs to Ck−i−j [1].

Consider first the case k = 1, A(η) = G(η). Then

(
ZG(η)−G(η)(Z − 2)

)
ψ =

(
[Z,G(η)] + 2G(η)

)
ψ

may be computed from (4.3.8) as a sum of expressions of type

Ẽ0∂x

[(
Zαη

)
E0 |Dx|

1
2 〈Dx〉

1
2ψ
]
, Ẽ0

[(
Zαη

)
E0 |Dx|

1
2 〈Dx〉

1
2ψ
]

with E0, Ẽ0 in E , α = 0, 1. This, together with the second commutation relation (4.3.5) shows

that
[
ZG(η)−G(η)(Z − 2)

]
ψ may be written as C0

0 |Dx|
1
2 〈Dx〉

1
2ψ+C0

1∂x |Dx|
1
2 〈Dx〉

1
2ψ with

C0
0 in C1

0 [1], C
0
1 in C1

−1 [1]. If now A(η) is equal to B(η) = (1+η′2)−1G(η)+η′(1+η′2)−1∂x, we

see that
[
ZA(η)−A(η)(Z − 2)

]
ψ is the sum of the product of the right hand side of (4.3.26)

with k = 1 by (1 + η′2)−1, which is still of the same form, and of the quantities

−2(1 + η′2)−2η′(Zη′)G(η)ψ, Z
(
η′(1 + η′2)−1

)
∂xψ

which may be written as C0
0 |Dx|

1
2 〈Dx〉

1
2ψ for some C0

0 in C1
0 [1]. Consequently, (4.3.26) with

k = 1 holds as well when A(η) = B(η). The same conclusion holds for V (η) = ∂x − η′B(η)
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since Z∂x − ∂x(Z − 2) = 0. We have thus proved (4.3.26) when k = 1. Let us prove that this

equality holds for any k by induction. We write from (4.3.26)

(
Zk+1A(η)−A(η)(Z − 2)k+1

)
ψ =

∑

i≤k−1
i+j≤k

ZCij∂
j
xZ

i
(
|Dx|

1
2 〈Dx〉

1
2ψ
)

+
(
ZA(η)−A(η)(Z − 2)

)
(Z − 2)kψ.

It follows from (4.3.4) with k = 1, ℓ = 0, that the first sum is of the form of the right hand

side of (4.3.26) with k replaced by (k + 1). Moreover, the last term may be written

(
C0
1∂x + C0

0

)
|Dx|

1
2 〈Dx〉

1
2 (Z − 2)kψ

with C0
1 in C1

−1, C
0
0 in C1

0 . Commuting |Dx|
1
2 〈Dx〉

1
2 to the powers of (Z − 2), we see that we

get again a contribution of the wanted form.

We may now prove (4.3.25). We write µ = [µ] + µ′ with µ′ ∈ [0, 1[. According to (4.3.26), we

have to bound for any ℓ = 0, . . . , [µ],

(4.3.27)
∥∥∂ℓxCij∂jxZi |Dx|

1
2 〈Dx〉

1
2ψ
∥∥
Hµ′

where i ≤ k − 1, i+ j ≤ k, Cij in Ck−i−j [1]. We apply estimate (4.3.19) with γ replaced by γ0,

k′ = 0, p = k − i, q = −j, N ≥ 1, ψ̃ = ∂jxZi |Dx|
1
2 〈Dx〉

1
2ψ.

We obtain a bound in terms of a sum for N ′ ≥ 1, h ≤ ℓ of the minimum of quantities (4.3.18)

where we set j′ = i′ = 0 i.e.

N ′∏

r=1

∥∥Zpr〈Dx〉qrη
∥∥
Cγ0

∥∥∂h+jx Zi |Dx|
1
2 〈Dx〉

1
2ψ
∥∥
Hµ′ ,(4.3.28)

(∏

r 6=r′

∥∥Zpr〈Dx〉qrη
∥∥
Cγ0

)∥∥Zpr′ 〈Dx〉qr′η
∥∥
Hµ′+1

∥∥∂h+jx Zi |Dx|
1
2 〈Dx〉

1
2ψ
∥∥
Cγ0−1 ,(4.3.29)

where the indices have to obey the restrictions deduced from (4.3.17), namely

(4.3.30)

N ′∑

r=1

(pr + qr) + (i+ j + h) ≤ k + ℓ

N ′∑

r=1

pr + i ≤ k

pr + qr ≥ 0, qr ≥ −1, r = 1, . . . , N ′.

To finish the proof of estimate (4.3.25) we have to bound (4.3.27) by one of the four terms I,

II, III, IV of the right hand side of (4.3.25). We distinguish several cases.

Case 1: For any r = 1, . . . , N ′, pr + qr ≤ s0 − γ0.
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In this case, we use (4.3.28). Since pr ≤ k, we may bound
∥∥Zpr〈Dx〉qrη

∥∥
Cγ0

by ‖η‖k̄,s0−k̄.
Moreover, since the exponent i in (4.3.27) is smaller than k − 1, and since (4.3.30) implies

i+ j + h ≤ k+ l ≤ k+ [µ], the last factor in (4.3.28) is bounded by
∣∣|Dx|

1
2 ψ
∣∣
k−1,µ+ 3

2
. We see

that we obtain a bound by II.

From now on we may assume that there is some r, say r = 1, with p1 + q1 > s0 − γ0. Notice

that (4.3.30) implies then that for r > 1

(4.3.31) pr + qr ≤ k + ℓ− p1 − q1 < k + [µ]− (s0 − γ0) ≤ s0 − γ0

where the last inequality follows from the assumptions k + µ ≤ s − 1 and the inequalities

between s and s0.

Case 2: p1 = k and j + h ≤ γ − γ0, qr ≤ γ − γ0, r > 1.

Since p1 = k, the second inequality (4.3.30) implies that i = 0, pr = 0 for r > 1. We use

the bound (4.3.29) with r′ = 1. For r > 1, we estimate
∥∥Zpr〈Dx〉qrη

∥∥
Cγ0

=
∥∥〈Dx〉qrη

∥∥
Cγ0

≤
‖η‖Cγ according to the assumption on qr. In the same way

∥∥∂j+hx |Dx|
1
2 〈Dx〉

1
2ψ
∥∥
Cγ0−1 is

bounded from
∥∥|Dx|

1
2 ψ
∥∥
Cγ− 1

2
. If we notice that

∥∥Zp1〈Dx〉q1η
∥∥
Hµ′+1 ≤

∥∥Zkη
∥∥
Hµ+1 , using

that the first relation (4.3.30) implies q1 ≤ ℓ ≤ [µ], we conclude that we obtain a bound by I.

The cut-off for k + µ− s0 + γ0 ≥ 0 comes from the fact that by (4.3.30) and our assumption

on p1, q1, we have s0 − γ0 < p1 + q1 ≤ [µ] + k.

Case 3: p1 = k and either j + h > γ − γ0 or there is r > 1 with pr + qr > γ − γ0.

We notice that, as p1 = k, inequalities (4.3.30) implies qr ≤ [µ] for any r and j + h ≤ [µ].

The assumptions of this case imply that γ − γ0 < [µ] so that the cut-off condition in the

term IV in the right hand side of (4.3.25) holds. We notice also that q1 < [µ]: if not, the

first inequality (4.3.30) and p1 = k, would imply that j + h = 0 and qr = 0 for r > 1,

which would contradict the assumptions of this case. It follows that, in (4.3.29) with r′ = 1,∥∥Zp1〈Dx〉q1η
∥∥
Hµ′+1 ≤ |η|k,µ. Moreover using (4.3.31), we estimate for r > 1

∥∥Zpr〈Dx〉qrη
∥∥
Cγ0

by ‖η‖k̄,s0−k̄. Finally, since (4.3.30) implies that

i+ j + h ≤ k + ℓ− (p1 + q1) ≤ k + [µ]− (s0 − γ0)

taking into account the assumption made after the conclusion of case 1, we may bound∥∥∂h+jx Zi |Dx|
1
2 〈Dx〉

1
2ψ
∥∥
Cγ0−1 by

∥∥|Dx|
1
2 ψ
∥∥
min(k+[µ]−s0+γ0,k),γ0− 1

2
. We obtain a contribution

to the term IV in (4.3.25).

Case 4: p1 < k.

We use (4.3.29) with r′ = 1. As above, the last factor in this inequality is bounded from

above by
∥∥|Dx|

1
2 ψ
∥∥
min(k+[µ]−s0+γ0,k),γ0− 1

2
and for r > 1,

∥∥Zpr〈Dx〉qrη
∥∥
Cγ0

. ‖η‖k̄,s0−k̄. Since
(4.3.30) implies p1 + q1 ≤ [µ] + k and since p1 < k,

∥∥Zp1〈Dx〉q1η
∥∥
Hµ′+1 is smaller than

|η|k−1,µ+2. We thus get a contribution to term III in (4.3.25).
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This concludes the proof.

Corollary 4.3.8. Under the assumptions of Proposition 4.3.7 and if moreover γ ≥ 4

(4.3.32)

∣∣(A(η) −A(0)
)
ψ
)∣∣
k,µ

≤ C
(
‖η‖Cγ

)
‖η‖Cγ

∥∥|Dx|
1
2 Zkψ

∥∥
Hµ+1

2

+ 1R∗
+
([µ]− (γ − γ0))C

(
‖η‖

s0,0

)
‖η‖

s0,0

∣∣|Dx|
1
2 ψ
∣∣
k,µ− 1

2

+ 1R+(µ+ k − s0 + γ0)C
(
‖η‖Cγ

)∥∥|Dx|
1
2 ψ
∥∥
Cγ

∥∥Zkη
∥∥
Hµ+1

+ C
(
‖η‖

s0,0

)
‖η‖

s0,0

∣∣|Dx|
1
2 ψ
∣∣
k−1,µ+ 3

2

+ C
(
‖η‖

s0,0

)∥∥|Dx|
1
2 ψ
∥∥
µ+k−s0+γ0,γ

|η|k−1,µ+2

+ 1R∗
+
([µ]− (γ − γ0))C

(
‖η‖

s0,0

)∥∥|Dx|
1
2 ψ
∥∥
µ+k−s0+γ0,γ

|η|k,µ .

Proof. We have to bound
∥∥Zk(A(η) − A(0))ψ

∥∥
Hµ . Since A(0) = |Dx| if A = G or B and

V (0) = ∂x, we have ZkA(0) = A(0)(Z − 2)k. It follows that Zk(A(η) − A(0)) − (A(η) −
A(0))(Z − 2)k is estimated by (4.3.25). We just need to study

(4.3.33)
∥∥(A(η) −A(0))(Z − 2)kψ

∥∥
Hµ .

Assume first that µ ≥ s0 − γ0. When A(η) = G(η), apply (2.5.1) with (µ, s) replaced by

(µ+ 1, µ + 1) and γ replaced by γ0. We obtain a bound by

C
(
‖η‖Cγ0

)[∥∥|Dx|
1
2 (Z − 2)kψ

∥∥
Cγ0−

1
2
‖η‖Hµ+1 + ‖η‖Cγ0

∥∥|Dx|
1
2 (Z − 2)kψ

∥∥
Hµ− 1

2

]
.

The last term is bounded from above by the contributions I + II of the right hand side of

(4.3.32). The first term may be controlled by V since k ≤ µ + k − s0 + γ0 because of our

assumption on µ. When A(η) = B(η) or V (η), we argue in the same way applying (2.5.6)

with (µ, s) replaced by (µ+ 1/2, µ + 1).

Assume now that µ < s0 − γ0. Set ψ̃ = (Z − 2)kψ. We want to estimate for 0 ≤ ℓ ≤ [µ]

∥∥∂ℓx
(
A(η)−A(0)

)
ψ̃
∥∥
Hµ′ ≤

∥∥(A(η)−A(0)
)
∂ℓxψ̃

∥∥
Hµ′ +

∥∥[∂ℓx, A(η)
]
ψ̃
∥∥
Hµ′

with µ′ = µ− [µ]. The first term in the right hand side may be estimated when A(η) = G(η)

from (2.7.4) since µ′ ≤ γ − 3 for γ ≥ 4, so by I + IV . If A = B or V , the bound follows from

the one of G, the expressions of B, V in terms of G and the law product Cγ−1 ·Hµ′ ⊂ Hµ′ .

Consider now the second term. According to (4.3.10),
[
∂ℓx, A(η)

]
ψ̃ is a linear combination of

quantities of the form

a(η′)L
(
∂ℓ1x η

′, . . . , ∂ℓNx η′
)
Ã(η)∂

ℓN+1
x ψ̃

where N ∈ N∗, ℓj ∈ N with ℓ1+ · · ·+ ℓN+1 = ℓ ≤ [µ], ℓ1+ · · ·+ ℓN > 0, L is a multilinear form

in its arguments, Ã(η) is taken among G(η), B(η), ∂x, and a(η
′) is some analytic functions
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of η′. Using again the product law Cγ−1 ·Hµ′ ⊂ Hµ′ , we bound the Hµ′-norm of the above

expression by

C
(∥∥η′

∥∥
Cγ0−1+[µ]

)∥∥η′
∥∥
Cγ0−1+[µ]

∥∥Ã(η)∂ℓN+1
x (Z − 2)kψ

∥∥
Hµ′ .

We use that ℓN+1 ≤ [µ]− 1 and (1.1.16) to estimate the last factor by
∣∣|Dx|

1
2 ψ
∣∣
k,µ− 1

2
. Since

γ0 + [µ] < s0, we see that we obtain finally a bound by term II in the right hand side of

(4.3.32) when [µ] > γ − γ0. If [µ] ≤ γ − γ0, we use instead the bound provided by I and IV ,

remembering that we are in the case µ < s0 − γ0. This concludes the proof.

Next we state a corollary of the previous estimate under a form which is convenient for later

purposes.

Proposition 4.3.9. i) Under the assumptions of Proposition 4.3.7 and if moreover γ ≥ 4

(4.3.34)

∣∣A(η)ψ
∣∣
k,µ

≤ C
(
‖η‖Cγ

)∥∥|Dx|
1
2 Zkψ

∥∥
Hµ+1

2

+ 1R∗
+
([µ]− (γ − γ0))C

(
‖η‖

s0,0

)
‖η‖

s0,0

∣∣|Dx|
1
2 ψ
∣∣
k,µ− 1

2

+ 1R+(µ+ k − s0 + γ0)C
(
‖η‖Cγ

)∥∥|Dx|
1
2 ψ
∥∥
Cγ

∥∥Zkη
∥∥
Hµ+1

+ C
(
‖η‖

s0,0

)∣∣|Dx|
1
2 ψ
∣∣
k−1,µ+ 3

2

+ C
(
‖η‖

s0,0

)∥∥|Dx|
1
2 ψ
∥∥
µ+k−s0+γ0,γ

|η|k−1,µ+2

+ 1R∗
+
([µ]− (γ − γ0))C

(
‖η‖

s0,0

)∥∥|Dx|
1
2 ψ
∥∥
µ+k−s0+γ0,γ

|η|k,µ .

ii) Under the assumptions of Proposition 4.3.7 and if moreover γ ≥ 4

(4.3.35)
∣∣A(η)ψ

∣∣
k,µ

≤ C
∣∣|Dx|

1
2 ψ
∣∣
k,µ+ 1

2
+ C

∥∥|Dx|
1
2 ψ
∥∥
µ+k−s0+γ0,γ

|η|k,µ+1 ,

where C = C(‖η‖
s0,0

).

Proof. The first inequality follows from (4.3.32) and the triangle inequality and the second

inequality follows from (4.3.34) and the definitions of the norms ‖·‖∗;∗ and |·|∗,∗.

Remark 4.3.10. The key point is that, in the right-hand side of (4.3.34), (4.3.35) when say

k ∼ s, the factors estimated in Hölder norms contain at most s/2 + Cst Z-derivatives.

The method of proof used above provides as well Hölder estimates.

Proposition 4.3.11. Let γ ∈ N with γ ≥ 4. There exists ε0 > 0 such that for all integer

k ∈ [0, γ − 4] and all numbers σ in ]3, γ − k], σ 6∈ 1
2N, there exists an increasing function
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C : R+ → R+ such that, for all T > 0, all ψ in Ċ
1
2
,k,σ+ 1

2 ([0, T ]×R) and all η in Ck,σ+1([0, T ]×
R) ∩ C0,γ+1([0, T ] × R) satisfying supt∈[1,T ] ‖η(t)‖Cγ+1 ≤ ε0, one has

(4.3.36)
∥∥ZkA(η)ψ −A(η)(Z − 2)kψ

∥∥
Cσ ≤ C

(
‖η‖k,σ+1

)
‖η‖k,σ+1

∥∥|Dx|
1
2 ψ
∥∥
k−1,σ+ 3

2

and

(4.3.37) ‖A(η)ψ‖k,σ ≤ C
(
‖η‖k,σ+1

)∥∥|Dx|
1
2 ψ
∥∥
k,σ+ 1

2

for any A ∈ {G,B, V }.

Proof. Write σ = [σ] + σ′ with σ′ ∈]0, 1[. From expression (4.3.26), we see that it is enough

to bound for ℓ = 0, . . . , [σ] ∥∥∂ℓxCij∂jxZi |Dx|
1
2 〈Dx〉

1
2ψ
∥∥
Cσ

with i ≤ k − 1, i + j ≤ k, Cij in Ck−i−j [1]. We apply estimate (4.3.20) with γ replaced by γ0,

γ0 > 2 close to 2, k′ = 0, p = k − i, q = −j, ψ̃ = ∂jxZi |Dx|
1
2 〈Dx〉

1
2ψ. We obtain a bound in

terms of the minimum of the quantities

(4.3.38)

N ′∏

r=1

∥∥Zpr〈Dx〉qrη
∥∥
Cγ0

∥∥∂h+jx Zi |Dx|
1
2 〈Dx〉

1
2ψ
∥∥
Cσ′ ,

( ∏

r 6=r′

∥∥Zpr〈Dx〉qrη
∥∥
Cγ0

)∥∥Zpr′ 〈Dx〉qr′η
∥∥
Cσ′+1

∥∥∂h+jx Zi |Dx|
1
2 〈Dx〉

1
2ψ
∥∥
Cγ0−1 ,

where the exponents satisfy (4.3.30).

If for r = 1, . . . , N ′ we have pr + qr + γ0 ≤ σ + 1, we use the first bound. Since h+ j + i ≤
k + ℓ ≤ k + [σ] and i ≤ k − 1, we get the wanted inequality (4.3.36).

If for some r′, for instance r′ = 1, p1 + q1 + γ0 > σ + 1, then for all r ≥ 2

pr + qr ≤ k + ℓ+ γ0 − σ − 1 ≤ k + γ0 − 1 ≤ k + σ + 1− γ0

since, taking γ0 close enough to 2, we may assume 2γ0 ≤ σ + 2. Similarly, i + j + h ≤
k+σ+1−γ0. We use the second bound (4.3.38) with r′ = 1. Since p1+q1 ≤ k+ℓ ≤ k+[σ] and

i ≤ k− 1, we obtain (4.3.36). Estimate (4.3.37) follows from (4.3.36) and Corollary 1.1.8.

The second objective of this section is to obtain estimates for the remainder in the Taylor

development at zero of η → G(η).

Let us introduce a notation: if Z denotes the couple (Z, ∂x), and if k is in N, we set Zk for

the family (Zk
′

∂k
′′

x u)k′+k′′≤k.
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Proposition 4.3.12. Let m be in N, m ≥ 3. There is a positive constant α such that

the following holds: For any family (Aj(η))1≤j≤m of operators with A2(η), . . . , Am(η) taken

among a(η, η′)G(η), a(η, η′)B(η), a(η, η′)V (η), a(η, η′)∂x, where a is an analytic function of

(η, η′) vanishing at zero and such that A1(η) = G(η) or ∂x, for any k ∈ N, any d ∈ N, for

any u = |Dx|
1
2 ψ + iη such that supt∈[0,T ]

∥∥Zku(t, ·)
∥∥
Cd+α and supt∈[0,T ]

∥∥Zku(t, ·)
∥∥
Hd+α are

finite, the following estimates for R0(η) := |Dx|−
1
2 A1(η) ◦ · · · ◦ Am(η) holds

(4.3.39)

∥∥ZkR0(η)ψ
∥∥
Hd ≤ C[u]

∑

k1+···+k4≤k
k1,k2,k3≤k4

3∏

j=1

∥∥Zkju
∥∥
Cd+α

∥∥Zk4u
∥∥
Hd+α ,

∥∥Zk |Dx|θ R0(η)ψ
∥∥
Cd ≤ C[u]

∑

k1+···+k4≤k

4∏

j=1

∥∥Zkju
∥∥
Cd+α (θ > 0)

where C[u] depends only on
∥∥Z(k−1)+u

∥∥
Cd+α for the first estimate, and on

∥∥Z(k−1)+u
∥∥
Cd+α

and on a bound for
∥∥η′
∥∥1−2θ′

H−1

∥∥η′
∥∥2θ′
C−1 for some θ′ ∈]0, θ[ for the second one.

Proof. We may write each of the operators Aj under the form Aj(η) = Ej(η) |Dx|
1
2 〈Dx〉

1
2

with Ej in E and E1 in Ẽ . For j = 1, . . . ,m − 1, we decompose Aj(η) = E′
j(η)∂x + E′′

j (η),

with E′
j , E

′′
j in E , and in Ẽ if j = 1. Then

A1(η) ◦ · · · ◦ Am(η) =
m−1∏

j=1

(
E′
j(η)∂x + E′′

j (η)
)
Em(η) |Dx|

1
2 〈Dx〉

1
2 .

Using the second commutation relation (4.3.5) and the fact that E′
1, E

′′
1 are in C̃0

0 and E′
j , E

′′
j ,

j = 2, . . . ,m− 1, Em are in C0
0 [1], we see that A1(η) ◦ · · · ◦Am(η) may be written as a linear

combination of operators C(η)∂ℓ
′

x |Dx|
1
2 〈Dx〉

1
2 where ℓ′ ≤ m− 1 and C is in C̃0

m−1−ℓ′ [m− 1].

We have to estimate, in order to study the first inequality (4.3.39),
∥∥Zk′ |Dx|−

1
2 A1(η) ◦ · · · ◦

Am(η)ψ
∥∥
Hd+k′′ for any decomposition k = k′ + k′′, so to bound for ℓ = 0, . . . , d+ k′′,

∥∥∂ℓxZk
′ |Dx|−

1
2 C(η)ψ̃

∥∥
L2

where ψ̃ = ∂ℓ
′

x |Dx|
1
2 〈Dx〉

1
2ψ. By ii) of Lemma 4.3.6 (applied with µ′ = 1

2), we may bound

this by the right hand side of (4.3.19) i.e. by a finite sum indexed by N ′ ≥ m− 1 ≥ 3, i′, j′

with i′ + j′ ≤ k′ and h ≤ ℓ, of the minimum between the quantities (4.3.18), namely

(4.3.40)

N ′∏

r=1

∥∥Zpr〈Dx〉qrη
∥∥
Cγ

∥∥∂j′+hx Zi
′

∂ℓ
′

x |Dx|
1
2 〈Dx〉

1
2ψ
∥∥
H

1
2

( ∏

r 6=r′

∥∥Zpr〈Dx〉qrη
∥∥
Cγ

)∥∥Zpr′ 〈Dx〉qr′η
∥∥
H

3
2

∥∥∂j′+hx Zi
′

∂ℓ
′

x |Dx|
1
2 〈Dx〉

1
2

∥∥
Cγ−1 ,
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where the exponents satisfy the following inequalities

(4.3.41)

N ′∑

r=1

(pr + qr) + (i′ + j′ + ℓ′ + h) ≤ m− 1 + k′ + ℓ

∑
pr + i′ ≤ k′,

pr + qr ≥ 0, qr ≥ −1.

Set p0 = i′, q0 = j′ + h+ ℓ′, and for r = 0, . . . , N ′, kr = pr + (qr − d−m− 2)+. Then

(4.3.42)

∥∥Zpr〈Dx〉qrη
∥∥
Cγ ≤

∥∥Zkru
∥∥
Cd+α

∥∥∂j′+hx Zi
′

∂ℓ
′

x |Dx|
1
2 〈Dx〉

1
2ψ
∥∥
H

1
2
≤
∥∥Zk0u

∥∥
Hd+α

∥∥Zpr〈Dx〉qrη
∥∥
H

3
2
≤
∥∥Zkru

∥∥
Hd+α

∥∥∂j′+hx Zi
′

∂ℓ
′

x |Dx|
1
2 〈Dx〉

1
2ψ
∥∥
Cγ−1 ≤

∥∥Zk0u
∥∥
Cd+α.

for some α depending only on γ and m. We notice that if qr < d+m+ 2, kr = pr ≤ k′ ≤ k

and if qr ≥ d+m+ 2, kr = pr + qr − d−m− 2 ≤ k − 3 by (4.3.41). We check similarly that

k0 ≤ k. Moreover, there is at most one r for which kr = k. In the expressions (4.3.40), we use

(4.3.42) to bound N ′ − 3 factors by
∥∥Zkru

∥∥
Cd+α , choosing those r for which kr ≤ (k − 1)+,

so by
∥∥Z(k−1)+u

∥∥
Cd+α. We use the first (resp. the second) estimate (4.3.40) when the largest

kr is obtained for r = 0 (resp. r = r′). Taking (4.3.42) into account, we obtain in all cases a

bound

C
(∥∥Zk−1u

∥∥
Cd+α

) 3∏

r=1

∥∥Zkru
∥∥
C+α

∥∥Zk4u
∥∥
Hd+α

with k1, k2, k3 ≤ k4, after renumbering of the kj ’s. It follows from (4.3.41) that
∑4

1(pr+qr) ≤
m − 1 + k + d and

∑4
1 pr ≤ k. The last inequality implies

∑4
1 kr ≤ k if qr − d −m − 2 ≤ 0

for r = 1, . . . , 4. If there is at least one r for which qr − d − m − 2 > 0 we get
∑4

1 kr ≤∑4
1(pr + qr)− d−m+ 1 ≤ k. We have obtained the conditions on the summation indices in

the first inequality. The second inequality is proved in the same way.

Let us now state and prove corollaries of the preceding results that will be used in the rest of

this paper. We take for α the constant given by Proposition 4.3.12 when m = 3. We take s0

an integer. We assume that we are given (η, ψ) and d ∈ R+ with η ∈ Hs0,d+α∩Cs0,d+α and ψ

in Ḣ
1
2
,s0,d+α ∩ Ċ 1

2
,s0,d+α. Then u = |Dx|

1
2 ψ + iη will satisfy, on the interval [T0, T ] on which

it is defined, for any k ≤ s0,

sup
[T0,T [

∥∥Zku(t, ·)
∥∥
Hd+α < +∞, sup

[T0,T ]

∥∥Zku(t, ·)
∥∥
Cd+α < +∞.

Corollary 4.3.13. Assume that (η, ψ) is a solution of the water waves system (1.2.1), satis-

fying the above smoothness properties. Then u = |Dx|
1
2 ψ + iη satisfies the equation

(4.3.43) Dtu = |Dx|
1
2 u+ Q̃0(U) + C̃0(U) + R̃0(U)
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where U = (u, u) and

Q̃0(U) = − i

8
|Dx|

1
2

[(
Dx |Dx|−

1
2 (u+ ū)

)2
+
(
|Dx|

1
2 (u+ ū)

)2]

+
i

4
|Dx|

(
(u− ū) |Dx|

1
2 (u+ ū)

)
− i

4
Dx

(
(u− ū)Dx |Dx|−

1
2 (u+ ū)

)
,

C̃0(U) stands for the cubic contribution

C̃0(U) =
1

8
|Dx|

1
2

[(
|Dx|

1
2 (u+ ū)

)
|Dx|

(
(u− ū) |Dx|

1
2 (u+ ū)

)]

− 1

8
|Dx|

1
2

[(
|Dx|

1
2 (u+ ū)

(
(u− ū) |Dx|

3
2 (u+ ū)

)]

− 1

8
|Dx|

[
(u− ū) |Dx|

(
(u− ū) |Dx|

1
2 (u+ ū)

)]

+
1

16
|Dx|

[
(u− ū)2 |Dx|

3
2 (u+ ū)

]

+
1

16
|Dx|2

[
(u− ū)2 |Dx|

1
2 (u+ ū)

]

Moreover, the remainder R̃0(U) satisfies the following bounds: one may write R̃0(U) =

|Dx|
1
2 R̃′

0(U), where for any k ≤ s0

(4.3.44)
∥∥ZkR̃′

0(U)
∥∥
Hd ≤ Ck[u]

∑

k1+···+k4≤k
k1,k2,k3≤k4

3∏

j=1

∥∥Zkju
∥∥
Cd+α

∥∥Zk4u
∥∥
Hd+α

with a constant Ck[u] depending only on
∥∥Z(k−1)+u

∥∥
Cd+α. Moreover, for θ > 0 small, we get

also Hölder estimates

(4.3.45)
∥∥Zk |Dx|θ R̃′

0(U)
∥∥
Cd ≤ Ck[u]

∑

k1+···+k4≤k

4∏

j=1

∥∥Zkju
∥∥
Cd+α

where Ck[u] depends only on
∥∥Z(k−1)+u

∥∥
Cd+α and on a bound for

∥∥η′
∥∥1−2θ′

H−1

∥∥η′
∥∥2θ′
C−1 for some

θ′ ∈]0, θ[.

Proof. We apply formula (2.6.11) with n = 2. We get

(4.3.46) G(η)ψ =

2∑

k=0

1

k!
g(k)(0) +

∫ 1

0

(λ− 1)2

2
g(3)(λ) dλ

where g(λ) = G(λη)ψ. We have seen that g(3)(λ) has the structure given by formula (2.6.9)

i.e. the structure of the expressions considered in Proposition 4.3.12 (up to an extra uniform

dependence on the parameter λ ∈ [0, 1]). By Proposition 4.3.12 the integrated term in (4.3.46)

may thus be written R̃1
0(U) = |Dx|

1
2 R̃

′1
0 , with R̃

′1
0 satisfying the inequalities of the statement.
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Let us study the Taylor expansion in (4.3.46). The expressions of g(0), g′(0), g′′(0) obtained
page 68 show that

∂tη = G(η)ψ = |Dx|ψ − |Dx| (η |Dx|ψ)− ∂x(η∂xψ)

+ |Dx| (η(|Dx| (η |Dx|ψ))) +
1

2
|Dx| (η2∂2xψ) +

1

2
∂2x(η

2 |Dx|ψ)

+ |Dx|
1
2 R̃

′1
0 .

The second equation in (1.2.1) implies, when combined with the above expansion of G(η)ψ,

that

∂tψ = −η − 1

2
(∂xψ)

2 +
1

2
(|Dx|ψ)2 − (|Dx|ψ)

[
|Dx| (η |Dx|ψ) + η∂2xψ

]

+ a(η′)P
[
η′, G(η)ψ, η′∂xψ, |Dx|ψ, |Dx| (η |Dx|ψ), η∂2xψ,C3(η, ψ), |Dx|

1
2 R̃

′1
0

]

where P is a polynomial, sum of components that are homogeneous at least of degree 4 and

C3 is the cubic term in the expansion of G(η)ψ, and where a is some analytic function of η′.

Since we have seen that R̃
′1
0 satisfies (4.3.44), (4.3.45), Leibniz formula shows that the last term

in the above equation satisfies similar bounds, replacing eventually α by some larger value.

Computing from the above expressions ∂tu, we get (4.3.43). This concludes the proof.

4.4 Nonlinear estimates

Our next goal is to estimate the action of Zk on various remainder terms. This task is quite

technical and requires some preparation. We gather here various estimates which are exten-

sively used in the sequel. Namely, we estimate |ζF |K,ν, |TζF |K,ν, |TF ζ|K,ν and |RB(ζ, F )|K,ν.

Recall that, for any real number s ≥ 0,

‖ζF‖Hs . ‖ζ‖L∞ ‖F‖Hs + ‖F‖L∞ ‖ζ‖Hs ,

‖ζF‖Hs . ‖ζ‖Cs+1 ‖F‖Hs .

We need similar estimates for |ζF |K,ν . We shall prove that, for any s ≥ 2 and any (K, ν) ∈
N× [0,+∞[ such that ν +K ≤ s − 2, there holds

|ζF |K,ν . ‖ζ‖ s

2
,0 |F |K,ν + ‖F‖ s

2
,0 |ζ|K,ν ,(4.4.1)

|ζF |K,ν . ‖ζ‖
s+1,0 |F |K,ν .(4.4.2)

These estimates can be deduced from the following result: for any real number m ∈ [0,+∞[

and any (K, ν) ∈ N× [0,+∞[,

(4.4.3) |ζF |K,ν . ‖ζ‖m,0 |F |K,ν + ‖F‖ν+K−m+2,0 |ζ|K,ν ,
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where we use the convention that ‖F‖ν+K−m+2,0 = 0 for ν + K − m + 2 < 0. Indeed, by

applying (4.4.3) with m = s/2 (resp. m = s+1) one recovers (4.4.1) (resp. (4.4.2)). Moreover,

(4.4.3) is convenient to prove estimate by induction on K since

‖ZF‖ν+K−m+2,0 ≤ ‖F‖ν+(K+1)−m+2,0 .

We begin by proving estimates similar to (4.4.3) for |TζF |K,ν, |TF ζ|K,ν and |RB(ζ, F )|K,ν as

well as for SB(ζ, F ) where SB is defined by (3.4.14).

Recall that the notations ‖·‖r,σ and |·|r,ν are defined for any real number r (see Notation 4.5.1)

so that ‖·‖r,σ ≡ 0 and |·|r,ν ≡ 0 for r < 0.

Proposition 4.4.1. Consider m ∈ R, K ∈ N and ν ∈]0,+∞[. Below one uses the conven-

tions that

(4.4.4) ‖ζ‖m,0 = 0 for m < 0, ‖F‖ν+K−m+1,0 = 0 for ν +K −m+ 1 < 0.

(i) There exists a positive constant c such that,

(4.4.5) |TζF |K,ν ≤ c ‖ζ‖m,0 |F |K,ν + c ‖F‖ν+K−m+1,0 |ζ|K,0 .

(ii) There exists a positive constant c such that,

(4.4.6) |TF ζ|K,ν ≤ c ‖ζ‖m,0 |F |K,0 + c ‖F‖ν+K−m+1,0 |ζ|K,ν .

(iii) For any a in [0,+∞[ there exists a positive constant c such that,

(4.4.7) |RB(ζ, F )|K,ν+a ≤ c ‖ζ‖m,a |F |K,ν + c ‖F‖K−m,a |ζ|K,ν .

(iv) Let SB(a, b) = OpB[a,R]b with R = −2ξ · ∇θ where θ is given by Definition A.1.2. Then

for any a in [0,+∞[ there exists a positive constant c such that,

(4.4.8) |SB(ζ, F )|K,ν+a ≤ c ‖ζ‖m,a |F |K,ν + c ‖F‖K−m,a |ζ|K,ν .

Proof. Let us prove statement (i). By definition

|TζF |K,ν =
K∑

ℓ=0

∥∥ZℓTζF
∥∥
Hν+K−ℓ .

It follows from (3.4.14) that one can write Zℓ(TζF ) as a linear combination of terms of the

form T (n3)(Zn1ζ)Zn2F where n1 + n2 + n3 ≤ ℓ and where we used the following notation:

T (n)(v)f = OpB[v, (−2ξ·∇)nθ]f where θ = θ(ξ1, ξ2) is the cutoff function used in the definition

of paradifferential operators (see Definition A.1.2), ξ ·∇ = ξ1∂ξ1 +ξ2∂ξ2 and where OpB[v,A]f
is as defined in §3.4 (so that T (0)(a)b is the paraproduct Tab).
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We thus have to prove that, for any ℓ ≤ K and any (n1, n2, n3) ∈ N3 such that n1+n2+n3 ≤ ℓ,

(4.4.9)
∥∥T (n3)(Zn1ζ)Zn2F

∥∥
Hν+K−ℓ . ‖ζ‖m,0 |F |K,ν + c ‖F‖ν+K−m+1,0 |ζ|K,0 .

Notice that, for any n ∈ N, T (n)(v)f satisfies the same estimates as Tvf does. For n = 0

this is obvious since T (0)(v) = Tv. For n > 0, with the notation of Proposition 3.4.4, one

has (−2ξ · ∇)nθ ∈ SR0
reg (the condition (3.4.4) is satisfied since 〈ξ1〉 ∼ 〈ξ2〉 on the support

of ∇ξθ). Then Proposition 3.4.4 implies that, for any σ ∈]0,+∞[ and any real numbers ρ, ρ′

such that ρ′ > ρ > 0,

∥∥T (n)(v)f
∥∥
Hσ . ‖v‖L∞ ‖f‖Hσ ,(4.4.10)

∥∥T (n)(v)f
∥∥
Hρ ≤ K ‖v‖L2 ‖f‖Cρ′ .(4.4.11)

For n = 0, these estimates follow from the paraproduct rules (A.1.12) and (A.1.20).

We now prove (4.4.9). Either n1 ≤ m or n1 > m. We first consider the case where n1 ≤ m.

