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Abstract

Our goal in this paper is to apply a normal forms method to estimate the Sobolev norms of
the solutions of the water waves equation. We construct a paradifferential change of unknown,
without derivatives losses, which eliminates the part of the quadratic terms that bring non
zero contributions in a Sobolev energy inequality. Our approach is purely Eulerian: we work
on the Craig-Sulem-Zakharov formulation of the water waves equation.

In addition to these Sobolev estimates, we also prove L2-estimates for the 0% Z5-derivatives of
the solutions of the water waves equation, where Z is the Klainerman vector field t0; + 2x0,,.
These estimates are used in the paper [5]. In that reference, we prove a global existence result
for the water waves equation with smooth, small, and decaying at infinity Cauchy data, and
we obtain an asymptotic description in physical coordinates of the solution, which shows
that modified scattering holds. The proof of this global in time existence result relies on
the simultaneous bootstrap of some Holder and Sobolev a priori estimates for the action of
iterated Klainerman vector fields on the solutions of the water waves equation. The present
paper contains the proof of the Sobolev part of that bootstrap.






Introduction

1 Description of the main results

This paper addresses the well-posedness of the initial value problem for the motion of a two-
dimensional incompressible fluid under the influence of gravity. At time ¢, the fluid domain,
denoted by €Q(t), has a free boundary described by the equation y = (¢, x), so that

Qt) = { (z,9) eR*; y <nlt,z) }.

The velocity field v:  — R? is assumed to be irrotational and to satisfy the incompressible
Euler equations. It follows that v = V, ,¢ for some velocity potential ¢: 2 — R satisfying

1
(1'1) A:c,y(b = 07 8t¢ + 5 ’Vx,y¢‘2 + P + gy = 07

where g > 0 is the acceleration of gravity, P is the pressure term, V., = (0,,0,) and
Agpy = 02 + 85. Hereafter, the units of length and time are chosen so that g = 1.

The water waves equations are then given by two boundary conditions on the free surface:

{am =1+ (9:1)? On¢p on 0L,

(1.2)
P=0 on 0,

where 9, is the outward normal derivative of €, so that \/1 + (9;7)? On¢ = Oyd — (031) 0.

It is well known that the linearized equation around the equilibrium 1 = 0 and ¢ = 0 can be
written under the form 92w+ |D,|u = 0 where | D,| is the Fourier multiplier with symbol |£].
Allowing oneself to oversimplify the problem, one can think of the linearized equation around
a nontrivial solution as the equation (9; + Vd,)*u + a|D;|u = 0, where V is the trace of the
horizontal component of the velocity at the free surface and a = —09,P|y—, is the so-called
Taylor coefficient. To insure that the Cauchy problem for the latter equation is well-posed,
one has to require that a is bounded from below by a positive constant. This is known as the
Taylor sign condition; see [22] for an ill-posedness result without this requirement. That the
well-posedness of the Cauchy problem depends on an assumption on the sub-principal term
a |D,| reflects the fact that the linearized equation has a double characteristic, see Craig [16,
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Section 4] or Lannes [32, Section 4.1]. This leads to an apparent loss of 1/2 derivative in
the study of the Cauchy problem in Sobolev spaces. However, Nalimov [40] proved that, in
Lagrangian coordinates, the Cauchy problem is well-posed locally in time, in the framework
of Sobolev spaces, under an additional smallness assumption on the data; see also the results
of Yosihara [56] and Craig [15].

Notice that if n and ¢ are of size £ then a = 1 + O(e) so that the Taylor sign condition
is satisfied for e small enough. As was first proved by Wu [52, 53], this property is always
true, without smallness assumption (including the case that the interface is not a graph, as
long as the interface is non self-intersecting). As a result, the well-posedness of the Cauchy
problem was proved in [52, 53] without smallness assumption. Several extensions or different
proofs are known and we refer the reader to Cérdoba, Cérdoba and Gancedo [13], Coutand-
Shkoller [14], Lannes [32, 34, 35], Linblad [36], Masmoudi-Rousset [37], Shatah-Zeng [44, 45],
Zhang-Zhang [58] for recent results concerning the gravity water waves equations.

Two different approaches were used in the analysis of the water waves equations: the La-
grangean formulation with a more geometrical point of view and the Eulerian formulation in
relation with microlocal analysis. Our analysis is entirely based on the Eulerian formulation
of the water waves equations: we shall work on the so-called Craig—Sulem—Zakharov system
which we introduce below. Let us also mention that the idea of studying the water waves equa-
tions by means of microlocal analysis is influenced by the papers by Craig-Schanz-Sulem [19],
Lannes [32] and Iooss-Plotnikov [29]. More precisely, we follow the paradifferential analysis
introduced in [6] and further developed in [3, 2]. We explain later in this introduction how
this allows to overcome the apparent loss of derivative in the Cauchy problem.

Following Zakharov [57] and Craig and Sulem [20], we work with the trace of ¢ at the free
boundary

T;Z)(t’ l‘) = ¢(tv €T, n(tv :E)),

and introduce the Dirichlet-Neumann operator G(n) that relates ¢ to the normal derivative
On@ of the potential by

(G(W)T/))(ta :E) =V 1+ (amn)2 8n¢|y:n(t,x)'
Then (n,) solves (see [20]) the system
aﬂ? = G(n)dja

1 2
Opp +n+ 5(&##) T30t ()

(1.3) 2
(G + (9em)(D:90))” = 0.

Consider a classical solution (n,1) of (1.3), such that (n,) belongs to C°([0, T]; H*(R)) for
some 7' > 0 and s > 3/2. Then it is proved in [4] that there exist a velocity potential ¢ and a
pressure P satisfying (1.1) and (1.2). Thus it is sufficient to solve the Craig—Sulem—Zakharov
formulation (1.3) of the water waves equations (1.1)-(1.2).
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Our goal in this paper is to apply a normal forms method to estimate the Sobolev norms of the
solutions to the water waves equations. In practice, one looks for a local diffeomorphism at 0
in H*®, for s large enough, so that the equation obtained by conjugation by this diffeomorphim
be of the form of an equation with a cubic nonlinearity (while the water waves equations
contain quadratic terms).

The analysis of normal forms for the water waves system is motivated by physical consid-
erations, such as the derivations of various equations in asymptotic regimes (see the recent
paper by Totz and Wu [50], the first rigorous results by Craig-Sulem-Sulem [21] and also the
papers of Schneider and Wayne [42, 43]). Another motivation is that, for solutions sufficiently
small and sufficiently decaying at infinity of a dispersive equation, it is easier to prove global
well-posedness for cubic nonlinearity. Let us mention that the results of this paper are used in
[5] where we prove global existence of solutions for the two dimensional water waves equations
with small, smooth, decaying at infinity Cauchy data, and get for these solutions a one term
asymptotic expansion in physical variables when time goes to infinity. In particular, the form
of these asymptotics shows that solutions do not scatter at infinity, i.e. do not behave like
solutions of the linearized equation at zero.

Nonlinear changes of unknowns, reducing the water waves equation to a cubic equation, have
been known for quite a time (see Craig [17] or Iooss and Plotnikov [28, Lemma 1]). However,
these transformations were losing derivatives, as a consequence of the quasi-linear character
of the problem (see [55, Appendix C] for the study of the Poincaré-Shatah normal form
associated to (1.3)). In her breakthrough paper, Wu [54] proved that one can find good
coordinates which overcome this loss of derivatives and ultimately proved an almost global
existence result for two-dimensional gravity waves. Then Germain-Masmoudi-Shatah [24]
and Wu [55] have shown that the Cauchy problem for three-dimensional waves is globally
in time well-posed for £ small enough (with linear scattering in Gerqlain—Masmoudi—Shatah
and no assumption about the decay to 0 at spatial infinity of |D;|2 ¢ in Wu). Germain—
Masmoudi-Shatah [23] recently proved global existence for two-dimensional capillary waves.