Since ν +K − ℓ ≥ ν > 0 we may use (4.4.10) to write

∥∥T (n3)(Zn1ζ)Zn2F
∥∥
Hν+K−ℓ . ‖Zn1ζ‖L∞ ‖Zn2F‖Hν+K−ℓ .

Now write ‖Zn1ζ‖L∞ ≤ ‖ζ‖n1,0
≤ ‖ζ‖m,0 and

‖Zn2F‖Hν+K−ℓ ≤ |F |n2,ν+K−ℓ ≤ |F |n2+K−ℓ,ν ≤ |F |K,ν ,

by definition of the norms ‖·‖n,σ and |·|n,σ. This proves (4.4.9) for n1 ≤ m.

We next consider the case where n1 ≥ m. We apply (4.4.11) to obtain that

∥∥T (n3)(Zn1ζ)Zn2F
∥∥
Hν+K−ℓ . ‖Zn1ζ‖L2 ‖Zn2F‖Cν+K−ℓ+1 .

Since n1 ≤ ℓ ≤ K, notice that ‖Zn1ζ‖L2 ≤ |ζ|K,0. On the other hand

∥∥Zn2F
∥∥
Cν+K−ℓ+1 ≤

∥∥Zn2F
∥∥
Cν+K−n1−n2+1 since n1 + n2 ≤ ℓ

≤
n2∑

p=0

∥∥ZpF
∥∥
Cν+K−n1+1−p

≤
n2∑

p=0

∥∥ZpF
∥∥
Cν+K−m+1−p since n1 ≥ m.(4.4.12)

Now observe that, since n1 ≥ m, n1 + n2 ≤ ℓ and ℓ ≤ K, one has

m+ n2 −K − 1 ≤ m+ ℓ− n1 −K − 1 = (m− n1) + (ℓ−K)− 1 ≤ −1 ≤ ν

and hence n2 ≤ ν +K −m+ 1. Setting this into (4.4.12) yields

∥∥Zn2F
∥∥
Cν+K−ℓ+1 ≤

ν+K−m+1∑

p=0

∥∥ZpF
∥∥
Cν+K−m+1−p = ‖F‖ν+K−m+1,0 ,
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which completes the proof of statement (i).

Statement (ii) is a corollary of statement (i). Indeed, (4.4.5) applied with (ζ, F ) replaced

with (F, ζ) implies that

|TF ζ|K,ν . ‖F‖m,0 |ζ|K,ν + ‖ζ‖ν+K−m+1,0 |F |K,0 .

By using this estimate with m replaced with ν +K −m+ 1 we obtain (4.4.6).

Finally we shall prove statement (iii) by using arguments similar to those used in the proof

of statement (i).

Set χ(ξ1, ξ2) := 1− θ(ξ1, ξ2)− θ(ξ2, ξ1) where θ is the cutoff function given by (A.1.2). Then

RB(ζ, F ) = OpB[ζ, χ(ξ1, ξ2)]F . Thus ZℓRB(ζ, F ) is a linear combination of terms of the

form R(n3)(Zn1ζ, Zn2F ) where n1 + n2 + n3 ≤ ℓ and where we used the following notation:

R(n)(v, f) = OpB[v, (−2ξ · ∇)nχ]f .

We thus have to prove that, for any ℓ ≤ K and any (n1, n2, n3) ∈ N3 such that n1+n2+n3 ≤ ℓ,

(4.4.13)
∥∥R(n3)(Zn1ζ, Zn2F )

∥∥
Hν+K−ℓ+a . ‖ζ‖m,a |F |K,ν + c ‖F‖K−m,a |ζ|K,ν .

For any n ∈ N, R(n)(v, f) satisfies the same estimates as RB(v, f) does. Indeed, with the

notations of Proposition 3.4.4, one has (−2ξ · ∇)nχ ∈ SR0
reg for any n ≥ 0. Consequently, for

any real numbers σ, a in [0,+∞[ such that σ + a > 0, there holds

∥∥R(n)(v, f)
∥∥
Hσ+a . ‖v‖Ca ‖f‖Hσ ,(4.4.14)

∥∥R(n)(v, f)
∥∥
Hσ+a . ‖v‖Hσ ‖f‖Ca .(4.4.15)

We now prove (4.4.13). Either n1 ≤ m or n1 > m. We first consider the case where n1 ≤ m.

Then we use (4.4.14), n2 ≤ ℓ ≤ K and n1 ≤ m to write

∥∥R(n3)(Zn1ζ, Zn2F )
∥∥
Hν+K−ℓ+a .

∥∥R(n3)(Zn1ζ, Zn2F )
∥∥
Hν+K−n2+a

. ‖Zn1ζ‖Ca ‖Zn2F‖Hν+K−n2

. ‖ζ‖m,a |F |K,ν .

On the other hand, if n1 ≥ m then

∥∥R(n3)(Zn1ζ, Zn2F )
∥∥
Hν+K−ℓ+a .

∥∥R(n3)(Zn1ζ, Zn2F )
∥∥
Hν+K−n1+a

. ‖Zn1ζ‖Hν+K−n1 ‖Zn2F‖Ca

. |ζ|K,ν ‖F‖n2,a
. |ζ|K,ν ‖F‖K−m,a

where we used in the last inequality that n1 + n2 ≤ ℓ ≤ K and hence n2 ≤ K − m since

n1 ≥ m. This proves (4.4.13) and hence completes the proof of statement (iii).

The proof of statement (iv) is analogous to the proof of statement (iii). Indeed, by definition

SB(ζ, F ) = OpB[v, (−ξ · ∇)θ]F and hence ZℓSB(ζ, F ) is a linear combination of terms of the
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form OpB[Zn2ζ, (ξ · ∇)n3θ]Zn1F with n1 + n2 + n3 ≤ ℓ and n3 ≥ 1. As already mentioned,

one has (−2ξ · ∇)nθ ∈ SR0
reg for n > 0, so Proposition 3.4.4 implies that OpB[v, (ξ · ∇)nθ]f

satisfies the same estimates (4.4.14) and (4.4.15) as R(n)(v, f) does.

Remark. For further references, let us state and prove an estimate analogous to (4.4.10)-

(4.4.11) in Hölder spaces. Consider a positive real number σ with σ 6∈ N. Then

(4.4.16) ‖TζF‖n,σ . ‖ζ‖n,1 ‖F‖n,σ .

To see this, using elementary arguments similar to those used in the proof of statement i) of

Proposition 4.4.1, one needs only to prove that, for any n ∈ N and for any real number σ in

[0,+∞[, one has

(4.4.17)
∥∥T (n)(v)f

∥∥
Cσ ≤ K ‖v‖C1 ‖f‖Cσ .

For n = 0, this follows from the paraproduct rule (A.1.13). For n > 0, using the notations

and the observations made in the proof of Proposition 4.4.1, notice that T (n)(v) = OpB[v,R]
where R = (−2ξ · ∇)nθ belongs to SR0

reg. Now the wanted estimate follows easily from the

estimate of the kernel Kk,ℓ made in the proof of Proposition 3.4.4.

The previous proposition has the following corollary.

Corollary 4.4.2. Consider m ∈ R, K ∈ N and ν ∈]0,+∞[. There exists a positive constant

c such that,

(4.4.18) |ζF |K,ν ≤ c ‖ζ‖m,0 |F |K,ν + c ‖F‖ν+K−m+1,0 |ζ|K,ν ,

where ‖ζ‖m,0 = 0 for m < 0 and ‖F‖ν+K−m+1,0 = 0 for ν +K −m+ 1 < 0, by convention.

Proof. Write ζF = TζF + TF ζ +RB(ζ, F ) and apply Proposition 4.4.1.

For further references, we shall also need more precise estimates.

Proposition 4.4.3. Consider m ∈ R, K ∈ N and ν ∈]0,+∞[. One uses the conventions in

(4.4.4) and denotes by 1R+ the indicator function of R+.

(i) There exists a positive constant c such that,

(4.4.19)
|TζF |K,ν ≤ c ‖ζ‖m,0 |F |K−1,ν+1 + c ‖F‖ν+K−m+1,0 |ζ|K−1,0

+ c1R+(m) ‖ζ‖L∞

∥∥ZKF
∥∥
Hν + c1R+(K −m) ‖F‖Cν+1

∥∥ZKζ
∥∥
L2 .

(ii) For any real number a in [0,+∞[ there exists a positive constant c such that,

(4.4.20)
|RB(ζ, F )|K,ν+a ≤ c ‖ζ‖m,a |F |K−1,ν+1 + c1R+(m) ‖ζ‖Ca

∥∥ZKF
∥∥
Hν

+ c ‖F‖K−m,a |ζ|K−1,ν+1 + c1R+(K −m) ‖F‖Ca

∥∥ZKζ
∥∥
Hν .
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(iii) There exists a positive constant c such that,

(4.4.21)

|ζF |K,ν ≤ c ‖ζ‖m,0 |F |K−1,ν+1 + c ‖F‖ν+K−m+1,0 |ζ|K−1,ν+1

+ c1R+(m) ‖ζ‖C1

∥∥ZKF
∥∥
Hν

+ c1R+(m− ν − 1) ‖ζ‖Cν+1

∥∥ZKF
∥∥
L2

+ c1R+(K −m) ‖F‖Cν+1

∥∥ZKζ
∥∥
L2

+ c1R+(ν +K −m+ 1) ‖F‖C1

∥∥ZKζ
∥∥
Hν .

Remark. Assume m ≥ 1. By using in addition the obvious inequalities

1R+(m) ‖ζ‖C1

∥∥ZKF
∥∥
Hν ≤ ‖ζ‖m,0 |F |K,ν ,

1R+(m− ν − 1) ‖ζ‖Cν+1 ≤ 1R+(m) ‖ζ‖Cm ,

it follows from (4.4.21) that

|ζF |K,ν ≤ c ‖ζ‖m,0 |F |K,ν + c ‖F‖ν+K−m+1,0 |ζ|K−1,ν+1

+ c1R+(K −m) ‖F‖Cν+1

∥∥ZKζ
∥∥
L2

+ c1R+(ν +K −m+ 1) ‖F‖C1

∥∥ZKζ
∥∥
Hν .

Let b > 1 be any fixed real number. Using the obvious inequalities

(4.4.22)

‖F‖Cν+1 ≤ ‖F‖Cb + 1R+(ν + 1− b) ‖F‖Cν+1 ,

1R+(K −m) ‖F‖Cν+1 ≤ ‖F‖Cν+K−m+1 ,

1R+(K −m) ≤ 1R+(ν +K −m+ 1),

one has the following corollary

(4.4.23)

|ζF |K,ν ≤ c ‖ζ‖m,0 |F |K,ν + c ‖F‖ν+K−m+2,0 |ζ|K−1,ν+1

+ c1R+(ν +K −m+ 1) ‖F‖Cb

∥∥ZKζ
∥∥
Hν

+ c1R+(ν + 1− b) ‖F‖Cν+K−m+1

∥∥ZKζ
∥∥
L2 .

Similarly, by using (4.4.22), we deduce from (4.4.19) that

(4.4.24)

|TζF |K,ν . ‖ζ‖m,0 |F |K−1,ν+1 + 1R+(m) ‖ζ‖L∞

∥∥ZKF
∥∥
Hν

+ ‖F‖ν+K−m+1,0 |ζ|K−1,0

+ 1R+(ν +K −m+ 1) ‖F‖Cb

∥∥ZKζ
∥∥
L2

+ 1R+(ν + 1− b) ‖F‖Cν+K−m+1

∥∥ZKζ
∥∥
L2 .

Proof. Let us prove (4.4.19). Write |TζF |K,ν =
∥∥ZK

(
TζF

)∥∥
Hν + |TζF |K−1,ν+1. It follows

from (4.4.5) that

|TζF |K−1,ν+1 ≤ c ‖ζ‖m,0 |F |K−1,ν+1 + c ‖F‖ν+K−m+1,0 |ζ|K−1,0 ,
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which is smaller than the right hand side of (4.4.19). To estimate the Hν-norm of ZK
(
TζF

)

we write, using the notations introduced in the proof of Proposition 4.4.1, that

∥∥ZK
(
TζF

)∥∥
Hν .

∑

n1+n2+n3≤K
I(n1, n2, n3) with I(n1, n2, n3) :=

∥∥T (n3)(Zn1ζ)Zn2F
∥∥
Hν .

We split the sum into two pieces, according to n1 ≤ m or n1 > m. We further split the first

(resp. second) sum into two pieces, according to n1 = 0 or 0 < n1 ≤ m (resp. n1 = K or

m < n1 < K). The same arguments used to prove (4.4.5) imply that

∑

n1+n2+n3≤K
0<n1≤m

I(n1, n2, n3) . ‖ζ‖m,0 |F |K−1,ν+1 ,

and ∑

n1+n2+n3≤K
m<n1<K

I(n1, n2, n3) . ‖F‖ν+K−m+1,0 |ζ|K−1,0 .

Moreover, the paraproduct rules (A.1.12) and (A.1.20) imply that

I(K, 0, 0) =
∥∥TZKζF

∥∥
Hν .

∥∥ZKζ
∥∥
L2 ‖F‖Cν+1 ,

I(0,K, 0) =
∥∥TζZKF

∥∥
Hν . ‖ζ‖L∞

∥∥ZKF
∥∥
Hν .

The first (resp. second) of the two previous inequalities is to be taken into account only for

K > m (resp. m ≥ 0), we obtain the desired result (4.4.19); indeed for K ≤ m (resp. m < 0,

the sum
∑

m<n1<K
I(n1, n2, n3) (resp.

∑
n1≤m vanishes).

The proof of (4.4.20) is similar.

To prove (4.4.21) we write ζF = TζF + TF ζ + RB(ζ, F ). The first (resp. third) term is

estimated by means of (4.4.19) (resp. (4.4.20)). The second term is estimated by means of

(4.4.19) applied with (ζ, F,m) replaced with (F, ζ, ν +K −m+ 1).

We shall also need the following estimates.

Lemma 4.4.4. Consider an integer n in N∗ and a positive real number µ. Then, for any

integer m such that m ≥ 2 and 2m > n+ µ+ 2, there exists a positive constant c such that

(4.4.25)

∥∥Zn(TaTb − Tab)f
∥∥
Hµ

≤ c ‖a‖C2 ‖b‖C2

∥∥Znf
∥∥
Hµ−2

+ c1R+(n−m)
(∥∥Zna

∥∥
L2 ‖b‖L∞ + ‖a‖L∞

∥∥Znb
∥∥
L2

)
‖f‖Cµ+1

+ c ‖a‖m,0 ‖b‖m,0 |f |n−1,µ−1

+ c1R+(n−m)
(
‖a‖m,0 |b|n−1,0 + |a|n−1,0 ‖b‖m,0

)
‖f‖m,0 .
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Proof. Using the notations introduced in this section, Zn(TaTb − Tab)f can be written as

Zn(TaTb − Tab)f = R0 +R1 +R2 +R3 +R4 where

R0 = (TaTb − Tab)Z
nf,

R1 =
(
TZaTb + TaTZb − T(Za)b − Ta(Zb)

)
Zn−1f,

R2 =
(
T (1)(a)Tb + TaT

(1)(b)− T (1)(ab)
)
Zn−1f,

R3 is a linear combination of terms of the form

T (ℓ1)
(
Zn1a

)
T (ℓ2)

(
Zn2b

)
Zn3f, ℓ1 + ℓ2 + n1 + n2 + n3 ≤ n, n3 ≤ n− 2,

and R4 is a linear combination of terms of the form

T (ℓ)
(
(Zm1a)(Zm2b)

)
Zm3f, ℓ+m1 +m2 +m3 ≤ n, m3 ≤ n− 2.

• The terms R0 and R1 are estimated by means of the symbolic calculus rule (A.1.14) which

yields

‖(TaTb − Tab)Z
nf‖Hµ . ‖a‖C2 ‖b‖C2

∥∥Znf
∥∥
Hµ−2 ,∥∥(TZaTb − T(Za)b

)
Zn−1f

∥∥
Hµ . ‖Za‖C1 ‖b‖C1

∥∥Zn−1f
∥∥
Hµ−1 ,∥∥(TaTZb − Ta(Zb)

)
Zn−1f

∥∥
Hµ . ‖a‖C1 ‖Zb‖C1

∥∥Zn−1f
∥∥
Hµ−1 .

So ‖R0‖Hµ is controlled by the first term in the right hand side of (4.4.25). Since ‖Za‖C1 ≤
‖a‖m,0 and ‖Zb‖C1 ≤ ‖b‖m,0 for m ≥ 2, and since

∥∥Zn−1f
∥∥
Hµ−1 ≤ |f |n−1,µ−1, we verify that

R1 is controlled by the third term in the right hand side of (4.4.25).

• Let us estimate the Hµ-norm of R2. Since T
(1)(a) = OpB[a, (−2ξ · ∇)θ] with (−2ξ · ∇)θ ∈

SR0
reg, as already seen, Proposition 3.4.4 implies that

∥∥T (1)(a)TbZ
n−1f

∥∥
Hµ . ‖a‖C1

∥∥TbZn−1f
∥∥
Hµ−1 . ‖a‖C1 ‖b‖L∞

∥∥Zn−1f
∥∥
Hµ−1 .

By applying the same estimates for the two other terms which enter in the definition of R2,

we conclude that the Hµ-norm of R2 is controlled by the third term in the right hand side of

(4.4.25).

• Let us estimate R3. Set A = T (ℓ1)
(
Zn1a

)
T (ℓ2)

(
Zn2b

)
Zn3f . We shall split the analysis in

several cases.

If n1 ≤ m and n2 ≤ m, we write

‖A‖Hµ .
∥∥Zn1a

∥∥
L∞

∥∥Zn2b
∥∥
L∞

∥∥Zn3f
∥∥
Hµ

. ‖a‖m,0 ‖b‖m,0 |f |n−2,µ .

since n3 ≤ n− 2. Since |f |n−2,µ ≤ |f |n−1,µ−1, this proves that the H
µ-norm of A is controlled

by the third term in the right hand side of (4.4.25).
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If m < n1 < n, then we notice that the assumption 2m > n+ µ+ 2 implies that

m > 2m− n1 ≥ n+ µ+ 2− n1 ≥ n2 + (n3 + µ+ 1) + 1

so n2 ≤ m − 1 and n3 + µ + 1 ≤ m − 1. Consequently, the estimates (4.4.10)–(4.4.11) and

(4.4.17) imply that

‖A‖Hµ .
∥∥Zn1a

∥∥
L2

∥∥Zn2b
∥∥
L∞

∥∥Zn3f
∥∥
Cµ+1

. |a|n−1,0 ‖b‖m,0 ‖f‖m,0 ,

so the Hµ-norm of A is controlled by the fourth term in the right hand side of (4.4.25). The

analysis of the case m < n2 < n is similar.

Assume that n > m and n1 = n. Then ℓ1 = ℓ2 = n2 = n3 and hence the paraproduct rules

(A.1.12) and (A.1.20) imply that

‖A‖Hµ . ‖Zna‖L2 ‖b‖L∞ ‖f‖Cµ+1 ,

so the Hµ-norm of A is controlled by the second term in the right hand side of (4.4.25).

This proves that the Hµ-norm of R3 is controlled by the right hand side of (4.4.25). The

analysis of R4 is similar.

4.5 Estimate of the remainder terms

The goal to this section is to prove various estimates required when estimating the remainder

terms.

To estimate the remainder terms, we shall need to exploit repeatedly the fact that the com-

mutator [G(η), η] is of order 0. Similarly, when studying the linearization estimates, we have

seen that G(η)−|Dx| is of order 0 (while B(η)−|Dx| and V (η)−∂x are of order 1). We shall

need to exploit this fact too.

We need to estimate Zk[G(η), η] and Zk(G(η) − |Dx|). The analysis of both Zk[G(η), η] and

Zk(G(η) − |Dx|) will be by induction on k, using the fact that one can compute explicitly

Z[G(η), η] and Z(G(η)− |Dx|). In both formula we shall see that the commutator [G(η), Zη]

appears. More generally, to control Z[G(η), Zpη] for some integer p ∈ N, one needs to control

[G(η), Zp+1η]. We thus begin by studying these operators. Below, for p ∈ N, we denote by

J(η, Zpη) the commutator defined by

J(η, Zpη)f := G(η)
(
(Zpη)f

)
− (Zpη)G(η)f.

In this section, we use various inequalities in some Hölder spaces C̺(R). We shall freely use

the fact that, for our purposes, one can assume that ̺ 6∈ 1
2N up to replacing ̺ with ̺+ δ for

some δ ≪ 1.
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Notation 4.5.1. The notation ‖f‖r,γ has been introduced for r ∈ N and γ ∈ [0,+∞[. For

the purpose of the next results, it is convenient to extend it to the case when r is any real

number. This is done as follows: (i) for r < 0 one sets ‖f‖r,γ = 0 for any f and any γ, and

(ii) for r ≥ 0, one sets ‖f‖r,γ := ‖f‖[r],γ where [r] is the largest integer smaller or equal to r.

One defines similarly |f |r,γ for any real number r ∈ N.

Proposition 4.5.2. There exists ε0 > 0 small enough and there exist γ0 with γ0 6∈ 1
2N and

N0 large enough such that, for any (s, s1, s0) ∈ N3 satisfying

s ≥ s1 ≥ s0 ≥
1

2
(s + 2γ0),

for any integer p in [0, s1], any integer K in [0, s1−p] and any real number µ in [4, s−K−p−1]

there exists a nondecreasing function C such that, for any T > 0 and any smooth functions

(η, f) such that supt∈[0,T ] ‖η(t)‖Cs0 ≤ ε0,

(4.5.1) |J(η, Zpη)f |K,µ ≤ C ‖η‖
s0,0

|f |K,µ + C ‖f‖µ+K+p−s0+N0,γ0
|η|K+p,µ+1 ,

where C = C(‖η‖
s0,0

).

Remark. This estimate is not optimal with respect to the factors estimated in Hölder norms.

The key point is that it is optimal with respect to the factors estimated in Sobolev norms.

Proof. For technical reasons, instead of proving (4.5.1), it is convenient to prove that, for N ′

large enough,

(4.5.2) |J(η, Zpη)f |K,µ ≤ C ‖η‖
s0,0

|f |K,µ + C ‖f‖µ+K+p̃−s0+N ′,γ0
|η|K+p,µ+1 ,

where p̃ = max(p, 1). It is clear that this estimate is equivalent to (4.5.1).

Hereafter, we freely use the following estimates

(4.5.3)
‖Zpu‖n,σ ≤ ‖u‖n+p,σ , ‖u1u2‖n,σ . ‖u1‖n,σ ‖u2‖n,σ ,

‖u‖n,σ+m ≤ ‖u‖n+m,σ , |u|n,σ+m ≤ |u|n+m,σ .

The proof is by induction on K.

Step 1: Initialization

We first prove (4.5.2) for K = 0. We prove that, with N ′ = 5 and γ0 large enough, for any

p ∈ [0, s1] and any µ ∈ [−1/2, s − p− 1], there holds

(4.5.4) |J(η, Zpη)f |0,µ ≤ C ‖η‖
s0,0

|f |0,µ + C ‖f‖µ+p̃−s0+N ′,γ0
|η|p,µ+1 ,

where C = C(‖η‖
s0,0

).
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To prove (4.5.4) it is sufficient to prove that J(η, η̃)f := [G(η), η̃]f satisfies

(4.5.5) ‖J(η, η̃)f‖Hµ ≤ C ‖η̃‖Cs0−p ‖f‖Hµ + C ‖f‖Cµ+p̃−s0+N′+γ0

(
‖η̃‖Hµ+1 + ‖η‖Hµ+1

)
,

where C = C(‖η‖Cs0 , ‖η̃‖Cs0−p) and where it is understood that ‖η̃‖Ca if a < 0.

It follows from Proposition 2.7.1 and the product estimate (A.1.21) that, for any µ ≥ −1/2,

‖G(η)(η̃f)‖Hµ ≤ C
(
‖η‖Cµ+5

)
‖η̃f‖Hµ+1 ≤ C

(
‖η‖Cµ+5

)
‖η̃‖Hµ+1 ‖f‖Cµ+2 .

Similarly, by using (A.1.21), (2.0.4) and (A.2.4), we obtain that for any µ ≥ −1/2,

‖η̃G(η)f‖Hµ ≤ ‖η̃‖Hµ ‖G(η)f‖
Cµ+1

2
≤ C

(
‖η‖Cµ+5

)
‖η̃‖Hµ ‖f‖Cµ+4 .

This implies that

‖J(η, η̃)f‖Hµ ≤ C
(
‖η‖Cµ+5

)
‖η̃‖Hµ+1 ‖f‖Cµ+4 ,

which in turn implies (4.5.5) provided that s0 − p̃ ≤ N ′ and γ0 is large enough (indeed, we

then have µ+ 5 ≤ s − p+ 4 ≤ s − p̃+ 5 ≤ s − s0 +N ′ + 5 ≤ s0 for γ0 large enough).

It remains to prove (4.5.5) for s0 − p̃ > N ′. We further split the analysis into two parts.

Consider first the case where µ+ p̃− s0 +N ′ ≥ 0. Write

(4.5.6) J(η, η̃)f = |Dx| (η̃f)− η̃ |Dx| f + (G(η) − |Dx|)(η̃f)− η̃(G(η)f − |Dx| f).

The first term is estimated by means of (A.1.25) in Lemma A.1.12 which yields that

‖|Dx| (η̃f)− η̃ |Dx| f‖Hµ . ‖η̃‖C1 ‖f‖Hµ + ‖f‖C2 ‖η̃‖Hµ+1 .

The second term in the right-hand side of (4.5.6) is estimated by means of the tame product

rule (A.1.18) and the estimate (2.5.1) (applied with (s, γ, µ) replaced with (µ+1, 3+ ǫ, µ+1),

recalling that µ ≥ 4 by assumption) for the operator norm of G(η)− |Dx|. It is found that

‖(G(η) − |Dx|)(η̃f)‖Hµ ≤ C
(
‖η‖C4

){
‖η̃f‖C4 ‖η‖Hµ+1 + ‖η‖C4 ‖η̃f‖Hµ

}

so

‖(G(η) − |Dx|)(η̃f)‖Hµ ≤ C
(
‖(η, η̃)‖C4

){
‖f‖C4 ‖η‖Hµ+1 + ‖η̃‖L∞ ‖f‖Hµ

+ ‖η̃‖Hµ ‖f‖L∞

}
.

The third term in the right-hand side of (4.5.6) is estimated by means of the tame product

rule (A.1.18)and the estimates (2.5.1) (applied with (s, γ, µ) replaced with (µ+1, 3+ǫ, µ+1)).

It is found that

‖η̃(G(η)f − |Dx| f)‖Hµ

≤ ‖η̃‖L∞ ‖G(η)f − |Dx| f‖Hµ + ‖η̃‖Hµ ‖G(η)f − |Dx| f‖L∞

≤ C
(
‖η‖C4

)
‖η̃‖L∞

{
‖f‖C4 ‖η‖Hµ+1 + ‖η‖C4 ‖f‖Hµ

}

+ C
(
‖η‖C4

)
‖η̃‖Hµ ‖f‖C4 ,
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where we estimated ‖G(η)f − |Dx| f‖L∞ by means of the triangle inequality and (2.0.4) and

(A.2.3).

Since s0− p̃ > N ′ by assumption, for N ′ ≥ 5 we have s0 − p > 4 and hence ‖η̃‖C4 ≤ ‖η̃‖Cs0−p .

Since s0 ≥ 5 by assumption we have ‖η‖C4 ≤ ‖η‖Cs0 . Eventually, for µ+ p− s0 +N ′ ≥ 0, we

have ‖f‖C4 ≤ ‖f‖Cµ+p−s0+N′+γ0
and hence the desired result (4.5.5) follows from (4.5.6) and

the previous estimates.

We now consider the last case where s0 − p̃ > N ′ and µ + p − s0 + N ′ < 0. We use again

the decomposition (4.5.6). However, we now estimate the first term in the right-hand side of

(4.5.6) by means of (A.1.26). This yields

‖|Dx| (η̃f)− η̃ |Dx| f‖Hµ . ‖η̃‖Cµ+2 ‖f‖Hµ .

We now estimate the second term in the right-hand side of (4.5.6) by means of the product

rule (A.1.21) and the estimate (2.7.4) (applied with γ = µ + 5) for the operator norm of

G(η) − |Dx|. It is found that

‖(G(η) − |Dx|)(η̃f)‖Hµ ≤ C
(
‖η‖Cµ+5

)
‖η̃f‖H1/2

≤ C
(
‖η‖Cµ+5

)
‖η̃‖C1 ‖f‖H1/2 .

Similarly,

‖η̃(G(η)f − |Dx| f)‖Hµ ≤ ‖η̃‖Cµ+1 ‖G(η)f − |Dx| f‖Hµ

≤ C
(
‖η‖Cµ+5

)
‖η̃‖Cµ+1 ‖f‖H1/2 .

For N ′ ≥ 5 and µ+ p− s0 +N ′ < 0 we have µ+ 5 ≤ s0 − p ≤ s0 so that (4.5.5) follows from

(4.5.6) and the previous estimates.

Step 2: Hölder estimates

We shall need to estimate ‖J(η, η)f‖n,σ and ‖J(η, Zη)f‖n,σ. For our purpose, it is sufficient

to have a non optimal estimate in Hölder spaces, that is an estimate which involves ‖f‖n,σ+1

(which amounts to lose one derivative, while J(η, η) and J(η, Zη) are expected to be of

order 0). We claim that for p = 0 or p = 1 and for any integer n in [0, s0 − p − 5] and any

real number σ in ]3, s0 − p− n− 1] \ 1
2N,

(4.5.7) ‖J(η, Zpη)f‖n,σ ≤ C
(
‖η‖n,σ+1

)
‖η‖n+p,σ+1 ‖f‖n,σ+1 .

Directly from the definition of J(η, Zpη), it follows from the triangle inequality, the product

rule (4.3.15) and the estimate (4.3.37) for ‖G(η)f‖n,σ that

‖J(η, Zpη)f‖n,σ ≤
∥∥G(η)

(
(Zpη)f

)∥∥
n,σ

+
∥∥(Zpη)G(η)f

∥∥
n,σ

≤ C
(
‖η‖n,σ+1

)∥∥(Zpη)f
∥∥
n,σ+1

+ ‖Zpη‖n,σ C
(
‖η‖n,σ+1

)
‖f‖n,σ+1

≤ C
(
‖η‖n,σ+1

)
‖Zpη‖n,σ+1 ‖f‖n,σ+1
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which implies the desired result (4.5.7).

Step 3: Induction

So far we have proved that (4.5.2) holds for K = 0. To prove (4.5.2) for K > 0 we proceed

by induction on K. Assuming that (4.5.2) holds at rank K, we want to prove that,

(4.5.8) |J(η, Zpη)f |K+1,µ ≤ C ‖η‖
s0,0

|f |K+1,µ + C ‖f‖µ+K+1+p̃−s0+N ′,γ0
|η|K+p+1,µ+1 ,

where p̃ = max(p, 1). Notice that

(4.5.9) |J(η, Zpη)f |K+1,µ ≤ ‖J(η, Zpη)f‖Hµ+K+1 + |ZJ(η, Zpη)f |K,µ .

The first term in the right hand side of (4.5.9) is estimated by (4.5.4). To estimate the

second term, again, the key point is that one can express ZJ(η, Zpη)f as a sum of terms

which are estimated either by the induction hypothesis of by a previous estimate. By us-

ing the operators J(η, η) = [G(η), η] and J(η, Zη) = [G(η), Zη] and by using the identity

G(η)B(η)ψ = −∂xV (η)ψ (see Remark A.3.3), notice that one can rewrite the identity (4.1.1)

for ZG(η)f under the form

(4.5.10)
ZG(η)ψ = G(η)(Zψ − 2ψ)− J(η, Zη)B(η)ψ + 2J(η, η)B(η)ψ

− (∂xZη)V (η)ψ + 2(∂xη)V (η)ψ.

Then it is easily verified that

(4.5.11)

ZJ(η, Zpη)f = J 1 + · · ·+ J 10

= J(η, Zpη)(Zf − 2f) + J(η, Zp+1η)f

− J(η, Zη)B(η)((Zpη)f) + (Zpη)J(η, Zη)B(η)f

+ 2J(η, η)B(η)((Zpη)f)− 2(Zpη)J(η, η)B(η)f

− (∂xZη)V (η)((Zpη)f) + (Zpη)(∂xZη)V (η)f

+ 2(∂xη)V (η)((Zpη)f)− 2(Zpη)(∂xη)V (η)f.

We now consider an integer K in [0, s1 − 1] and assume that (4.5.2) holds for any integer p

in [0, s1 −K] and any real number µ in [4, s −K − p − 1]. Our goal is to prove that (4.5.8)

holds for any p in [0, s1 −K − 1] and any real number µ in [4, s −K − p − 2]. To do so, in

view of (4.5.9), it is sufficient to prove that, for any i = 1, . . . , 10,

(4.5.12)
∣∣J i
∣∣
K,µ

≤ C ‖η‖
s0,0

|f |K+1,µ + C ‖f‖µ+K+1+p̃−s0+N ′,γ0
|η|K+p+1,µ+1 ,

for any p in [0, s1 −K − 1] and any real number µ in [4, s −K − p− 2].

Given (4.5.2), it is clear that (4.5.12) holds for i = 1 or i = 2. To estimate the other terms,

we need some further preliminary estimates.

Preliminary estimates
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In order to estimate J 3, J 5, J 7 and J 9 (see (4.5.11)), we have to estimate |A(η)((Zpη)f)|K,µ
for A ∈ {B,V }. We claim that

(4.5.13)
|A(η)((Zpη)f)|K,µ ≤ C ‖η‖

s0,0
|f |K,µ+1

+ C ‖f‖µ+K+p−s0+N ′,γ0
|η|K+p,µ+1 .

To prove (4.5.13), use (4.3.35) to obtain that

(4.5.14)
|A(η)((Zpη)f)|K,µ ≤ C |(Zpη)f |K,µ+1

+ C ‖(Zpη)f‖µ+K−s0+4,γ0
|η|K,µ+1 .

Firstly, notice that (4.4.18) applied with m = s0 − p implies that

|(Zpη)f |K,µ+1 . ‖Zpη‖
s0−p,0 |f |K,µ+1 + ‖f‖µ+K+p−s0+3,0 |Zpη|K,µ+1

. ‖η‖
s0,0

|f |K,µ+1 + ‖f‖µ+K+p−s0+3,0 |η|K+p,µ+1 ,

and hence |(Zpη)f |K,µ+1 is bounded by the right-hand side of (4.5.13). Secondly, observe

that

‖(Zpη)f‖µ+K−s0+4,γ0
. ‖Zpη‖µ+K−s0+4,γ0

‖f‖µ+K−s0+4,γ0

. ‖η‖
s0,0

‖f‖µ+K−s0+N ′,γ0

since µ +K + p− s0 + 4 + γ0 ≤ s − s0 + 4 + γ0 ≤ s0 and since 4 ≤ N ′ by assumptions. This

completes the proof of (4.5.13).

We need also to estimate ‖A(η)((Zpη)f)‖µ+K+1−s0+N ′,γ0
for A ∈ {B,V }. To do so, write

(4.5.15)

‖A(η)((Zpη)f)‖µ+K+1−s0+N ′,γ0

≤ C
(
‖η‖µ+K+1−s0+N ′,γ0+1

)
‖(Zpη)f‖µ+K+1−s0+N ′,γ0+1

≤ C
(
‖η‖

s0,0

)
‖f‖µ+K+1−s0+N ′,γ0+1

≤ C
(
‖η‖

s0,0

)
‖f‖µ+(K+1)+p̃−s0+N ′,γ0

where we used (4.3.37), (4.5.3), p̃ ≥ 1 and µ+K+p−s0+N
′+γ0+2 ≤ s0 for s0 ≥ 1/2(s+2γ0)

with γ0 large enough.

Similarly we have that

(4.5.16) ‖A(η)((Zpη)f)‖µ+K−s0+4,0 ≤ C
(
‖η‖

s0,0

)
‖f‖µ+K−s0+N ′,0

for N ′ ≥ 9, where we used (4.3.37) and µ+K + p− s0 + 9 ≤ s0 (for γ0 large enough).
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Estimate of J 3 and J 5. By the induction hypothesis one can apply (4.5.2) with p = 1 and f

replaced with B(η)((Zpη)f) to obtain that

(4.5.17) |J(η, Zη)B(η)((Zpη)f)|K,µ ≤ C ‖η‖
s0,0

|B(η)((Zpη)f)|K,µ+

C ‖B(η)((Zpη)f)‖µ+K+1̃−s0+N ′,γ0
|η|K+1,µ+1 .

The first (resp. second) term in the right-hand side of (4.5.17) is estimated by means of

(4.5.13) (resp. (4.5.15)). This gives

(4.5.18) |J(η, Zη)B(η)((Zpη)f)|K,µ ≤ C ‖η‖
s0,0

|f |K+1,µ

+ C ‖f‖µ+K+1+p̃−s0+N ′,γ0
|η|K+p+1,µ+1 .

Thus we verify that (4.5.12) holds for i = 3. The proof for i = 5 is similar.

Estimate of J 4 and J 6. The product rule (4.4.18) (applied with m = s0 − p) implies that

(4.5.19) |(Zpη)J(η, Zη)B(η)f |K,µ . C ‖η‖
s0,0

|J(η, Zη)B(η)f |K,µ
+ C ‖J(η, Zη)B(η)f‖µ+K+p−s0+2,0 |η|K+p,µ+1 .

The first term in the right-hand side of (4.5.19) is estimated by means of (4.5.17) (with Zpη

replaced with 1). With regards to the second term, using (4.5.7) and (4.3.37), we obtain for

any ǫ ∈]0, 1[,

‖J(η, Zη)B(η)f‖µ+K+p−s0+2,0 ≤ ‖J(η, Zη)B(η)f‖µ+K+p−s0+2,4−ǫ

≤ C ‖B(η)f‖µ+K+p−s0+2,5−ǫ

≤ C ‖f‖µ+K+p−s0+2,6

≤ C ‖f‖µ+K+p̃−s0+N ′,γ0
.

This proves that (4.5.12) holds for i = 4. The proof for i = 6 is similar.

Estimate of J 7 and J 9. The product rule (4.4.18) implies that

|(∂xZη)V (η)((Zpη)f)|K,µ . ‖∂xZη‖s0−2,0 |V (η)((Zpη)f)|K,µ
+ ‖V (η)((Zpη)f)‖µ+K−s0+4,0 |∂xZη|K,µ .

Since ‖∂xZη‖s0−2,0 ≤ ‖η‖
s0,0

and |∂xZη|K,µ ≤ |η|K+1,µ+1, in view of (4.5.13) and (4.5.16) we

verify that (4.5.12) holds for i = 7. The proof for i = 9 is similar.

The estimates for i = 8 and i = 10 are simpler. This completes the proof.

Corollary 4.5.3. There exists ε0 > 0 small enough and there exist γ1 with γ1 6∈ 1
2N and N1

large enough such that, for any (s, s1, s0) ∈ N3 satisfying

s ≥ s1 ≥ s0 ≥
1

2
(s + 2γ1),
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for any integer K in [0, s1] and any real number µ in [4, s − K − 1] there exists a nonde-

creasing function C such that, for any T > 0 and any smooth functions (η, f) such that

supt∈[0,T ] ‖η(t)‖Cs0 ≤ ε0,

(4.5.20) |G(η)f − |Dx| f |K,µ ≤ C ‖η‖
s0,0

|f |K,µ + C ‖f‖µ+K−s0+N1,γ1
|η|K,µ+1 ,

where C = C(‖η‖
s0,0

).

Proof. Again, the proof proceeds by induction on K. It follows from Proposition 2.5.1 and

Proposition 2.7.1 that (4.5.20) is true for K = 0.

Since [Z, |Dx|] = −2 |Dx|, it follows from (4.5.10) that

Z
(
G(η)f − |Dx| f

)
=
(
G(η) − |Dx|)(Zf − 2f)− J(η, Zη)B(η)f

+ 2J(η, η)B(η)f − (∂xZη)V (η)f + 2(∂xη)V (η)f.

So the desired result follows from the estimates already established in the last step of the

proof of Proposition 4.5.2.

We are now in position to estimate ZF (η)ψ − ZF(≤2)(η)ψ.

Proposition 4.5.4. There exists ε0 > 0 small enough and there exist γ′2, γ2 with γ2 6∈ 1
2N,

γ2 > γ′2 and N2 large enough such that, for any (s, s1, s0) ∈ N3 satisfying

(4.5.21) s ≥ s1 ≥ s0 ≥
1

2
(s + 2γ2),

for k in [0, s1] and any real number µ in [4, s − k] there exists a nondecreasing function C

such that, for any T > 0 and any smooth functions (η, f) such that supt∈[0,T ] ‖η(t)‖Cs0 ≤ ε0,

(4.5.22)

∣∣F (η)ψ − F(≤2)(η)ψ
∣∣
k,µ

≤ Cγ2 ‖η‖2Cγ2

∥∥|Dx|
1
2 Zkψ

∥∥
Hµ− 1

2

+ 1R+(µ+ k − s0 +N2)Cγ2 ‖η‖Cγ2

∥∥|Dx|
1
2 ψ
∥∥
Cγ2

∥∥Zkη
∥∥
Hµ

+ Cs0 ‖η‖2s0,0
∣∣|Dx|

1
2 ψ
∣∣
k−1,µ+ 1

2

+ 1R+(µ− γ′2)Cs0 ‖η‖2s0,0
∣∣|Dx|

1
2 ψ
∣∣
k,µ− 3

2

+ Cs0 ‖η‖s0,0
∥∥|Dx|

1
2 ψ
∥∥
µ+k−s0+N2,γ2

|η|k−1,µ+1

+ 1R+(µ− γ′2)Cs0 ‖η‖s0,0
∥∥|Dx|

1
2 ψ
∥∥
µ+k−s0+N2,γ2

|η|k,µ−1 ,

where Cγ2 = C(‖η‖Cγ2 ), Cs0 = C(‖η‖
s0,0

), and 1R+ is the indicator function of R+.
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Proof. Let γ be large enough, (N0, γ0) and (N1, γ1) be as given by the statements of Proposi-

tion 4.3.9, Proposition 4.5.2 and Corollary 4.5.3, respectively. Then N2, γ2, γ
′
2 will be chosen

so that

γ′2 = γ2 − 1, N2 ≥ max(N,N0, N1, 5), γ2 ≥ max(γ + 7/2, γ0, γ1, N2 + 1)

(with γ2 6∈ 1
2N).

The proof proceeds by induction. Notice first that (4.5.22) holds for k = 0: if µ− s0+N2 ≥ 0,

we apply (2.6.3) with (µ, s) replaced by (µ−1, µ−1) and get that the left hand side is bounded

by the first and second terms in the right hand side. If µ − s0 + N2 < 0, we use Corollary

2.7.6 with γ = µ + 4. If moreover, µ ≤ γ2 − 4 we obtain a bound by the first term in the

right hand side of (4.5.22). If µ > γ2 − 4, we use the fourth term in that right hand side to

get that bound (taking γ2 > γ′2 + 4).

Hereafter we fix an integer k in [0, s1−1] and we assume that for any real number µ in [4, s−k]
the estimate (4.5.22) holds. Our goal is to prove that (4.5.22) holds at rank k + 1. Since∣∣F (η)ψ − F(≤2)(η)ψ

∣∣
k+1,µ

is smaller than

∥∥F (η)ψ − F(≤2)(η)ψ
∥∥
Hµ+k+1 +

∣∣Z
(
F (η)ψ − F(≤2)(η)ψ

)∣∣
k,µ

,

this reduces to proving that, for any µ ∈ [4, s − k − 1],

(4.5.23)

∣∣Z(F (η)ψ − F(≤2)(η)ψ)
∣∣
k,µ

≤ Cγ2 ‖η‖2Cγ2

∥∥|Dx|
1
2 Zk+1ψ

∥∥
Hµ− 1

2

+ 1R+(µ+ k + 1− s0 +N2)Cγ2 ‖η‖Cγ2

∥∥|Dx|
1
2 ψ
∥∥
Cγ2

∥∥Zk+1η
∥∥
Hµ

+ Cs0 ‖η‖2s0,0
∣∣|Dx|

1
2 ψ
∣∣
k,µ+ 1

2

+ 1R+(µ− γ′2)Cs0 ‖η‖2s0,0
∣∣|Dx|

1
2 ψ
∣∣
k+1,µ− 3

2

+ Cs0 ‖η‖s0,0
∥∥|Dx|

1
2 ψ
∥∥
µ+k+1−s0+N2,γ2

|η|k,µ+1

+ 1R+(µ− γ′2)Cs0 ‖η‖s0,0
∥∥|Dx|

1
2 ψ
∥∥
µ+k+1−s0+N2,γ2

|η|k+1,µ−1 ,

provided that N2, γ2, γ
′
2 are large enough.

To prove (4.5.23), we express Z(F (η)− F(≤2)(η))ψ as the sum of (F (η)− F(≤2)(η))(Z − 2)ψ,

which we are going to estimate by the induction hypothesis, and other terms which are

estimated either by the induction hypothesis or by means of the previous results.
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Recall that, by Lemma 4.2.2

(4.5.24)

ZF (η)ψ = F (η)
(
Zψ − 2ψ

)
− F (η)

(
(Zη)B(η)ψ

)

− |Dx|TZηB(η)ψ − ∂x
(
TZηV (η)ψ

)

+ 2G(η)(ηB(η)ψ) − 2ηG(η)B(η)ψ + 2(V (η)ψ)∂xη

− |Dx|RB(B(η)ψ,Zη) − ∂xRB(Zη, V (η)ψ)

+ |Dx|TRB(η)ψη + ∂x(TRV (η)ψη)

+ 2 |Dx|SB(B(η)ψ, η) + 2∂xSB(V (η)ψ, η)

where SB is given by (3.4.14); RB and RV are given by (4.2.3) and (4.2.4) and RB(a, b) =

ab− Tab− Tba.

On the other hand, remembering that according to (2.6.1)

(4.5.25) F(≤2)(η)ψ = − |Dx| (η |Dx|ψ) + |Dx| (T|Dx|ψη)− ∂x(η∂xψ) + ∂x(T∂xψη),

by using [Z, |Dx|] = −2 |Dx|, [Z, ∂x] = −2∂x and (3.4.14) one gets that

ZF(≤2)(η)ψ = F(≤2)(Zη)ψ + F(≤2)(η)Zψ − 4F(≤2)(η)ψ

+ 2 |Dx|SB(|Dx|ψ, η) + 2∂xSB(∂xψ, η),

which is better written under the form

(4.5.26) ZF(≤2)(η)ψ − F(≤2)(η)(Zψ − 2ψ)

= F(≤2)(Zη)ψ − 2F(≤2)(η)ψ + 2 |Dx|SB(|Dx|ψ, η) + 2∂xSB(∂xψ, η),

We have already seen (see (2.6.30)) that one can either write F(≤2)(η)ψ under the form (4.5.25)

or under the form

(4.5.27) F(≤2)(η)ψ = − |Dx|RB(η, |Dx|ψ)− ∂xRB(η, ∂xψ).

In the right-hand side of (4.5.26) we use (4.5.27) to express F(≤2)(Zη)ψ and (4.5.25) to express

−2F(≤2)(η)ψ. It is found that

(4.5.28)

ZF(≤2)(η)ψ

= F(≤2)(η)(Zψ − 2ψ)

− |Dx|RB(Zη, |Dx|ψ)− ∂xRB(Zη, ∂xψ)

− 2
(
− |Dx| (η |Dx|ψ) + |Dx| (T|Dx|ψη)− ∂x(η∂xψ) + ∂x(T∂xψη)

)

+ 2 |Dx|SB(|Dx|ψ, η) + 2∂xSB(∂xψ, η).

Now by combining (4.5.24) and (4.5.28), we conclude that

Z
(
F (η)ψ − F(≤2)(η)ψ

)
= F0 + · · ·+ F6
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where

F0 =
(
F (η)− F(≤2)(η)

)(
Zψ − 2ψ

)
,

F1 = −F (η)
(
(Zη)B(η)ψ

)
,

F2 = − |Dx|TZηB(η)ψ − ∂x
(
TZηV (η)ψ

)
,

F3 = 2G(η)(ηB(η)ψ) − 2ηG(η)B(η)ψ + 2(V (η)ψ)∂xη

− 2 |Dx| (η |Dx|ψ)− 2∂x(η∂xψ),

F4 = − |Dx|RB(B(η)ψ,Zη) − ∂xRB(Zη, V (η)ψ)

+ |Dx|RB(Zη, |Dx|ψ) + ∂xRB(Zη, ∂xψ),

F5 = 2 |Dx|SB(B(η)ψ − |Dx|ψ, η) + 2∂xSB(V (η)ψ − ∂xψ, η),

F6 = |Dx|TRB(η)ψη + ∂x(TRV (η)ψη) + 2 |Dx| (T|Dx|ψη) + 2∂x(T∂xψη).

To prove (4.5.23), we have to prove that, for any µ ∈ [4, s − k − 1] and any 0 ≤ i ≤ 6,

(4.5.29)

∣∣F i
∣∣
k,µ

≤ Cγ2 ‖η‖2Cγ2

∥∥|Dx|
1
2 Zk+1ψ

∥∥
Hµ− 1

2

+ 1R+(µ+ k + 1− s0 +N2)Cγ2 ‖η‖Cγ2

∥∥|Dx|
1
2 ψ
∥∥
Cγ2

∥∥Zk+1η
∥∥
Hµ

+ Cs0 ‖η‖2s0,0
∣∣|Dx|

1
2 ψ
∣∣
k,µ+ 1

2

+ 1R+(µ− γ′2)Cs0 ‖η‖2s0,0
∣∣|Dx|

1
2 ψ
∣∣
k+1,µ− 3

2

+ Cs0 ‖η‖s0,0
∥∥|Dx|

1
2 ψ
∥∥
µ+k+1−s0+N2,γ2

|η|k,µ+1

+ 1R+(µ− γ′2)Cs0 ‖η‖s0,0
∥∥|Dx|

1
2 ψ
∥∥
µ+k+1−s0+N2,γ2

|η|k+1,µ−1 .

The estimate (4.5.29) for i = 0 follows from the induction hypothesis, by applying (4.5.22)

with ψ replaced with Zψ − 2ψ. We shall estimate the other terms separately.

Step 0: Preliminary

We shall need to estimate ‖G(η)f − |Dx| f‖n,σ, ‖B(η)f − |Dx| f‖n,σ and ‖V (η)f − ∂xf‖n,σ.
We claim that, for any integer n in [0, s0 − 5] and any σ in ]3, s0 − 1− k] with σ 6∈ 1

2N,

(4.5.30) ‖G(η)f − |Dx| f‖n,σ + ‖B(η)f − |Dx| f‖n,σ + ‖V (η)f − ∂xf‖n,σ
≤ C

(
‖η‖n,σ+2

)
‖η‖n,σ+2

∥∥|Dx|
1
2 f
∥∥
n,σ+ 3

2
.

(The key point is that the right-hand side is at least quadratic; there is a loss of one derivative

since we estimate the ‖·‖n,σ-norm of A(η)f −A(0)f by means of the ‖·‖n,σ+2-norm of f while

A(η)−A(0) is of order 1, but this loss is harmless for our purposes.)
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To fix matters, we prove (4.5.30) for G(η)f − |Dx| f only. Write

‖G(η)f − |Dx| f‖n,σ =
n∑

k=0

∥∥Zk(G(η)f − |Dx| f)
∥∥
Cσ+n−k .

Now Zk |Dx| = |Dx| (Z − 2)k so

Zk(G(η)f − |Dx| f) =
(
ZkG(η)f −G(η)(Z − 2)k

)
+ (G(η) − |Dx|)(Z − 2)kf.

It follows from (4.3.36) that

∥∥ZkG(η)ψ −G(η)(Z − 2)kψ
∥∥
Cσ ≤ C

(
‖η‖k,σ+1

)
‖η‖k,σ+1

∥∥|Dx|
1
2 ψ
∥∥
k−1,σ+ 3

2

On the other hand (2.6.12) implies that, for any σ > 3 with σ 6∈ 1
2N,

∥∥(G(η) − |Dx|)(Z − 2)kf
∥∥
Cσ+n−k

≤ C(‖η‖Cσ+n−k+2) ‖η‖Cσ+n−k+2

∥∥|Dx|
1
2 (Z − 2)kf

∥∥
Cσ+n−k+3

2
.

Since

‖η‖Cσ+n−k+2 ≤ ‖η‖n,σ+2 ,
∥∥|Dx|

1
2 (Z − 2)kf

∥∥
Cσ+n−k+3

2
≤
∥∥|Dx|

1
2 f
∥∥
n,σ+ 3

2
,

this completes the proof of (4.5.30).

We shall also use the following corollary of (4.3.32): let A(η) be one of the operators G(η),

B(η), V (η), then

(4.5.31)
|(A(η) −A(0))ψ|k,µ ≤ Cs0 ‖η‖s0,0

∣∣|Dx|
1
2 ψ
∣∣
k,µ+ 1

2

+ Cs0
∥∥|Dx|

1
2 ψ
∥∥
µ+k+1−s0+N2,γ2

|η|k,µ+1 .

Step 1: Estimate of F1.

To estimate F1 we first claim that (4.5.22) implies that,

∣∣F (η)ψ̃
∣∣
k,µ

≤ Cγ2 ‖η‖Cγ2

∥∥Zkψ̃
∥∥
Hµ

+ Cs0 ‖η‖s0,0
∣∣ψ̃
∣∣
k−1,µ+1

+ 1R+(µ− γ′2)Cs0 ‖η‖s0,0
∣∣ψ̃
∣∣
k,µ−1

+ Cs0
∥∥ψ̃
∥∥
µ+k−s0+N2,γ2+

1
2
|η|k,µ .

To prove this estimate, using (4.5.22) and the triangle inequality, it is sufficient to prove that∣∣F(≤2)(η)ψ
∣∣
k,µ

is bounded by the right-hand side of the above inequality. This in turn follows

from (4.5.27) and (4.4.20) applied with (m,a, ν) = (s0 − 2, 2, µ − 1).
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To estimate
∣∣F1

∣∣
K,µ

we now apply the previous estimate with ψ̃ replaced with (Zη)B(η)ψ.

This yields

(4.5.32)

∣∣F (η)
(
(Zη)B(η)ψ

)∣∣
k,µ

≤ Cγ2 ‖η‖Cγ2

∥∥Zk
(
(Zη)B(η)ψ

)∥∥
Hµ

+ Cs0 ‖η‖s0,0
∣∣(Zη)B(η)ψ

∣∣
k−1,µ+1

+ 1R+(µ− γ′2)Cs0 ‖η‖s0,0
∣∣(Zη)B(η)ψ

∣∣
k,µ−1

+ Cs0 ‖(Zη)B(η)ψ‖µ+k−s0+N2,γ2+
1
2
|η|k,µ .

To estimate the first term in the right-hand side of the above inequality we use the product

rule (4.4.23) with m = s0 − 1, b = γ2, ζ = Zη and F = B(η)ψ, we find that

|(Zη)B(η)ψ|k,µ . ‖η‖
s0,0

|B(η)ψ|k,µ
+ 1R+(µ + k − s0 + 3) ‖B(η)ψ‖Cγ2

∥∥Zk+1η
∥∥
Hµ

+ ‖B(η)ψ‖µ+k−s0+3,0 |η|k,µ+1

+ 1R+(µ + 1− γ2) ‖B(η)ψ‖µ+k−s0+3,0 |η|k+1,µ−1 .

Now |B(η)ψ|k,µ is estimated by means of Proposition 4.3.9. On the other hand,

∥∥(Zη)B(η)ψ
∥∥
µ+k−s0+N2,γ2+

1
2
. ‖Zη‖µ+k−s0+N2,γ2+

1
2
‖B(η)ψ‖µ+k−s0+N2,γ2+

1
2
.

If γ2 ≥ N2 + 1 then

(4.5.33) µ+ k + 1− s0 +N2 + γ2 ≤ s − s0 +N2 + γ2 ≤ s0 +N2 − γ2 ≤ s0 − 1.

Therefore ‖Zη‖µ+k−s0+N2,γ2+
1
2
≤ ‖η‖

s0,0
. Moreover (4.5.33) implies that we can apply Propo-

sition 4.3.11 to bound ‖B(η)ψ‖µ+k−s0+N2,γ2+
1
2
(and hence ‖B(η)ψ‖µ+k−s0+3,0). This com-

pletes the estimate of the first and last term in the right hand side of (4.5.32).

It remains to estimate the second and third terms in the right hand side of (4.5.32). Both

terms are estimated similarly and we consider the third one only. To estimate this term we

use the product rule (4.4.18) (instead of the product rule (4.4.23) used above) applied with

m = s0 − 1. This yields

|(Zη)B(η)ψ|k,µ−1 . ‖Zη‖
s0−1,0 |B(η)ψ|k,µ−1 + ‖B(η)ψ‖µ+k−s0+1,0 |Zη|k,µ−1

. ‖η‖
s0,0

|B(η)ψ|k,µ−1 + ‖B(η)ψ‖µ+k−s0+1,0 |η|k+1,µ−1 .

Then we use (4.3.35) (resp. (4.3.37)) to estimate the |·|k,µ−1-norm (resp. ‖·‖µ+k−s0+1,0-norm)

of B(η)ψ.

We conclude that (4.5.29) holds for i = 1.

Step 2: Estimate of F2.
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Write

−F2 = |Dx|TZηB(η)ψ + ∂x
(
TZηV (η)ψ

)

=
[
|Dx| , TZη

]
B + T∂xZηV + TZη |Dx|B + TZη∂xV

=
[
|Dx| , TZη

]
|Dx|ψ + T∂xZη∂xψ + F̃2,

with

F̃2 = TZη
(
|Dx|B(η)ψ + ∂xV (η)ψ

)

+
[
|Dx| , TZη

]
(B(η)ψ − |Dx|ψ) + T∂xZη(V (η)ψ − ∂xψ).

Since |Dx|2 = −∂2x, it follows from identity (A.1.22) that

[
|Dx| , TZη

]
|Dx|ψ + T∂xZη∂xψ = |Dx|TZη |Dx|ψ + ∂x(TZη∂xψ) = 0.

It remains to estimate F̃2 (which is equal to −F2 in view of the above cancellation). The

estimates for B(η)ψ and V (η)ψ would be insufficient to control |Dx|B(η)ψ + ∂xV (η)ψ. We

remedy this by using the identity ∂xV (η)ψ = −G(η)B(η)ψ (see (4.1.7)) and hence

|Dx|B(η)ψ + ∂xV (η)ψ = |Dx|B(η)ψ −G(η)B(η)ψ.

Therefore, we conclude that

−F2 = F2
a + F2

b + F2
c

= −TZη
(
G(η) − |Dx|)B(η)ψ +

[
|Dx| , TZη

]
(B(η)− |Dx|)ψ

+ T∂xZη(V (η) − ∂x)ψ.

These three terms are estimated by similar arguments.

Let us estimate F2
a = −TZη

(
G(η)− |Dx|)B(η)ψ. Set A(η)ψ =

(
G(η)− |Dx|)B(η)ψ. We shall

use a corollary of the estimate (4.4.24) whose statement is recalled here

|TζF |K,ν . ‖ζ‖m,0 |F |K−1,ν+1 + 1R+(m) ‖ζ‖L∞

∥∥ZKF
∥∥
Hν

+ ‖F‖ν+K−m+1,0 |ζ|K−1,0

+ 1R+(ν +K −m+ 1) ‖F‖Cb

∥∥ZKζ
∥∥
L2

+ 1R+(ν + 1− b) ‖F‖Cν+K−m+1

∥∥ZKζ
∥∥
L2 .

By using the obvious inequalities

1R+(m) ‖ζ‖L∞

∥∥ZKF
∥∥
Hν ≤ ‖ζ‖m,0 |F |K,ν , |F |K−1,ν+1 ≤ |F |K,ν ,

this yields

|TζF |K,ν . ‖ζ‖m,0 |F |K,ν
+ ‖F‖ν+K−m+1,0 |ζ|K−1,0

+ 1R+(ν +K −m+ 1) ‖F‖Cb

∥∥ZKζ
∥∥
L2

+ 1R+(ν + 1− b) ‖F‖Cν+K−m+1

∥∥ZKζ
∥∥
L2 .
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By applying this estimate with (K, ν,m, b) replaced by (k, µ, s0 − 1, γ2), we then obtain that

(4.5.34)

∣∣F2
a

∣∣
k,µ

. ‖Zη‖
s0−1,0 |A(η)ψ|k,µ

+ 1R+(µ+ k − s0 + 2) ‖A(η)ψ‖Cγ2

∥∥Zk+1η
∥∥
Hµ

+ ‖A(η)ψ‖µ+k−s0+2,0 |Zη|k−1,0

+ 1R+(µ− γ2 + 1) ‖A(η)ψ‖µ+k−s0+2,0 |η|k+1,µ−1 .

Now it follows from (4.5.20) that

|A(η)ψ|k,µ ≤ C ‖η‖
s0,0

|B(η)ψ|k,µ + C ‖B(η)ψ‖µ+k−s0+N1,γ1
|η|k,µ+1 ,

and (4.3.37) and (4.3.35) imply that

‖B(η)ψ‖µ+k−s0+N1,γ1
≤ C

(
‖η‖µ+k−s0+N1,γ1+1

)∥∥|Dx|
1
2 ψ
∥∥
µ+k−s0+N1,γ1+

1
2
,

∣∣B(η)ψ
∣∣
k,µ

≤ C
∣∣|Dx|

1
2 ψ
∣∣
k,µ+ 1

2
+ C

∥∥|Dx|
1
2 ψ
∥∥
µ−s0+4+k,γ

|η|k,µ+1 ,

Therefore

(4.5.35) |A(η)ψ|k,µ ≤ C ‖η‖
s0,0

∣∣|Dx|
1
2 ψ
∣∣
k,µ+ 1

2
+ C

∥∥|Dx|
1
2 ψ
∥∥
µ+k−s0+N2,γ2

|η|k,µ+1 .

On the other hand, it follows from (4.5.30) that

(4.5.36)

‖A(η)ψ‖µ+k−s0+2,0

≤ ‖A(η)ψ‖µ+k−s0+2,σ0

≤ C
(
‖η‖µ+k−s0+2,σ0+2

)
‖η‖µ+k−s0+2,σ0+2

∥∥|Dx|
1
2 ψ
∥∥
µ+k−s0+2,σ0+

3
2

where the index σ0 appears in the first inequality because (4.5.30) is proved only for σ larger

than some number σ0 large enough. Now, by assumption on µ we have µ ≤ s − k − 1 and

by assumption on (s, s0) we have s ≤ 2s0 − 2γ2. Thus, if γ2 is large enough (namely for

2γ2 ≥ σ0 + 4) we have µ+ k ≤ s ≤ 2s0 − 2γ2 ≤ 2s0 − σ0 − 4 and hence

‖η‖µ+k−s0+2,σ0+2 ≤ ‖η‖
s0,0

.

Thus (4.5.36) implies that

(4.5.37) ‖A(η)ψ‖µ+k−s0+2,0 ≤ C ‖η‖
s0,0

∥∥|Dx|
1
2 ψ
∥∥
µ+k+1−s0+N2,γ2

,

Setting (4.5.35) and (4.5.37) into (4.5.34), we obtain that
∣∣F2

a

∣∣
k,µ

is estimated by the right-

hand side of (4.5.29).

Step 3: Analysis of F3.
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Write

G(η)(ηB) − ηG(η)B = G(η)(η |Dx|ψ)− ηG(η) |Dx|ψ + J(η, η)(B(η)ψ − |Dx|ψ),

where recall that by definition J(η, η)f = G(η)(ηf) − ηG(η)f . Then

G(η)(ηB(η)ψ) − ηG(η)B(η)ψ

= |Dx| (η |Dx|ψ) + η∂2xψ

+ (G(η) − |Dx|)
(
η |Dx|ψ

)
− η(G(η) − |Dx|) |Dx|ψ

+ J(η, η)(B(η) − |Dx|)ψ,

where we used |Dx|2 = −∂2x. By replacing V (η)ψ by V (η)ψ − ∂xψ + ∂xψ, we conclude that

F3 satisfies

F3 = 2(G(η) − |Dx|)
(
η |Dx|ψ

)
− 2η(G(η) − |Dx|) |Dx|ψ + 2(∂xη)(V (η)− ∂x)ψ

+ 2J(η, η)(B(η) − |Dx|)ψ,

The first three terms in the right-hand side above are estimated as F2
a (except that we use

Proposition 4.3.9 for estimating products instead of using (4.4.19) for estimating paraprod-

ucts).

To estimate |J(η, η)(B(η) − |Dx|)ψ|k,µ, we first use (4.5.1) to obtain that

|J(η, η)(B(η) − |Dx|)ψ|k,µ ≤ C ‖η‖
s0,0

|(B(η)− |Dx|)ψ|k,µ
+ C ‖(B(η)− |Dx|)ψ‖µ+k−s0+N0,γ0

|η|k,µ+1 ,

The term |(B(η) − |Dx|)ψ|k,µ is estimated by means of (4.5.31). Now notice that γ0 > 3 and

µ + k − s0 + N0 ≤ s − 1 − s0 + N0 ≤ s0 − 3 (also, up to replacing γ0 by γ0 + δ, δ ≪ 1, one

can assume without loss of generality that γ0 6∈ N). So, we can apply (4.5.30) to estimate

‖(B(η) − |Dx|)ψ‖µ+k−s0+N0,γ0
.

Step 4: Analysis of F i for 4 ≤ i ≤ 6.

By definition

F4 = − |Dx|RB
(
B(η)ψ − |Dx|ψ,Zη

)
− ∂xRB

(
Zη, V (η)ψ − ∂xψ

)
.

So (4.5.29) for i = 4 follows from the estimate (4.4.7) and the estimates (4.5.30) and (4.5.31).

Similarly, (4.5.29) for i = 5 follows from the estimate (4.4.8) and the estimates (4.5.30) and

(4.5.31).

Finally, it remains to estimate F6. We estimate |Dx|TRB(η)ψ+2|Dx|ψη and ∂x(TRV (η)ψ+2∂xψη)

separately. To fix matters we consider the first term only (the second term is estimated
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similarly). One has to take care of the fact that RB(η)ψ involves one Z-derivative acting

on η. We thus use the sharp product estimate (4.4.19) with m = µ+ k− s0+2 to obtain that

∣∣|Dx|TRB(η)ψ+2|Dx|ψη
∣∣
k,µ

≤
∣∣TRB(η)ψ+2|Dx|ψη

∣∣
k,µ+1

. ‖RB(η)ψ + 2 |Dx|ψ‖µ+k−s0+2,0 |η|k−1,µ+2

+ ‖η‖
s0,0

|RB(η)ψ + 2 |Dx|ψ|k−1,0

+ ‖RB(η)ψ + 2 |Dx|ψ‖L∞

∥∥Zkη
∥∥
Hµ

+ 1R+(s0 − µ− 2) ‖η‖Cµ+1

∥∥Zk
(
RB(η)ψ + 2 |Dx|ψ

)∥∥
L2 .

It follows from the definition (4.2.3) of RB(η)ψ and the definition (4.1.1) of RG(η)ψ that

RB(η)ψ + 2 |Dx|ψ = I + II + III

I = −2
(
G(η) − |Dx|

)
ψ

II =
2

1 + (η′2)

([
G(η), η

]
B(η)ψ − η′(V (η)ψ)

)

III = − 1

1 + η′2
(
∂x(V (η)ψ) − η′∂x(B(η)ψ)

)
Zη.

All the terms in the right hand side are quadratic and can be estimated as above; let us

mention that we do not need to use the fact that
[
G(η), η

]
B(η)ψ is a commutator (it is

sufficient to estimate G(η)(ηB(η)ψ) and ηG(η)B(η)ψ separately) and that

‖I‖µ+k−s0+2,0 is estimated by (4.5.30)

‖II‖µ+k−s0+2,0 , ‖III‖µ+k−s0+2,0 are estimated by (4.3.37) and (4.3.15)

|I|k−1,0 is estimated by (4.5.31)

|II |k−1,0 , |III|k−1,0 ,
∥∥ZkII

∥∥
L2 are estimated by (4.3.35), (4.4.18), (4.3.37)

‖I‖L∞ is estimated by (2.6.12)

‖II‖L∞ , ‖III‖L∞ is estimated by (2.0.4)
∥∥ZkI

∥∥
L2 is estimated by (4.3.32)

∥∥ZkIII
∥∥
L2 is estimated by (4.4.23) with ζ = Zη, (4.3.35), (4.3.37).

Then (4.5.29) for i = 6 follows from arguments similar to the observations made above

(4.4.23). This completes the proof.
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Chapter 5

Energy estimates for the Z-field

system

Combining the results obtained so far, we prove in this chapter the Sobolev estimates for the

action of the Z-vector field on the solution we are looking for.

5.1 Notations

We start by recalling or fixing some notations.

We fix real numbers a and γ with

γ 6∈ 1

2
N, a≫ γ ≫ 1.

(In particular, we assume that γ is large relatively to the fixed positive constants γ′2, N2 given

by Proposition 4.5.4). Given these two numbers, we fix three integers s, s0, s1 in N such that

s − a ≥ s1 ≥ s0 ≥
s

2
+ γ.

We also fix an integer ρ larger than s0. Our goal is to estimate the norm

(5.1.1) M (s1)
s

(t) =

s1∑

p=0

(∥∥Zpη(t)
∥∥
Hs−p +

∥∥|Dx|
1
2 Zpω(t)

∥∥
Hs−p

)
,

assuming some control of the Hölder norms
∥∥|Dx|

1
2 ψ(t)

∥∥
Cγ + ‖η(t)‖Cγ

and

N (s0)
ρ (t) =

s0∑

p=0

(∥∥Zpη(t)
∥∥
Cρ−p +

∥∥|Dx|
1
2 Zpψ(t)

∥∥
Cρ−p

)
.
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We want to prove the following theorem.

Theorem 5.1.1. There is a constant B2 > 0 and for any constants B∞ > 0, B′
∞ > 0, there

is ε0 such that the following holds: Let T > T0 be a number such that equation (1.2.1) with

Cauchy data satisfying (1.2.9) has a solution satisfying the regularity properties of Proposi-

tion 1.2.1 on [T0, T ]× R and such that

i) For any t ∈ [T0, T [, and any ε ∈]0, ε0],

(5.1.2)
∥∥|Dx|

1
2 ψ(t)

∥∥
Cγ + ‖η(t)‖Cγ ≤ B∞εt

− 1
2 .

ii) For any t ∈ [T0, T [, any ε ∈]0, ε0]

(5.1.3) N (s0)
ρ (t) ≤ B∞εt

− 1
2
+B′

∞ε2 .

Then, there is an increasing sequence (δk)0≤k≤s1 depending only on B′
∞ and ε with δs1 < 1/32

such that for any t in [T0, T [, any ε in ]0, ε0], any k ≤ s1,

(5.1.4) M (k)
s

(t) ≤ 1

2
B2εt

δk .

Remark. This is Theorem 1.2.2 except that we replaced (1.2.10) by (5.1.2), which we can

freely do replacing γ by γ + 1
2 .

Proof of Theorem 5.1.1. We fix an integer β such that

(5.1.5) γ′2 − 1 ≥ β ≥ 4,

where γ′2 is a fixed large enough positive number given by Proposition 4.5.4. Since we assumed

that γ is large relatively to γ′2, we can assume that γ−4 ≥ β. Moreover, since s− s1 ≥ a ≥ γ,

this yields that β ≤ s − s1. Introduce the set

(5.1.6) P =
{
(α, n) ∈ N× N ; 0 ≤ n ≤ s1, 0 ≤ α ≤ s − n− β

}
.

For any (α, n) in P we set

(5.1.7) Y(α,n) :=
∥∥∂αxZnη

∥∥
Hβ +

∥∥|Dx|
1
2 ∂αxZ

nω
∥∥
Hβ +

∥∥|Dx|
1
2 ∂αxZ

nψ
∥∥
Hβ−1

2
.

Since

∑

0≤n≤k
0≤α≤s−n−β

Y(α,n) =

k∑

n=0

{∥∥Znη
∥∥
Hs−n +

∥∥|Dx|
1
2 Znω

∥∥
Hs−n +

∥∥|Dx|
1
2 Znψ

∥∥
Hs−n− 1

2

}

we have

(5.1.8) M (k)
s

≤
∑

0≤n≤k
0≤α≤s−n−β

Y(α,n).
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We shall proceed by induction. This requires to introduce a bijective map, denoted by Λ,

from P to {0, 1, . . . ,#P − 1}. For (α, n) ∈ P, we set

Λ(α, n) =

n−1∑

p=0

(s + 1− β − p) + α,

with the convention that
∑−1

p=0(s + 1 − β − p) = 0 so that Λ(α, 0) = α. Then we define the

following order on P:

(α′, n′) ≺ (α, n) ⇔ Λ(α′, n′) < Λ(α, n).

So, there holds (α′, n′) ≺ (α, n) if and only if either n′ < n or [n′ = n and α′ < α].

Given an integer K in {0, . . . ,#P − 1} we set

PK = {(α, n) ∈ N× N ; Λ(α, n) ≤ K}.

We also set P−1 = ∅ and we introduce, for K in {0, . . . ,#P},

(5.1.9) MK :=
∑

(α′,n′)∈PK−1

Y(α′,n′),

where, by convention, M0 = 0.

We use the forthcoming Corollary 5.2.2 that will be established in the next section. Since

assumption (5.1.3) shows that N
(s0)
ρ (t) stays uniformly bounded by 1 is ε is small enough,

inequality (5.2.8) shows that

(5.1.10)

MK+1(t) ≤ CK

[
M (s1)

s
(T0) + (1 +NK(t))MK(t)

+

∫ t

T0

∥∥u(t′, ·)
∥∥2
Cγ MK+1(t

′) dt′

+

∫ t

T0

NK(t
′)2MK(t

′) dt′
]

for some constant CK . In the definition (5.2.5) of NK , we shall relate ν to the size ε of the

Cauchy data by ν =
√
ε. We shall construct inductively an increasing sequence of constants

(B2,K)K and of small exponents (δ̂K)K such that for any t in [T0, T ]

(5.1.11) MK(t) ≤ εB2,Kt
δ̂K .