We shall construct a paradifferential change of unknown, without derivatives losses, which
eliminates the part of the quadratic terms that bring non zero contributions in a Sobolev
energy inequality. Our main result is stated after we introduce some notations, but one can
state one of its main corollary as follows: There exists v > 0 such that, for any s > v+ 1/2, if
N, (t) = |In(t, )|l + H\Dx]% (¢, -)HC%% is small enough, then one can define an H5-Sobolev
energy, denoted by Mj, satisfying

(L4) Myt ~ My + 1002 05 gy + (Vo amn (8 ) o4
and
(1.5) M(t) < M,(0) + /0 C(N (7)) Ny (7)2 My(7) dr.

Let us comment on these estimates. The key point is that the summand in the right hand



side of (1.5) is quadratic in IV, (while, for an equation containing quadratic terms in the non-
linearity, one obtains in general a linear bound). Then it follows from the Sobolev embedding
that My(T) = supyeor) Ms(t) satisfies My(T) < My(0) + TC(My(T))Ms(T)?. This in turn
implies that, if the initial data are of size &, namely if M;(0) = O(g?) (notice that M is linked
to the square of the Sobolev norms) for some s large enough, then the Cauchy problem is
well-posed on a time interval of size e 72 (see also the results in Totz and Wu [50]).

Another important property is that the estimate (1.5) is tame, which means that it is lin-
ear in the Sobolev norm (v is a fixed large enough number which might be much smaller
than s). Eventually, let us notice that it would have been easier to obtain (1.5) with N,

replaced by Ny (t) + | Hn(t, )| v + ||H ]Dx]% (¢, -)HC%% where H denotes the Hilbert trans-
form. A fortiori, it would have been easier to obtain the previous bound with N replaced by
It ) g+ || |Dm|% ¥(t,-) HHW, that is with Holder norms replaced by Sobolev ones. However,
the corresponding estimates would not be sufficient to prove global well-posedness in [5].

The smallness assumption on NV, enters essentially only for the following reason: we shall
obtain Mj as the square of the H®-norm of some functions deduced from 7 and 3 by a
nonlinear change of unknowns. If IV, is small enough, then this nonlinear change of unknowns
is close to the identity. This is used to prove (1.4).

The estimate (1.5) will be proved in Chapter 3 (in fact we shall prove an equivalent statement
where the right-hand side of (1.4) is replaced by ||| 7=+ || ]Dx\% w|| ;7. where w is defined in the
next section of this introduction). To prove global well-posedness in [5], our approach follows
a variant of the vector fields method introduced by Klainerman in [31, 30]. In particular, in
this paper we shall not only study Sobolev estimates, that is L?-estimates for derivatives 02,
but also L2-estimates for 022”7 where Z = t0; + 220,. This is the most difficult task of this
work which will be achieved in Chapters 4 and 5.

The vector field Z appears for the following reason. If (n,1) solves (1.3), then
m(t z) =272 (M, N%2), ¥t z) = A% (M, A%z) (A >0)
are also solutions of the same equations. Now observe that for any function C' function

u, there holds Zu(t,z) = Lu(\t, \2z) | —1
waves equation around the null solution, that is ?u + |D;|u = 0, then so does Zu. This

In particular, if u solves the linearized water

vector field already played an essential role in the above mentioned papers of Wu [54] and
Germain-Masmoudi-Shatah [23]. We also refer the reader to Hur [26] where a similar vector
field is used to study the smoothing effect of surface tension.

Let us mention that the paper is self-contained. We shall give simplified statements of our
results in this introduction and refer the reader to the next chapters for precise statements. Let
us also mention that Ionescu and Pusateri [27] have obtained independently a similar global
existence result to the one proved in [5], under weaker decay assumption for the Cauchy data,
and obtained an asymptotic description of the solutions in frequency variables.
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2 Properties of the Dirichlet-Neumann operator

A notable part of the analysis consists in proving several estimates for the Dirichlet-Neumann
operator. We present here some of the results on this topic which are proved in Chapter 1
and in Chapter 2.

e Definition of the Dirichlet-Neumann operator

Let n: R — R be a smooth enough function and consider the open set

Q:={(z,y) eR*;y <n(z) }.

It : R — R is another function, and if we call ¢: 2 — R the unique solution of A, ,¢ =0
in €2 satisfying ¢|,—, ) = ¥ and a convenient vanishing condition at y — —oo, one defines the
Dirichlet-Neumann operator G(n) by G(n)¢ = \/1 + (0z1)? 05¢|y—n, where 0,, is the outward
normal derivative on 0{2. In Chapter 1 we make precise the above definition and study the
action of G(n) on different spaces. In this outline we consider only the case where 1) belongs
to the homogeneous space H'/2(R) or to the Holder space C7(R) of order v € [0, +0o[. (We
refer to Chapter 1 for the definition of these spaces and of the Sobolev or Holder norms used
below.)

Proposition. Let v be a real number, v > 2, v & %N. Let n be in L? N C7(R) satisfying the
condition

(2.1) I e+ {1 (|2l |34 <
Then G(n) is well-defined and bounded from H'/?(R) to H='/2(R) and satisfied an estimate
16172 < C (I lor1) 1Dal2 9

Moreover, G(n) satisfies when 1 is in C7(R)
(2:2) |Gl < O (I llow-1) 1Dl = 0]

where C(+) is a non decreasing continuous function of its argument.

o3’

Remark. Many results are known for the Dirichlet-Neumann operator (see for instance [12,
19, 35] for results related to the analysis of water waves). The only novelty in the results
proved in Chapter 1 is that we shall consider more generally the case where 1 belongs either
to an homogeneous Sobolev space of order greater than 1/2 or to an homogeneous Hoélder
spaces. As a corollary, notice that if we define Gy /5(n) = [D.|™2 G(n), we obtain a bounded
operator from H'/?(R) to L?(R) satisfying

G122 < CUIn llor) |1 Dal 2 ] -

1—29’H77,H29’

-1 o1 1s bounded, then we

If we assume moreover that for some 0 < 0’ < 6 < %, H?]'H

prove that, similarly, \Dx\_%w G(n) satisfies

12172 Gl oy 0 < O ll o) 12217

1.
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Hereafter, v always denote a real number such that v > 2 and ~v ¢ %N . It is always assumed
that the condition (2.1) holds for some small enough 4.

Let us introduce two functions that play a key role. Since H _%(R) CH _%(R) and since
C7Y(R) - H_%(R) C H_%(R) for v > 3/2, the following functions are well-defined

G(n) + (921)(9x1))
14 (0xm)?

(2.3) B = , V=090 — B0Oyn.
These functions appear since one has B = (9,¢)|aq and V = (9,¢)|aq, so that B (resp. V) is
the trace of the vertical (resp. horizontal) component of the velocity at the free surface.

e Tame estimate for the Dirichlet-Neumann operator

If n € Cp°, it is known since Calderén that G(n) is a pseudo-differential operator of order 1
(see [47, 48, 51]). This is true in any dimension. In dimension one, this result simplifies to

(2.4) Gy = Dy + R(n)y,

where R(n)f is a smoothing operator, bounded from H* to H**™ for any integer m. Namely,

1
(2.5) Vm eN, 3K > 1, Vu > > [Ro(mY |l grusm < C (Il o) 1] i 18] g -

Several results are known when 7 is not smooth. Expressing G(n) as a singular integral
operator, it was proved by Craig, Schanz and Sulem [19] that if 5 is in C*+1 and ) is in H**!
for some integer k, then G(n)y belongs to H¥. Moreover, it was proved by Lannes [32] that
when 7 is a function with limited smoothness, then G(7) is a pseudo-differential operator with
symbol of limited regularity. This implies that if i is in H® and 1 is in H® for some s large
enough, then G(n)y belongs to H5~! (which was first established by Craig and Nicholls [18]
and Wu [52, 53] by different methods). We refer to [2, 3, 44, 45] for results in rough domains.