Since M0 ≡ 0 by assumption, we may take B2,0 = 0, δ̂0 = 0. Assume that the estimate has

been obtained at rank K. This induction assumption, together with (5.1.3) implies that

(5.1.12) NK(t) ≤ ε
[
B∞ +

1

ν
B̃K(ν)

]
t−

1
2
+γK(ε,ν)
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where, if ε is small enough so that B′
∞ε

2 < 1
2 , we may take

(5.1.13)
B̃K(ν) = B1−ν

∞ Bν
2,K

γK(ε, ν) =
ν

2
+ (1− ν)B′

∞ε
2 + νδ̂K .

Our choice ν =
√
ε implies in particular that, by (5.1.12), NK(t) is uniformly bounded so

that (5.1.10) may be rewritten, up to a modification of CK , and making use of (5.1.2),

MK+1(t) ≤ CK

[
M (s1)

s
(T0) +MK(t)

+ ε2
∫ t

T0

MK+1(t
′)
dt′

t′

+

∫ t

T0

NK(t
′)2MK(t′) dt′

]
.

Using Gronwall inequality for a non decreasing function α(·) under the form

y(t) ≤ α(t) +

∫ t

T0

β(τ)y(τ) dτ ⇒ y(t) ≤ α(t) exp

(∫ t

T0

β(τ) dτ

)

we get

(5.1.14)

MK+1(t) ≤ CK

[
M (s1)

s
(T0) + sup

T0≤t′≤t
MK(t′)

+

∫ t

T0

NK(t
′)2MK(t′) dt′

]
tε

2CK .

We may take a large enough constant A so that M
(s1)
s (T0) ≤ Aε since the Cauchy data are

O(ε). Using the induction assumption (5.1.11), we deduce from (5.1.14) and (5.1.12)

(5.1.15)

MK+1(t) ≤ εCKt
ε2CK

[
A+B2,Kt

δ̂K

+B2,Kε
2

(
B∞ + 1

ν B̃K(ν)
)2

2γK(ε, ν) + δ̂K
t2γK(ε,ν)+δ̂K

]
.

Our choice ν =
√
ε implies that γK(ε, ν) given by (5.1.13) is bounded from below by 1

2

√
ε, so

that the last coefficient in the above inequality is uniformly bounded.

We find a new constant B2,K+1 ≥ B2,K such that

(5.1.16) MK+1(t) ≤ εB2,K+1t
δ̂K+1

if we define

δ̂K+1 = 2γK(ε, ν) + δ̂K + ε2CK .
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The expression (5.1.13) of γK shows that δ̂K+1 = O(
√
ε). We have obtained the bound

(5.1.11) at rank K + 1.

To finish the proof of Theorem 5.1.1, we are left with deducing from the above estimates

inequality (5.1.4). For k ≤ s1, we define K = Λ(s− k−β, k), δk = δ̂K+1. Then by (5.1.8) and

(5.1.9), M
(k)
s (t) ≤ MK+1(t). Estimate (5.1.4) thus follows from (5.1.16) if we take B2 larger

than 2B2,K+1 for any K ≤ #P − 1. Notice that this constant is independent of B∞, B′
∞

if ε is small enough: actually the only dependence of B2,K+1 on B∞ could come only from

the coefficient of t2γK(ε,ν)+δ̂K in the right hand side of (5.1.15). But taking ε small enough in

function of B∞, we may assume that this coefficient is smaller than a power of B2,K . This

concludes the proof of the theorem, assuming that Corollary 5.2.2 holds. The rest of this

chapter will be devoted to the proof of that corollary (actually of the proposition that will

imply it) using a normal forms method.

5.2 Normal form for the Z-systems

From now on, we fix K in {0, . . . ,#P − 1} and denote by (α, n) is the unique couple in P
such that Λ(α, n) = K. Then by the definition (5.1.9)

(5.2.1) MK+1 = Y(α,n) +MK .

We keep the notations introduced in section 3.2. In particular,

u =

(
u1

u2

)
=

(
η

|Dx|
1
2 ψ

)
, U =

(
U1

U2

)
=

(
η + T√a−1η

|Dx|
1
2 ω

)
,

where a is the Taylor coefficient given by (3.1.5).

As already mentioned in the remark made after the statement of Assumption 3.1.1, it follows

from the assumptions of Theorem 5.1.1 that, if ε is small enough, then the condition (1.1.17)

is satisfied uniformly in time. The other smallness conditions which appear in the previous

chapters are trivially satisfied under the only assumption (5.1.2): namely, the smallness con-

dition in Assumption 3.1.5 which insures that the Taylor coefficient is bounded from below

by 1/2 and the smallness condition that ‖η′‖L∞ is small enough which was used to justify the

identity (4.1.1) as well as its corollaries. Thus we may apply the previous results.

Proposition 5.2.1. There exists a function Φ of the form

(5.2.2) Φ := ∂αxZ
nU +

∑∑∑∑

0≤n1+n2≤n, 0≤α1+α2≤α
En1n2α1α2(∂

α1
x Zn1u)∂α2

x Zn2U

where En1n2α1α2 are bilinear operators, explicitly defined in the proof, such that the following

properties hold
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i) Φ satisfies an equation of the form

(5.2.3) ∂tΦ+DΦ+ L(u)Φ + C(u)Φ = Γ,

where L(u) and Γ satisfy the following properties:

• (v, f) 7→ L(v)f is a bilinear mapping well defined for any (v, f) in C2(R) × Hβ(R) with

values in Hβ−1(R). Moreover, for any v in C2(R), L(v) satisfies Re〈L(v)f, f〉Hβ×Hβ = 0 for

any f ∈ Hβ+1(R).

• Γ is a cubic term satisfying the following property: there exists a non decreasing function

CK such that, for any ν ∈]0, 1],

(5.2.4)
∥∥Γ
∥∥
Hβ ≤ C0(‖u‖Cγ ) ‖u‖2Cγ Y(α,n) + CK(NK)N 2

KMK ,

where

(5.2.5) NK = N (s0)
ρ +

1

ν

(
N (s0)
ρ

)1−ν(MK

)ν
.

ii) There exists κ0 > 0 and a non decreasing function CK(·) such that, if ‖u‖Cγ ≤ κ0 then

(5.2.6)
Y(α,n) ≤ 5 ‖Φ‖Hβ + CK

(
N (s0)
ρ

)
(1 +NK)MK ,

‖Φ‖Hβ ≤ 2Y(α,n) + CK
(
N (s0)
ρ

)
NKMK .

There exist κ0 > 0 and K0 > 0 such that if N
(s0)
ρ (T0) ≤ κ0 then

(5.2.7) ‖Φ‖Hβ (T0) ≤ K0M
(s1)
s

(T0).

Let us deduce from the above estimates the inequality that has been used in the previous

section to prove Theorem 5.1.1.

Corollary 5.2.2. Under the assumptions of the proposition, for any K = 0, . . . ,#P−1 there

is a non-decreasing function CK(·) such that for any ν in ]0, 1], any t in [T0, T ],

(5.2.8)

MK+1(t) ≤ 5K0M
(s1)
s

(T0) + CK
(
N (s0)
ρ (t)

)(
1 +NK(t)

)
MK(t)

+

∫ t

T0

CK
(
N (s0)
ρ (t′)

) ∥∥u(t′, ·)
∥∥2
Cγ MK+1(t

′) dt′

+

∫ t

T0

CK
(
N (s0)
ρ (t′)

)
NK(t

′)2MK(t
′) dt′

(setting N0 ≡ 0, M0 ≡ 0 when K = 0).

Proof. By assumption Re〈DΦ + L(u)Φ,Φ〉Hβ×Hβ = 0. Moreover, by Lemma A.4.6 in Ap-

pendix A.4,

Re〈C(u)Φ,Φ〉Hβ×Hβ ≤ C0

(
‖u‖Cγ

)
‖u‖2Cγ ‖Φ‖2Hβ .
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We may therefore compute d
dt ‖Φ(t, ·)‖

2
Hβ using (5.2.3) and conclude, integrating the resulting

expression from T0 to t, that

‖Φ(t, ·)‖2Hβ ≤ ‖Φ(T0, ·)‖2Hβ +

∫ t

T0

C0

( ∥∥u(t′, ·)
∥∥
Cγ

) ∥∥u(t′, ·)
∥∥2
Cγ

∥∥Φ(t′, ·)
∥∥2
Hβ dt

′

+

∫ t

T0

∥∥Γ(t′, ·)
∥∥
Hβ

∥∥Φ(t′, ·)
∥∥
Hβ dt

′.

We deduce from this inequality

(5.2.9)

‖Φ(t, ·)‖Hβ ≤ ‖Φ(T0, ·)‖Hβ +

∫ t

T0

C0

( ∥∥u(t′, ·)
∥∥
Cγ

) ∥∥u(t′, ·)
∥∥2
Cγ

∥∥Φ(t′, ·)
∥∥
Hβ dt

′

+

∫ t

T0

∥∥Γ(t′, ·)
∥∥
Hβ dt

′.

By (5.2.4)and the bound Y(α,n) ≤ MK+1 provided by (5.2.1), we get

∥∥Γ(t′, ·)
∥∥
Hβ ≤ C0

( ∥∥u(t′, ·)
∥∥
Cγ

) ∥∥u(t′, ·)
∥∥2
Cγ MK+1(t

′)

+CK
(
NK(t

′)
)
NK(t

′)2MK(t′).

If follows from the inequalities (5.2.6) and from (5.2.1) that

MK+1(t) ≤ 5 ‖Φ(t, ·)‖Hβ +CK
(
N (s0)
ρ (t)

)
(1 +NK(t))MK(t),

∥∥Φ(t′, ·)
∥∥
Hβ ≤ 2MK+1(t

′) + CK
(
N (s0)
ρ (t′)

)
NK(t

′)MK(t′)

for new values of CK(·). We bound in the first inequality above ‖Φ(t, ·)‖Hβ from (5.2.9),

where we control in the right hand side ‖Φ(t′, ·)‖Hβ and ‖Γ(t′, ·)‖Hβ using the estimates just

obtained. We get

MK+1(t) ≤ 5 ‖Φ(T0, ·)‖Hβ + CK
(
N (s0)
ρ (t)

)(
1 +NK(t)

)
MK(t)

+

∫ t

T0

CK
( ∥∥u(t′, ·)

∥∥
Cγ

) ∥∥u(t′, ·)
∥∥2
Cγ MK+1(t

′) dt′

+

∫ t

T0

CK
(
N (s0)
ρ (t′)

)
NK(t

′)2MK(t′) dt′

(using that ‖u‖Cγ may be estimated from NK , and changing again the value of the constants).

Combining this and (5.2.7), we get (5.2.8).

We now have to prove Proposition 5.2.1. Let us describe the strategy of the proof. The proof

is divided into four steps. We first write the equation for ∂αxZ
nU under the form

(5.2.10)
(
∂t +D +Q(u) + S(u) + C(u)

)
∂αxZ

nU = G + F ,
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where G is a cubic term, F is a quadratic term and where Q(u), S(u) and C(u) are as defined

in Section 3.2. As a preparation for the next step, we rewrite this equation under the form

(5.2.11)
(
∂t +D +Q(u) + S♯(u) + 2S♭(u) + C(u)

)
∂αxZ

nU = G′ + F ′′,

where, again, G′ is a cubic term, F ′′ is a quadratic term and where S♯(u) and S♭(u) are as

defined in (3.5.9), so that S(u) = S♯(u) + S♭(u). The main difference between the quadratic

terms F (which appears in (5.2.10)) and F ′′ (which appears in (5.2.11)) is that we shall show

in the second step that one can eliminate F ′′ by a bilinear normal form which produces cubic

terms satisfying (5.2.4)—whereas eliminating F would produce a cubic term whose L2-norm

is estimated by

C(‖u‖Cγ )(‖u‖Cγ + ‖Hu‖Cγ )
2 ‖∂αxZnU‖L2 + C(NK)N 2

KMK .

In the third step we follow the strategy already explained in §3.3. We shall prove that one

can add a quadratic term in the equation which compensates for the most singular quadratic

term. Eventually, in the fourth step we estimate various terms.

Proof. The proof is divided into four steps. Let us mention that, for this proof, we write

simply C(·) instead of CK(·).

Step 1: Equation for ∂αxZ
nU

Using the notations of §3.2 for the operators Q(u), S(u) and C(u), we have

∂tU +DU +Q(u)U + S(u)U + C(u)U = G,

where G = (G1, G2) is given by (see (3.2.9))

(5.2.12)

G1 = (Id+ Tα)F (η)ψ − F(≤2)(η)ψ + T∂tα−∂xV+ 1
2
∂2xψ

η

+
{
−TαT∂xV + TV T∂xαη +

[
TV , Tα

]
− 1

2
T
|Dx|

3
2 u2

Tα

}
η,

+ |Dx|RB(|Dx|ψ, Tαη) + ∂xRB(∂xψ, Tαη),

and

(5.2.13)

G2 = |Dx|
1
2

(1
2
RB(B,B)− 1

2
RB(|Dx|ψ, |Dx|ω)

)

− |Dx|
1
2

(1
2
RB(V, V )− 1

2
RB(∂xψ, ∂xω)

)

+ |Dx|
1
2
(
(TV T∂xη − TV ∂xη)B + (TV ∂xB − TV T∂xB)η

)

+ |Dx|
1
2 TVRB(B, ∂xη)− |Dx|

1
2 RB(B,V ∂xη)

+ |Dx|
1
2 (TαTα − Tα2)η,
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where we still denote by α the coefficient
√
a− 1 where a is the Taylor coefficient.

To compute the equations satisfied by ZnU we use two calculus results. Firstly,

(5.2.14) Z∂t = ∂tZ − ∂t, ZD = DZ −D,

and secondly, given A(v) = OpB[v1, A1] + OpB[v2, A2] for some matrix-valued symbol A1, A2

in some class Sm,γν we have (see (3.4.13))

ZA(v)f = A(v)Zf +A(Zv)f +A′(v)f

where A′(v)f = OpB[v1, A
′,1]f + OpB[v2, A

′,2] with A
′,r = −2ξ · ∇ξA

r for r = 1, 2. Notice

that A
′,1, A

′,2 belong to Sm,γν if A1, A2 belongs to Sm,γν .

In particular it follows from (3.6.3) that

ZQ(u) = Q(Zu) +Q(u)Z +Q′(u) where Q′(u) = OpB[u,Q′], Q′ ∈ S1,0
1/2.

Similarly, ZS(u) = S(Zu) + S(u)Z + S′(u) where S′(u) = OpB[u,R′] with R′ = −2ξ · ∇ξR

where R (resp. R′) is given by (5.2.35) below with ℓ = 0 (resp. ℓ = 1).

Consequently, by induction on n ∈ N, we have

(5.2.15) ∂tZ
nU +DZnU +Q(u)ZnU + S(u)ZnU + C(u)ZnU = G(n) + F(n),

where F(n) (resp. G(n)) is a quadratic (resp. cubic) term defined by induction:

G(n) := ZG(n−1) +G(n−1)

+C(u)ZnU − ZC(u)Zn−1U − C(u)Zn−1U,

F(n) := ZF(n−1) + F(n−1) −Q(Zu)Zn−1U(5.2.16)

−Q(u)Zn−1U −Q′(u)Zn−1U

− S(Zu)Zn−1U − S(u)Zn−1U − S′(u)Zn−1U,

with, by definition, G(0) = G and F(0) = 0.

Observe that one can write F(n) under the form

F(n) =
∑

i∈I(n)
m(i)Q(n3)(Zn1u)Zn2U +

∑

I(n)

m(i)S(n3)(Zn1u)Zn2U

where m(i) ∈ N and where we used the following notations :

I(n) =
{
i = (n1, n2, n3) ∈ N

3 ; n1 + n2 + n3 ≤ n and n2 < n
}
,

and Q(n3) and S(n3) are defined by

Q(n3)(v) = OpB[v1, Q(n3),1] + OpB[v2, Q(n3),2],

S(n3)(v) = OpB[v1, R(n3),1] + OpB[v2, R(n3),2],
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where for A = Q or A = R, and for k = 1, 2, A(n3),k is defined by induction:

A(0),k = Ak, A(a+1),k = −2ξ · ∇ξA
(a),k.

Applying ∂αx to (5.2.15) we conclude that

(5.2.17)
(
∂t +D +Q(u) + S(u) + C(u)

)
∂αxZ

nU = G + F ,

where F (resp. G) is a quadratic (resp. cubic) term defined by

(5.2.18)

G := ∂αxG(n) +C(u)∂αxZ
nU − ∂αxC(u)ZnU,

F := ∂αxF(n) +Q(u)∂αxZ
nU − ∂αxQ(u)ZnU

+ S(u)∂αxZ
nU − ∂αxS(u)Z

nU.

Observe that one can write F under the form

(5.2.19)

F =
∑

j∈J
m(j)Q(n3)(∂α1

x Zn1u)∂α2
x Zn2U

+
∑

j∈J
m(j)S(n3)(∂α1

x Zn1u)∂α2
x Zn2U

where m(j) ∈ N and J is the set of those (α1, α2, n1, n2, n3) ∈ N5 such that

(5.2.20) α1 + α2 = α, n1 + n2 + n3 ≤ n, α2 + n2 < α+ n.

There are two terms in the right hand side of (5.2.19) which involve ∂αxZ
nu. Namely, when

(α1, α2, n1, n2, n3) = (α, 0, n, 0, 0) we have

Q(n3)(∂α1
x Zn1u)∂α2

x Zn2U = Q(∂αxZ
nu)U,

S(n3)(∂α1
x Zn1u)∂α2

x Zn2U = S(∂αxZ
nu)U.

We shall see that one cannot eliminate these quadratic terms by the same method. So we

need to transform further the equation.

Notice that if j = (α1, α2, n1, n2, n3) = (α, 0, n, 0, 0) then the coefficient m(j) in (5.2.19) is

equal to −1. Thus we may rewrite the equation (5.2.17) as

(5.2.21)
(
∂t +D +Q(u) + S(u) + C(u)

)
∂αxZ

nU + S(∂αxZ
nu)U = G + F ′,

where

F ′ =
∑

j∈J
m(j)Q(n3)(∂α1

x Zn1u)∂α2
x Zn2U

+
∑

j∈J ′

m(j)S(n3)(∂α1
x Zn1u)∂α2

x Zn2U
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where m(j) ∈ N and

(5.2.22) J ′ = { (α1, α2, n1, n2, n3) ∈ J ; α1 + n1 < α+ n } .

Eventually, we split S(u) as S(u) = S♯(u)+S♭(u) where these operators are defined by (3.5.9).

Since S♭(v)f = S♭(f)v, we have

S(u)∂αxZ
nU + S(∂αxZ

nu)U = S♯(u)∂αxZ
nU + S♯(∂αxZ

nu)U

+ S♭(u)∂αxZ
nU + S♭(U)∂αxZ

nu.

Now we write the second and last terms in the right hand side above as

S♯(∂αxZ
nu)U = S♯(∂αxZ

nU)u+
(
S♯(∂αxZ

nu)U − S♯(∂αxZ
nU)u

)
,

S♭(U)∂αxZ
nu = S♭(u)∂αxZ

nU +
(
S♭(U)∂αxZ

nu− S♭(u)∂αxZ
nU
)
,

to obtain that

(5.2.23)
(
∂t +D +Q(u) + S♯(u) + 2S♭(u) + C(u)

)
∂αxZ

nU = G′ + F ′′

where

(5.2.24)

G′ = G −
(
S♯(∂αxZ

nu)U − S♯(∂αxZ
nU)u

)

−
(
S♭(U)∂αxZ

nu− S♭(u)∂αxZ
nU
)
,

F ′′ = F ′ − S♯(∂αxZ
nU)u.

Hereafter, we use the notation

(5.2.25) N(u) = Q(u) + S♯(u) + 2S♭(u) + C(u).

Then (5.2.23) reads

(5.2.26)
(
∂t +D +N(u)

)
∂αxZ

nU = G′ + F ′′.

For further references, let us prove that, for any µ ∈ R,

(5.2.27) ‖N(u)‖L(Hµ+1,Hµ) ≤ C(‖u‖Cγ ) ‖u‖Cγ .

Indeed, directly from the definition (3.2.7) (resp. (3.2.6)) for Q(u) (resp. C(u)), and using the

rule (A.1.5), the estimates (3.1.4) for ‖V ‖C0 and (3.1.20) for ‖α‖C0 , we check that

‖(Q(u) + C(u))w‖Hµ ≤ K ‖u‖Cγ ‖w‖Hµ+1 ,

provided that γ is large enough. On the other hand, directly from the definition (3.5.9) of

S♯(u) and S♭(u), it follows from (A.1.17) that, for any ρ 6∈ 1
2N and any µ ∈ R such that

µ+ ρ > 1,

(5.2.28)
∥∥(S♯(u) + 2S♭(u))w

∥∥
Hµ+ρ ≤ K ‖u‖Cρ ‖w‖

Hµ+3
2
.
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This proves (5.2.27). Similarly, for any positive real number ρ with ρ 6∈ 1
2N, we have

(5.2.29) ‖N(u)‖L(Cρ+1,Cρ) ≤ C(‖u‖Cγ ) ‖u‖Cγ .

Step 2: First normal form

We next seek a nonlinear change of unknown which removes the quadratic term F ′′ in the

right-hand side of (5.2.26). To do so, we shall prove that for any ℓ ∈ N there exist bilinear

transforms (v, f) 7→ Pℓ(v)f and (v, f) 7→ Rℓ(v)f such that

DPℓ(v)f = Pℓ(Dv)f + Pℓ(v)Df +Q(ℓ)(v)f,

DRℓ(v)f = Rℓ(Dv)f +Rℓ(v)Df + S(ℓ)(v)f.

We begin by studying the operators Q(ℓ)(v)f and S(ℓ)(v)f . For further references, we state

the following lemma.

Lemma 5.2.3. Let ℓ ∈ N. For all µ ∈ R and all ρ ∈ [4,+∞[ there exists a constant K such

that

∥∥Q(ℓ)(v)f
∥∥
Hµ−1 ≤ K ‖v‖C2 ‖f‖Hµ ,(5.2.30)

∥∥Q(ℓ)(v)f
∥∥
Hρ−2 ≤ K ‖v‖L2 ‖f‖Cρ ,(5.2.31)

∥∥S(ℓ)(v)f
∥∥
Hµ+2 ≤ K ‖v‖C4 ‖f‖Hµ ,(5.2.32)

∥∥S(ℓ)(v)f
∥∥
Hρ−2 ≤ K ‖v‖L2 ‖f‖Cρ ,(5.2.33)

whenever these terms are well-defined.

Proof. For ℓ = 0 we have Q(0)(v)f = Q(v)f and the estimates (5.2.30)–(5.2.31) follow from

the definition of Q(v)f (see (3.2.7)), the usual estimates for paraproducts (see (A.1.12) and

(A.1.20)) and the Hölder estimates (A.2.3) and (A.2.4) proved in Appendix A.2.

For ℓ > 0, introduce θ(ℓ) =
(
1 +

2

3
ξ · ∇ξ

)ℓ
θ where θ is given by Definition A.1.2. We claim

that Q(ℓ)(v) = OpB
[
v1, Q(ℓ),1

]
+OpB

[
v2, Q(ℓ),2

]
with

(5.2.34)

Q(ℓ),1 = (−3)ℓ
1

2
|ξ1| θ(ℓ)(ξ1, ξ2)

(
0 |ξ2|

1
2

− |ξ1 + ξ2|
1
2 0

)
,

Q(ℓ),2 = (−3)ℓξ1 |ξ1|−
1
2 θ(ℓ)(ξ1, ξ2)

(
−ξ2 − 1

2ξ1 0

0 − |ξ1 + ξ2|
1
2 ξ2 |ξ2|−

1
2

)
.

For ℓ = 0 this is true by definition of the symbols Q1 and Q2 as defined in (3.6.3). For ℓ > 0

this is proved by induction, since Q(ℓ+1),k = −2ξ ·∇ξQ
(ℓ),k for k = 1, 2. It follows from (5.2.34)

that Q(ℓ)(v) is a paradifferential operator of exactly the same form as Q(v), except that the
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cut-off function θ is replaced with θ(ℓ). Since θ(ℓ) is an admissible cut-off function (satisfying

similar assumptions to those imposed on θ, see Remark A.1.4), then Q(ℓ)(v)f satisfies the

same estimates as Q(v)f does. This proves (5.2.30)–(5.2.31).

The estimates (5.2.32)–(5.2.33)are proved by using similar arguments. Indeed, it follows from

(3.5.18), (3.5.9), and (3.5.30) that

S(ℓ)(v) = OpB
[
v2,

(
m

(ℓ),2
11 0

0 m
(ℓ),2
22

)]

where

(5.2.35)
m

(ℓ),2
11 = (−3)ℓζ(ℓ)(ξ1, ξ2) |ξ1|−

1
2
(
|ξ1 + ξ2| |ξ1| − (ξ1 + ξ2)ξ1

)

m
(ℓ),2
22 = (−3)ℓζ(ℓ)(ξ1, ξ2

(
−1

2
|ξ1 + ξ2|

1
2
(
|ξ1| |ξ2|+ ξ1ξ2

)
|ξ1|−

1
2 |ξ2|−

1
2

)
,

with ζ(ℓ) =
(
1 +

2

3
ξ · ∇ξ

)ℓ
ζ where ζ(ξ1, ξ2) = 1−θ(ξ1, ξ2)−θ(ξ2, ξ1). Notice that ζ(ℓ)(ξ1, ξ2) =

1− θ(ℓ)(ξ1, ξ2)− θ(ℓ)(ξ2, ξ1). Since θ
(ℓ) is an admissible cut-off function, we are in position to

apply the usual estimates for the remainders (see (A.1.17)).

Next we notice that, for any ℓ ∈ N, it follows from Proposition 3.5.1 and the structure of Q(ℓ)

given in (5.2.34) that there exists a pair of matrix-valued symbols Pℓ = (P 1
ℓ , P

2
ℓ ) ∈ S1,0

0 ×S1,0
0

such that, for all v = (v1, v2) ∈ Cρ ∩ L2(R) (with ρ large enough)

(5.2.36) Pℓ(v) = OpB[v1, P 1
ℓ ] + OpB[v2, P 2

ℓ ]

satisfies

(5.2.37) DPℓ(v) = Pℓ(Dv) + Pℓ(v)D +Q(ℓ)(v).

We gather the properties satisfied by Pℓ(v) in the next lemma.

Lemma 5.2.4. Let ℓ ∈ N.

i) Let µ be a given real number. There exists K > 0 such that, for any scalar function

w ∈ C2(R), any v = (v1, v2) ∈ C5 ∩ L2(R) and any f = (f1, f2) ∈ Hµ(R), any ν ∈]0, 1[,

(5.2.38) ‖[TwI2,Pℓ(v)] f‖Hµ ≤ K ‖w‖C1

{
‖v‖C5 +

1

ν
‖v‖1−νC5 ‖v‖νL2

}
‖f‖Hµ ,

where I2 = ( 1 0
0 1 ).

ii) Let µ be a given real number. There exists K > 0 such that, for any v = (v1, v2) in

C4 ∩ L2(R) and any f = (f1, f2) in Hµ(R), any ν ∈]0, 1[,

(5.2.39)
∥∥Pℓ(v)f

∥∥
Hµ−1 ≤ K

{
‖v‖C4 +

1

ν
‖v‖1−νC4 ‖v‖νL2

}
‖f‖Hµ .
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iii) Let ρ ∈ [3/2,+∞[. There exists K > 0 such that, for any v = (v1, v2) in L2(R) and any

f = (f1, f2) in Cρ(R),

(5.2.40) ‖Pℓ(v)f‖
Hρ− 3

2
≤ K ‖f‖Cρ ‖v‖L2 .

Proof. We recall that Pℓ(v) is given by (5.2.36) where P 1
ℓ and P 2

ℓ belong to S1,0
0 . It follows

from Lemma 3.4.6 that Pℓ(v) is a paradifferential operator of order 1, modulo a smoothing

operator, whose symbol has semi-norms estimated by means of statement i) in Lemma 3.4.5.

The assertions in statements i) and ii) thus follow from Theorem A.1.7. We shall give another

proof of these results which will also prove statement iii).

Let us introduce a class of symbols. Given (j1, j2, j3) ∈ R3, one denotes by Sℓ(j1, j2, j3) the

class of scalar symbols m(ξ1, ξ2), C
∞ for (ξ1, ξ2) in (R\{0})×R which are linear combinations

of symbols of the form

p1(ξ1)p2(ξ2)p3(ξ1 + ξ2)θ
(ℓ)(ξ1, ξ2)

with θ(ℓ) =
(
1 +

2

3
ξ · ∇ξ

)ℓ
θ where θ is given by Definition A.1.2, and pr(λξ) = λjrpr(ξ) for

all r ∈ {1, 2, 3}, all λ > 0 and all ξ 6= 0.

Given two functions a = a(x) and b = b(x), one denotes by T
(ℓ)
a b the paraproduct given by

replacing the cut-off function θ by θ(ℓ) in the definition (A.1.3) of Tab. If m ∈ Sℓ(j1, j2, j3)

then
1

(2π)2

∫
eix(ξ1+ξ2)â(ξ1)m(ξ1, ξ2)̂b(ξ2) dξ1 dξ2 = p3(Dx)T

(ℓ)
p1(Dx)a

p2(Dx)b.

By virtue of the support properties of θ(ℓ), we have

p3(Dx)T
(ℓ)
p1(Dx)v

p2(Dx)f = p̃3(Dx)T
(ℓ)
p1(Dx)v

p̃2(Dx)f,

where p̃2(ξ) and p̃3(ξ) vanish on a neighborhood of ξ = 0 and are equal to p2(ξ) and p3(ξ),

respectively, for |ξ| large enough. Consequently, it follows from (A.1.20) that, to prove state-

ment iii) of the lemma, it is sufficient to prove that the matrices P 1
ℓ = (aℓ,1ij )1≤i,j≤2 and

P 2
ℓ = (aℓ,2ij )1≤i,j≤2 are such that, for all (i, j, k) ∈ {1, 2}3, the coefficient aℓ,kij belongs to some

class Sℓ(j1, j2, j3) with j1 ≥ 0 and j2+j3 ≤ 1 (the values of j1, j2, j3 might depend on (i, j, k)).

Consider the symbols Q(ℓ),1 and Q(ℓ),2 as defined in (5.2.34). They are of the form

Q(ℓ),1 =

(
0 mℓ,1

12

mℓ,1
21 0

)
, Q(ℓ),2 =

(
mℓ,2

11 0

0 mℓ,2
22

)

where, for any (i, j, k) ∈ {1, 2}3,

(5.2.41) mℓ,k
ij ∈ Sℓ(j1, j2, j3) with j1 ≥

1

2
, j2 ≥ 0, j3 ≥ 0, j1 + j2 + j3 =

3

2
.
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Below we write simply mk
ij (resp. akij) instead of mℓ,k

ij (resp. aℓ,kij ). The symbols akij are

determined explicitly in the proof of Proposition 3.5.1: We have a211 = a112 = a121 = a222 = 0

and

(5.2.42)

a221 =
δ

D

(
|ξ1 + ξ2|

1
2m2

11 − |ξ1|
1
2 m1

21 + |ξ2|
1
2 m2

22

)

+
2

D
|ξ1|

1
2 |ξ2|

1
2
(
|ξ1 + ξ2|

1
2m1

12 + |ξ1|
1
2 m2

22 − |ξ2|
1
2 m1

21

)
,

a122 =
δ

D

(
|ξ1 + ξ2|

1
2m1

12 + |ξ1|
1
2 m2

22 − |ξ2|
1
2 m1

21

)

+
2

D
|ξ1|

1
2 |ξ2|

1
2
(
|ξ1 + ξ2|

1
2m2

11 − |ξ1|
1
2 m1

21 + |ξ2|
1
2 m2

22

)
,

a212 = − 1

|ξ1 + ξ2|
1
2

(
|ξ1|

1
2a122 + |ξ2|

1
2a221 +m2

22

)
,

a111 =
1

|ξ1 + ξ2|
1
2

(
|ξ1|

1
2a221 + |ξ2|

1
2a122 −m1

21

)
.

Recall also that

ξ1ξ2 > 0 ⇒ δ = 0 and D = −4 |ξ1| |ξ2| ,
ξ1ξ2 < 0 and |ξ1| < |ξ2| ⇒ δ = −2 |ξ1| and D = −4 |ξ1| |ξ1 + ξ2| .

Denote by 1A the indicator function of the set A. Then

δ

D
θ(ℓ) = 1{ξ1ξ2<0}

1

2 |ξ1 + ξ2|
θ(ℓ),

2 |ξ1|
1
2 |ξ2|

1
2

D
θ(ℓ) = −1

2

1

|ξ1|
1
2

(
1{ξ1ξ2>0}

1

|ξ2|
1
2

+ 1{ξ1ξ2<0}
|ξ2|

1
2

|ξ1 + ξ2|
)
θ(ℓ).

Since

1{ξ1ξ2>0} =
1

2
+

1

2
sign(ξ1) sign(ξ2), 1{ξ1ξ2<0} =

1

2
− 1

2
sign(ξ1) sign(ξ2),

and since sign is homogeneous of order 0, it follows that

δ

D
θ(ℓ) ∈ Sℓ(0, 0,−1),

|ξ1|
1
2 |ξ2|

1
2

D
θ(ℓ) ∈ Sℓ(−1/2,−1/2, 0) + Sℓ(−1/2, 1/2,−1).

Consequently, it follows from (5.2.41) and (5.2.42) that akij is a sum of terms which belong

to classes Sℓ(j1, j2, j3) with j1 + j2 + j3 = 3/2 − 1/2 = 1 and j1 ≥ 0. This concludes the

proof.

Lemma 5.2.5. For any ℓ ∈ N there exist two matrix-valued symbols R1
ℓ , R

2
ℓ in SR

3/2
0,0 such

that, for all v ∈ C4 ∩ L2(R)

Rℓ(v) = OpB[v1, R1
ℓ ] + OpB[v2, R2

ℓ ]
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satisfies

(5.2.43) DRℓ(v) = Rℓ(Dv) +Rℓ(v)D + S(ℓ)(v),

and such that the following estimates hold.

i) For all (µ, ρ) ∈ R×R+ such that µ+ ρ > 1 and ρ 6∈ 1
2N, there exists a positive constant K

such that, for any v = (v1, v2) ∈ Cρ ∩ L2(R) and any f = (f1, f2) ∈ Hµ(R),

(5.2.44)
∥∥Rℓ(v)f

∥∥
Hµ+ρ−1 ≤ K(‖v‖Cρ + ‖Hv‖Cρ) ‖f‖Hµ .

ii) For all (µ, ρ) ∈ R × R+ such that µ + ρ > 1 and ρ 6∈ 1
2N, there exists a positive constant

K such that, for any v = (v1, v2) ∈ Hµ(R) and any f = (f1, f2) ∈ Cρ(R) ∩ L2(R),

(5.2.45)
∥∥Rℓ(v)f

∥∥
Hµ+ρ−1 ≤ K(‖f‖Cρ + ‖Hf‖Cρ) ‖v‖Hµ .

Remark. We shall use later that (see (A.2.6)) for any ρ 6∈ N, there exists K > 0 and for any

ν > 0, any v ∈ Cρ ∩ L2,

(5.2.46) ‖Hv‖Cρ ≤ K
[
‖v‖Cρ +

1

ν
‖v‖1−νCρ ‖v‖νL2

]
.

Proof. For ℓ = 0 we have S(0)(v)f = S(v)f and hence R0(v)f = E♯(v)f+E♭(v)f with the op-

erators given by Proposition 3.5.2. The asserted estimates thus follow from Proposition 3.5.2.

For ℓ > 0, we have seen in (5.2.35) that the symbols of S(ℓ)(v) are obtained from the symbols

of S(v) by replacing θ with θ(ℓ) (and multiplying by (−3)ℓ). Therefore, R1
ℓ and R

2
ℓ are deduced

from R1
0 := R♯,1 + R♭,1 and R2

0 := R♯,2 + R♭,2 (which are given by (3.5.19) and (3.5.31)) by

the same modifications. Since θ(ℓ) is an admissible cut-off function (see Remark A.1.4), this

shows that Rℓ(v)f satisfies the same estimates as R0(v)f does.

We shall use also the operator E♯(v) introduced in Proposition 3.5.2. satisfying

(5.2.47) E♯(Dv) + E♯(v)D −DE♯(v) = S♯(v)

and

(5.2.48)
∥∥E♯(v)f

∥∥
Hµ+ρ−1 ≤ K ‖f‖Cρ ‖v‖Hµ .

for any (µ, ρ) ∈ R× R+ such that µ+ ρ > 1 and ρ 6∈ 1
2N.