We shall prove in Chapter 2 an estimate which complements the estimate (2.5) in two direc-
tions. Firstly, notice that, for the analysis of the water waves equations, 17 and ¢ are expected
to have essentially the same regularity so that the constant K corresponds to a loss of deriva-
tives. We shall prove an estimate without loss of derivatives. In addition, we shall prove a
tame estimate (which means an estimate linear with respect to the highest order norms).

Proposition (Tame estimate for the Dirichlet-Neumann operator). Let (s,v) € R? be such
that

1 1
—Z>~>3 —N.
S—5>7>3, v€2

Then, for all (n,1) in H%(R) x H%(R) such that that the condition (2.1) holds, G(n)y belongs
to HS~1(R) and there exists a non decreasing function C: R — R such that

(2.6) (G = [De| Pl o

< C(nlls) {I1Dal? 0| ooy Ilizs + s 11Dal? 9|

HS*%}'



Remark. It follows from (2.6) and the triangle inequality that

@7 NGOl s < CUlnlen) {10l ¥l oy Il + (1012

e
Other tame estimates, with Hélder norms replaced by Sobolev norms H*® for some fixed real
number sy, have been proved in [32] (see also [1]).

e Paraproducts

The proof of the previous proposition, as well as the proof of most of the following results,
are based on paradifferential calculus. The results needed in this paper are recorded in
Appendix A.1. To make this introduction self-contained, we recall here the definition of
paraproducts.

Consider a cut-off function 6 in C*°(R x R) such that

0(61,&) =1 if [&] <er]af, 0(&1,&2) =0 if  [&] > ez &2,

with 0 < g1 < g2 < 1. Given two functions a = a(x) and b = b(z) one writes

) G(£,)b(&y) déy déy = Tub + Tya + Ri(a,b)

where

eix(§1+52)9(£1’ 52)6(61)/5(52) d&y d&o,

Tya = % // eix(§1+€2)9(§2,fl)a(fl)g(ﬁg)dfl dés,
R(ah) = oy [[[ #6001 - 0161, €0) = 0(6a.€0)al6ble2) s da

Then one says that T,b and Tya are paraproducts, while Rp(a,b) is a remainder. The key
property is that a paraproduct by an L°° function acts on any Sobolev spaces H® with s in R.
The remainder term Rg(a,b) is smoother than the paraproducts T,b and Tpa whenever one
of the factors belongs to C? for some o > 0 (see (A.1.17) in Appendix A.1).

e The quadratic terms

We call (2.6) a linearization formula since the right-hand side is quadratic in (n,v). We shall
prove much more precise results, with remainders quadratic in (n,) and estimated not only
in H5~! but in H¥ for some s’ > s. To explain this improvement, we begin by considering
only the linear and quadratic terms in G(n)y. Set

G(<o) MV = |Dz| ¢ — |Da| (n|Da| 1)) — 0x(n0x1)).

Then it is known that G(1)1 — G(<2)(n) is cubic in (n,9) (see [19] or (2.14) below).

9



Now write

’D:c‘ (77 ’Dx’w) = ’Dx’ (Tn ‘D:c‘w) + ‘D:c‘ (T\DZWJTI) + ’Dx’ RB(T], ‘Dx’w)

and perform a similar decomposition of 9,(nd,¥). Noticing the following cancellation (cf.
Lemma A.1.11 in Appendix A.1)

(2.8) | Da| (T | Dzl ) + 0w (T0:%) = 0,
we conclude that
G <o) (M = |De| ¥ — |Du| (Tip,1pn) — 82 (To,yn) — |Dal Re(n, | De|v) — 0 R (1, 021)).
The previous identity is better written under the form
(2.9) G(<2y(mv = |Da| (¥ = Tip,jyn) — Ox(To,ym) + Fiz) (M,
where Fi<2)(n)Y = — [Dz| Rp(n, | Dz | ) — 0xRp(n, 0z). Assuming s+ > 1, it follows from

standard results (see (A.1.17) in Appendix A.1) that Fi<9)(n) is a smoothing operator:

(2.10) [Et<2) Y]] fropre < K 1ll o 11Dz |2 |

_1.
H°™2
e The good unknown of Alinhac

In the previous paragraph, we considered only the linear and quadratic terms G(<g) (). To
prove an identity similar to (2.9) for G(n), exploiting a cancellation analogous to (2.8), as
in [6, 3], we shall express the computations in terms of the “good unknown” of Alinhac w
defined by

w=1—Tpn

where B is as given in (2.3). As explained in [6, 3], the idea of introducing w is rooted in a
cancellation first observed by Lannes [32] for the water waves equations linearized around a
non trivial solution. Here, we want to explain that w appears naturally when one introduces
the operator of paracomposition of Alinhac [7] associated to the change of variables that
flattens the boundary y = n(z) of the domain. This is a quite optimal way of keeping track
of the limited smoothness of the change of coordinates. Though we shall not use this point
of view, we explain here the ideas that underly the computations that will be made later.

To study the elliptic equation A, ¢ = 0in Q = {(z,y) € R?; y < n(x)}, we shall reduce the
problem to the negative half-space through the change of coordinates k: (x, z) — (x, z+n(zx)),
which sends {(z,2) € R?; 2z < 0} on Q. Then ¢(z,y) solves A, ¢ = 0 if and only if
p=¢ok=a¢(x,z+n(zr)) is a solution of Py =0 in z < 0, where

(2.11) P=(1+7%0%+ 0> - 20,0, — 10,

(we denote by 7’ the derivative 9,7). The boundary condition ¢|,—, ) becomes p(z,0) = 9 (x)
and G(n) is given by
Gy = [(1+1%)0:0 =1/ 0a0] | g

10



We first explain the main difficulty to handle a diffeomorphism with limited regularity. Let
us use the notation D = —id and introduce the symbol

p(2,&,¢) = (L+17/(2)*)¢* + & — 21/ ()¢ + in" (2)C.

Notice that P = —p(x, Dy, D). We shall write T}, for T1+nl(x)2D§ +D2— 2Ty Dy D, + T,y 0.
Starting from p(x, D,, D,)y = 0, by using standard results for paralinearization of products,
we find that T, = fi for some source term f; which is continuous in z with values in H s—2
if # is in H® and the first and second order derivatives in x,z of ¢ are bounded. The key
point is that one can associate to x a paracomposition operator, denoted by x*, such that
T,(k*¢) = fo for some smoother remainder term fp. That is for some function fo continuous
in z with values in H5t7~4, if 5 is in H* and if the derivatives in x, z of order less than ~ of ¢
are bounded (the key difference between f; and f is that one cannot improve the regularity
of fi1 by assuming that ¢ is smoother).

We shall not define x*, instead we recall the two main properties of paracomposition operators
(we refer to the original article [7] for the general theory). First, modulo a smooth remainder,
one has

K'¢=dor—Tyoxk

where ¢’ denotes the differential of ¢. On the other hand, there is a symbolic calculus formula
which allows to compute the commutator of k* to a paradifferential operator. This formula
implies that

K*A — T,k

is a smoothing operator (that is an operator bounded from H* to H*™™ for any real number
i, where m is a positive number depending on the regularity of ). Since A, ,¢ = 0, this
implies that Tp(qb oK — T¢/OH/{) is a smooth remainder term as asserted above.