Then (5.2.37), (5.2.43), and (5.2.47) imply that

(∂t +D)

(∑

J

m(j)Pn3(∂
α1
x Zn1u)∂α2

x Zn2U

)

+ (∂t +D)

(∑

J ′

m(j)Rn3(∂
α1
x Zn1u)∂α2

x Zn2U

)

+ (∂t +D)
(
E♯(∂αxZ

nu)U
)
= F ′′ +R
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where F ′′ is as given by (5.2.24) and

(5.2.49)

R :=
∑

J

m(j)Pn3

(
(∂t +D)∂α1

x Zn1u
)
∂α2
x Zn2U

+
∑

J

m(j)Pn3(∂
α1
x Zn1u)

(
(∂t +D)∂α2

x Zn2U
)

+
∑

J ′

m(j)Rn3

(
(∂t +D)∂α1

x Zn1u
)
∂α2
x Zn2U

+
∑

J ′

m(j)Rn3(∂
α1
x Zn1u)

(
(∂t +D)∂α2

x Zn2U
)

+ E♯((∂t +D)∂αxZ
nu)U + E♯(∂αxZ

nu)(∂tU +DU).

This implies that

(5.2.50)

Φ̃ := ∂αxZ
nU −

∑

J

m(j)Pn3(∂
α1
x Zn1u)∂α2

x Zn2U

−
∑

J ′

m(j)Rn3(∂
α1
x Zn1u)∂α2

x Zn2U

− E♯(∂αxZ
nu)U

satisfies

∂tΦ̃ +DΦ̃ = ∂t∂
α
xZ

nU +D∂αxZ
nU −F ′′ −R.

Therefore, (5.2.26) implies that

(5.2.51)
(
∂t +D +N(u)

)
Φ̃ = Γ̃,

where N(u) is given by (5.2.25) and

(5.2.52) Γ̃ = G′ −R+N(u)
(
Φ̃− ∂αxZ

nU
)
.

We shall estimate Γ̃ in the last step of the proof. This is the most technical part of the proof.

Step 3: Second normal form

We start with the following result, which is analogous to Lemma 3.6.2.

Lemma 5.2.6. There exist A1
0, A

2
0 in S

0,1/2
1 such that, for all v ∈ C3 ∩ L2(R) the operator

EA0(v) = OpB[v1, A1
0] + OpB[v2, A2

0] satisfies

(5.2.53) DEA0(v) = EA0(Dv) + EA0(v)D +B(v),

where the operator B(v) satisfies B(v) = B(v)∗ and

(5.2.54) Re〈Q(v)f −B(v)f, f〉Hβ×Hβ = 0
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for any f ∈ Hβ+1(R)2, and such that the following properties hold.

i) Let µ be a given real number. There exists K > 0 such that, for any scalar function

w ∈ C2(R), any v = (v1, v2) ∈ C3 ∩ L2(R) and any f = (f1, f2) ∈ Hµ(R),

(5.2.55) ‖[TwI2, EA0(v)] f‖Hµ+1 ≤ K ‖w‖C1 ‖v‖C3 ‖f‖Hµ ,

where I2 = ( 1 0
0 1 ).

ii) Let µ be a given real number. There exists K > 0 such that, for any v = (v1, v2) ∈
C3 ∩ L2(R) and any f = (f1, f2) ∈ Hµ(R),

(5.2.56)
∥∥EA0(v)f

∥∥
Hµ ≤ K ‖v‖C3 ‖f‖Hµ .

Proof. This is Lemma 3.6.2 applied with s replaced by β.

Consider now the operator E♯β(v) and E♭β(v) as given by Proposition 3.5.3. It follows from

this proposition that

(5.2.57)
E♯β(Dv) + E♯β(v)D −DE♯β(v) = S

♯(v),

E♭β(Dv) + E♭β(v)D −DE♭β(v) = S
♭(v),

where S
♯ and S

♭ are such that

Re〈S♯(v)f −S
♯(v)f, f〉Hβ×Hβ = 0,(5.2.58)

Re〈S♭(v)f −S
♭(v)f, f〉Hβ×Hβ = 0,(5.2.59)

for any f ∈ Hβ(R)2, and satisfies

(5.2.60)

∥∥S♯(v)
∥∥
L(Hµ,Hµ+ρ−1)

≤ K ‖v‖Cρ ,

∥∥S♭(v)
∥∥
L(Hµ,Hµ+ρ−1)

≤ K ‖v‖Cρ .

Moreover, for all (µ, ρ) ∈ R × R+ such that µ + ρ > 1 and ρ 6∈ 1
2N, there exists a positive

constant K such that

(5.2.61)

∥∥E♯β(v)f
∥∥
Hµ+ρ−1 ≤ K ‖v‖Cρ ‖f‖Hµ ,

∥∥E♭β(v)f
∥∥
Hµ+ρ−1 ≤ K ‖v‖Cρ ‖f‖Hµ .

Set

E(v) = EA0(v)− E♯β(v) − 2E♭β(v).

Then (5.2.53) and (5.2.57) imply that

(5.2.62) DE(v) − E(Dv)− E(v)D = B(v) +S
♯(v) + 2S♭(v).
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Moreover (5.2.56) and (5.2.61) imply that

(5.2.63) ‖E(v)‖L(Hµ,Hµ) ≤ K ‖v‖C3 .

Now set

(5.2.64) Φ = Φ̃ + E(u)∂αxZ
nU.

It follows from (5.2.62) that

(5.2.65)

(∂t +D)Φ = (∂t +D)Φ̃

+ E(∂tu+Du)∂αxZ
nU + E(u)(∂t +D)∂αxZ

nU

+
(
B(u) +S

♯(u) + 2S♭(u)
)
∂αxZ

nU.

Recall that Φ̃ satisfies

(∂t +D)Φ̃ = −N(u)Φ̃ + Γ̃.

Now write Φ̃ = Φ−E(u)∂αxZ
nU in the right hand side of the above identity and set the result

into (5.2.65), to obtain that

(5.2.66)

(∂t +D)Φ = −N(u)Φ + Γ̃

+N(u)E(u)∂αxZ
nU

+ E(∂tu+Du)∂αxZ
nU + E(u)(∂t +D)∂αxZ

nU

+
(
B(u) +S

♯(u) + 2S♭(u)
)
∂αxZ

nU.

Eventually we use (5.2.26) to substitute (∂t +D)∂αxZ
nU , which appears in the fifth term of

the right hand side of (5.2.66), by

(∂t +D)∂αxZ
nU = −N(u)∂αxZ

nU + G′ + F ′′,

and we write ∂αxZ
nU = Φ+

(
∂αxZ

nU −Φ
)
in the last term of the right hand side of (5.2.66).

By so doing it is found that

(5.2.67) ∂tΦ+DΦ+ L(u)Φ + C(u)Φ = Γ,

where

(5.2.68) L(u) := Q(u) + S♯(u) + 2S♭(u)−
(
B(u) +S

♯(u) + 2S♭(u)
)
,

and where

(5.2.69) Γ = Γ̃ + (1) + (2) + (3) + (4)
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with

(1) = N(u)E(u)∂αxZ
nU − E(u)N(u)∂αxZ

nU,

(2) = E(∂tu+Du)∂αxZ
nU,

(3) = E(u)G′ + E(u)F ′′,

(4) =
(
B(u) +S

♯(u) + 2S♭(u)
)(
∂αxZ

nU − Φ
)
.

It follows from (5.2.54), (5.2.58), and (5.2.59) that the operator L(v) defined by (5.2.68)

satisfies Re〈L(v)f, f〉Hβ×Hβ = 0 for any f in Hβ+1(R). Consequently, to complete the proof

of the proposition, it remains only to prove the estimates (5.2.4) and (5.2.6)–(5.2.7).

Step 4: Proof of the estimates (5.2.4) and (5.2.6)–(5.2.7)

We begin by estimating the term (1) which appears in (5.2.69).

Lemma 5.2.7. There holds

‖(1)‖Hβ ≤ C(‖u‖Cγ ) ‖u‖2Cγ ‖∂αxZnU‖Hβ .

Remark. We shall later estimate ‖∂αxZnU‖Hβ in terms of Y(α,n) and MK .

Proof. This is proved by means of the arguments used in the proof of Proposition 3.6.4. For

the sake of clarity we recall the proof.

Recall from (5.2.63) that ‖E(u)‖L(Hβ ,Hβ) ≤ C ‖u‖Cγ . Also, directly from the definition (3.5.9)

of S♯(u) and S♭(u) we have

∥∥S♯(u)
∥∥
L(Hβ ,Hβ)

+
∥∥S♭(u)

∥∥
L(Hβ ,Hβ)

≤ C ‖u‖Cγ .

Therefore ∥∥(S♯(u) + 2S♭(u)
)
E(u)

∥∥
L(Hβ ,Hβ)

≤ C ‖u‖2Cγ ,

and similarly ∥∥E(u)
(
S♯(u) + 2S♭(u)

)∥∥
L(Hβ ,Hβ)

≤ C ‖u‖2Cγ .

It remains to estimate the operator norm of the commutator [A(u), E(u)] where we recall that

A(u) = Q(u) + C(u) where Q(u) (resp. C(u)) is given by (3.2.7) (resp. (3.2.6)). We claim

that

(5.2.70) ‖[A(u), E(u)]‖L(Hβ ,Hβ) ≤ C ‖u‖2Cγ .

By definition E(u) = EA0(u) +ER(u) with ER(u) = −E♯β(v)− 2E♭β(v). To prove (5.2.70), we

first observe that,

‖A(u)‖L(Hβ ,Hβ−1) ≤ C ‖u‖Cγ , ‖ER(u)‖L(Hβ ,Hβ+1) . ‖u‖Cγ ,
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where C depends only on ‖u‖Cγ . This implies that ‖ER(u)A(u)‖L(Hβ ,Hβ) ≤ C ‖u‖2Cγ . Sim-

ilarly, one has ‖A(u)ER(u)‖L(Hβ ,Hβ) ≤ C ‖u‖2Cγ . This obviously implies (5.2.70). Thus it

remains only to prove that

(5.2.71) ‖[A(u), EA0(u)]‖L(Hβ ,Hβ) ≤ C ‖u‖2Cγ .

This we now prove by using the commutator estimate (5.2.55) together with the following

remark. Introduce

Ã(u) = A(u)− TV ∂x − TαD.

Directly from the definition of A(u) (recalling again that A(u) = Q(u) + C(u) where Q(u)

(resp. C(u)) is given by (3.2.7) (resp. (3.2.6))), one can check that Ã(u) is of order 0 and

satisfies

(5.2.72)
∥∥Ã(u)

∥∥
L(Hβ ,Hβ)

≤ C ‖u‖Cγ ,

for some constant C depending only on ‖u‖Cγ . By combining this estimate with (5.2.56) we

get ∥∥EA0(u)Ã(u)
∥∥
L(Hβ ,Hβ)

+
∥∥Ã(u)EA0(u)

∥∥
L(Hβ ,Hβ)

≤ C ‖u‖2Cγ ,

which obviously implies that
∥∥[Ã(u), EA0(u)

]∥∥
L(Hβ ,Hβ)

≤ C ‖u‖2Cγ . So to prove (5.2.71) it

remains only to estimate the commutators of EA0(u) with TV ∂x and TαD.

Since TV ∂x = TV (iξ) is a paradifferential operator with a scalar symbol and since the C1-norm

of V is estimated by C ‖u‖Cγ for some constant C depending only on ‖u‖Cγ (see (3.1.4)), it

follows from statement i) in Lemma 5.2.6 that

∥∥[TV ∂x, EA0(u)
]∥∥

L(Hβ ,Hβ)
≤ C ‖u‖2Cγ ,

for some constant C depending only on ‖u‖Cγ . To estimate
[
TαD,EA0(u)

]
, use instead the

equation (3.6.6) satisfied by EA0 to obtain:

TαDEA0(u)U = Tα

(
EA0(u)DU + EA0(Du)U +B(u)U

)
.

Notice that

(5.2.73) ‖B(u)‖L(Hβ ,Hβ) ≤ C ‖u‖Cγ .

Indeed, B(u) = OpB[u1, B1] + OpB[u2, B2] where B1 and B2 are given by (3.6.4) and (3.6.5)

with s replaced by β; so assertion (ii) in Lemma 3.4.5, Lemma 3.4.6 and (A.1.5) imply the

wanted estimate. Also, (5.2.56) implies that ‖EA0(Du)‖L(Hβ ,Hβ) ≤ C ‖u‖Cγ . Consequently,

since ‖α‖C1 ≤ C ‖u‖Cγ (see (3.1.20)) we have ‖Tα‖L(Hβ ,Hβ) ≤ C ‖u‖Cγ and hence

‖TαEA0(Du)‖L(Hβ ,Hβ) + ‖TαB(u)‖L(Hβ ,Hβ) ≤ C ‖u‖2Cγ ,
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for some constant C depending only on ‖u‖Cγ . Moreover, since α is a scalar function, it follows

from the above mentioned estimate ‖α‖C1 ≤ C ‖u‖Cγ and statement i) in Lemma 5.2.6 that

‖[Tα, EA0(u)]D‖L(Hβ ,Hβ) ≤ C ‖u‖2Cγ ,

for some constant C depending only on ‖u‖Cγ . This proves (5.2.71) and hence completes the

proof of the lemma.

Lemma 5.2.8. There holds

‖(2)‖Hβ ≤ C(‖u‖Cγ ) ‖u‖2Cγ ‖∂αxZnU‖Hβ ,

‖(3)‖Hβ ≤ C(‖u‖Cγ ) ‖u‖Cγ

{∥∥G′∥∥
Hβ +

∥∥F ′′∥∥
Hβ

}
.

Proof. This follows from the estimates (5.2.63) and (3.6.14).

Lemma 5.2.9. i) For any (α′, n′) such that α′ + n′ ≤ s0, there holds

∥∥∂α′

x Z
n′(√

a− 1
)∥∥
C1 ≤ C

(
N (s0)
ρ

)
N (s0)
ρ .

ii) If (α′, n′) ≺ (α, n) then

∥∥∂α′

x Z
n′(√

a− 1
)∥∥
L2 ≤ C

(
N (s0)
ρ

)
MK .

iii) There holds

∥∥∂αxZn(
√
a− 1)

∥∥
L2 ≤ C(‖u‖Cγ )Y(α,n) + C

(
N (s0)
ρ

)
MK .

Remark. Here we use the assumption β > 2.

Proof. Recall that the Taylor coefficient a can be written under the form (see (A.3.9) in

Appendix A.3):

a =
1

1 + (∂xη)2

(
1 + V ∂xB −B∂xV − 1

2
G(η)V 2 − 1

2
G(η)B2 −G(η)η

)
,

where we used the abbreviated notations B = B(η)ψ and V = V (η)ψ. The assertion in state-

ment i), which is equivalent to saying that ‖√a− 1‖
s0,1

is estimated by C
(
N

(s0)
ρ

)
N

(s0)
ρ , then

immediately follows from the estimates (4.3.15), (4.3.16) and from Proposition 4.3.11. The

assertions in statements ii) and iii) follow from the product rule (4.4.21), Proposition 4.3.11

and Proposition 4.3.9.

Below we freely use the following lemma.
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Lemma 5.2.10. Recall that we fixed (α, n) and K such that Λ(α, n) = K and recall that MK

is defined by (5.1.9). There holds

‖∂αxZnu‖Hβ− 1
2
. Y(α,n) +MK ,(5.2.74)

‖∂αxZnU‖Hβ ≤ C(‖u‖Cγ )Y(α,n) + C
(
N (s0)
ρ

)
MK .(5.2.75)

If (α′, n′) ≺ (α, n) then

∥∥∂α′

x Z
n′

u
∥∥
Hβ−1

2
. MK ,(5.2.76)

∥∥∂α′

x Z
n′

U
∥∥
Hβ ≤ C

(
N (s0)
ρ

)
MK .(5.2.77)

For any (α′, n′) such that α′ + n′ ≤ s0, there holds

(5.2.78)
∥∥∂α′

x Z
n′

U
∥∥
Cβ+3 ≤ C

(
N (s0)
ρ

)
N (s0)
ρ .

Proof. The estimates (5.2.74) and (5.2.76) follow directly from the definitions of Y(α,n) and

MK , and the fact that
[
Z, |Dx|

1
2
]
= − |Dx|

1
2 .

For further references, we shall prove (5.2.77) and the following estimate

(5.2.79)

∥∥∥∥∥∂
α
xZ

nU − ∂αxZ
n

(
η

|Dx|
1
2 ω

)∥∥∥∥∥
Hβ

≤ C(‖u‖Cγ ) ‖u‖Cγ Y(α,n)

+ C
(
N (s0)
ρ

)
N (s0)
ρ MK ,

which immediately implies (5.2.75). We shall see that the estimates (5.2.79) and (5.2.77)

follow from the definition of U . Indeed,

U =

(
η

|Dx|
1
2 ω

)
+

(
T√a−1η

0

)
.

So, to prove (5.2.79) it is sufficient to estimate the Hβ-norm of ∂αxZ
n
(
T√a−1η

)
. To do so,

we write
∥∥∂αxZn

(
T√a−1η

)∥∥
Hβ ≤

∣∣T√a−1η
∣∣
n,α+β

and use the estimate (4.4.24) applied with

(K, ν,m, b) replaced by (n, α + β, s0, γ), which gives (bounding all the indicator functions

by 1) ∣∣∣T√a−1η
∣∣∣
n,α+β

.
∥∥√a− 1

∥∥
s0,0

|η|n−1,α+β+1 +
∥∥√a− 1

∥∥
L∞

∥∥Znη
∥∥
Hα+β

+ ‖η‖n+α+β−s0+1,0

∣∣√a− 1
∣∣
n−1,0

+ ‖η‖Cγ

∥∥Zn(√a− 1)
∥∥
L2

+ ‖η‖Cα+β−s0+1

∥∥Zn(√a− 1)
∥∥
L2 .

Since α+ β + n ≤ s ≤ 2s0 − 1, we can use the inequality

‖η‖Cα+β+n−s0+1 ≤ ‖η‖n+α+β−s0+1,0 ≤ ‖η‖
s0,0
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in the third and last terms of the right hand side. On the other hand, since (α+ 1, n − 1) ≺
(α, n) for n ≥ 1 and since |η|n−1,α+β+1 = 0 by convention for n = 0, we have

|η|n−1,α+β+1 ≤ MK .

Also, one has
∥∥Znη

∥∥
Hα+β ≤ Y(α,n) + MK . The wanted estimate (5.2.79) thus follows from

statements i), ii), and iii) in Lemma 5.2.9. The proof of (5.2.77) is similar: we estimate

∂α
′

x Z
n′(
T√a−1η

)
by means of the estimate (4.4.5) and statements i) and ii) in Lemma 5.2.9.

Let us prove (5.2.78). We shall prove a stronger result. Namely, we prove that

(5.2.80) ‖U − u‖
s0,β+3 ≤ C

(
N (s0)
ρ

)(
N (s0)
ρ

)2
.

We shall use the estimate (4.4.16) whose statement is recalled here

(5.2.81) ‖TζF‖n,σ . ‖ζ‖n,1 ‖F‖n,σ .

We decompose U as

(5.2.82) U = u+

(
T√a−1η

− |Dx|
1
2 TBη

)
.

So, to prove (5.2.80), it is sufficient to prove that

(5.2.83) ∀ζ ∈ {√a− 1, B}, ‖Tζη‖
s0,β+3+ 1

2
≤ C

(
N (s0)
ρ

)(
N (s0)
ρ

)2
.

This in turn follows from (5.2.81) and the estimate for B (resp.
√
a − 1) given by Proposi-

tion 4.3.11 (resp. Lemma 5.2.9 i)).

Remark. We also have the following estimate, analogous to (5.2.79)

(5.2.84)

∥∥∥∥∥∂
α
xZ

nu− ∂αxZ
n

(
η

|Dx|
1
2 ω

)∥∥∥∥∥
Hβ− 1

2

≤ C(‖u‖Cγ ) ‖u‖Cγ Y(α,n)

+ C
(
N (s0)
ρ

)
N (s0)
ρ MK ,

The proof is similar to the proof of (5.2.79), using that u =

(
η

|Dx|
1
2 ω

)
+

(
0

|Dx|
1
2 TBη

)
.

We next estimate the source terms F ′′ and G′ given by (5.2.24).

Lemma 5.2.11. There holds

∥∥F ′′∥∥
Hβ ≤ C(‖u‖Cγ ) ‖u‖Cγ Y(α,n) +C

(
N (s0)
ρ

)
NKMK .
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Proof. By definition, one can write F ′′ under the form

F ′′ =
∑

j∈J ′

m(j)Q(n3)(∂α1
x Zn1u)∂α2

x Zn2U

+
∑

j∈J ′

m(j)S(n3)(∂α1
x Zn1u)∂α2

x Zn2U

−Q(∂αxZ
nu)U − S♯(∂αxZ

nu)U,

where m(j) ∈ N and

J ′ = { (α1, α2, n1, n2, n3) ∈ J ; α1 + n1 < α+ n } .

Below we freely use the fact that, by definition of J (see (5.2.20)), if (α1, α2, n1, n2, n3) is in

J then α2 + n2 < α+ n.

Let us split J ′ into two parts: set J ′ = J ′
1 ∪ J ′

2 where

(5.2.85)

J ′
1 =

{
j = (α1, α2, n1, n2, n3) ∈ J ′ ; α1 + n1 ≤

1

2
(α+ n)

}
,

J ′
2 =

{
j = (α1, α2, n1, n2, n3) ∈ J ′ ; α1 + n1 >

1

2
(α+ n)

}
.

We begin by estimating

∑

j∈J ′
1

m(j)Q(n3)(∂α1
x Zn1u)∂α2

x Zn2 +
∑

j∈J ′
1

m(j)S(n3)(∂α1
x Zn1u)∂α2

x Zn2U.

If j belongs to J ′
1 and A denotes Q(n3) (resp. S(n3)) then we use (5.2.30) (resp. (5.2.32)) to

obtain

‖A(∂α1
x Zn1u)∂α2

x Zn2U‖Hβ ≤ K ‖∂α1
x Zn1u‖C4 ‖∂α2

x Zn2U‖Hβ+1 .

If j ∈ J ′
1 and (α2, n2) 6= (α − 1, n) then one uses (5.2.77) to find that

‖∂α2
x Zn2U‖Hβ+1 ≤ ‖∂α2

x Zn2U‖Hβ +
∥∥∂α2+1

x Zn2U
∥∥
Hβ ≤ C

(
N (s0)
ρ

)
MK ,

where we used the fact that if j ∈ J ′
1 ⊂ J then (α2, n2) ≺ (α, n) and α2 ≤ α, so that the

assumption that (α2, n2) 6= (α− 1, n) implies that (α2 + 1, n) ≺ (α, n). On the other hand

‖∂α1
x Zn1u‖C4 ≤ N (s0)

ρ ,

since α1 + n1 + 4 ≤ 1
2(α+ n) + 4 ≤ s

2 + 4 ≤ s0 by assumption on s0.

If j ∈ J ′
1 and (α2, n2) = (α − 1, n) then (α1, n1) = (1, 0) so ‖∂α1

x Zn1u‖C2 ≤ ‖u‖Cγ . On the

other hand, (5.2.75) and (5.2.77) imply that

‖∂α2
x Zn2U‖Hβ+1 ≤ ‖∂αxZnU‖Hβ +

∥∥∂α−1
x ZnU

∥∥
Hβ

≤ C
(
‖u‖Cγ

)
Y(α,n) +C

(
N (s0)
ρ

)
MK .
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We now estimate
∑

j∈J ′
2

m(j)Q(n3)(∂α1
x Zn1u)∂α2

x Zn2 +
∑

j∈J ′
2

m(j)S(n3)(∂α1
x Zn1u)∂α2

x Zn2U.

If j belongs to J ′
2 and A denotes either Q(n3) or S(n3) then we use (5.2.31) or (5.2.33) to

obtain

‖A(∂α1
x Zn1u)∂α2

x Zn2U‖Hβ ≤ K ‖∂α1
x Zn1u‖L2 ‖∂α2

x Zn2U‖Cβ+3 .

For any j ∈ J ′
2 ⊂ J ′ we have α1 + n1 < α + n and α1 ≤ α, n1 ≤ n so that (α1, n1) ≺ (α, n).

Since β ≥ 1/2, (5.2.76) implies that

‖∂α1
x Zn1u‖L2 ≤ ‖∂α1

x Zn1u‖
Hβ− 1

2
≤ MK .

Since α2 + n2 ≤ 1
2(α + n) ≤ s0 for j ∈ J ′

2, (5.2.78) implies that

(5.2.86) ‖∂α2
x Zn2U‖Cβ+3 ≤ C

(
N (s0)
ρ

)
N (s0)
ρ .

It remains to estimate Q(∂αxZ
nu)U and S♯(∂αxZ

nu)U . Using (5.2.31), we find that
∥∥Q(∂αxZ

nu)U
∥∥
Hβ .

∥∥∂αxZnu
∥∥
L2 ‖U‖Cβ+3 .

It follows from (5.2.74) and the assumption β ≥ 1/2 that
∥∥∂αxZnu

∥∥
L2 . Y(α,n) + MK . On

the other hand, we claim that

(5.2.87) ‖U‖Cβ+3 ≤ C(‖u‖Cγ ) ‖u‖Cγ .

For further references, we shall prove a stronger estimate:

(5.2.88) ‖U − u‖Cβ+3 ≤ C(‖u‖Cγ ) ‖u‖2Cγ .

To prove this claim, recall that

(5.2.89) U = u+

(
T√a−1η

− |Dx|
1
2 TBη

)
.

So to prove (5.2.87) it is enough to prove that

(5.2.90)
∥∥T√a−1η

∥∥
Cβ+3 +

∥∥|Dx|
1
2 TBη

∥∥
Cβ+3 ≤ C(‖u‖Cγ ) ‖u‖2Cγ .

It follows from (A.1.13) that
∥∥T√a−1η

∥∥
Cβ+3 . ‖√a− 1‖L∞ ‖η‖Cβ+3 . Similarly, for any r >

1/2, it follows from (A.2.4) and (A.1.13) that
∥∥|Dx|

1
2 TBη

∥∥
Cβ+3 .

∥∥TBη
∥∥
Cβ+3+r . ‖B‖L∞ ‖η‖Cβ+3+r .

So (5.2.90) follows from the assumption γ > β +4 and the estimate (see (3.1.20) and (3.1.4))
∥∥√a− 1

∥∥
L∞ + ‖B‖L∞ ≤ C(‖u‖Cγ ) ‖u‖Cγ .

This completes the proof of (5.2.87).

The estimate for S♯(∂αxZ
nu)U is similar.
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Lemma 5.2.12. There holds

(5.2.91)
∥∥G′∥∥

Hβ ≤ C(‖u‖Cγ )
{
‖u‖2Cγ Y(α,n) +N 2

KMK

}
.

Proof. It follows from (5.2.24) that

(5.2.92)
G′ = G −

(
S♯(∂αxZ

nu)(U − u) + S♯(∂αxZ
n(u− U))u

)

−
(
S♭(U − u)∂αxZ

nu+ S♭(u)∂αxZ
n(u− U)

)
.

To estimate the last two terms in the right hand side of (5.2.92), we use the estimates (for

ρ 6∈ 1
2N) ∥∥S♯(v)w

∥∥
Hµ+ρ +

∥∥S♭(v)w
∥∥
Hµ+ρ ≤ K ‖v‖Cρ ‖w‖

Hµ+3
2
,

∥∥S♯(v)w
∥∥
Hµ+ρ +

∥∥S♭(v)w
∥∥
Hµ+ρ ≤ K ‖w‖Cρ ‖v‖

Hµ+3
2
,

which readily follow from the definition (3.5.9), and the estimates (5.2.79) and (5.2.88) for

u− U .

Let us show that the estimate for G follows from the results proved in §4. The key point is

to estimate the |·|n,α+β-norm of G1 and G2 given by (5.2.12)and (5.2.13).

Rewrite G1 (as given by (5.2.12)) as

(5.2.93)

G1 = F (η)ψ − F(≤2)(η)ψ + T∂t
√
a−∂xV+ 1

2
∂2xψ

η

+ T√a−1F (η)ψ

+
{
−T√a−1T∂xV + TV T∂x

√
aη +

[
TV , T√a−1

]
− 1

2
T
|Dx|

3
2 u2

T√a−1

}
η,

+ |Dx|RB(|Dx|ψ, T√a−1η) + ∂xRB(∂xψ, T√a−1η),

• The |·|n,α+β-norm of F (η)ψ−F(≤2)(η)ψ is estimated by means of Proposition 4.5.4 applied

with (k, µ) = (n, α+ β) which yields

(5.2.94)

∣∣F (η)ψ − F(≤2)(η)ψ
∣∣
n,α+β

≤ Cγ2 ‖η‖2Cγ2

∥∥|Dx|
1
2 Znψ

∥∥
Hα+β−1

2

+ 1R+(α+ β + n− s0 +N2)Cγ2 ‖η‖Cγ2

∥∥|Dx|
1
2 ψ
∥∥
Cγ2

∥∥Znη
∥∥
Hα+β

+ Cs0 ‖η‖2s0,0
∣∣|Dx|

1
2 ψ
∣∣
n−1,α+β+ 1

2

+ 1R+(α+ β − γ′2)Cs0 ‖η‖2s0,0
∣∣|Dx|

1
2 ψ
∣∣
n,α+β− 3

2

+ Cs0 ‖η‖s0,0
∥∥|Dx|

1
2 ψ
∥∥
α+β+n−s0+N2,γ2

|η|n−1,α+β+1

+ 1R+(α+ β − γ′2)Cs0 ‖η‖s0,0
∥∥|Dx|

1
2 ψ
∥∥
α+β+n−s0+N2,γ2

|η|n,α+β−1 ,
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where Cγ2 = C(‖η‖Cγ2 ), Cs0 = C(‖η‖
s0,0

), and 1R+ is the indicator function of R+. The first

four terms in the right hand side of (5.2.94) are clearly controlled by the right hand side of

(5.2.91). To estimate the last but one term in the right hand side of (5.2.94), notice that,

since γ has been chosen large relatively to γ2 and N2, since α+β+n ≤ s and since s ≤ 2s0−γ,
we have α + β + n − s0 +N2 + γ2 ≤ s0 and hence

∥∥|Dx|
1
2 ψ
∥∥
α+β+n−s0+N2,γ2

≤ N
(s0)
ρ for any

ρ ≥ γ. It remains to estimate the last term in the right hand side of (5.2.94). Notice that,

because of the indicator function, it is non zero only for α + β ≥ γ′2. Since β ≤ γ′2 − 1 by

assumption (5.1.5) on β, this means that the last term is non zero only for α > 0. Now for

α > 0 we have |η|n,α+β−1 ≤ MK and hence the last term in the right hand side of (5.2.94) is

also controlled by the right hand side of (5.2.91).

• We now estimate the |·|n,α+β-norm of T∂t
√
a−∂xV+ 1

2
∂2xψ

η. To do so, we first check that one

has the following estimates

(5.2.95)

∥∥∂ta− ∂2xψ
∥∥
s0,1

≤ C
(
N (s0)
ρ

)(
N (s0)
ρ

)2
,

∥∥∂α′

x Z
n′(
∂ta− ∂2xψ

)∥∥
L2 ≤ C

(
N (s0)
ρ

)
N (s0)
ρ MK for (α′, n′) ≺ (α, n),

∥∥∂αxZn(∂ta− ∂2xψ)
∥∥
L2 ≤ C(‖u‖Cγ ) ‖u‖Cγ Y(α,n) + C

(
N (s0)
ρ

)
N (s0)
ρ MK .

To prove these estimates, we use the arguments used in the proof of (3.1.9): we differentiate

in time the identity (A.3.9) for a (by using the rule (3.1.6)) and then we use Lemma A.3.1.

This gives that ∂ta − ∂2xψ is an explicit sum of quadratic terms which are estimated as in

Lemma 5.2.9. Next, (5.2.95) readily implies that ∂t
√
a− 1

2∂
2
xψ satisfies

(5.2.96)

∥∥∂t
√
a− 1

2
∂2xψ

∥∥
s0,1

≤ C
(
N (s0)
ρ

)(
N (s0)
ρ

)2
,

∥∥∂α′

x Z
n′(
∂t
√
a− 1

2
∂2xψ

)∥∥
L2 ≤ C

(
N (s0)
ρ

)
N (s0)
ρ MK for (α′, n′) ≺ (α, n),

∥∥∂αxZn(∂t
√
a− 1

2
∂2xψ)

∥∥
L2 ≤ C(‖u‖Cγ ) ‖u‖Cγ Y(α,n) + C

(
N (s0)
ρ

)
N (s0)
ρ MK .

On the other hand, the estimates (4.5.30) and (4.3.34) imply that ∂xV − ∂2xψ satisfies

(5.2.97)

∥∥∂xV − ∂2xψ
∥∥
s0,1

≤ C
(
N (s0)
ρ

)(
N (s0)
ρ

)2
,

∥∥∂α′

x Z
n′(
∂xV − ∂2xψ

)∥∥
L2 ≤ C

(
N (s0)
ρ

)
N (s0)
ρ MK for (α′, n′) ≺ (α, n),

∥∥∂αxZn(∂xV − ∂2xψ)
∥∥
L2 ≤ C(‖u‖Cγ ) ‖u‖Cγ Y(α,n) + C

(
N (s0)
ρ

)
N (s0)
ρ MK .

Set

ζ := ∂t
√
a− ∂xV +

1

2
∂2xψ.
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Then, by using the triangle inequality, (5.2.96) and (5.2.97) imply that

(5.2.98)

‖ζ‖
s0,1

≤ C
(
N (s0)
ρ

)(
N (s0)
ρ

)2
,

∥∥∂α′

x Z
n′

ζ
∥∥
L2 ≤ C

(
N (s0)
ρ

)
N (s0)
ρ MK for (α′, n′) ≺ (α, n),

∥∥∂αxZnζ
∥∥
L2 ≤ C(‖u‖Cγ ) ‖u‖Cγ Y(α,n) + C

(
N (s0)
ρ

)
N (s0)
ρ MK .

Now, to estimate the |·|n,α+β-norm of Tζη, we apply the estimate (4.4.24) with m = s0,

ν = α+ β and b = γ. This yields

|Tζη|n,α+β . ‖ζ‖
s0,0

|η|n−1,α+β+1 + ‖ζ‖L∞

∥∥Znη
∥∥
Hα+β

+ ‖η‖α+β+n−s0+1,0 |ζ|n−1,0

+ ‖η‖Cγ

∥∥Znζ
∥∥
L2

+ 1R+(α+ β + 1− γ) ‖η‖Cα+β+n−s0+1

∥∥Znζ
∥∥
L2 .

In view of (5.2.98), the first four terms in the right hand side are clearly controlled by the

right hand side of (5.2.91). Again, to bound the last term, we notice that is non zero only

for α > 0 since β + 1 − γ < 0 by assumption. Now, for α > 0, we have (0, n) ≺ (α, n) and

hence
∥∥Znζ

∥∥
L2 is estimated by the second inequality in (5.2.98). On the other hand, again,

we ‖η‖Cα+β+n−s0+1 ≤ N
(s0)
ρ by assumptions on α, β, n, s, s0, ρ.

• Now we estimate the |·|n,α+β-norm of T√a−1F (η)ψ. We apply the estimate (4.4.24) with

(K, ν,m, b) replaced by (n, α+ β, s0, β + 2). This gives
∣∣∣T√a−1F (η)ψ

∣∣∣
n,α+β

.
∥∥√a− 1

∥∥
s0,0

|F (η)ψ|n−1,α+β+1 +
∥∥√a− 1

∥∥
L∞

∥∥ZnF (η)ψ
∥∥
Hα+β

+ ‖F (η)ψ‖α+β+n−s0+1,0 |ζ|n−1,0

+ ‖F (η)ψ‖Cβ+2

∥∥Zn(√a− 1)
∥∥
L2

+ 1R+(α− 1) ‖F (η)ψ‖Cα+β+n−s0+1

∥∥Zn(√a− 1)
∥∥
L2 .

The first and second term in the right hand side are estimated by means of the previous

estimates for
√
a − 1 (see Lemma 5.2.9) and F (η)ψ (see (4.5.23), which easily implies an

estimate for |F (η)ψ|k,µ, using the triangle inequality and the fact that one can estimate∣∣F(≤2)(η)ψ
∣∣
k,µ

directly from (4.5.27) and (4.4.20)). Again, notice that the last term is non

zero only for α > 0. Then (0, n) ≺ (α, n) and
∥∥Zn(√a− 1)

∥∥
L2 is controlled by Lemma 5.2.9

ii). On the other hand, by assumptions on α, β, s, n, s0 we have α + β + n − s0 + 1 ≤ s0.

Therefore, it remains only to bound ‖F (η)ψ‖
s0,0

and ‖F (η)ψ‖Cβ+2. Both estimates are easily

obtained writing

F (η)ψ =
(
G(η)ψ − |Dx|ψ

)
−
(
|Dx|TB(η)ψη + ∂xTV (η)ψη

)
.