Now observe that
w = (qﬁ oK — T¢>/<m/€) | Y

This is the reason why the good unknown enters into the analysis. The previous argument is
the key point to prove the following

Proposition (Paralinearisation of the Dirichlet-Neumann operator). Define F(n)y by
G(T/)w = |Dac| w— Oy (TV77) + F(UW

Let (s,7) € R? be such that

1 1
— = 3 “N.
S—5>7>3, 7%2

For all (n,v) in H¥(R) x H%(R) such that that the condition (2.1) holds,
1 1
(212)  1FO s < C Unler) DT 0l oy Il + il 10213 61,3 )
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Our goal was to explain how to obtain an identity analogous to the identity (2.9) obtained by
considering the linear and quadratic terms in G(n)y. To compare (2.12) and (2.10), notice
that, from the definition of B and V (see (2.3)), B — |D,|v and V — 0,1 are quadratic in
(n,%). Therefore, modulo cubic and higher order terms, |D,|w — 0, (T Vn) is given by the
expression | Dy | (¢ — Tip,yn) — Ox (To,4n) which appears in the right hand side of (2.9). We
shall compare F'(n)y and F{<2)(n)y in the next paragraph.

The main interest of this proposition will be explained in the next section. At this point,
we want to show that this estimate implies the tame estimate (2.6). To do so, write the
remainder R(n)¢ in (2.4) as R(n)Y = — |Dy| (Tsn) — 0. (Tyn) + F(n)¢ since |Dg|w—|Dy| ¢ =
—|D,| (Tpn). The key point is that (n,4) — F(n)y is smoothing, with respect to both
arguments, while the two other factors are operators of order 1 acting on 7. Indeed, as a
paraproduct with an L function acts on any Sobolev spaces, one has

102 (Tvm) || ye-s < KNV oo 1] 2o
H‘Dx’w - ‘D:c‘ wHHsfl = H’Dx‘ (TBn)‘

-1 S KB oo 111l s -

On the other hand, directly from the definition (2.3) of B, we deduce that
1Bl < NGl Lo + 1020l oo 0290 oo -

Now the estimate (2.2) implies that the right-hand side of the above inequality is bounded
1

by C’(||77’HCV71) H|Dm|5 T,Z)ch,%. Writing V' = 9,9 — BJ,n, we obtain the same estimate for

the L>-norm of V. This proves that (2.12) implies (2.6) (and hence (2.7)).

e Taylor expansions of the Dirichlet-Neumann operator

Consider the Taylor expansion of the Dirichlet-Neumann operator G(n) as a function of 7,
when 7 goes to zero. Craig, Schanz and Sulem (see [19] and [46, Chapter 11]) have shown that
one can expand G(n) as a sum of pseudo-differential operators and gave precise estimates for
the remainders. Tame estimates are proved in [19] and [8, 29]. We shall complement these
results by proving sharp tame estimates tailored to our purposes.

Proposition. Assume that
1
s=1/2>y>14, s>p=5 &N,

and consider (n,v) € Hs+%(]R) x (C"(R) N H’”%(R)) such that the condition (2.1) holds.
Then there exists a non decreasing function C: R — R such that,

(2.13)  |[F(mY — Freaym)|| 1

1 1
< Clllen) Wl { 11Dl 6l ooy Il + Wl 11Dl ],
where recall that Fi<9)(n)y = — |Dy| Rp(n,|De|¥) — 0z Rp(n, 0:9).
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Notice that the right-hand side is cubic in (n,%) and that F'(n) — Fi<2)(n) is a smoothing

operator, bounded from H Hty to HAHL (in fact it is a smoothing operator of any order,
assuming that + is large enough).

Let us prove that this estimate allows to recover an estimate for the difference of G(n)1 and
its quadratic part G<g) (1) introduced above. By definition of F'(n)y and F(<gy(n)i, one
has

G = |Dy| (¥ — Tpn) — 0 (Tyn) + F(n)y,
G<2y()Y = |Da| (¥ = Tip,1yn) — O (To,un) + Fi<2)(n).

Substracting these two expressions one obtains
G — G<oy(m = = |De| (T D, 1y1) — 02 (Tv—a,4n) + F ()Y — Fi<a)(n).

Noticing that the L>-norms of B — |Dy|1 is bounded by C (|nllcv) [Inllcr ||| De \ 1/1”0%7
together with a similar estimate for the L°°-norm of V' — 0,1, and repeating arguments similar
to those used in the previous paragraph, one finds that

(2.14) HG ) — G<2 )T/JHHsfl

< C (Inlles) Inlles {11Dal? ¥l ooy Il + il [[1Da 2

1

for any s > v+ 1/2, provided that ~ is large enough.

On the other hand, we shall also need to study the case where (n,1) € C7 x H* with ~ larger
than g. Then we shall prove that G(n) — [D.| and G(1) — G(<9)(n) are smoothing operators,
satisfying

1G)® — [Dal ¥ll s < C (Inll ) Inllon |1 D2l? | o
G — Giaoy|] s < C (lnll ) 12 (1Dl 9] -

3 Paradifferential normal forms method

The main goal of this paper is to prove that, given an a priori bound of some Holder norm
of ZF (n+i|D, \2 ¥) for k' < s/2+ kg, we have an a priori estimate of some Sobolev norms
of Zk(n+1i|D, \2 w) for k <'s, where recall that w = 1) — Tg(;)yn. The proof is by induction
on k > 0. Each step is divided into two parts:

1. Quadratic approximations: in this step we paralinearize and symmetrize the equations.
In addition, we identify the principal and subprincipal terms in the analysis of both the
regularity and the homogeneity.

13



2. Normal form: in this step we use a bilinear normal form transformation to compensate
for the quadratic terms in the energy estimates.

For the sake of clarity, we begin by considering the case k = 0. Our goal is to explain the
proof of (1.4) and (1.5).

e Quadratic and cubic terms in the equations
The previous analysis of G(n) allows us to rewrite the first equation of (1.3) as
On + 0 (Tvn) — |Dy|w = F(n)i.

It turns out that it is much simpler to analyze the second equation of (1.3): expressing the
computations in terms of the good unknown w, it is found that

dw + Ty Opw + Tyn = f,
where a is the Taylor coefficient and f is a smoothing remainder
f=TvTom — Tvo) B+ (Tvo,s — TvTs,B)n

1 1
+ §RB(B,B) - §RB(V, V) + TvRg(B,d;n) — Rg(B,Vd.n)

(the last four terms are remainders in the paralinearization of a products while the first two
terms are estimated by symbolic calculus, see (A.1.14)).

1
It is convenient to symmetrize these equations by making act T’ 5 (resp. |D.|2) on the first

v=| vy,
|Dm|§w

We can now state the main consequence of the results given in the previous section.

(resp. second) equation. Set

Proposition. The water waves system can be written under the form

(3.1) 8,U + DU + Q(u)U + Su)U + C(u)U = G,
where D = 0 , |Dm|% LU= T , Q(u)U and S(u)U (resp. C(u)U and G) are
| D, |2 0 [ Da|> ¢

quadratic (resp. cubic terms). Moreover there exists p > 0 such that, for s large enough,

QU -1 < K [ull g [[U]] s
1S(W)U | gss1 < K |Jullp U]l g »
IC@)U | er < Cllullco) lliEo 10l
1G]l < Clllulleo) lullEn Ul

14



Remark. i) The operators Q(u), S(u) and C(u) are explicitly given in the proof. The
previous estimates mean that U — Q(u)U and U — C(u)U (resp. U — S(u)U) are linear
operators of order 1 (resp. —1) with tame dependence on wu.

ii) For ||n[|o, small enough, ¥ — 9 — Tg(y)n is an isomorphism from C7 to itself. Then one
could write (2.12) in terms of U only. However, it is convenient to introduce u because the
Holder bounds are most naturally proved for u (see [5] for these estimates).

e Quadratic normal form: strategy of the proof

T
u = 771 s U= \/El’r/ .
D2 4 |Ds[2 w

We want to implement the normal form approach by introducing a quadratic perturbation of
U of the form

Recall that

® = U + E(u)U,

where (u,U) +— E(u)U is bilinear and chosen in such a way that the equation on ® is of the
form

where N(>3)(®) consists of cubic and higher order terms. To compute the equation satisfied

by ®, write

Hence, by replacing 0,U by —DU — (Q(u) + S(u))U, we obtain that modulo cubic terms,

0@ =—-DU — (Q(u) + S(u))U — E(Du)U — E(u)DU
=—-D®+ DE(u)U — (Q(u) + S(u))U — E(Du)U — E(u)DU.

It is thus tempting to seek E under the form F = F; + FE» such that

Q(uw)U + Ey(Du)U + E1(u)DU = DE;(u)U,
S(u)U 4+ Eo(Du)U + Eo(u)DU = DEs(u)U.

However, one cannot solve these two equations directly for two different reasons. The equation
(3.2) leads to a loss of derivative: for a general w € H* and s > 0, it is not possible
to eliminate the quadratic terms Q(u)U by means of a bilinear Fourier multiplier E; such
that U — E1(u)U is bounded from H® to H®. Instead we shall add other quadratic terms to
the equation to compensate the worst terms. More precisely, our strategy consists in seeking
a bounded bilinear Fourier multiplier E; (such that U — E1(u)U is bounded from H® to H®)
such that the operator Bj(u) given by

(3.4) By (uw)U := DE,(u)U — E;(Du)U — E;(u)DU,
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satisfies
Re(Q(u)U — B1(w)U,U)gsxpgs = 0.

The key point is that one can find Bj(u) such that U — Bj(u)U is bounded from H® to H®.
This follows from the fact that, while U — Q(u)U is an operator of order 1, the operator
Q(u) 4+ Q(u)* is an operator of order 0. Once By is so determined, we find a bounded bilinear
transformation E; such that (3.4) is satisfied. We here use the fact that @ is a paradifferential
operator so that one has some restrictions on the support of the symbols.

The problem (3.3) leads to another technical issue. If one computes the bilinear Fourier
multiplier Eo(u)U which satisfies (3.3) then one finds a bilinear Fourier multiplier Ey such
that U +— FEs(u)U is bounded from H® to H®, but whose operator norm satisfies only

B2 ()l 2prs, ey < K Nullce + K [Hullco

where H denotes the Hilbert transform. The problem is that, in general, |[Hul|~, is not
controlled by ||u[|-.. Again to circumvent this problem, instead of solving (3.3), we solve

Ba(u)U := DEy(u)U — Ey(Du)U — Fs(u)DU,
where By(u) satisfies
(3.5) Re(S(u)U — Ba2(uw)U,U)gsx s = 0.
The key point is that one can find Bo(u) such that the solution Ey(u) to (3.5) satisfies
I

(U)HE(HS,HS) < K HUHCQ .

e Paradifferential operators
According to the previous discussion, we shall have to consider the equation
(3.6) E(Du)U + E(u)DU — D[E(u)U| = H(u)U,

where (u,U) — E(u)U and (u,U) — II(u)U are bilinear operators of the form

Bu)U =} 21 / O () AR (61, )0 (&) 6y dEs,

2
1<k<2 (2m)

1

(3.7) MU= 3 & / e EHE b () M (€1, £2) T (€2) déy déa,

1<k<L2

where A* and M* are 2 x 2 matrices of symbols. We shall consider the problem (3.6) in
two different cases according to the frequency interactions which are permitted in F(u)U and
II(u)U. These cases are the following:
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(i) The case where II(u)U is a low-high paraproduct, which means that there exists a
constant ¢ €]0,1/2[ such that

Supp M*  {(61.6) € B ¢ |&2l > 1, [&1] < el -

The operator Q(u) and its real part are of this type.

(ii) The case where II(u)U is a high-high paraproduct which means that there exists a
constant C' > 0 such that

Supp M* € {(61,€2) € R : |1 + &l < C(1+ min(l&], |&2) }-

This spectral assumption is satisfied by S(u) and its real part.
That one can reduce the analysis to considering such paradifferential operators is the key
point to prove tame estimates. This allows us to prove the following result.

Proposition. There ezist v > 0 and a bilinear mapping (u,U) — E(u)U satisfying, for any
real number p in [—1,400[,

(3.5) VBl < K s 1

such that ® = (Id — A)%/? (U+ E(u)U) (with s large enough) satisfies
0P+ DP + L(u)® + Cu)® =T

where the operators D and C(u) are as in (3.1), the source term satisfies
ITle < Clullen) ull2 9],

and

(3.9) Re(L(u)®, ®) = 0

where (-,-) denotes the L?-scalar product.

The proof of this proposition follows immediately from the analysis in Section 3.7. We describe
now how one proves the estimates (1.4) and (1.5). Setting

My(t) = ||$(t,)]|32 = IU + E)U|[%.,

the estimate (1.5) follows from an L2-estimate (the key point is that the quadratic terms
L(u)® do not contribute to the energy estimate in view of (3.9)). Also (1.4) follows from
(3.8) assuming that ||u||,s is small enough ( to compare the right-hand side of (1.4) with M,

o1 and H]Dx]% w|

one has also to compare H (Vx7y¢)‘y=7]| ; this will be done in Chapter 2).

H57
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4 Tterated vector fields Z

We describe now how one gets L?-estimates similar to those of the preceding section when
1
one makes act iterates of the Klainerman vector field Z = t9; + 220, on (1, |D,|? w).

We fix real numbers a and v with v ¢ %N and a > v > 1. Given these two numbers, we fix
three integers s, sg, s; in N such that

S
s—a28125025+’%

We also fix an integer p larger than sy. Our goal is to estimate the norm

51

M0 = S (12200 oy + 1Dl 2200) )
p=0

assuming some control of the Hélder norms

Ny (t) = [1(t)ll o+ |[1Dal? 0 (8)]|

and
50

N = (12200 ey + D212 2260 )

p=0

To estimate M.*" we shall estimate the L2-norm of 03 Z"U for (a,n) in the set
PZ{(a,n)ENXN;Ogngsl, 0§a§s—n}.
(In fact, we shall estimate

102 20| g + 11D2 12 03 27| g + |1 D212 02270 -y

for some large enough exponent 3, but small compared to 7y; in this outline, we do not discuss

this as well as other similar difficulties).

We shall proceed by induction. This requires to introduce a bijective map, denoted by A, from
P to {0,1,...,#P —1}. We find that it is convenient to chose A such that A(a/,n") < A(a,n)
holds if and only if either n’ < n or [0’ =n and o/ < «]. This corresponds to

n—1

Ala,n) :Z(s—l—l—p)—i—a.

p=0

Given an integer K in {0,...,#P} we set

M= 3|

A/ n")<K-1

8’ Z"’U(

L2’
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As alluded to above, the Hilbert transform appears at several place in the analysis. The
problem is that it is not bounded on Hoélder spaces and one has only an estimate of the form:
for any p ¢ N, there exists K > 0 and for any v > 0, any v € C” N L2,

1 1
[Hollon < K[ Iellon + o1& loll7z]
Here one cannot overcome this problem and we are lead to introduce the norms
1 1—v v
Nic = N+ (V)™ (M)
for some v > 0 (the optimal choice is v = /e for initial data of size ).