The ‖·‖
s0,0

-norm (resp. ‖·‖Cβ+2) norm of the first term is estimated by (4.5.30) (resp. (2.6.12)).

The ‖·‖
s0,0

-norm (resp. ‖·‖Cβ+2) norm of the second term is estimated by (5.2.81) and (4.3.37)

(resp. (A.1.13) and (2.0.4)).
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The last terms in the third and fourth lines of the right hand side of (5.2.93) are estimated

by means of (4.4.19), (4.4.20), (4.4.25), and Lemma 5.2.9.

We now estimate G2 which is given by (5.2.13). To estimate the first and second terms in

the right hand side of (5.2.13), we use the estimates (4.5.30) and (4.3.34) for the ‖·‖n,σ and

|·|K,ν norms of B(η) − |Dx| and V (η) − ∂x. Then the desired estimates follow from (4.4.20)

and (5.2.84).

The third and fifth terms in the right hand side of (5.2.13) are estimated by means of (4.4.25),

Proposition 4.3.11, Proposition 4.3.9 and Lemma 5.2.9. The fourth term is estimated by

means of (4.4.19), (4.4.20), Proposition 4.3.11, and Proposition 4.3.9.

To complete the study of G we have to study the terms involving the operator C(u) in (5.2.16)

and (5.2.18). We obtain the wanted estimates by using the estimates (4.5.30) and (4.3.34)

for the estimates of the ‖·‖n,σ and |·|K,ν norms of V (η) − ∂x, statement iv) in Lemma 5.2.9

(which implies similar estimates for (
√
a− 1) + 1

2 |Dx| η) and the rules (4.4.10), (4.4.11).

It follows from Lemma 5.2.8, Lemma 5.2.11, and Lemma 5.2.12 that the Hβ-norm of the

terms (2) and (3) in (5.2.69) are controlled by the right hand side of (5.2.4). Since we have

already estimated the term (1) in Lemma 5.2.7, to complete the proof, it remains only to

prove the estimate (5.2.6)–(5.2.7) and to estimate the Hβ-norms of the term (4) and Γ̃ which

appear in (5.2.69).

Lemma 5.2.13. i) There holds

‖(∂t +D)∂αxZ
nu‖L2 ≤ C(‖u‖Cγ ) ‖u‖Cγ Y(α,n) + C

(
N (s0)
ρ

)
N (s0)
ρ MK ,

‖(∂t +D)∂αxZ
nU‖L2 ≤ C(‖u‖Cγ ) ‖u‖Cγ Y(α,n) + C

(
N (s0)
ρ

)
N (s0)
ρ MK .

ii) If (α′, n′) ≺ (α, n) then
∥∥(∂t +D)∂α

′

x Z
n′

u
∥∥
L2 ≤ C

(
N (s0)
ρ

)
N (s0)
ρ MK ,

∥∥(∂t +D)∂α
′

x Z
n′

U
∥∥
L2 ≤ C

(
N (s0)
ρ

)
N (s0)
ρ MK .

iii) If α′ + n′ ≤ s0 then

∥∥(∂t +D)∂α
′

x Z
n′

u
∥∥
C4 ≤ C

(
N (s0)
ρ

)(
N (s0)
ρ

)2
,

∥∥(∂t +D)∂α
′

x Z
n′

U
∥∥
C4 ≤ C

(
N (s0)
ρ

)(
N (s0)
ρ

)2
.

Proof. Notice that the third (resp. the fourth) estimate is an obvious consequence of the first

(resp. the second) estimate since ‖u‖Cγ ≤ N
(s0)
ρ and since Y(α′,n′) ≤ MK for (α′, n′) ≺ (α, n).

To prove the first estimate, recall that

(5.2.99) ∂tu+Du =

(
G(η)ψ − |Dx|ψ

|Dx|
1
2
(
−1

2(∂xψ)
2 + 1

2(1 + (∂xη)
2)(B(η)ψ)2

)
)
.
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Therefore, using (5.2.14) to commute ∂αxZ
n with ∂t + D, the first estimate follows from

Corollary 4.3.8, Proposition 4.3.9, Proposition 4.3.11, and the product rule (4.4.23).

To prove the second estimate, we notice that for any (α, n) ∈ P,

(5.2.100) (∂t +D)∂αxZ
nU = −N(u)∂αxZ

nU + G′
(α,n) + F ′′

(α,n),

where G′
(α,n) and F ′′

(α,n) are given by (5.2.24). According to (5.2.27) applied with µ = 0,

the first term in the right hand side clearly satisfies the wanted estimate. Thus the second

estimate in the lemma follows from Lemma 5.2.11 and Lemma 5.2.12.

Let us prove the estimates in statement iii). Using again (5.2.14) to commute ∂αxZ
n with

∂t +D, notice that it is enough to prove that

‖(∂t +D)u‖
s0,4

≤ C
(
N (s0)
ρ

)(
N (s0)
ρ

)2
,(5.2.101)

‖(∂t +D)U‖
s0,4

≤ C
(
N (s0)
ρ

)(
N (s0)
ρ

)2
.(5.2.102)

The estimate (5.2.101) follows from (5.2.99), Proposition 4.3.11 and the product rule (4.3.15).

To prove (5.2.102), we use the estimate (5.2.81) whose statement is recalled here:

(5.2.103) ‖TζF‖n,σ . ‖ζ‖n,1 ‖F‖n,σ .

Remembering the decomposition (5.2.89) of U as u+U ′ with U ′ = (T√a−1η, |Dx|
1
2 TBη), and

using (5.2.101), it is enough to prove that

(5.2.104)
∥∥(∂t +D)U ′∥∥

s0,4
≤ C

(
N (s0)
ρ

)(
N (s0)
ρ

)2
.

Since it is enough to prove that the right-hand side is quadratic in N
(s0)
ρ , to prove (5.2.104),

it is sufficient to estimate separately ∂tU
′ and DU ′. Thus, it is sufficient to prove that

(5.2.105) ∀ζ ∈ {√a− 1, ∂t
√
a,B, ∂tB}, ∀F ∈ {η, ∂tη}, ‖TζF‖

s0,4+
1
2
≤ C

(
N (s0)
ρ

)(
N (s0)
ρ

)2
.

In view of (5.2.103), this reduces to proving that

∀ζ ∈ {√a− 1, ∂t
√
a,B, ∂tB}, ‖ζ‖

s0,1
≤ C

(
N (s0)
ρ

)
N (s0)
ρ ,

∀F ∈ {η, ∂tη}, ‖F‖
s0,4+

1
2
≤ C

(
N (s0)
ρ

)
N (s0)
ρ .

The second estimate is clear for F = η. Since ∂tη = G(η)ψ, it follows from Proposition 4.3.11

for F = ∂tη. On the other hand, for ζ = B (resp. ζ =
√
a − 1) the first estimate follows

from Proposition 4.3.11 (resp. Lemma 5.2.9). For ζ = ∂t
√
a, the first estimate follows from

(5.2.98) and Proposition 4.3.11 (to estimate ‖∂xV ‖
s0,1

). Eventually, for ζ = ∂tB, we use that,

by definition of a, ∂tB = −V ∂xB + a− 1 so that the wanted estimate follows from (4.3.15),

Proposition 4.3.11 and Lemma 5.2.9.
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Introduce

(5.2.106) X(α,n) :=
∥∥∂αxZnU

∥∥
Hβ +

∥∥∂αxZnu
∥∥
Hβ−1

2
,

and

(5.2.107)

MK := MK +
∑

(α′,n′)≺(α,n)

X(α′,n′),

NK := N (s0)
ρ +

1

ν

(
N (s0)
ρ

)1−ν
Mν
K .

Recall that we want to prove that

(5.2.108)
∥∥Γ
∥∥
Hβ ≤ C(‖u‖Cγ ) ‖u‖2Cγ Y(α,n) +C(NK)N 2

KMK .

According to Lemma 5.2.10 and Lemma 5.2.13 we have

(5.2.109)

X(α,n) ≤ C
(
‖u‖Cγ

)
Y(α,n) + C

(
N (s0)
ρ

)
MK ,

‖(∂t +D)∂αxZ
nu‖L2 + ‖(∂t +D)∂αxZ

nU‖L2 ≤ C
(
‖u‖Cγ

)
Y(α,n) + C

(
N (s0)
ρ

)
MK ,

MK ≤ C
(
N (s0)
ρ

)
MK

and it follows from the third inequality above that

(5.2.110)

NK = N (s0)
ρ +

1

ν

(
N (s0)
ρ

)1−ν
Mν
K

≤ N (s0)
ρ +

1

ν

(
N (s0)
ρ

)1−ν(
C
(
N (s0)
ρ

)
MK

)ν

≤ C
(
N (s0)
ρ

)
NK

by definition (5.2.5) of NK . Consequently, to prove (5.2.108) it is sufficient to prove that

(5.2.111)

∥∥Γ
∥∥
Hβ ≤ C(‖u‖Cγ ) ‖u‖2Cγ X(α,n) + C

(
N (s0)
ρ

)
N2
KMK

+ C(‖u‖Cγ ) ‖u‖Cγ

{
‖(∂t +D)∂αxZ

nu‖L2 + ‖(∂t +D)∂αxZ
nU‖L2

}
.

(Let us mention that the factor ‖u‖Cγ multiplying the bracket in the second line is linear in

‖u‖Cγ instead of being quadratic since (∂t +D)∂αxZ
nU is at least quadratic, see (5.2.100).)

Next we prove that
∥∥Γ̃
∥∥
Hβ is estimated by the right hand side of (5.2.111). Recall that Γ̃ is

given by (see (5.2.52))

(5.2.112) Γ̃ = G′ −R+N(u)
(
Φ̃− ∂αxZ

nU
)
,

with N(u) = Q(u) + S♯(u) + 2S♭(u) + C(u) and where G′ is given by (5.2.24), R is given

by (5.2.49), and Φ̃ is given by (5.2.50). We shall use a cancellation between the second term
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in the right hand side of (5.2.49) and the last term in the right hand side of (5.2.112). To do

so we write according to (5.2.100)

(5.2.113) (∂t +D)∂α2
x Zn2U = −N(u)∂α2

x Zn2U + G′
(α2,n2)

+ F ′′
(α2,n2)

,

where G′
(α2,n2)

and F ′′
(α2,n2)

are obtained by replacing (α, n) by (α2, n2) in the definition

(5.2.24) of G′ and F ′′. We substitute (5.2.113) in the second term in the right hand side of

(5.2.49) to obtain, using the definition (5.2.50) of Φ̃, Γ̃ = G′ +
9∑

q=1

Γ̃q with

Γ̃1 = −
∑

J

m(j)Pn3

(
(∂t +D)∂α1

x Zn1u
)
∂α2
x Zn2U

Γ̃2 = −
∑

J ′

m(j)Rn3

(
(∂t +D)∂α1

x Zn1u
)
∂α2
x Zn2U

Γ̃3 = −
∑

J ′

m(j)Rn3(∂
α1
x Zn1u)

(
(∂t +D)∂α2

x Zn2U
)

Γ̃4 = −E♯((∂t +D)∂αxZ
nu)U

Γ̃5 = −E♯(∂αxZnu)(∂tU +DU)

Γ̃6 = +
∑

J

m(j)
[
Pn3(∂

α1
x Zn1u), N(u)

]
∂α2
x Zn2U

Γ̃7 = −N(u)E♯(∂αxZ
nu)U

Γ̃8 = −N(u)
∑

J ′

m(j)Rn3(∂
α1
x Zn1u)∂α2

x Zn2U

Γ̃9 = −
∑

J

m(j)Pn3(∂
α1
x Zn1u)

{
G′
(α2,n2)

+ F ′′
(α2,n2)

}
·

We shall further split the sum over J (resp. J ′) into two pieces according to the splitting of

J as J = J1 ∪ J2 (resp. J ′ = J ′
1 ∪ J ′

2) where

(5.2.114)

J1 =

{
j = (α1, α2, n1, n2, n3) ∈ J ; α1 + n1 ≤

1

2
(α+ n)

}
,

J2 =

{
j = (α1, α2, n1, n2, n3) ∈ J ; α1 + n1 >

1

2
(α+ n)

}

(resp. J ′
1 and J ′

2 are given by (5.2.85) so that J ′
1 = J1 ∩ J ′ and J ′

2 = J2 ∩ J ′). Notice that, if

(α, n) = (0, 0) then J = ∅ = J ′. Therefore, if j ∈ J1 then (α1, n1) ≺ (α, n).

Using obvious notations, we write Γ̃q = Γ̃q1 + Γ̃q2 for q ∈ {1, 2, 3, 6, 8, 9}.

We shall use the following notation: for r in [0,+∞[ we set

(5.2.115) ‖v‖Cr∩L2 := ‖v‖Cr +
1

ν
‖v‖1−νCr ‖v‖νL2 ,
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where recall that ν is a fixed small positive number, and the constants involved are indepen-

dent of ν.

Estimates of Γ̃1
1, Γ̃

2
1 and Γ̃3

1

Let us prove that

(5.2.116)
∥∥Γ̃1

1

∥∥
Hβ +

∥∥Γ̃2
1

∥∥
Hβ ≤ C

(
‖u‖Cγ

)
‖u‖2Cγ X(α,n) + C

(
N (s0)
ρ

)
N2
KMK .

If A denotes Pn3 or Rn3 then the estimates (5.2.39) and (5.2.44) (together with (5.2.46))

imply that

(5.2.117)

∥∥A
(
(∂t +D)∂α1

x Zn1u
)
∂α2
x Zn2U

∥∥
Hβ

.
∥∥(∂t +D)∂α1

x Zn1u
∥∥
C4∩L2

∥∥∂α2
x Zn2U

∥∥
Hβ+1 .

Remembering that, by definition, Γ̃1
1, Γ̃

2
1 and Γ̃3

1 are sums of terms indexed by either J1 or

J ′
1, we are going to use a dichotomy already used in the proof of Lemma 5.2.11. Either

(α2 + 1, n2) ≺ (α, n) or α ≥ 1 and (α2, n2) = (α − 1, n).

If (α2 + 1, n2) ≺ (α, n), writing

‖∂α2
x Zn2U‖Hβ+1 ≤ ‖∂α2

x Zn2U‖Hβ +
∥∥∂α2+1

x Zn2U
∥∥
Hβ

we see that the second factor in the right hand side of (5.2.117) is bounded by MK , by

definition (5.2.107) of MK . To bound the first factor in the right hand side of (5.2.117), we

first recall from Lemma 5.2.13 that for any j in J1,

(5.2.118)
∥∥(∂t +D)∂α1

x Zn1u
∥∥
C4 ≤ C

(
N (s0)
ρ

)(
N (s0)
ρ

)2

where we used the fact that, for j ∈ J1, and our assumptions on α, n, s, s0, we have α1+n1 ≤ s0.

Secondly, we have

(5.2.119)
∥∥(∂t +D)∂α1

x Zn1u
∥∥
L2 ≤ C

(
N (s0)
ρ

)
N (s0)
ρ MK ,

where, to obtain (5.2.119), we used the above mentioned observation that (α1, n1) ≺ (α, n)

for j ∈ J1. By combining (5.2.118) and (5.2.119) we obtain

∥∥(∂t +D)∂α1
x Zn1u

∥∥
C4∩L2 ≤ C

(
N (s0)
ρ

)
N2
K

by definition (5.2.107) of NK and definition (5.2.115) of the norm ‖·‖C4∩L2 . This proves the

wanted estimate.

Consider now the case when (α2, n2) = (α − 1, n). Then (α1, n1) = (1, 0) and we have to

estimate the Hβ-norms of

P0

(
(∂t +D)∂xu

)
∂α−1
x ZnU, R0

(
(∂t +D)∂xu

)
∂α−1
x ZnU.
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Both terms are estimated similarly. Let us consider the first one. Using the estimate (5.2.131)

below, we have

(5.2.120)
∥∥P0

(
(∂t +D)∂xu

)
∂α−1
x ZnU

∥∥
Hβ ≤

∥∥(∂t +D)u
∥∥
C5

∥∥∂α−1
x ZnU

∥∥
Hβ+1.

(The key difference with (5.2.117) is that the right hand side of the above inequality does not

involve the L2-norm of (∂t+D)u.) As above, using the notations (5.2.106) and (5.2.107), one

has

(5.2.121)
∥∥∂α−1

x ZnU
∥∥
Hβ+1 ≤

∥∥∂αxZnU
∥∥
Hβ +

∥∥∂α−1
x ZnU

∥∥
Hβ ≤ X(α,n) +MK .

On the other hand, according to (5.2.99), (2.6.12), (2.0.4) and the product rule in Hölder

spaces, we have

(5.2.122)
∥∥(∂t +D)u

∥∥
C5 ≤ C

(
‖u‖Cγ

)
‖u‖2Cγ

provided that γ is large enough. Plugging (5.2.121) and (5.2.122) in (5.2.120) we obtain that

the Hβ-norm of P0

(
(∂t +D)∂xu

)
∂α−1
x ZnU is bounded by the right hand side of (5.2.116).

The ‖·‖Hβ -norm of Γ̃3
1 is estimated by similar arguments.

Estimates of Γ̃1
2, Γ̃

2
2, Γ̃

3
2, and Γ̃4

Consider j ∈ J ′. Let us estimate the Hβ-norms of

Pn3

(
(∂t +D)∂α1

x Zn1u
)
∂α2
x Zn2U, Rn3

(
(∂t +D)∂α1

x Zn1u
)
∂α2
x Zn2U.

If A denotes Pn3 (resp. Rn3 , ) then the estimate (5.2.40) (resp. (5.2.45)) implies that

∥∥A
(
(∂t +D)∂α1

x Zn1u
)
∂α2
x Zn2U

∥∥
Hβ

.
∥∥(∂t +D)∂α1

x Zn1u
∥∥
L2

∥∥∂α2
x Zn2U

∥∥
Cβ+3∩L2 .

To estimate the right hand side of the above inequality, we recall that we consider the case

j ∈ J ′ and notice that (α1, n1) ≺ (α, n) when j ∈ J ′ (since by definition (5.2.22) of J ′ we
have α1 + n1 < α+ n, α1 ≤ α, n1 ≤ n for j ∈ J ′). Then the second factor in the right hand

side above is estimated by means of (5.2.77) and (5.2.78), while the first factor is estimated

by Lemma 5.2.13 ii). This proves that the right hand side of the above inequality is bounded

by C
(
N

(s0)
ρ

)
N2
KMK .

This proves the desired estimate of the Hβ-norm of Γ̃2
2. To estimate the Hβ-norm of Γ̃1

2,

it remains to consider the case when j ∈ J \ J ′, that the case j = (α1, α2, n1, n2, n3) =

(α, 0, n, 0, 0). Let us study this term, together with Γ̃4. Here we notice that the Hβ-norm of

P0

(
(∂t +D)∂αxZ

nu
)
U (resp. E♯

(
(∂t +D)∂αxZ

nu
)
U) is estimated by means of (5.2.40) (resp.

(5.2.48)) and i) in Lemma 5.2.13.

The Hβ-norm of Γ̃3
2 is estimated by similar arguments.

Estimate of Γ̃5
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We claim that ∥∥Γ̃5
∥∥
Hβ ≤ C(‖u‖Cγ ) ‖u‖2Cγ X(α,n).

To see this we use the estimate (5.2.48) which implies that

∥∥Γ̃5
∥∥
Hβ . ‖∂tU +DU‖

C
3
2

∥∥∂αxZnu
∥∥
Hβ−1

2
.

Since
∥∥∂αxZnu

∥∥
Hβ−1

2
≤ X(α,n) by definition (5.2.106) of X(α,n), it remains only to prove that

(5.2.123) ‖∂tU +DU‖
C

3
2
≤ C(‖u‖Cγ ) ‖u‖2Cγ .

Since ‖∂tu+Du‖
C

3
2
≤ C(‖u‖Cγ ) ‖u‖2Cγ (as already seen in (3.6.14)), remembering (5.2.89),

to prove (5.2.123) it is sufficient to prove that

(5.2.124)
∥∥∥∂tT√a−1η

∥∥∥
C

3
2
+
∥∥∂t |Dx|

1
2 TBη

∥∥
C

3
2
≤ C(‖u‖Cγ ) ‖u‖Cγ

and

(5.2.125)
∥∥|Dx|

1
2 T√a−1η

∥∥
C

3
2
+ ‖|Dx|TBη‖

C
3
2
≤ C(‖u‖Cγ ) ‖u‖Cγ .

The second estimate is obvious: For any r > 0, it follows from (A.2.4) and (A.2.3) that

∥∥|Dx|
1
2 T√a−1η

∥∥
C

3
2
.
∥∥T√a−1η

∥∥
C2+r . ‖α‖L∞ ‖η‖C2+r ,

‖|Dx|TBη‖
C

3
2
.
∥∥TBη

∥∥
C

5
2+r . ‖B‖L∞ ‖η‖

C
5
2+r ,

so (5.2.125) follows from the estimate ‖α‖L∞ + ‖B‖L∞ ≤ C(‖u‖Cγ ) ‖u‖Cγ (see (3.1.20) and

(3.1.4)).

Let us prove (5.2.124). In view of (A.1.12) we have

∥∥∥∂tT√a−1η
∥∥∥
C

3
2
+
∥∥∂t |Dx|

1
2 TBη

∥∥
C

3
2

.
(∥∥√a− 1

∥∥
L∞ +

∥∥∂t(
√
a− 1)

∥∥
L∞ + ‖B‖L∞ + ‖∂tB‖L∞

)(
‖η‖C3 + ‖∂tη‖C3

)
.

Since ∂tη = G(η)ψ, it follows from (2.0.4) that ‖∂tη‖C3 ≤ C(‖u‖Cγ ) ‖u‖Cγ . On the other

hand, (3.1.20) and (2.0.4)imply that ‖√a− 1‖L∞ + ‖B‖L∞ ≤ C(‖u‖Cγ ) ‖u‖Cγ . It remains

only to prove that

‖∂tα‖L∞ + ‖∂tB‖L∞ ≤ C(‖u‖Cγ ) ‖u‖Cγ .

Now notice that (3.1.9) immediately implies that ‖∂ta‖L∞ ≤ C(‖u‖Cγ ) ‖u‖Cγ , which implies

the wanted estimate for ∂tα since α =
√
a − 1 and since a is bounded from below by 1/2

by assumption (see (3.1.11)). Now, to estimate ∂tB we use that ∂tB = −V ∂xB + a − 1 by

definition of a, so ‖∂tB‖L∞ ≤ ‖V ‖L∞ ‖∂xB‖L∞ +‖a− 1‖L∞ . The first term in the right hand

side is estimated by (2.0.4) while ‖a− 1‖L∞ is estimated by means of (3.1.8). This completes

the proof of the claim.
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Estimate of Γ̃6

We divide the analysis into two cases: either α = 0 or α ≥ 1. If α ≥ 1, we decompose J as

J ′′
1 ∪ J ′′

2 ∪ {j1, j2} where

(5.2.126)
j1 = (α, 0, n, 0, 0), j2 = (1, α − 1, 0, n, 0),

J ′′
1 = J1 \ {j2}, J ′′

2 = J2 \ {j1}.

If α = 0 we decompose J as J1 ∪ J ′′
2 ∪ {j1}. Below we consider the case α ≥ 1 and the proof

for the case α = 0 will be included in this analysis since we shall use the assumption α ≥ 1

only to give sense to j2.

The estimate for the sum over J ′′
2 is straightforward: It follows from (5.2.29) and (5.2.40)

that

(5.2.127)

∥∥Pn3(∂
α1
x Zn1u)

(
N(u)∂α2

x Zn2U
)∥∥

Hβ

.
∥∥∂α1

x Zn1u
∥∥
L2

∥∥N(u)∂α2
x Zn2U

∥∥
Cβ+2

≤ C(‖u‖Cγ ) ‖u‖Cγ

∥∥∂α1
x Zn1u

∥∥
L2

∥∥∂α2
x Zn2U

∥∥
Cβ+3 .

So (5.2.76) and (5.2.78) imply that
∥∥Pn3(∂

α1
x Zn1u)N(u)∂α2

x Zn2U
∥∥
Hβ ≤ C

(
N (s0)
ρ

)(
N (s0)
ρ

)2MK .

Now N(u)∂α2
x Pn3(∂

α1
x Zn1u)Zn2U is estimated by parallel arguments. This obviously implies

the wanted estimate for the commutator.

If (α1, α2, n1, n2, n3) = j1 then (α2, n2) = (0, 0). Thus, it follows from the first inequality in

(5.2.127), (5.2.29), (5.2.74) and the assumption β ≥ 1/2 that
∥∥Pn3(∂

α1
x Zn1u)N(u)∂α2

x Zn2U
∥∥
Hβ

≤ C(‖u‖Cγ ) ‖u‖2Cγ

(
Y(α,n) +MK

)
.

We estimate N(u)∂α2
x Pn3(∂

α1
x Zn1u)Zn2U by similar arguments. This obviously implies the

wanted estimate for the commutator.

If α ≥ 1 and (α1, α2, n1, n2, n3) = j2, we have to estimate
∥∥[P0(∂xu), N(u)

]
∂α−1
x ZnU

∥∥
Hβ .

We claim that

(5.2.128)
∥∥[P0(∂xu), N(u)

]∥∥
L(Hβ+1,Hβ)

≤ C ‖u‖2Cγ .

Let us assume this claim. Then

(5.2.129)
∥∥[P0(∂xu), N(u)

]
∂α−1
x ZnU

∥∥
Hβ ≤ C ‖u‖2Cγ

∥∥∂α−1
x ZnU

∥∥
Hβ+1 .

We then write that, obviously,
∥∥∂α−1

x ZnU
∥∥
Hβ+1 ≤

∥∥∂αxZnU
∥∥
Hβ +

∥∥∂α−1
x ZnU

∥∥
Hβ ≤ X(α,n) +MK .

The proof of the claim (5.2.128) is then based on the following lemma.
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Lemma 5.2.14. Let µ be a given real number.

i) There exists K > 0 such that, for any scalar function w ∈ C2(R), any v = (v1, v2) ∈
C6 ∩ L2(R) and any f = (f1, f2) ∈ Hµ(R),

(5.2.130) ‖[TwI2,P0(∂xv)] f‖Hµ ≤ K ‖w‖C1 ‖v‖C6 ‖f‖Hµ ,

where I2 = ( 1 0
0 1 ).

ii) There exists K > 0 such that, for any v = (v1, v2) in C5 ∩ L2(R) and any f = (f1, f2) in

Hµ(R),

(5.2.131)
∥∥P0(∂xv)f

∥∥
Hµ−1 ≤ K ‖v‖C5 ‖f‖Hµ .

Proof. We recall that P0(v) is given by OpB
[
v1, P 1

ℓ

]
+OpB

[
v2, P 2

ℓ

]
where P 1

ℓ and P 2
ℓ belong

to S1,0
0 (see (5.2.36)). Therefore

P0(∂xv) = OpB
[
v1, iξ1P

1
ℓ

]
+OpB

[
v2, iξ1P

2
ℓ

]
.

Since iξ1P
1
ℓ and iξ1P

2
ℓ belong to S1,0

1 , it follows from Lemma 3.4.6 that P0(∂xv) is a paradif-

ferential operator of order 1, whose symbol has semi-norms estimated by means of statement

ii) in Lemma 3.4.5. The assertions in the lemma then follows from Theorem A.1.7.

Next we proceed as in the proof of Lemma 5.2.7. Firstly, we introduce

Ñ(u) = N(u)− TV ∂x − TαD.

Directly from the definition (5.2.25) of N(u), using (5.2.28) and (5.2.72), one can check that

∥∥Ñ(u)
∥∥
L(Hβ ,Hβ)

≤ C ‖u‖Cγ ,

for some constant C depending only on ‖u‖Cγ . By combining this estimate with (5.2.131) we

get ∥∥P0(∂xu)Ñ(u)
∥∥
L(Hβ+1,Hβ)

+
∥∥Ñ(u)P0(∂xu)

∥∥
L(Hβ+1,Hβ)

≤ C ‖u‖2Cγ ,

which obviously implies that

∥∥[Ñ(u),P0(u)]
∥∥
L(Hβ+1,Hβ)

≤ C ‖u‖2Cγ .

So to prove (5.2.128) it remains only to estimate the commutators of P0(∂xu) with TV ∂x
and TαD. The commutator with TV ∂x is estimated by means of statement i) in the above

lemma. To estimate the commutator with TαD we use again statement i) in the above lemma

to estimate the commutator [Tα,P0] and we use the equation (5.2.37) satisfied by P0(v) to

estimate [D,P0(∂xu)]: Indeed, (5.2.37) implies that

[
D,P0(∂xu)

]
= P0(D∂xu) +Q(0)(∂xu)
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and hence [D,P0(∂xu)] is an operator of order 1 which is estimated by means of the esti-

mate (5.2.30) and statement ii) in the above lemma.

Now let us assume that j ∈ J ′′
1 . Then we claim that

(5.2.132)
∥∥[Pn3(∂

α1
x Zn1u), N(u)

]∥∥
L(Hβ+1,Hβ)

≤ CN2
K .

This is proved exactly as we proved (5.2.128), excepted that we use Lemma 5.2.4 instead of

Lemma 5.2.14. Then (5.2.132) implies that

(5.2.133)

∥∥[Pn3(∂
α1
x Zn1u), N(u)

]
∂α2
x Zn2U

∥∥
Hβ

≤ CN2
K

∥∥∂α2
x Zn2U

∥∥
Hβ+1 .

We then write that, as already seen, if (α2, n2) ≺ (α, n), α2 ≤ α, and (α2, n2) 6= (α − 1, n)

then (α2 + 1, n2) ≺ (α, n) so

∥∥∂α2
x Zn2U

∥∥
Hβ+1 ≤

∥∥∂α2
x Zn2U

∥∥
Hβ +

∥∥∂α2+1
x Zn2U

∥∥
Hβ+1 ≤MK .

This completes the proof.

Estimate of Γ̃7

Remembering the estimate (see (5.2.27))
∥∥N(u)

∥∥
L(Hβ+1,Hβ)

≤ C(‖u‖Cγ ) ‖u‖Cγ , we have

∥∥Γ̃7
∥∥
Hβ ≤ C(‖u‖Cγ ) ‖u‖Cγ

∥∥E♯(∂αxZnu)U
∥∥
Hβ .

Now (5.2.48) implies that

∥∥Γ̃7
∥∥
Hβ ≤ C(‖u‖Cγ ) ‖u‖Cγ ‖U‖

C
3
2

∥∥∂αxZnu
∥∥
Hβ−1

2
.

By definition of X(α,n) there holds
∥∥∂αxZnu

∥∥
Hβ−1

2
≤ X(α,n). So the estimate (5.2.87) for

‖U‖
C

3
2
implies that

∥∥Γ̃7
∥∥
Hβ ≤ C(‖u‖Cγ ) ‖u‖2Cγ X(α,n).

The estimates for Γ̃8, and Γ̃9
1 are obtained by similar arguments to those used previously.

Also, to estimate Γ̃9
2, using (5.2.40), all we need to prove is that

∥∥∥G′
(α2,n2)

+F ′′
(α2,n2)

∥∥∥
C4

≤ C
(
N (s0)
ρ

)
N (s0)
ρ .

Here one notices that, while it could be long to estimate these terms separately, one can

readily estimate the sum writing that, by (5.2.113),

G′
(α2,n2)

+ F ′′
(α2,n2)

= (∂t +D)∂α2
x Zn2U +N(u)∂α2

x Zn2U.

The first term in the right hand side is estimated by Lemma 5.2.13 since, as we study Γ̃9
2,

the condition α2 + n2 ≤ s0 holds. The second term is estimated by means of (5.2.29) and

(5.2.78). This completes the estimate of Γ̃.
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To complete the proof of i) of Proposition 5.2.1, we still need to estimate the Hβ-norm of the

term (4) in (5.2.69). Moreover, we have to prove the bounds (5.2.6), (5.2.7) of statement ii)

of that proposition. These estimates will be deduced from the following result.

Lemma 5.2.15. There holds

(5.2.134)
∥∥∂αxZnU − Φ

∥∥
Hβ ≤ C(‖u‖Cγ ) ‖u‖Cγ X(α,n) + C(N (s0)

ρ )NKMK .

Proof. It follows from the definition (5.2.64) of Φ and the definition (5.2.50) of Φ̃ that

(5.2.135)

Φ− ∂αxZ
nU := E(u)∂αxZ

nU

−
∑

J

m(j)Pn3(∂
α1
x Zn1u)∂α2

x Zn2U

−
∑

J ′

m(j)Rn3(∂
α1
x Zn1u)∂α2

x Zn2U

− E♯(∂αxZ
nu)U.

Then we use arguments similar to those used previously. The first (resp. last) term in the

right hand side of (5.2.135) is estimated by means of (5.2.63) (resp. (5.2.48)). To estimate

the second term in the right hand side of (5.2.135), we decompose J as J ′′
1 ∪ J ′′

2 ∪{j1, j2} (see

(5.2.126)) and then use the estimates (5.2.39) (for j ∈ J ′′
1 ), (5.2.131) (for j = j2), (5.2.40) (for

j ∈ J ′′
2 ∪ {j1}). The estimate of the third term in the right hand side of (5.2.135) is similar;

we decompose J ′ as J ′
1 ∪ J ′

2 where J ′
1 and J ′

2 are defined by (5.2.85) and we use the estimates

(5.2.44) and (5.2.45) (since j 6= j1 for j ∈ J ′ and since α2 + n2 < α + n for any j ∈ J ′, the

terms ‖Hv‖Cρ and ‖Hf‖Cρ which appear in (5.2.44) and (5.2.45) lead to terms which are

estimated by means of NK).

This lemma and the estimates (5.2.60) (applied with some ρ > 1), the operator norm estimates

(5.2.73) (resp. (5.2.60)) for B(u) (resp. S♯(u) and S
♭(u)) readily imply the wanted estimate

of the Hβ-norm of the term (4) which appears in (5.2.69).

Let us prove (5.2.6)–(5.2.7). Recall that (see (5.1.7) and (5.2.106)), by notations,

Y(α,n) :=
∥∥∂αxZnη

∥∥
Hβ +

∥∥|Dx|
1
2 ∂αxZ

nω
∥∥
Hβ +

∥∥|Dx|
1
2 ∂αxZ

nψ
∥∥
Hβ−1

2
,

X(α,n) :=
∥∥∂αxZnU

∥∥
Hβ +

∥∥∂αxZnu
∥∥
Hβ−1

2
.

It is convenient to set

A(α,n) :=
(∥∥∂αxZnη

∥∥2
Hβ +

∥∥|Dx|
1
2 ∂αxZ

nω
∥∥2
Hβ

) 1
2
.

Hereafter we denote by Cγ (resp. Cs0) various constants depending only on ‖u‖Cγ (resp. N
(s0)
ρ ).

214



It follows from (5.2.84) that

(5.2.136)
∥∥∂αxZnu

∥∥
Hβ−1

2
≤ A(α,n) + Cγ ‖u‖Cγ Y(α,n) + Cs0N (s0)

ρ MK .

Using the obvious inequalities

(5.2.137)
∥∥∂αxZnη

∥∥
Hβ +

∥∥|Dx|
1
2 ∂αxZ

nω
∥∥
Hβ ≤ 2A(α,n)

and

(5.2.138)

∥∥|Dx|
1
2 ∂αxZ

nψ
∥∥
Hβ− 1

2
.
∥∥∂αxZn |Dx|

1
2 ψ
∥∥
Hβ−1

2
+
∑

n′<n

∥∥∂αxZn
′ |Dx|

1
2 ψ
∥∥
Hβ− 1

2

.
∥∥∂αxZnu

∥∥
Hβ−1

2
+MK .

It follows from (5.2.136) that

(5.2.139) Y(α,n) ≤ 3A(α,n) + Cγ ‖u‖Cγ Y(α,n) + Cs0
[
1 +N (s0)

ρ

]
MK .

Then for ‖u‖Cγ small enough we have

(5.2.140) Y(α,n) ≤ 4A(α,n) + Cs0
[
1 +N (s0)

ρ

]
MK .

On the other hand (5.2.79) implies that

(5.2.141) A(α,n) ≤
∥∥∂αxZnU

∥∥
Hβ + Cγ ‖u‖Cγ Y(α,n) + Cs0N (s0)

ρ MK ,

and using (5.2.134) to estimate
∥∥∂αxZnU

∥∥
Hβ by means of ‖Φ‖Hβ , we find that

(5.2.142) A(α,n) ≤ ‖Φ‖Hβ + Cγ ‖u‖Cγ

(
Y(α,n) +X(α,n)

)
+ Cs0NKMK .

Using the first bound in (5.2.109) to estimate X(α,n) in the right hand side of the previous

inequality, we find that

(5.2.143) A(α,n) ≤ ‖Φ‖Hβ + Cγ ‖u‖Cγ Y(α,n) + Cs0NKMK .

Then (5.2.140) and (5.2.143) imply that

(5.2.144) Y(α,n) ≤ 4 ‖Φ‖Hβ + Cγ ‖u‖Cγ Y(α,n) + Cs0
[
1 +NK

]
MK ,

and hence, provided that Cγ ‖u‖Cγ is small enough,

(5.2.145) Y(α,n) ≤ 5 ‖Φ‖Hβ + Cs0
[
1 +NK

]
MK .