We shall prove that there are for any K = 0,...,#P —1 a constant Ax and a non-decreasing
function Ck () such that for any v in |0, 1], any positive numbers Ty, T and any ¢ in [Ty, T,

Mici1(t) < AgME)(Ty) + C (NSO (1)) (1 + N (£)) Mk (¢)
1) [ RN [t [, Mocar 6

t
+ | Cr (NS )Nk () Mg () dt!
To

(setting Ny =0, Mg =0 when K = 0).

This estimate will be used to prove that, if for any ¢ € [Ty, T and any e €]0, g¢]

(42) D212 6t )| oy + It o = O(et™2)
and
(4.3) NGO () = O(et™7%7)

for some constant 0 < v < 1, then there is an increasing sequence (dx)o<rp<#p, depending
only on v and € such that for any ¢ in [Ty, T[ and any e,

(4.4) M (t) = O(et’%).

The proof is by induction on K. For K = #P we obtain an estimate for Ms(sl). The key point
is that, when we use Gronwall lemma to deduce from (4.1) a bound for Mg, assuming that
(4.2), (4.3), (4.4) hold, the coefficient of My 1(t') in the first integral in (4.1) is O(e?t7!)
by (4.2). In that way, it induces only a O(t€2c) growth for Mg ;1. The fact that, on the
other hand, Mg (t’) in the second integral in (4.1) is multiplied by a factor that may grow
like ¢~ 279 (with 0 < 0 < 1) is harmless, as Mg (t') is a source term, already estimated in
the preceding step of the induction.

The proof of (4.1) contains an analysis of independent interest. Namely, we shall prove various
tame estimates for the action of iterated vector fields Z = td; 4+ 2x0, on the equations. Such
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estimates have already been obtained by Wu [54] and Germain-Masmoudi-Shatah in [23]. We
shall prove sharp tame estimates tailored to our purposes (one key point is to estimate the
action of Z¥ on F(n)v). This part is quite technical and we refer the reader to Chapter 4 for
precise statements. In this chapter, we shall prove that

ZG(n)Y = G(n)((Z — 2)¢ — BZn) — 0:((Zn)V) + 2[G(n),n] B + 2V 0.

Since B and V are expressions of 0,1, 0,9 and G(n)y, one deduce from the above identity
formulae for ZB and ZV. This allows by induction to express the action of iterated vector
fields Z on the Dirichlet-Neumann operator G(7) in terms of convenient classes of multilinear
operators.

20



Chapter 1

Statement of the main results

In this chapter, we state the main Sobolev estimate whose proof is the goal of this paper, and
we describe the global existence theorem for water waves equations established in [5] using
these Sobolev bounds. Before stating the result, we define in a precise way the Dirichlet-
Neumann operator that appears in the Craig-Sulem-Zakharov version of the water waves
equation, and establish properties of this operator that are used in the sequel as well as in [5].

1.1 Definitions and properties of the Dirichlet-Neumann op-

erator

Let n: R — R be a smooth enough function and consider the open set

Q:={(z,y) eRxR;y <n(x)}

If v: R — R is another function, and if we call ¢: 2 — R the unique solution of A¢ = 0
in ) satisfying ¢|,—, ) = 1 and a convenient vanishing condition at y — —oo, one defines
the Dirichlet-Neumann operator G(n) by

G(??W =V 1+ (5x77)2 an(b’y:na
where 0, is the outward normal derivative on 0f2, so that
Gy = (0y0)(x,n(x)) — (021)(0x¢)(x, n(x))-

The goal of this section is to make precise the above definition and to study the action of
G(n) on different spaces.

We shall reduce the problem to the negative half-space through the change of coordinates
(z,y) — (z,2 = y — n(z)), which sends Q on {(z,z) € R?; 2z < 0}. Then ¢(x,y) solves
A¢ =0 if and only if ¢(z,z) = ¢(x, z + n(x)) is a solution of Py =0 in z < 0, where

(1.1.1) P =(1+n%)8+0; — 21/'0,0. — 0.
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(we denote by 7 the derivative 9,7n). The boundary condition becomes ¢(x,0) = ¢(x) and
G(n) is given by
Gy = [(1+70*)d.0 —n/'0ue] | -

It is convenient and natural to try to solve the boundary value problem

Pp =0, o¢l:—0=1
when 1 lies in homogeneous Sobolev spaces. Let us introduce them and fix some notation.

We denote by S. (R) (resp. S](R)) the quotient space S'(R)/C[X] (resp. S'(R)/C). If S5 (R)
(resp. S1(R)) is the subspace of S(R) made of the functions orthogonal to any polynomial
(resp. to the constants), S, (R) (resp. Sj(R)) is the dual of Seo(R) (resp. S1(R)). Since the
Fourier transform realizes an isomorphism from S (R) (resp. Si(R)) to

So(R) = {u € S(R); u™(0) = 0 for any k in N}

(resp. 81(R) = {u € S(R); u(0) = 0}), we get by duality that the Fourier transform defines
an isomorphism from S’ (R) to (Sx)'(R), which is the quotient of S'(R) by the subspace of
distributions supported in {0} (resp. from S7(R) to (S1) (R) = S'(R)/Vect (do))-

Let ¢: R — R be a function defining a Littlewood-Paley decomposition (see Appendix A.2)
and set for j € Z, Aj = $(277D). Then for any u in S’ (R), the series > jez Aju converges
to u in S, (R) (for the weak-x topology associated to the natural topology on Sy (R)). Let
us recall (an extension of) the usual definition of homogeneous Sobolev or Hélder spaces.

Definition 1.1.1. Let §',s be real numbers. One denotes by H*S(R) (resp. C55(R)) the
space of elements u in Si(R) such that there is a sequence (cj)jez in (*(Z) (resp. a constant
C > 0) with for any j in 7,

1A ul 2 < ¢;279% 77+

(resp.
1Ajull oo < C2775794%)

where j, = max(j,0). We set H¥ (resp. C*' ) when s = 0.

The series 7% Aju always converges in &'(R) under the preceding assumptions, but the
=0 =2

same is not true for 3! Aju. If u is in H¥*(R) with s’ < 1/2 (resp. in C*"5(R) with

j=—o00
s’ < 0), then zj_:l_oo Aju converges normally in L, so in S'(R), and u — 3.7 Aju gives
the unique dilation and translation invariant realization of H* (resp. C*5(R)) as a subspace
of &'(R). One the other hand, if s € [1/2,3/2[ (resp. s’ € [0,1]), the space H* (R) (resp.
C*(R)) admits no translation commuting realization as a subspace of &'(R), but the map
U — ng Aju defines a dilation and translation commuting realization of these spaces as

subspaces of S{(R). We refer to Bourdaud [11] for these properties.

For k € N, we denote by C’;f(] — 00, 0], 8, (R)) the space of functions z — u(z) defined on
] — 00, 0] with values in S’ (R), such that for any 6 in Soo(R), z — (u(2),6) is C*, and there

22



is M € N and a continuous semi-norm p on Sy (R), such that for any ¥’ =0,...,k, any € in
SOO(R)7
|05 {u(2),6)| < p(6)(1 + [2)M.