Finally, it follows from (5.2.109) and (5.2.110) that the same inequality holds with MK (resp.

NK) replaced by MK (resp. NK):

(5.2.146) Y(α,n) ≤ 5 ‖Φ‖Hβ + Cs0
[
1 +NK

]
MK .

This establishes the first inequality of (5.2.6).
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Let us prove (5.2.7). The estimate (5.2.134) implies that

(5.2.147) ‖Φ‖Hβ ≤
∥∥∂αxZnU

∥∥
Hβ + Cγ ‖u‖Cγ X(α,n) + Cs0NKMK ,

and the estimate (5.2.79) implies that

(5.2.148)
∥∥∂αxZnU

∥∥
Hβ ≤ A(α,n) + Cγ ‖u‖Cγ Y(α,n) + Cs0N (s0)

ρ MK .

Now (5.2.109) and (5.2.145) imply that

(5.2.149) X(α,n) ≤ Cγ ‖Φ‖Hβ + Cs0
[
1 +NK

]
MK .

Then (5.2.146), (5.2.147), (5.2.148), and (5.2.149) imply that

(5.2.150) ‖Φ‖Hβ ≤ A(α,n) + Cγ ‖u‖Cγ ‖Φ‖Hβ + Cs0NKMK .

If Cγ ‖u‖Cγ is small enough, we conclude that

(5.2.151) ‖Φ‖Hβ ≤ 2A(α,n) + Cs0NKMK ,

so we have, according to (5.2.109) and (5.2.110),

(5.2.152) ‖Φ‖Hβ ≤ 2A(α,n) + Cs0NKMK .

Using the obvious inequality A(α,n) ≤ Y(α,n), this yields the second estimate of (5.2.7) and

hence completes the proof of (5.2.7).

Next, we shall use (5.2.152) at time T0. Our goal is to deduce from this estimate that

(5.2.153) ‖Φ‖Hβ (T0) .M (s1)
s

(T0)

provided that N
(s0)
ρ (T0) is small enough.

Plugging (5.2.140) into (5.2.136) we find that

(5.2.154)
∥∥∂αxZnu

∥∥
Hβ−1

2
≤
(
1 + 4Cγ ‖u‖Cγ

)
A(α,n) + Cs0N (s0)

ρ MK .

Obviously, we have

(5.2.155) A(α,n) ≤
∑

(α′,n′)∈P
A(α′,n′) ≤M (s1)

s

by definition (5.1.1) of the norm M
(s1)
s (recall that P is defined by (5.1.6)). Similarly,

MK ≤
#P∑

K ′=0

MK ′ ≤M (s1)
s

+
∑

(α′,n′)∈P

∥∥|Dx|
1
2 ∂α

′

x Z
n′

ψ
∥∥
Hβ−1

2
.
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Now, since |Dx|
1
2 Zn

′

ψ is a linear combination of terms of Zk |Dx|
1
2 ψ, 0 ≤ k ≤ n′, we have

∑

(α′,n′)∈P

∥∥|Dx|
1
2 ∂α

′

x Z
n′

ψ
∥∥
Hβ−1

2
.

∑

(α′,n′)∈P

∥∥∂α′

x Z
n′ |Dx|

1
2 ψ
∥∥
Hβ− 1

2
≤

∑

(α′,n′)∈P

∥∥∂α′

x Z
n′

u
∥∥
Hβ−1

2
,

since u = (η, |Dx|
1
2 ψ) by definition of u. So the previous bound for MK implies that

(5.2.156) MK .M (s1)
s

+
∑

(α′,n′)∈P

∥∥∂α′

x Z
n′

u
∥∥
Hβ−1

2
.

Plugging (5.2.155) and (5.2.156) into (5.2.154) we conclude that

∥∥∂αxZnu
∥∥
Hβ− 1

2
≤
(
1 + 4Cγ ‖u‖Cγ

)
A(α,n) + Cs0N (s0)

ρ MK

.
(
1 + 4Cγ ‖u‖Cγ + Cs0N (s0)

ρ

)
M (s1)

s
+ Cs0N (s0)

ρ

∑

(α′,n′)∈P

∥∥∂α′

x Z
n′

u
∥∥
Hβ−1

2
.

Since ‖u‖Cγ ≤ N
(s0)
ρ , this simplifies to

∥∥∂αxZnu
∥∥
Hβ− 1

2
. Σ :=

(
1 + Cs0N (s0)

ρ

)
M (s1)

s
+ Cs0N (s0)

ρ

∑

(α′,n′)∈P

∥∥∂α′

x Z
n′

u
∥∥
Hβ−1

2
.

Taking the sum of the inequality thus obtained for (α, n) ∈ P, we conclude that

∑

(α,n)∈P

∥∥∂αxZnu
∥∥
Hβ−1

2
. #PΣ .

(
1 + Cs0N (s0)

ρ

)
M (s1)

s
+ Cs0N (s0)

ρ

∑

(α′,n′)∈P

∥∥∂α′

x Z
n′

u
∥∥
Hβ−1

2
.

So a :=
∑

(α,n)∈P
∥∥∂αxZnu

∥∥
Hβ−1

2
satisfies

(5.2.157) a .
(
1 + Cs0N (s0)

ρ

)
M (s1)

s
+ Cs0N (s0)

ρ a.

For N
(s0)
ρ (T0) small enough, this yields that

∑

(α,n)∈P

∥∥∂αxZnu(T0)
∥∥
Hβ−1

2
.M (s1)

s
(T0).

Plugging this estimate in (5.2.156) and then (5.2.155) into (5.2.152) we obtain the wanted

estimate (5.2.153) and hence the desired result (5.2.7).

This concludes the proof of the proposition.
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Chapter 6

Appendices

A.1 Paradifferential calculus

We recall here some definitions and results concerning Bony’s paradifferential calculus. We

refer to the original articles of Bony [10] and Meyer [39] as well as to the books of Hörmander

[25], Métivier [38] and Taylor [49].

We denote by C0(R) the space of bounded continuous functions. For any ρ ∈ N, we denote

by Cρ(R) the space of C0(R) functions whose derivatives of order less or equal to ρ are in C0.

For any ρ ∈]0,+∞[\N, we denote by Cρ(R) the space of bounded functions whose derivatives

of order [ρ] are uniformly Hölder continuous with exponent ρ− [ρ].

Definition A.1.1. Consider ρ in [0,+∞[ and m in R. One denotes by Γmρ (R) the space of

locally bounded functions a(x, ξ) on R×(R\0), which are C∞ functions of ξ outside the origin

and such that, for any α ∈ N and any ξ 6= 0, the function x 7→ ∂αξ a(x, ξ) belongs to Cρ(R)

and there exists a constant Cα such that,

(A.1.1) ∀ |ξ| ≥ 1

2
,
∥∥∂αξ a(·, ξ)

∥∥
Cρ ≤ Cα(1 + |ξ|)m−|α|.

Given a symbol a, to define the paradifferential operator Ta we need to introduce a cutoff

function θ.

Definition A.1.2. Fix θ ∈ C∞(R× R) satisfying the three following properties.

(i) There exists ε1, ε2 satisfying 0 < 2ε1 < ε2 < 1/2 such that

θ(ξ1, ξ2) = 1 if |ξ1| ≤ ε1 |ξ2| and |ξ2| ≥ 2,

θ(ξ1, ξ2) = 0 if |ξ1| ≥ ε2 |ξ2| or |ξ2| ≤ 1.
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(ii) For all (α, β) ∈ N2, there is Cα,β such that

∀(ξ1, ξ2) ∈ R
2,

∣∣∂αξ1∂
β
ξ2
θ(ξ1, ξ2)

∣∣ ≤ Cα,β(1 + |ξ2|)−|α|−|β|.

(iii) θ satisfies the following symmetry conditions:

(A.1.2) θ(ξ1, ξ2) = θ(−ξ1,−ξ2) = θ(−ξ1, ξ2).

Remark. Notice that θ(ξ1, ξ2) = 0 for |ξ2| small enough. This choice (different from [38])

plays a key role in our analysis since we have to handle symbols which are homogeneous in

ξ2 and hence not regular for ξ2 = 0.

As an example, fix ε1, ε2 such that 0 < 2ε1 < ε2 < 1/2 and a function f in C∞
0 (R) satisfying

f(t) = f(−t), f(t) = 1 for |t| ≤ 2ε1 and f(t) = 0 for |t| ≥ ε2. Then set

θ(ξ1, ξ2) = (1− f(ξ2))f

(
ξ1
ξ2

)
.

Properties (i), (ii) and (iii) are clearly satisfied.

The paradifferential operator Ta with symbol a is defined by

(A.1.3) T̂au(ξ) = (2π)−1

∫
θ(ξ − η, η)â(ξ − η, η)û(η) dη,

where â(θ, ξ) =
∫
e−ixθa(x, ξ) dx is the Fourier transform of a with respect to x.

Remark A.1.3. It follows from (A.1.2) that, if a and u are real-valued functions, so is Tau.

Remark A.1.4. One says that Θ = Θ(ξ1, ξ2) is an admissible cut-off function if Θ satisfies

the properties (i) and (ii) in Definition A.1.2. All the results given in this appendix remain

true for any admissible cut-off function (except Remark A.1.3).

We shall use quantitative results from [38]. To do so, we introduce the following semi-norms.

Definition A.1.5. For m ∈ R, ρ ≥ 0 and a ∈ Γmρ (R), we set

(A.1.4) Mm
ρ (a) = sup

|α|≤2+ρ
sup

|ξ|≥1/2

∥∥∥(1 + |ξ|)|α|−m∂αξ a(·, ξ)
∥∥∥
Cρ(R)

.

The main features of symbolic calculus for paradifferential operators are given by the following

theorem.

Definition A.1.6. Let m in R. An operator T is said of order m if, for any µ ∈ R, it is

bounded from Hµ to Hµ−m.
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Theorem A.1.7. Let m ∈ R.

(i) If a ∈ Γm0 (R), then Ta is of order m. Moreover, for any µ ∈ R there exists K > 0 such

that

(A.1.5) ‖Ta‖L(Hµ,Hµ−m) ≤ KMm
0 (a).

(ii) Let (m,m′) ∈ R2 and ρ ∈ (0,+∞). If a ∈ Γmρ (R), b ∈ Γm
′

ρ (R) then TaTb − Ta♯b is of

order m+m′ − ρ where

(A.1.6) a♯b =
∑

|α|<ρ

1

i|α|α!
∂αξ a∂

α
x b.

Moreover, for any µ ∈ R there exists K > 0 such that

(A.1.7) ‖TaTb − Ta♯b‖L(Hµ,Hµ−m−m′+ρ) ≤ KMm
ρ (a)Mm′

ρ (b).

In particular, if ρ ∈]0, 1], a ∈ Γmρ (R), b ∈ Γm
′

ρ (R) then

(A.1.8) ‖TaTb − Tab‖L(Hµ,Hµ−m−m′+ρ) ≤ KMm
ρ (a)Mm′

ρ (b).

(iii) Let a ∈ Γm1 (R). Denote by (Ta)
∗ the adjoint operator of Ta and by a the complex-

conjugated of a. Then (Ta)
∗ − Ta is of order m− 1. Moreover, for any µ in R there exists a

constant K such that

(A.1.9) ‖(Ta)∗ − Ta‖L(Hµ,Hµ−m+1) ≤ KMm
1 (a).

Remark A.1.8. One can improve (A.1.5) by noting that the estimates for Tau involves

only the norm of ∂xu and not u itself. Indeed, introduce κ̃ = κ̃(ξ) such that κ̃(ξ) = 1

for |ξ| ≥ 1/3 and κ̃(ξ) = 0 for |ξ| ≤ 1/4. Then, by assumption on the cutoff function θ, we

have Ta = Taκ̃(Dx) and hence (A.1.5) implies that

(A.1.10) ‖Tau‖Hµ−m ≤ KMm
0 (a) ‖∂xu‖Hµ−1 .

since ‖κ̃(Dx)u‖Hµ ≤ ‖∂xu‖Hµ−1 . Similarly, (A.1.7) implies that

(A.1.11) ‖TaTb − Ta♯bu‖Hµ−m−m′+ρ ≤ KMm
ρ (a)Mm′

ρ (b) ‖∂xu‖Hµ−1 .

If a = a(x) is a function of x only, then Ta is called a paraproduct. It follows from (A.1.5)

that if a ∈ L∞(R) then Ta is an operator of order 0, together with the estimate

(A.1.12) ∀σ ∈ R, ‖Tau‖Hσ . ‖a‖L∞ ‖u‖Hσ .

A paraproduct with an L∞-function acts on any Hölder space: for any ρ in R∗
+ \ N we have

(A.1.13) ∀σ ∈ R, ‖Tau‖Cρ . ‖a‖L∞ ‖u‖Cρ .
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If a = a(x) and b = b(x) are two functions then (A.1.6) simplifies to a♯b = ab and hence

(A.1.7) implies that, for any ρ > 0,

(A.1.14) ‖TaTb − Tab‖L(Hµ,Hµ−m−m′+ρ) ≤ K ‖a‖Cρ ‖b‖Cρ ,

provided that a and b belong to Cρ(R).

Definition A.1.9. Given two functions a, b defined on R we define the remainder

(A.1.15) RB(a, u) = au− Tau− Tua.

We record here two estimates about the remainder RB(a, b) (see chapter 2 in [9]).

Theorem A.1.10. Let α ∈ R+ and β ∈ R be such that α+ β > 0. Then

‖RB(a, u)‖
Hα+β−1

2 (R)
≤ K ‖a‖Hα(R) ‖u‖Hβ(R) ,(A.1.16)

‖RB(a, u)‖Hα+β(R) ≤ K ‖a‖Cα(R) ‖u‖Hβ(R) .(A.1.17)

We next recall a well-known property of products of functions in Sobolev spaces (see chapter

8 in [25]) that can be obtained from (A.1.12) and (A.1.17): If u1, u2 ∈ Hs(R) ∩ L∞(R) and

s > 0 then

(A.1.18) ‖u1u2‖Hs ≤ K ‖u1‖L∞ ‖u2‖Hs +K ‖u2‖L∞ ‖u1‖Hs .

Similarly, recall that, for s > 0 and F ∈ C∞(CN ) such that F (0) = 0, there exists a non-

decreasing function C : R+ → R+ such that

(A.1.19) ‖F (U)‖Hs ≤ C
(
‖U‖L∞

)
‖U‖Hs ,

for any U ∈ (Hs(R) ∩ L∞(R))N .

One has also the following result: for any (r, ρ, ρ′) ∈ [0,+∞[3 such that ρ′ > ρ ≥ r, there

exists a constant K > 0 such that

(A.1.20) ‖Tau‖Hρ−r ≤ K ‖a‖H−r ‖u‖Cρ′ .

One can use this estimate to study the regularity of the product fg when g is in some Hölder

space. Writing fg = Tfg + Tgf + RB(f, g), it follows from (A.1.12), (A.1.20) applied with

r = 0 and (A.1.17) that, for any real numbers ρ′ > ρ ≥ 0, the product is continuous from

Hρ ×Cρ
′

to Hρ. By duality, the estimate (A.1.21) is true for any (ρ, ρ′) ∈ R×R+ such that

ρ′ > |ρ|. Therefore,

(A.1.21) ∀(ρ, ρ′) ∈ R×R+ such that ρ′ > |ρ|, ‖fg‖Hρ . ‖f‖Hρ ‖g‖Cρ′ .

The estimate is obvious for ρ′ = ρ ∈ N. When ρ′ 6∈ N one has to allow a small loss.

Here is a couple of identities which are used to simplify many expressions (see the proof of

(2.6.26), (2.6.27), the proof of Lemma 2.2.6 and the proof of Proposition 2.7.1).
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Lemma A.1.11. For any function a = a(x) in L∞(R) and any function u in L2(R), one has

|Dx|Ta |Dx| u+ ∂xTa∂xu = 0,(A.1.22)

|Dx|Ta∂xu− ∂xTa |Dx|u = 0.(A.1.23)

Proof. There holds

|Dx|Ta |Dx|u+ ∂xTa∂xu =
1

(2π)2

∫
eix(ξ1+ξ2)â(ξ1)p(ξ1, ξ2)û(ξ2) dξ1 dξ2,

with

p(ξ1, ξ2) =
(
|ξ1 + ξ2| |ξ2| − (ξ1 + ξ2)ξ2

)
θ(ξ1, ξ2),

where θ(ξ1, ξ2) is as given by Definition A.1.2. Now, on the support of θ we have |ξ1| ≤ |ξ2|
and hence (ξ1 + ξ2)ξ2 ≥ 0. As a result p = 0, which proves (A.1.22).

Set Σ := |Dx|Ta∂xu − ∂xTa |Dx|u. Since ∂xΣ = |Dx|
(
∂xTa∂xu + |Dx|Ta |Dx| u

)
the idenity

(A.1.22) implies that ∂xΣ = 0 and hence Σ = 0 since Σ ∈ H−2(R). This proves (A.1.23).

We also need a commutator estimate to control the commutator of |Dx| and a paraproduct.

Lemma A.1.12. (i) For any µ ∈ R there exists a positive constant K such that for all a ∈
C1(R) and all f ∈ Hµ(R),

(A.1.24)
∥∥Ta |Dx| f − |Dx| (Taf)

∥∥
Hµ ≤ K ‖a‖C1 ‖f‖Hµ .

(ii) For any ε > 0 and any σ ∈]0,+∞[ there exists a positive constant K such that for

all a ∈ C1(R) ∩Hσ+1(R) and all f ∈ C1+ε(R) ∩Hσ(R),

(A.1.25)
∥∥a |Dx| f − |Dx| (af)

∥∥
Hσ ≤ K ‖a‖C1 ‖f‖Hσ +K ‖f‖C1+ε ‖a‖Hσ+1 .

(iii) For any ε > 0 and any σ ∈ [1,+∞[ there exists a positive constant K such that for

all a ∈ Cσ+1+ε(R) and all f ∈ Hσ(R),

(A.1.26)
∥∥a |Dx| f − |Dx| (af)

∥∥
Hσ ≤ K ‖a‖Cσ+1+ε ‖f‖Hσ .

Remark A.1.13. The estimate (A.1.25) is not optimal (see [33] for sharp results).

Proof. To prove (A.1.24), write
[
Ta, |Dx|

]
f =

[
Ta, T|ξ|

]
f +Ta(|Dx|−T|ξ|)f − (|Dx|−T|ξ|)Taf ,

and use the bounds

∀σ ∈ R,
∥∥[Ta, T|ξ|

]
g
∥∥
Hσ . ‖a‖C1 ‖g‖Hσ ,

∀(σ, σ′) ∈ R
2,

∥∥|Dx| g − T|ξ|g
∥∥
Hσ′ . ‖g‖Hσ ,

where the first estimate follows from (A.1.8) applied with ρ = 1.
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To prove (A.1.25), rewrite the commutator
[
a, |Dx|

]
f as

[Ta, |Dx|] f + (a− Ta) |Dx| f − |Dx| (a− Ta)f.

The first term is estimated by (A.1.24). To estimate the last two terms, we use the bound

(A.1.27) ∀r ∈]− 1,+∞[,
∥∥ag − Tag

∥∥
Hr+1 . ‖a‖C1 ‖g‖Hr + ‖g‖L∞ ‖a‖Hr+1 ,

which follows from the paradifferential rules (A.1.12) and (A.1.17) (by writing ag − Tag =

Tga+RB(a, g)). By using (A.1.27) with r = σ or r = σ − 1 > −1, we find that

∥∥|Dx| (af − Taf)
∥∥
Hσ ≤

∥∥(af − Taf)
∥∥
Hσ+1 . ‖a‖C1 ‖f‖Hσ + ‖f‖L∞ ‖a‖Hσ+1 ,∥∥a |Dx| f − Ta |Dx| f

∥∥
Hσ . ‖a‖C1 ‖|Dx| f‖Hσ−1 + ‖|Dx| f‖L∞ ‖a‖Hσ .

Since |Dx| is bounded from C1+ε to C0 (see (A.2.3)), this completes the proof of (A.1.25).

To prove statement (iii), notice that (A.1.20) and (A.1.17) imply that

‖a |Dx| f − |Dx| (af)− [Ta, |Dx|]f‖Hσ . ‖f‖H1 ‖a‖Cσ+1+ε .

Then (A.1.26) follows from (A.1.24).

In Chapters 3 and 5, when studying the quadratic normal forms, we see that there is a small

divisor issue at low frequencies. To help the reader, we end this section with two pictures

which describe the support properties of the function θ as well as the function ζ defined by

ζ(ξ1, ξ2) = 1− θ(ξ1, ξ2)− ζ(ξ2, ξ1) (so that the remainder RB defined by (A.1.15) is a bilinear

Fourier multiplier with symbol ζ).
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ξ2

ξ1

Figure 6.1: The support of the cut-off function θ(ξ1, ξ2) is in grey. The set of points (ξ1, ξ2)

where θ(ξ1, ξ2) = 1 is in darker grey.

Figure 6.2: The support of ζ(ξ1, ξ2) = 1 − θ(ξ1, ξ2) − θ(ξ2, ξ1) is in grey. The set of points

(ξ1, ξ2) where ζ(ξ1, ξ2) = 1 is in darker grey.
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A.2 Estimates in Hölder spaces

Here we gather Hölder estimates. It is convenient to work in the Zygmund spaces Cρ∗ , ρ ∈ R

whose definition is recalled here.

Choose a function Φ ∈ C∞
0 ({ξ; |ξ| ≤ 1}) which is equal to 1 when |ξ| ≤ 1/2 and set φ(ξ) =

Φ(ξ/2)−Φ(ξ) which is supported in the annulus {ξ; 1/2 ≤ |ξ| ≤ 2}. Then we have for ξ ∈ R,

(A.2.1) 1 = Φ(ξ) +

∞∑

j=0

φ(2−jξ),

which we shall use to decompose temperate distributions. We set ∆j = φ(2−jDx) for j ∈ Z.

We also use in the paper the notation S0v instead of Φ(Dx)v.

Remark A.2.1. For µ ∈ R, if u ∈ Hµ(R) then the series
∑−1

j=−∞∆ju converges to Φ(Dx)u.

Definition A.2.2 (Zygmund spaces). For any s ∈ R, we define Cs

∗(R) as the space of tem-

perate distributions u such that

(A.2.2) ‖u‖Cs

∗
:= ‖Φ(Dx)u‖L∞ + sup

j≥0
2js ‖∆ju‖L∞ < +∞.

We recall the following result (see [38, Prop. 4.1.16]).

Proposition A.2.3. If s > 0 and s 6∈ N then Cs

∗(R) = Cs(R) and the norms ‖·‖Cs

∗
and ‖·‖Cs

are equivalent.

Proposition A.2.4. i) Let γ ∈]0,+∞[ with γ 6∈ 1
2N. There exists a constant K such that,

for all z ≤ 0 and all f ∈ Ċ
1
2
,γ+ 1

2 satisfying |Dx| f ∈ L2(R),

(A.2.3)
∥∥|Dx| f

∥∥
Cγ ≤ K

∥∥|Dx|
1
2 f
∥∥
Cγ+1

2
.

ii) For all γ ∈]1/2,+∞[\1
2N, there exists K > 0 such that, for all f ∈ Cγ satisfying |Dx|

1
2 f ∈

L2(R),

∥∥|Dx|
1
2 f
∥∥
Cγ− 1

2
≤ K

∥∥f
∥∥
Cγ ,(A.2.4)

∥∥|Dx|−
1
2 ∂xf

∥∥
Cγ− 1

2
≤ K

∥∥f
∥∥
Cγ .(A.2.5)

iii) Let r ∈ R, γ ∈]0,+∞[ with γ 6∈ N. There exists a constant K such that, for any ν ∈]0, 1]
and for all f ∈ Cγ(R) ∩Hr(R), there holds

(A.2.6) ‖Hf‖Cγ ≤ K
[
‖f‖Cγ +

1

ν
‖f‖1−νCγ ‖f‖νHr

]
.

where H = |Dx|−1 ∂x is the Hilbert transform.
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Proof. Let us prove (A.2.6). Consider j in Z and a C∞ function φ̃ with compact support

such that φ̃ ≡ 1 on the support of φ and φ̃ ≡ 0 on a neighborhood of the origin. Then

∆jHf =
1

2π

∫
eixξφ(2−jξ)f̂(ξ) |ξ|−1 (iξ) dξ

=
2j

2π

∫
ei2

j(x−x′)ξφ̃(ξ)∆jf(x
′) |ξ|−1 (iξ) dx′ dξ

= 2j
∫
E(2j(x− x′))∆jf(x

′) dx′

where

E(y) =
1

2π

∫
eiyξφ̃(ξ) |ξ|−1 (iξ) dξ.

Since E(y) and y2E(y) are bounded (using an integration by parts), we have E ∈ L1(R).

This implies that

(A.2.7)
∥∥∆jHf

∥∥
L∞ . ‖∆jf‖L∞ ,

and hence, using (A.2.2), for γ in ]0,+∞[\N, we have

(A.2.8) sup
j≥0

2jγ
∥∥∆jHf

∥∥
L∞ . sup

j≥0
2jγ ‖∆jf‖L∞ . ‖f‖Cγ .

It remains to estimate the low frequency. Consider j ≤ 0. Using (A.2.7), the estimate

‖∆ju‖L∞ . 2j/2 ‖∆ju‖L2 and the fact that H is bounded on L2, we get

‖∆jHf‖L∞ = ‖∆jHf‖1−νL∞ ‖∆jHf‖νL∞

. 2νj/2 ‖∆jf‖1−νL∞ ‖∆jf‖νL2 .

Now, for any r ∈ R and j ≤ 0, ‖∆jf‖L2 . ‖∆jf‖Hr ≤ ‖f‖Hr . Thus

‖∆jHf‖L∞ . 2νj/2 ‖f‖1−νCγ ‖f‖νHr .

Since
∑

j≤0 2
νj/2 = O( 1ν ) it follows from Remark A.2.1 that ‖Φ(Dx)Hf‖L∞ . ‖f‖1−νCγ ‖f‖νHr .

The wanted estimate (A.2.6) then follows from (A.2.2) and (A.2.8).

The proof of (A.2.3), (A.2.4) and (A.2.5) are similar. Let us prove (A.2.3). For j in Z, write

|Dx|∆jf =

∫
Ej(x− x′)(|Dx|

1
2 f)(x′) dx′

where

Ej(y) =
1

2π

∫
eiyξ |ξ| 12 φ(2−jξ) dξ

satisfies ‖E‖L1 . 2j/2. Consequently,

(A.2.9)
∥∥|Dx|∆jf

∥∥
L∞ . 2j/2

∥∥|Dx|
1
2 ∆jf

∥∥
L∞ .
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Since
∑

j≤0 2
j/2 < +∞ (and using Remark A.2.1) we thus have

(A.2.10)
∥∥Φ(Dx) |Dx| f

∥∥
L∞ .

∥∥|Dx|
1
2 f
∥∥
L∞ .

By combining (A.2.9), (A.2.10) and using (A.2.2) we obtain the wanted estimate.

A.3 Identities

Consider a smooth solution (η, ψ) of the water waves system

(A.3.1)





∂tη = G(η)ψ,

∂tψ + η +
1

2
(∂xψ)

2 − 1

2(1 + (∂xη)2)

(
G(η)ψ + ∂xη∂xψ

)2
= 0.

Set

B =
G(η)ψ + ∂xη∂xψ

1 + (∂xη)2
, V = ∂xψ − (B(η)ψ)∂xη,

and a = 1 + ∂tB + V ∂xB.

Lemma A.3.1. There hold

∂tη = B − V ∂xη,(A.3.2)

∂tψ + η +
1

2
V 2 +BV ∂xη −

1

2
B2 = 0,(A.3.3)

∂tψ −B∂tη = −η − 1

2
V 2 − 1

2
B2,(A.3.4)

∂tψ + V ∂xψ = −η + 1

2
V 2 +

1

2
B2,(A.3.5)

∂tV + V ∂xV + a∂xη = 0.(A.3.6)

Proof. The equation (A.3.2) follows from B − V ∂xη = G(η)ψ (see (2.0.3)). To prove (A.3.3),

we begin by noticing that

(∂xψ)
2 = (V +B∂xη)

2 = V 2 +B2(∂xη)
2 + 2BV ∂xη.

Since

(A.3.7)
(∂xη∂xψ +G(η)ψ)2

1 + (∂xη)2
= (1 + (∂xη)

2)B2,

this yields

(A.3.8)
1

2
(∂xψ)

2 − 1

2

(∂xη∂xψ +G(η)ψ)2

1 + (∂xη)2
=

1

2
V 2 +BV ∂xη −

1

2
B2,
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so (A.3.3) follows from the second equation of (A.3.1). Now (A.3.4) can be verified by a direct

calculation, using ∂tη = B − V ∂xη and (A.3.3). In the same way, (A.3.3) and the definition

of V imply (A.3.5).

To prove (A.3.6), write

∂tV + V ∂xV

= (∂t + V ∂x)(∂xψ −B∂xη)

= ∂x(∂tψ + V ∂xψ)− (∂tB + V ∂xB)∂xη −B∂x(∂tη + V ∂xη) +R,

where R = −∂xV ∂xψ+B∂xV ∂xη = −(∂xV )V . Then, it follows from (A.3.2) and (A.3.5) that

∂tV + V ∂xV = ∂x

(
−η + 1

2
V 2 +

1

2
B2
)
− (∂tB + V ∂xB)∂xη −B∂xB +R.

Now, observing that R+ 1/2∂xV
2 = 0 and simplifying,

∂tV + V ∂xV + (1 + ∂tB + V ∂xB)∂xη = 0,

which completes the proof of (A.3.6) since a = 1 + ∂tB + V ∂xB.

Lemma A.3.2. There holds

(A.3.9) a =
1

1 + (∂xη)2

(
1 + V ∂xB −B∂xV − 1

2
G(η)V 2 − 1

2
G(η)B2 −G(η)η

)
.

Proof. Starting from B − V ∂xη = G(η)ψ we have

∂tB − (∂tV )∂xη − V ∂t∂xη = ∂tG(η)ψ.

We then use the identity ∂tV + V ∂xV + a∂xη = 0 (see (A.3.6)) to obtain that

∂tB + a(∂xη)
2 + V ∂xV ∂xη − V ∂t∂xη = ∂tG(η)ψ,

and hence, using that by definition of a we have ∂tB = a− 1− V ∂xB,

(1 + (∂xη)
2)a = 1 + ∂tG(η)ψ + V ∂t∂xη + V ∂xB − V ∂xV ∂xη.

Now we have (see [32, 35] or the proof of Lemma 4.1.2)

(A.3.10) ∂tG(η)ψ = G(η)(∂tψ −B∂tη)− ∂x(V ∂tη),

and hence

(1 + (∂xη)
2)a = 1 +G(η)(∂tψ −B∂tη)− (∂xV )(∂tη + V ∂xη) + V ∂xB.

Since ∂tη + V ∂xη = B (see (A.3.2)), to conclude it remains only to use (A.3.4).

229



Remark A.3.3. One can further simplify (A.3.9) to obtain

a =
1

1 + (∂xη)2

(
1 + V G(η)V +BG(η)B − 1

2
G(η)V 2 − 1

2
G(η)B2 −G(η)η

)
.

Indeed

(A.3.11) G(η)B = −∂xV, G(η)V = ∂xB.

We have already seen the first formula (see (4.1.7)) and the proof of the second is similar: it

relies on the uniqueness result result of Proposition 1.1.6 and the fact that ∂xφ is the harmonic

extension of V = ∂xφ|y=η . Therefore, by definition of the Dirichlet-Neumann operator,

G(η)V =
(
∂y∂xφ− ∂xη∂

2
xφ
) 

y=η

=
(
∂x∂yφ+ ∂xη∂

2
yφ
) 

y=η

= ∂x (∂yφ)

y=η

and hence G(η)V = ∂xB since ∂yφ is the harmonic extension of B = ∂yφ|y=η .

A.4 Local existence results

The goal of this appendix is to show that Proposition 1.2.1 is just a restatement of Theo-

rem 4.35 in the book of Lannes [35], and to prove also a local propagation of Sobolev estimates

for the action of vector fields on a solution of the water waves equation.

To help the reader we recall the equations and the statement of Proposition 1.2.1. We consider

the system

(A.4.1)





∂tη = G(η)ψ,

∂tψ + η +
1

2
(∂xψ)

2 − 1

2(1 + (∂xη)2)

(
G(η)ψ + ∂xη∂xψ

)2
= 0.

Proposition A.4.1. Let γ be in ]7/2,+∞[\1
2N, s ∈ N with s > 2γ − 1/2. There are δ0 > 0,

T > 1 such that for any couple (η0, ψ0) in H
s(R)× Ḣ

1
2
,γ(R) satisfying

(A.4.2) ψ0 − TB(η0)ψ0
η0 ∈ Ḣ

1
2
,s(R), ‖η0‖Cγ +

∥∥|Dx|
1
2 ψ0

∥∥
Cγ− 1

2
< δ0,

equation (A.4.1) with Cauchy data η|t=1 = η0, ψ|t=1 = ψ0 has a unique solution (η, ψ) which

is continuous on [1, T ] with values in

(A.4.3)
{
(η, ψ) ∈ Hs(R)× Ḣ

1
2
,γ(R) ; ψ − TB(η)ψη ∈ Ḣ

1
2
,s(R)

}
.

Moreover, if the data are O(ε) on the indicated spaces, then T ≥ c/ε.
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Proof. Let us check that the assumptions of Theorem 4.35 of Lannes [35] are satisfied under

the hypothesis of Proposition A.4.1. We have to check that the finiteness of the quantity

(4.66) of [35] with t0 = γ − 3/2, N = s, which may be written

(A.4.4)
∥∥|Dx|

1
2 ψ0

∥∥2
Hγ + ‖η0‖2Hs +

∑

|α|≤s

∥∥|Dx|
1
2
(
∂αxψ0 − (B(η0)ψ0)∂

α
x η0
)∥∥
L2

is actually equivalent to

(A.4.5) ψ0 ∈ Ḣ
1
2
,γ , η0 ∈ Hs, ψ0 − TB(η0)ψ0

η0 ∈ Ḣ
1
2
,s.

We also need to verify assumption (4.69) of [35], which follows from the inequality

(A.4.6) ‖a0 − 1‖L∞ <
1

2

where a0 is given by (3.1.5) (see also (3.1.7)) with (η, ψ) replaced by (η0, ψ0). Let us write

for |α| ≤ s, setting B0 = B(η0)ψ0,

(A.4.7)
∂αx
[
|Dx|

1
2
(
ψ0 − TB0η0

)]
= |Dx|

1
2
(
(∂αxψ0)−B0(∂

α
x η0)

)
− |Dx|

1
2
[
∂αx , TB0

]
η0

+ |Dx|
1
2
(
T∂αx η0B0 +RB(∂

α
x η0, B0)

)
.

Both assumptions (A.4.4) and (A.4.5) imply that |Dx|
1
2 ψ0 belongs to Cγ−

1
2 and that ∂xη0 is

in Cγ−1, so that by (1.1.44), G(η0)ψ0 and so B0 are in Cγ−1. Since γ − 1 > 1, the symbolic

calculus of appendix A.1 shows that [∂αx , TB0 ] sends H
s to Hs−α+1 ⊂ H1/2 for α ≤ s, so that

the commutator term in (A.4.7) belongs to L2. The boundeness properties of the remainder

given in (A.1.17) show in the same way that RB(∂αx η0, B0) is in H1/2 if ∂αx η0 is in L2. The

equivalence between (A.4.4) and (A.4.5) will follow if we show that T∂αx η0B0 belongs to H1/2,

which follows from (A.1.20) and the fact that B0 is in Cγ−1. Finally, notice that (A.4.6)

follows from (3.1.8) applied with η, ψ replaced by η0, ψ0.

Proposition A.4.2. Assume that s and γ are such that

γ ∈]7/2,+∞[\1
2
N, s > 2γ − 1

2
.

Consider a solution (η, ψ) of (A.4.1), defined on the time interval [T0, T1], which is continuous

on [T0, T1] with values in (A.4.3) and such that the Taylor coefficient is bounded from below

by a positive constant. Assume that, at time T0, (η0, ψ0) = (η, ψ)|t=T0 satisfies

(A.4.8)
(x∂x)η0 ∈ Hs−1(R), (x∂x)ψ0 ∈ Ḣ

1
2
,s− 3

2 (R),

(x∂x)
(
ψ0 − TB(η0)ψ0

η0
)
∈ Ḣ

1
2
,s−1(R).

Then

(A.4.9)
Zη ∈ C0([T0, T1];H

s−1(R)), Zψ ∈ C0([T0, T1]; Ḣ
1
2
,s− 3

2 (R)),

Z
(
ψ − TB(η)ψη

)
∈ C0([T0, T1]; Ḣ

1
2
,s−1(R)).
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Proof. Since the equations (A.4.1) are invariant by translation in time, we can assume without

loss of generality that T0 = 0.

The proof is based on the analysis in Chapter 2 and the following observations:

• If (η, ψ) solves (A.4.1), then the functions ηλ and ψλ defined by

(A.4.10) ηλ(t, x) = λ−2η
(
λt, λ2x

)
, ψλ(t, x) = λ−3ψ

(
λt, λ2x

)
(λ > 0)

are also solutions of (A.4.1).

• For any function C1 function u, there holds

(A.4.11) Zu(t, x) =
d

dλ
u(λt, λ2x)


λ=1

.

• A bootstrap argument: It is sufficient to prove that there exists T > 0, depending only

on Ms defined by

(A.4.12) Ms := sup
t∈[0,T1]

[
‖η(t)‖Hs +

∥∥|Dx|
1
2 ψ(t)

∥∥
Hs− 1

2
+
∥∥|Dx|

1
2 ω(t)

∥∥
Hs

]
,

such that

(A.4.13)
Zη ∈ C0([0, T ];Hs−1(R)), Zψ ∈ C0([0, T ]; Ḣ

1
2
,s− 3

2 (R)),

Z
(
ψ − TB(η)ψη

)
∈ C0([0, T ]; Ḣ

1
2
,s−1(R)).

Let us explain why it is sufficient to prove (A.4.13). Using the equations satisfied by η,

ψ and ψ − TB(η)ψη (see (A.4.1) and the second equation of (A.4.19)) it is easily seen

that

(A.4.14)
∂tη ∈ C0([0, T1];H

s−1(R)), ∂tψ ∈ C0([0, T1]; Ḣ
1
2
,s− 3

2 (R)),

∂t
(
ψ − TB(η)ψη

)
∈ C0([0, T1]; Ḣ

1
2
,s−1(R))

(and hence the same result holds with ∂t replaced by t∂t). Since x∂x = 1
2(Z − t∂t), it

follows from (A.4.13) and (A.4.14) (evaluated at time T ) that

(x∂x)η(T ) ∈ Hs−1(R), (x∂x)ψ(T ) ∈ Ḣ
1
2
,s− 3

2 (R),

(x∂x)
(
ψ(T )− TB(η(T ))ψ(T )η(T )

)
∈ Ḣ

1
2
,s−1(R).

Since the system (A.4.1) is invariant by translation in time, this means that we can apply

the previous result with initial data at time T instead of 0. This yields that (A.4.13)

remains true when [0, T ] is replaced by [0,min(2T, T1)]. Iterating this reasoning, we

obtain (A.4.9).
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We begin the proof by fixing some notations and explaining its strategy.

Notations

Recall that, given two functions η and ψ we use the notations

(A.4.15) B =
G(η)ψ + (∂xη)∂xψ

1 + (∂xη)2
, V = ∂xψ −B∂xη, ω = ψ − TBη.

Also we define

(A.4.16) F (η)ψ = G(η)ψ − |Dx|ω + ∂x
(
TV η

)
,

and (recalling that a is a positive function by assumption)

(A.4.17)
a =

1

1 + (∂xη)2

(
1 + V ∂xB −B∂xV − 1

2
G(η)V 2 − 1

2
G(η)B2 −G(η)η

)
,

α =
√
a− 1.

Then, it follows from the proof of Proposition 3.1.8 that, with the notations

(A.4.18) u =

(
η

|Dx|
1
2 ψ

)
, U =

((
Id+ Tα

)
η

|Dx|
1
2 ω

)
,

one has

(A.4.19)




∂tU

1 + TV ∂xU
1 − (Id+ Tα) |Dx|

1
2 U2 = F1,

∂tU
2 + |Dx|

1
2 T

V |ξ|−1/2∂xU
2 + |Dx|

1
2
(
(Id+ Tα)U

1
)
= F2,

where

F1 := (Id+ Tα)
(
F (η)ψ − T∂xV η

)
+
{
T∂tα + TV T∂xα +

[
TV , Tα

]
∂x

}
η,

and

F2 = |Dx|
1
2 (TαTα − Tα2)η

+ |Dx|
1
2 (TV T∂xη − TV ∂xη)B

+ |Dx|
1
2 (TV ∂xB − TV T∂xB)η

+
1

2
|Dx|

1
2 RB(B,B)− 1

2
|Dx|

1
2 RB(V, V )

+ |Dx|
1
2 TVRB(B, ∂xη)− |Dx|

1
2 RB(B,V ∂xη).

Notice that we write here the source terms as F1,F2 instead of F 1, F 2 as we wrote in the

proof of Proposition 3.1.8. This is in order to avoid confusion with F which is used later on

as a compact notation for F (η)ψ.
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Strategy of the proof

Consider λ in [1/2, 3/2]. We define (ηλ, ψλ) by (A.4.10) and denote by Bλ, Vλ, ωλ, uλ, Uλ,

aλ, αλ, Fλ the functions obtained by replacing (η, ψ) by (ηλ, ψλ) in the previous expressions.

These functions are defined for t less than T1/λ ≤ 2T1/3.

The remark (A.4.11) implies that, when λ tends to 1,

ηλ − η

λ− 1
,

ψλ − ψ

λ− 1
,

ωλ − ω

λ− 1

converges to Zη, Zψ, Zω, respectively, in the sense of distributions. To prove the wanted

result, we have to prove a uniform estimate for these quantities. Moreover, by using the

bootstrap argument explained above, it is sufficient to prove an uniform estimate on some

time interval [0, T ] with T > 0 possibly small. Given T in [0, 2T1/3], we define

(A.4.20)

Mλ(T ) := sup
t∈[0,T ]

[
‖ηλ(t)− η(t)‖Hs−1 +

∥∥|Dx|
1
2 (ψλ(t)− ψ(t))

∥∥
Hs− 3

2

+
∥∥|Dx|

1
2 (ωλ(t)− ω(t))

∥∥
Hs−1

]
.

Our goal is to prove that there exist two constants C > 0 and T > 0, depending only on Ms

as defined by (A.4.12), such that

(A.4.21) Mλ(T ) ≤ C |λ− 1| .

Notice that assumption (A.4.8) implies that, at time 0,

(A.4.22) Mλ(0) = O(|λ− 1|).

Hereafter, we denote by C various constants depending only on Ms, whose values may vary

from places to places.

To prove (A.4.21), we shall prove three inequalities. The key step is to prove that there exists

C depending only on Ms such that, for any T in [0, 2T1/3],

(A.4.23) ‖Uλ − U‖L∞([0,T ];Hs−1(R)) ≤ CeTC
(
|λ− 1|+ TMλ(T )

)
.

We shall also prove that one can control a lower order norm. Namely, given T in [0, 2T1/3],

one introduces

(A.4.24) mλ(T ) := sup
t∈[0,T ]

[
‖ηλ(t)− η(t)‖Hs−2 +

∥∥|Dx|
1
2 (ψλ(t)− ψ(t))

∥∥
Hs− 5

2

]
.

We shall prove that, for any T in [0, 2T1/3],

(A.4.25) mλ(T ) ≤ CeTC
(
|λ− 1|+ TMλ(T )

)
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and

(A.4.26) Mλ(T ) ≤ Cmλ(T ) + C ‖Uλ − U‖L∞([0,T ];Hs−1(R)) .

Consequently, by combining these inequalities, we obtain that there exists C > 0 depending

only on Ms such that, for any T in [0, 2T1/3],

(A.4.27) Mλ(T ) ≤ CeTC
(
|λ− 1|+ TMλ(T )

)
.

Then, there exists T > 0, depending on Ms, such that Mλ(T ) ≤ CeC |λ − 1| + 1
2Mλ(T ) and

hence Mλ(T ) ≤ 2CeC |λ− 1|.

To prove (A.4.23), we form an equation for Uλ − U and estimate its Hs−1-norm. Write the

equations (A.4.19) under the form

(A.4.28) L(V, α)U = F .

Since (ηλ, ψλ) solves (A.4.1), we have

(A.4.29) L(Vλ, αλ)Uλ = Fλ.

It follows from (A.4.28) and (A.4.29) that

(A.4.30) L(Vλ, αλ)(Uλ − U) = Fλ −F −
(
L(Vλ, αλ)− L(V, α)

)
U.

The proof is then in four steps. Firstly, we state an energy estimate for the equation

(A.4.30). Secondly, we prove various estimates for A(ηλ)ψλ − A(η)ψ where A(η) denotes

either G(η), F (η),. . . This allows us to estimate the L∞([0, T ];Hs−1)-norm of the right-hand

side of (A.4.30). Thirdly, we estimate the L∞([0, T ];Hs−1)-norm of Uλ−U . Then we conclude

the proof.

Step 1: Energy estimate

Here we state and prove an energy estimates for the equation (A.4.30).

Lemma A.4.3. Let µ in R. Given 0 < T , consider two real valued functions Ṽ and α̃

such that Ṽ belongs to C0([0, T ];C1(R)) and α̃ belongs to C0([0, T ];C
1
2 (R)). Assume that

Ũ ∈ C0([0, T ];Hµ(R)) and F̃ ∈ L1([0, T ];Hµ(R)) are real-valued and satisfy L(Ṽ , α̃)Ũ = F̃ .

Then

(A.4.31)
∥∥Ũ(t)

∥∥
Hµ ≤ etA(t)

(∥∥Ũ(0)
∥∥
Hµ +

∥∥F̃
∥∥
L1([0,t];Hµ(R))

)
,

where

(A.4.32) A(t) := sup
t′∈[0,t]

[∥∥Ṽ (t′)
∥∥
C1 +

∥∥α̃(t′)
∥∥
C

1
2

]
.
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Proof. Write

〈TṼ ∂xŨ1, Ũ1〉Hµ×Hµ =
1

2

〈(
TṼ ∂x +

(
TṼ ∂x

)∗)
Ũ1, Ũ1

〉
Hµ×Hµ .

Since Ṽ is real-valued and C1 in x, (A.1.9) implies that
∥∥TṼ ∂x +

(
TṼ ∂x

)∗∥∥
L(Hµ,Hµ)

.
∥∥Ṽ
∥∥
C1 ,

and hence

(A.4.33)
∣∣〈TṼ ∂xŨ1, Ũ1〉Hµ×Hµ

∣∣ .
∥∥Ṽ
∥∥
C1

∥∥Ũ
∥∥2
Hµ .

Similarly, writing

|Dx|
1
2 T

Ṽ |ξ|−1/2∂x = TṼ ∂x +
[
|Dx|

1
2 , T

Ṽ |ξ|−1/2∂x
]

and estimating the L(Hµ,Hµ)-norm of the commutator by means of (A.1.8) applied with

ρ = 1, we find that

(A.4.34)
∣∣∣
〈
|Dx|

1
2 T

Ṽ |ξ|−1/2∂xŨ
2, Ũ2

〉
Hµ×Hµ

∣∣∣ .
∥∥Ṽ
∥∥
C1

∥∥Ũ
∥∥2
Hµ .

Also, using (A.1.9) with ρ = 1/2 to estimate the L(Hµ− 1
2 ,Hµ)-norm of Tα̃−

(
Tα̃
)∗
, we obtain

that

(A.4.35)
∣∣∣
〈
|Dx|

1
2

(
(Id+ Tα̃)Ũ

1
)
, Ũ2

〉
Hµ×Hµ

−
〈
(Id+ Tα̃) |Dx|

1
2 U2, Ũ1

〉
Hµ×Hµ

∣∣∣

.
∥∥α̃
∥∥
C

1
2

∥∥Ũ
∥∥2
Hµ .

By classical arguments, one can further assume that Ũ is C1 in time with values in Hµ, so

that the time derivative of
∥∥Ũ
∥∥2
Hµ is given by 2

〈
∂tŨ , Ũ

〉
Hµ×Hµ . Then, by combining the

previous estimates we find that

d

dt

∥∥Ũ
∥∥2
Hµ .

(∥∥Ṽ
∥∥
C1 +

∥∥α̃
∥∥
C

1
2

)∥∥Ũ
∥∥2
Hµ +

∥∥F̃
∥∥
Hµ

∥∥Ũ
∥∥
Hµ ,

which yields the desired result.

Step 2: Estimates for the differences

Lemma A.4.4. Consider s > 4 + 1
2 , η1, η2 in Hs(R) and ψ ∈ Ḣ

1
2
,s− 1

2 (R). Set

(A.4.36) M = ‖η1‖Hs + ‖η2‖Hs +
∥∥|Dx|

1
2 ψ
∥∥
Hs− 1

2
.

There exists a constant C depending only on M such that

‖G(η2)ψ −G(η1)ψ‖Hs−2 ≤ C ‖η2 − η1‖Hs−1 ,(A.4.37)

‖B(η2)ψ −B(η1)ψ‖Hs−2 ≤ C ‖η2 − η1‖Hs−1 ,(A.4.38)

‖V (η2)ψ − V (η1)ψ‖Hs−2 ≤ C ‖η2 − η1‖Hs−1 ,(A.4.39)

‖F (η2)ψ − F (η1)ψ‖Hs−1 ≤ C ‖η2 − η1‖Hs−1 .(A.4.40)
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Proof. For y in [0, 1], introduce

g(y) = G(η1 + y(η2 − η1))ψ, b(y) = B(η1 + y(η2 − η1))ψ,

v(y) = V (η1 + y(η2 − η1))ψ, f(y) = F (η1 + y(η2 − η1))ψ.

To prove (A.4.37), (A.4.38), and (A.4.39), we have to estimate the Hs−2-norm of g(1)− g(0),

b(1)− b(0), and v(1)− v(0). To do so, if ϕ denotes either g, b or v, we write

(A.4.41) ‖ϕ(1) − ϕ(0)‖Hs−2 ≤
∫ 1

0

∥∥ϕ′(y)
∥∥
Hs−2 dy.

We shall prove that, for any fixed y in [0, 1], ‖ϕ′(y)‖Hs−2 ≤ C ‖η1 − η2‖Hs−1 for some constant

C depending only on M defined by (A.4.36). Similarly, to prove (A.4.40), we shall prove that

‖f ′(y)‖Hs−1 ≤ C ‖η1 − η2‖Hs−1 for some constant C depending only on M .

Let us prove (A.4.37). Fix y in [0, 1] and set

η(y) = η1 + y(η2 − η1), η̇ = η′(y) = η2 − η1.

We use the property, proved by Lannes [32], that one has an explicit expression of the deriva-

tive of G(η)ψ with respect to η. As in (2.6.8), one has

(A.4.42) g′(y) = −G(η(y))
[
η̇b(y)

]
− ∂x

[
η̇v(y)

]
.

In this proof, we denote by C various constants depending only on M defined by (A.4.36)

(and independent of y ∈ [0, 1]). With this notation, it follows from (2.1.2) and the Sobolev

embedding that ‖b(y)‖Hs−1 ≤ C and ‖v(y)‖Hs−1 ≤ C. Also, it follows from (2.1.2) and the

Sobolev embedding that for any s > 3 + 1
2 , any y in [0, 1] and any f in Ḣ

1
2
,s− 1

2 (R),

‖G(η(y))f‖Hs−1 ≤ C
∥∥|Dx|

1
2 f
∥∥
Hs− 1

2
.

By using this estimate with s replaced by s − 1 and f replaced by η̇B, we find that

∥∥G(η(y))
[
η̇b(y)

]∥∥
Hs−2 ≤ C

∥∥η̇b(y)
∥∥
Hs−1 .

Since Hs−1(R) is an algebra, this gives

∥∥G(η(y))
[
η̇b(y)

]∥∥
Hs−2 ≤ C ‖b(y)‖Hs−1 ‖η̇‖Hs−1 ≤ C

∥∥η̇
∥∥
Hs−1 .

On the other hand, using the fact that Hs−1(R) is an algebra, one has

∥∥∂x
[
η̇v(y)

]∥∥
Hs−2 . ‖η̇‖Hs−1 ‖v(y)‖Hs−1 ≤ C ‖η̇‖Hs−1 .

By combining the two previous estimates we conclude that there exists a constant C = C(M)

such that, for any y in [0, 1], one has ‖g′(y)‖Hs−2 ≤ C ‖η̇‖Hs−1 . Then (A.4.37) follows from

(A.4.41).
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Since

b(y) =
1

1 + (∂xη(y))2
(
g(y) + (∂xψ)∂xη(y)

)
, v(y) = ∂xψ − b(y)∂xη(y),

and since Hs−2(R) is an algebra for s > 2 + 1
2 , the previous estimate for the Hs−2(R)-norm

of g′(y) easily implies that

(A.4.43)
∥∥b′(y)

∥∥
Hs−2 +

∥∥v′(y)
∥∥
Hs−1 ≤ C ‖η̇‖Hs−1 ,

which proves (A.4.38) and (A.4.39) (using (A.4.41)).

Let us prove (A.4.40). We want to prove that ‖f ′(y)‖Hs−1 ≤ C ‖η1 − η2‖Hs−1 . Since

f(y) = g(y) − |Dx|
(
ψ − Tb(y)η(y)

)
+ ∂x

(
Tv(y)η(y)

)

it follows from (A.4.42) that

f ′(y) = −G(η(y))
[
η̇b(y)

]
− ∂x

[
η̇v(y)

]
+ |Dx|Tb(y)η̇ + ∂xTv(y)η̇

+ |Dx|Tb′(y)η(y) + ∂xTv′(y)η(y).

Replace G(η(y)) by G(η(y)) − |Dx| + |Dx| in the first term of the right-hand side to obtain

f ′(y) = A1 +A2 +A3 with

A1 = − |Dx|
(
η̇b(y)

)
− ∂x

(
η̇v(y)

)
+ |Dx|Tb(y)η̇ + ∂xTv(y)η̇,

A2 = −
(
G(η(y)) − |Dx|

)(
η̇b(y)

)
,

A3 = |Dx|Tb′(y)η(y) + ∂xTv′(y)η(y).

Let us estimate the Hs−1-norm of A2. Since s − 3/2 > 3 − 1/2, we can apply the estimate

(2.5.1) with µ = s (and the Sobolev embedding) to obtain that

‖A2‖Hs−1 ≤ C
(
‖η(y)‖Hs

)∥∥|Dx|
1
2 (η̇b(y))

∥∥
Hs− 3

2
.

Now write ∥∥|Dx|
1
2 (η̇b(y))

∥∥
Hs− 3

2
. ‖η̇‖Hs−1 ‖b(y)‖Hs−1 ≤ C ‖η̇‖Hs−1 .

This prove that ‖A2‖Hs−1 ≤ C ‖η̇‖Hs−1 .

Next we estimate the Hs−1-norm of A3. It follows from (A.1.12) that

‖A3‖Hs−1 .
∥∥b′(y)

∥∥
L∞ ‖η(y)‖Hs +

∥∥v′(y)
∥∥
L∞ ‖η(y)‖Hs .

Since s > 5/2, the Sobolev embedding implies that

‖A3‖Hs−1 .
∥∥b′(y)

∥∥
Hs−2 ‖η(y)‖Hs +

∥∥v′(y)
∥∥
Hs−2 ‖η(y)‖Hs .

So the estimate (A.4.43) for ‖b′(y)‖Hs−2 and ‖v′(y)‖Hs−2 imply that ‖A3‖Hs−1 ≤ C ‖η̇‖Hs−1 .
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Finally, it remains to estimate the Hs−1-norm of A1. Here we cannot estimate the terms

separately: we need to exploit some cancellations and follow the proof of Lemma 6.8 in [3].

Firstly, we paralinearize η̇b(y) and η̇v(y) (see (A.1.15)) to obtain that

A1 = − |Dx| (Tη̇b(y))− |Dx|
(
RB(η̇, b(y))

)

− ∂x(Tη̇v(y))− ∂x
(
RB(η̇, v(y)

)
.

Directly from (A.1.17) and the Sobolev embedding we have

∥∥|Dx|
(
RB(η̇, b(y))

)∥∥
Hs−1 . ‖η̇‖Hs−1 ‖b(y)‖Hs−1 ≤ C ‖η̇‖Hs−1 ,∥∥|Dx|

(
RB(η̇, v(y))

)∥∥
Hs−1 . ‖η̇‖Hs−1 ‖v(y)‖Hs−1 ≤ C ‖η̇‖Hs−1 .

It remains to estimate the Hs−1-norm of Ã1 := − |Dx| (Tη̇b(y)) − ∂x(Tη̇v(y)). This we now

do using the identity G(η(y))b(y) = −∂xv(y) (see (A.3.11) or (4.1.7)). Write

Ã1 = −Tη̇ |Dx| b(y)− Tη̇∂xv(y) +
[
Tη̇, |Dx|

]
b(y)− T∂xη̇v(y),

and replace ∂xv(y) by −G(η(y))b(y) in the second term, to obtain

Ã1 = Tη̇
(
G(η(y)) − |Dx|

)
b(y) +

[
Tη̇, |Dx|

]
b(y)− T∂xη̇v(y).

Using (A.1.12), (2.5.1) and the Sobolev embedding, we have

∥∥Tη̇
(
G(η(y)) − |Dx|

)
b(y)

∥∥
Hs−1 . ‖η̇‖L∞

∥∥(G(η(y)) − |Dx|
)
b(y)

∥∥
Hs−1

. C ‖η̇‖Hs−1 ‖b(y)‖Hs−1 ≤ C ‖η̇‖Hs−1 .

On the other hand, using (A.1.24) and the Sobolev embedding, we have

∥∥[Tη̇, |Dx|
]
b(y)

∥∥
Hs−1 . ‖η̇‖C1 ‖b(y)‖Hs−1 ≤ C ‖η̇‖Hs−1 .

Also, using (A.1.12) and the Sobolev embedding Hs−2(R) ⊂ L∞(R), we have

∥∥T∂xη̇v(y)
∥∥
Hs−1 . ‖η̇‖Hs−1 ‖v(y)‖Hs−1 ≤ C ‖η̇‖Hs−1 .

This completes the proof of the lemma.

Use the abbreviate notations

G = G(η)ψ, B = B(η)ψ, V = V (η)ψ, F = F (η)ψ,

Gλ = G(ηλ)ψλ, Bλ = B(ηλ)ψλ, Vλ = V (ηλ)ψλ, Fλ = F (ηλ)ψλ.
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Lemma A.4.5. There exists a constant C depending only on Ms such that for any λ in

[1/2, 3/2] and any T in [0, 2T1/3],

‖Gλ −G‖L∞([0,T ];Hs−2) ≤ CMλ(T ),(A.4.44)

‖Bλ −B‖L∞([0,T ];Hs−2) ≤ CMλ(T ),(A.4.45)

‖Vλ − V ‖L∞([0,T ];Hs−2) ≤ CMλ(T ),(A.4.46)

‖Fλ − F‖L∞([0,T ];Hs−1) ≤ CMλ(T ),(A.4.47)

‖aλ − a‖L∞([0,T ];Hs−3) ≤ CMλ(T ),(A.4.48)

‖αλ − α‖L∞([0,T ];Hs−3) ≤ CMλ(T ),(A.4.49)

‖∂tαλ − ∂tα‖L∞([0,T ];Hs−4) ≤ CMλ(T ).(A.4.50)

Proof. We shall see that these inequalities hold with Mλ(T ) replaced by

(A.4.51) sup
t∈[0,T ]

[
‖ηλ(t)− η(t)‖Hs−1 +

∥∥|Dx|
1
2 (ψλ(t)− ψ(t))

∥∥
Hs− 3

2

]
.

Notice that, since ψλ = λ−3ψ(λt, λ2x), we have

(A.4.52) sup
λ∈[ 1

2
, 3
2
]

sup
t∈[0,T ]

[
‖ηλ‖Hs +

∥∥|Dx|
1
2 ψλ(t)

∥∥
Hs− 1

2

]
.Ms

where Ms is defined by (A.4.12).

To prove (A.4.44), we write

Gλ −G =
(
G(ηλ)−G(η)

)
ψλ +G(η)

[
ψλ − ψ

]
.

The estimate (A.4.37) and (A.4.52) imply that

∥∥(G(ηλ)−G(η)
)
ψλ
∥∥
Hs−2 ≤ C ‖ηλ − η‖Hs−1 .

On the other hand, the estimate (2.1.2) and the Sobolev embedding imply that

∥∥G(η)
[
ψλ − ψ

]∥∥
Hs−2 ≤ C

∥∥|Dx|
1
2
(
ψλ − ψ

)∥∥
Hs− 3

2
.

By combining the two previous estimates we obtain (A.4.44).

The proof of (A.4.45), (A.4.46), and (A.4.47) are similar. Now the estimate (A.4.48) fol-

lows from similar arguments, the previous estimates and the formula (A.3.9). The estimate

(A.4.49) follows from (A.4.48) and the definition of α =
√
a − 1. To prove (A.4.50), one

differentiates in time the formula (A.3.9) using the rule (3.1.6) and then one replaces in the

expression thus obtained ∂tV and ∂tη by the expressions given by Lemma A.3.1 (and one

replaces ∂tB by −V ∂xB + a− 1 according to the definition a = 1 + ∂tB + V ∂xB).
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Step 3: Energy estimates for Uλ − U

Hereafter, we denote by C various constants depending only on Ms (defined by (A.4.12)),

whose values may vary from places to places. With this notation, it follows from (2.1.2),

(3.1.8) and the Sobolev embedding that

(A.4.53) ‖V ‖Hs−1 ≤ C, ‖B‖Hs−1 ≤ C, ‖α‖C1 ≤ C.

Remembering that

(A.4.54) L(Vλ, αλ)(Uλ − U) = Fλ −F +
(
L(Vλ, αλ)− L(V, α)

)
U,

the wanted estimate (A.4.23) will be obtained by applying Lemma A.4.3 with

(A.4.55) Ũ = Uλ − U, Ṽ = Vλ, α̃ = αλ, F̃ = Fλ −F +
(
L(Vλ, αλ)− L(V, α)

)
U.

Since Vλ = λ−1V (λt, λ2x) and αλ = α(λt, λ2x), as can be checked by direct computations, it

follows from (A.4.53) and the Sobolev embedding that

(A.4.56)

sup
λ∈[ 1

2
, 3
2
]

‖Vλ‖L∞([0,2T1/3];C1(R)) . ‖V ‖L∞([0,T1];C1(R)) ≤ C,

sup
λ∈[ 1

2
, 3
2
]

‖αλ‖
L∞([0,2T1/3];C

1
2 (R))

. ‖α‖
L∞([0,T1];C

1
2 (R))

≤ C.

Similarly, for any T in [0, 2T1/3], the estimates (A.4.46) and (A.4.49) imply that

(A.4.57)

sup
λ∈[ 1

2
, 3
2
]

‖Vλ − V ‖L∞([0,T ];L∞(R)) ≤ CMλ(T ),

sup
λ∈[ 1

2
, 3
2
]

‖αλ − α‖L∞([0,T ];L∞(R)) ≤ CMλ(T ).

We use (A.4.56) to control the quantity A defined by (A.4.32). Our next task consists in

proving that the source term F̃ defined by (A.4.55) satisfies

(A.4.58)
∥∥F̃
∥∥
L1([0,T ];Hs−1)

≤ TCMλ(T ).

To do so, it is obviously sufficient to prove that
∥∥F̃
∥∥
L∞([0,T ];Hs−1)

≤ CMλ(T ). By (A.4.57)

and (A.1.12) we have

∥∥(L(Vλ, αλ)− L(V, α)
)
U
∥∥
L∞([0,T ];Hs−1)

≤ CMλ(T ).

On the other hand, by using the paradifferential rules recalled in Appendix A.1, the estimates

proved in Lemma A.4.5 imply that

∥∥Fλ −F
∥∥
L∞([0,T ];Hs−1)

≤ CMλ(T ).
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This completes the proof of (A.4.58) and hence gives the wanted estimate (A.4.23).

Step 4: End of the proof

It remains only to prove (A.4.25) and (A.4.26).

Let us prove that

‖ηλ − η‖L∞([0,T ];Hs−2(R)) ≤ CeTC
(
|λ− 1|+ TMλ(T )

)
,(A.4.59)

∥∥|Dx|
1
2 (ψλ − ψ)

∥∥
L∞([0,T ];Hs−3

2 (R))
≤ CeTC

(
|λ− 1|+ TMλ(T )

)
.(A.4.60)

Using the previous notations, write ∂t(ηλ− η) = Gλ−G. By integrating in time this identity,

it follows from (A.4.44) that for any T in [0, 2T1/3],

‖ηλ(t)− η(t)‖Hs−2 ≤ ‖ηλ(0)− η(0)‖Hs−2 + TCMλ(T ).

So the estimate (A.4.59) follows from Mλ(0) = O(|λ− 1|) (see (A.4.22)) and the fact that

‖ηλ(0)− η(0)‖Hs−2 is smaller than Mλ(0). The estimate (A.4.60) is proved similarly. This

proves (A.4.25).

It remains only to prove (A.4.26). By definitions (A.4.20) and (A.4.24), and (A.4.18) we have

Mλ(T ) := sup
t∈[0,T ]

[
‖ηλ(t)− η(t)‖Hs−1 +

∥∥|Dx|
1
2 (ψλ(t)− ψ(t))

∥∥
Hs− 3

2

+
∥∥U2

λ − U2
∥∥
Hs−1

]

and

mλ(T ) := sup
t∈[0,T ]

[
‖ηλ(t)− η(t)‖Hs−2 +

∥∥|Dx|
1
2 (ψλ(t)− ψ(t))

∥∥
Hs− 5

2

]
.

So to prove (A.4.26), we need only prove that

‖ηλ − η‖L∞([0,T ];Hs−1(R)) ≤ Cmλ(T ) + C ‖Uλ − U‖L∞([0,T ];Hs−1(R)) ,(A.4.61)

∥∥|Dx|
1
2 (ψλ − ψ)

∥∥
L∞([0,T ];Hs−3

2 (R))
≤ Cmλ(T ) + C ‖Uλ − U‖L∞([0,T ];Hs−1(R)) .(A.4.62)

We shall prove (A.4.61) only. To do so, we shall write ηλ−η in terms of U1
λ−U1 and in terms

of a smoothing operator acting on ηλ − η. To do so, remembering that α =
√
a− 1, we first

write that

(A.4.63) T√aη =
(
Id+ Tα

)
η + (T1 − Id)η.

Then we let act a parametrix of T√a, that is T1/√a, to obtain

η = T1/
√
aT

√
aη +

(
Id− T1/

√
aT

√
a

)
η
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and hence, using (A.4.63),

(A.4.64) η = T1/
√
a

(
Id+ Tα

)
η + T1/

√
a(T1 − Id)η +

(
Id− T1/

√
aT

√
a

)
η

Remembering that U1 =
(
Id+ Tα

)
η, this yields η = KU1 +Rη where

K = T1/
√
a, R = T1/

√
a(T1 − Id) +

(
Id− T1/

√
aT

√
a

)

Using obvious notations, one thus writes that

ηλ − η = Kλ

[
U1
λ − U1

]
+Rλ

[
ηλ − η

]

+ (Kλ −K)U1 + (Rλ −R)η,

and hence

‖ηλ − η‖Hs−1 ≤ ‖Kλ‖L(Hs−1,Hs−1)

∥∥U1
λ − U1

∥∥
Hs−1 + ‖Rλ‖L(Hs−2,Hs−1) ‖ηλ − η‖Hs−2

+ ‖Kλ −K‖L(Hs−1,Hs−1)

∥∥U1
∥∥
Hs−1 + ‖Rλ −R‖L(Hs−1,Hs−1) ‖η‖Hs−1 .

Notice that ∥∥U1
∥∥
Hs−1 ≤ C, ‖η‖Hs−1 ≤ C, ‖ηλ − η‖Hs−2 ≤ mλ.

Also, using (A.1.12) and (A.1.14) applied with ρ = 1, we easily check that

‖Kλ‖L(Hs−1,Hs−1) ≤ C, ‖Rλ‖L(Hs−2,Hs−1) ≤ C,

where one used again that
√
aλ and 1/

√
aλ are uniformly bounded in L∞([0, (2/3)T1 ];C

1(R))

with respect to λ ∈ [1/2, 3/2].

Finally, to estimate ‖Kλ −K‖L(Hs−1,Hs−1) and ‖Rλ −R‖L(Hs−1,Hs−1) we apply (A.4.48) with

s replaced by s − 1, to obtain

‖aλ − a‖L∞([0,T ];L∞) . ‖aλ − a‖L∞([0,T ];Hs−4) ≤ Cmλ(T ).

Indeed, as mentioned in the proof of Lemma A.4.5, the estimate (A.4.48) remains true when

Mλ(T ) is replaced by (A.4.51).

We conclude this appendix by proving a technical result. Consider two functions η and ψ

and use the notations recalled above (see (A.4.15) and (A.4.17)) for V and α. We consider

the operator C defined by

C(η, ψ)U =


 TV−∂xψ∂xU

1 − Tα+ 1
2
|Dx|η |Dx|

1
2 U2

|Dx|
1
2 T

(V−∂xψ)|ξ|−1/2∂xU
2 + |Dx|

1
2 Tα+ 1

2
|Dx|ηU

1


 .

The operator C is of order 1. The following result states that its real part is of order 0 with

tame estimates for its operator norm.
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Lemma A.4.6. Consider ̺ ∈]4,+∞[ and µ ∈ R. For any (η, ψ) ∈ C̺ × C
1
2
,̺ such that

(η, ψ) belongs to the set Eγ introduced after the statement of Proposition 1.1.6, and for any

U = (U1, U2) in Hµ+1(R)×Hµ+1(R), there holds

(A.4.65)
∣∣Re〈C(η, ψ)U,U〉Hµ×Hµ

∣∣ ≤ K
(
‖η‖C̺ +

∥∥|Dx|
1
2 ψ
∥∥
C̺

)2∥∥U
∥∥2
Hµ .

for some constant K depending only on ‖η‖C̺ +
∥∥|Dx|

1
2 ψ
∥∥
C̺.

Proof. Set Ṽ = V −∂xψ and α̃ = α+ 1
2 |Dx| η. It follows from (A.4.33), (A.4.34), and (A.4.35)

that ∣∣Re〈C(η, ψ)U,U〉Hµ×Hµ ≤
(∥∥Ṽ

∥∥
C1 + ‖α̃‖

C
1
2

)∥∥U
∥∥2
Hµ .

So to prove (A.4.65) we need only prove that

∥∥Ṽ
∥∥
C1 + ‖α̃‖

C
1
2
≤ K(N̺)N

2
̺ where N̺ := ‖η‖C̺ +

∥∥|Dx|
1
2 ψ
∥∥2
C̺ .

Recall (cf (2.0.4)) that

(A.4.66) ‖B‖C̺−1 + ‖V ‖C̺−1 ≤ K(N̺)N̺.

Since V − ∂xψ = B∂xη the wanted estimate for V − ∂xψ follows from the previous inequality

and the fact that C1(R) is an algebra.

Also, using (A.4.66) and applying (2.0.4) with ψ replaced by B2 or V 2, there holds

∥∥G(η)B2
∥∥
C̺−1 +

∥∥G(η)V 2
∥∥
C̺−1 ≤ K(N̺)N

2
̺ .

It thus follows from the identity (3.1.7) for a that

‖a− 1 +G(η)η‖C1 ≤ C(N̺)N
2
̺ .

Now recall from (2.6.12) that, for any γ > 3, there holds

‖G(η)ψ − |Dx|ψ‖Cγ−2 ≤ C(‖η‖Cγ ) ‖η‖Cγ

∥∥|Dx|
1
2 ψ
∥∥
Cγ− 1

2
,

By using this estimate with η = ψ we conclude that

‖a− 1 + |Dx| η‖C1 ≤ C(N̺)N
2
̺ .

So the wanted estimate for α+ 1
2 |Dx| η follows from the definition of α =

√
a− 1.
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1981.

[11] Gérard Bourdaud. Realizations of homogeneous Sobolev spaces. Complex Var. Elliptic

Equ., 56(10-11):857–874, 2011.

245



[12] Boris Buffoni, Mark D. Groves, Shu-Ming Sun, and Erik Wahlén. Existence and con-

ditional energetic stability of three-dimensional fully localised solitary gravity-capillary

water waves. J. Differential Equations, 254(3):1006–1096, 2013.
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[51] François Trèves. Introduction to pseudodifferential and Fourier integral operators. Vol.

1. Plenum Press, New York, 1980. Pseudodifferential operators, The University Series

in Mathematics.

[52] Sijue Wu. Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent.

Math., 130(1):39–72, 1997.

[53] Sijue Wu. Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J.

Amer. Math. Soc., 12(2):445–495, 1999.

[54] Sijue Wu. Almost global wellposedness of the 2-D full water wave problem. Invent.

Math., 177(1):45–135, 2009.

[55] Sijue Wu. Global wellposedness of the 3-D full water wave problem. Invent. Math.,

184(1):125–220, 2011.

[56] Hideaki Yosihara. Gravity waves on the free surface of an incompressible perfect fluid of

finite depth. Publ. Res. Inst. Math. Sci., 18(1):49–96, 1982.

[57] Vladimir E. Zakharov. Stability of periodic waves of finite amplitude on the surface of a

deep fluid. Journal of Applied Mechanics and Technical Physics, 9(2):190–194, 1968.

[58] Ping Zhang and Zhifei Zhang. On the free boundary problem of three-dimensional in-

compressible Euler equations. Comm. Pure Appl. Math., 61(7):877–940, 2008.

248



Thomas Alazard
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