We denote by D'(] — 00, 0[, 8. (R)) the dual space of C§°(] — 00, 0]) ® Soo (R). We shall denote
by L?(] — 00,0],S. (R)) the subspace of D'(] — c0,0[,S. (R)) made of those distributions u
such that for any 0 € So(R), z — (u(z,-),0) is in L?(] — 00,0]) and there are continuous
semi-norms p on Seo(R) and an L2-function h on | — 00,0] so that for any 6 in Sy (R),

[(u(z,-), 0)] < p(0)h(z).
Definition 1.1.2. We denote by E the space
E={peD(~-00,0[,S%(R)); Va0 € L*(] — 00,0[xR)}.

(We consider L?(] — 0o,0[xR) as a subspace of D'(] — 00, 0[, S’ (R)) using that the natural
map from L?(R) to Sx(R) is injective). We endow E with the semi-norm ||V .0 272

Remarks. — If ¢ is in E, then ¢ belongs to Cp(] — 00,0], S5 (R)). In particular, ¢|.—¢ is
well defined as an element of S._(R). Actually, if 0; is a test function in Soo(R), it may be
written 6; = 8,0; for another function 0 in S (R), so that, for any 6y in C§°(] — 00, 0]),

(0,00(2) @ 01()) = —{0pp, 00(2) @ 01 (x))

which shows that z — (p(z,),01) is in L?(] — o0, 0[). Moreover, its z-derivative is also L?, so
that z — (p(z,-),01) is a continuous bounded function.

— The semi-norm ||V, .||, 22 is actually a norm on E, and E endowed with that semi-norm
is a Banach space. Actually, if (), is a Cauchy sequence in E, if 0y, 01,6, are as above, we
may write

{on — om. 00(2) @ 01(2))] < 100(0n — @m)l r2r2 |00 © 01| 120

which shows that (), converges to a limit ¢ in D'(] — 00, 0[, S, (R)). That limit ¢ satisfies
Vi € L*(] — 00,0[xR) i.e. belongs to E.

The space E introduced in Definition 1.1.2 is a natural one in view of the following lemma.

Lemma 1.1.3. Let ¢ be in S, (R). There is an equivalence between

i) The function x — (x) is in H%(R)

i) The function (x,z) — eP=lyy(x) is in E.

Moreover
(1.1.2) 10 (AP 12,2 + [|0: (€721 1222 = |[1D2 12 0|2
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Proof. If ¢ is in H > (R), it is clear that (z,z) — e*P=l4) is a bounded function with values in
S!(R). Moreover,

1 [0 ~ 1 1
o) s = g | [ @I 6P aaz = glunett vl

and || |Dw|% | 12 is equivalent to the H'2(R)-norm. As a similar computation holds for the
0,-derivative, the conclusion follows. O

The preceding lemma gives a solution e?/P=y) to the boundary values problem A(e? |D ”|¢) =0
in z <0, ez|D”|¢| »—0 = . Let us study the corresponding non homogeneous problem.

Lemma 1.1.4. Let f be given in L?(] — 00,0],S% (R)) and 1 be in S’ (R). There is a unique
function ¢ in C}(]—00,0], S5, (R)) solution of the equation (92-+02)¢ = finz <0, ¢|.—o = ¥.
It is given by the equality between elements of S. (R) at fized z:

0
wa@=fm¢+§/ Dl | D, [T f(2, ) de!
(1.1.3) %

1

0
_ 5/ 6_‘Z_Z/||Dx| ’Dx’_l f(2/7.) dZ,.

Moreover, if we assume that V. . is in L*(] —00,0] x R) (resp. that ¢ is in L*(]—o0,0] xR))
the solution ¢ is unique modulo constants (resp. is unique).

Proof. Let us show first that the integrals in the right hand side of (1.1.3) are converging
ones when acting on a test function 6 in Sy (R). By definition of L?(] — oo,0], S, (R)),
there is a semi-norm p on S (R), there is an L?(] — 00,0]) function z — h(z) such that
1(f(2,-),61) < p(61)h(Z) for any 0 in Se(R), any 2’ < 0. Moreover, for any N, |D,|" is an
isomorphism from So(R) to itself. We may write for fixed z and for any 6 in S (R)

z—1
(1.1.4) /’ (e =100 D, |71 (2,0, 6)

z—1 , 9 dz
N / (F(&,), e =112 — 2/ D)) (|1 D272 6))

. =

Any semi-norm of the term in the right hand side of the bracket is controlled uniformly in
2 <0, 2/ < 0. It follows that the integral converges. The same is trivially true for the integral
from z—1 to 0 of the integrand in the left hand side of (1.1.4). This shows also that the right
hand side of (1.1.3) is in C(] — 00, 0], 84, (R)). Taking the 9.-derivative, we get in the same
way that 9. is in C)(] — 00,0], S (R)). Moreover, a direct computation shows that we get
a solution of (92 4 9?)¢ = f with the wanted boundary data.
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To prove uniqueness, we have to check that when ¢ = 0, the unique function ¢ in the space
Cp(] — 00,0], 84, (R)) satisfying (03 + 82)¢p = 0 in z < 0, ¢|.—¢ = 0 is zero in that space. If

we set
© 0 1
= ADZ‘ = s
v (azeo)’ (D) <1Dx12 0>

this is equivalent to checking that the only solution of 0,U = A(D,)U in CS(] —00,0], S, (R) x
S (R)) with Uy|,—¢ = 0 is zero. If we set

1 1 Vi _
P = <1Dxr —\Dx\)’ - (‘/é) = PO

we are reduced to verifying that the unique V in C’O(] — 00,0],8 (R) x 8. (R)) such that

0,V = |De| V and Vi + V5|,—p = 0 is zero in that space. It is sufficient to check that
0 \D \

Vo € CY(] — 00,0],S.(R)) and 0, Vo + |Dy| Vo =0 = V5 =0,
p

(1.1.5) ’ , -
Vi € C%(] — 00,0], 8% (R)) and Vi — |Dy[ Vi =0 = V4 =0.

To prove the first implication, we take 6 in C})(] — 00, 0[, Sso(R)) and set

0(z,x) :/ e~ =AIP:lg (o Y d2

If 0; is some C§°(] — o0, 0]) function equal to one close to zero, such that 6;(2)0(z,z) = 0(z, x),
we may write for any M > 1, using that 6 vanishes close to z = 0,

0 ~
0:/ (9 + | Du|)Va, 03 (2/M)B (2, -)) d=

_ /_000<v2,9<z,.>>dz_ /_:@,%eg(%)a@,»dz

and the conclusion will follow if one shows that the last integral goes to zero as M goes to
+00. Because of the fact that V5 is assumed to be at most at polynomial growth, it is enough
to show that any semi-norm of ﬁ@’l (ﬁ)g(z, ) in S (R) goes to zero more rapidly than M —*
(or |z|7F) for any k when M goes to +oco. This follows from the fact that, as above, we may

write 0 as
0 /
I N 3 dz
/ e =2MID:1 (2 — 2) 1D, )™ (1Dl Nﬁ(z’w))m

a

if a is such that Supp C [a,0] x R, if z is in the support of 6;(z/M) and N is an arbitrary
integer.

To prove the second implication (1.1.5), we argue in the same way, taking

/ (z—2' |Dx\9( )dZ,
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and replacing 61 by 1. Since Vj|,—9 = 0 and 0 is supported for z in a compact subset of
| — 00, 0], we obtain

0
o-/ (0. = IDV3, Bz ) de = = [ (0 )ds

—00
this implies the conclusion.

The above uniqueness statement holds in general only in Cj(] — c0,0], S} (R)) i.e. modulo
polynomials at fixed z. Let us check that if we assume moreover that V, .o belongs to
L?(] — 00,0] x R), then ¢ is constant. By what we have just seen, we already know that for
any fixed z, ¢ — Oy¢(z,2) is zero in S, (R) i.e. is a polynomial. Consequently, for almost
every z, * — ¢(z,2) has to be a polynomial such that d,¢(z,) is in L?(dz). This implies
that ¢ has to be independent of =, which, together with the equation (02 4+ 92)¢ = 0 implies
that ¢ is a constant. If we assume that ¢ is in L?(] — 0o,0] x R), one proves in the same way
that ¢ is zero. This concludes the proof. O

We use now the preceding result to write the solution of the Dirichlet boundary values problem
associated to the operator P defined in (1.1.1) as the solution of a fixed point problem.

Lemma 1.1.5. Let ¢ be in S|(R), n in C7(R) with v > 2, hy, hy two functions in L*(] —
00, 0[xR), with O,hy in L*(] —o0,0[, H 1(R)). Let ¢ be an element of the space E of Defini-
tion 1.1.2, satisfying Po = 0.hy + Ozha, @l.—0 = ¥. Then ¢ is in Cp(] — 00,0],S(R)) and
satisfies the equality between functions in CI(] — oo, 0], 84 (R))

plz,z) = Py

0
+ % / e(z+2)1Ds| [am | Dz~ (1 020 + h2)] az

0
(1.1.6) +%/ N (10,0 120,00 + ) | a2
1/ , .
+ 5/ o~ |77 Dx| [_aw ID,|~ (77/8,290-1-]12)] ds

0
+ % / e~ 1##l1Ds] [sign(z —2') (0 Oup — 0?0, + hl)} dz'.

If we assume that v is in H %(R), this equality holds modulo constants. Conversely, if p is in
E and satisfies (1.1.6), then P = 0,h1 + Orha, ¢|.—0 = ¢.

Proof. The equation Py = 9,hy + 0,hs implies

1 / 77” O,h1 + Ozho
1.1.7 FPp=——"_9? 2— — 8 15) 0, =z v
(1.1.7) L P T2 2o+ 1+ ch+1+n2 @+ e
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The assumptions on 7 imply that the coefficients of the first two and last terms (resp. of the
third term) in the right hand side are in C7~1(R) (resp. C72(R)). Since 92y, 0,0.p, 0,h1,
Ozho (resp. 0,¢) are in L?(] — 00,0}, H71(R)) (resp. L?(] — oc,0], L?>(R))), property (A.1.21)
of the Appendix A.1 and assumption v > 2 imply that §%¢ is in L%(] — oo, 0], H 1(R)).
Consequently, if we set

(1’1’8) fl :77/8:(:()0_77,2az()0+h17 f2 = n,ach+h27 f :8zf1 +8xf27

we obtain that f is in L?(] — 00,0],S. (R)) and the equation Py = 8.hy + Ozha, ¢|.—0 = ¥
may be rewritten

(1.1.9) 02+ 2)p=f. »(0,) =1

Moreover, since 0%¢ is in L?(] — o0, 0], H~*(R)) and 0, in L?(] — 0o, 0[xR), we conclude that
0, is in C’S (] — 00,0],S8.,(R)). Consequently, we may apply Lemma 1.1.4 which shows that
the unique C’; (] = 00,0],S8. (R)) solution to (1.1.9) is given by (1.1.3). If we replace f by its
value given in (1.1.8), we deduce (1.1.6) from (1.1.3) if we can justify 0,.-integration by parts
of the 0,/ f1 contribution to f. Let us do that for the second integral in the right hand side of
(1.1.3) with f replaced by 0,/ f1. Take 6 a test function in So(R), 01 in C§°(] — 00,0]) equal
to 1 close to zero. Compute

/

0
/_oo (e71==#1IP:lg,, | D, |7 fi(2', ), 0)6, (ZE> +
(117, 0,,0)

1.1.10 0 '
( ) - / <e_‘z_zl||D”| sign(z — 2') f1(2',),0)61 <%> dz'

0 —|z—2' - 1 2
_/;OO <e ‘ ||Dac||Dw| 1f1(Z,, )’0>E01<E> dzl,

Since fi is in L?L?, the first integral in the right hand side may be written

/

0 ~ ~
% /_Oo/e—|z—2'||§|sign(z — z’)fl(z’,é)e(—g)&(;) d2'de,

where 0 is in S (R) and vanishes at infinite order at £ = 0, converges when R goes to +oo to
the same quantity with #; replaced by 1. On the other hand, the last integral

Z/

% /_(lo /<e_|2—z'§| ’5‘—1 ]?1(2/75)/9\(—5)%91<E> 42 de

goes to zero if R goes to +00, using again the vanishing properties if 0 at & = 0. To finish the
justification of the integration by parts, we just need to see that the left hand side of (1.1.1)
converges when R goes to infinity to the same quantity with #; dropped. This follows in the
same way since 0, f is in L?(] — oo, 0], H 1(R)).
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The equality (1.1.6) holds in the space C}(] — 00,0], S5, (R)) i.e. modulo polynomials for each
fixed z. To check that it actually holds modulo a constant when we assume that ¢ is in
H'2(R), it is enough, according to Lemma 1.1.4, to verify that the (z,z)-gradient of both
sides belongs to L?(] — 00,0] x R). This is true for ¢ by assumption. On the other hand,
Lemma 1.1.3 shows that VI7Z(GZ|DZ|T/J) belongs to that space. It remains to show that if g is
in L?L? then ffoo e~ 1FENEN g g(2', €) d2' is in L2(] — 00,0] x R;dzd€), which is trivial.

Conversely, if ¢ is in C) (] — 00,0], 8., (R)) and V¢ in L*(] — 00,0] x R) and solves (1.1.6),
one checks that Py = 0,h1 + d.hs by a direct computation. O

The main result of this section, that allows one to define rigorously the Dirichlet-Neumann
operator, and prove some of its property, is the following.

Proposition 1.1.6. Let v be a real number, v > 2, v & %N.

i) There is 6 > 0 such that for any 1 in CV(R) with |||~ < &, for any v in HY?(R), any
h = (hy,hg) in L2L? with 0,hy in L?*(] — 00,0, H"'(R)) the equation Py = O,h1 + Oyho,
©l.=0 = ¥ has a unique solution ¢ in E. Moreover there is a continuous non decreasing
function C: Ry — Ry such that for any n,p, ¥, h as above

(1.1.11) IVl 2p2 < C (U lse) (19212 ¥l o + Ill a2 ),

(1.1.12) Va2 (0 — eP=19) || oo < C (110 ]]) <Hn’HLm 1D 1% || .o + ”h”L2L2)

Moreover, if |1]lcv-1 < & and h = 0, then V¢ is in (L N CY)(] — oo,O],H_%(]R)),
(14+12)0.p — 1/ 0pp is in (L= NCY)(] — oo,O],H_%(]R)) and

1
(1.1.13) iilgHVx,zez'Dz‘wHH,% < C||IDa|2 || 12,

z T l
(1.1.14) ilgl[O)HVx,z(go — D \QZ,)HFF% < C|n ||| Dl ¥| L2
(1.1.15) SglgH(l + 000 =1/ Oap| 3 < C||Dal2 ¥

i) bis. Let p € [0,400], v > ,u—l—% and assume that 1 is in H3#+5 . Then the unique function
¢ found in i) when h =0 is such that V¢ is in L*(] — oo,O],H“JF%), (1+102)0,0 — 10
is in CO(] — 00,0], H-2#+2) 0 L=(] — 00,0, H~2#*2) and

(1.1.16) Sl<11(i))H (L4 1)0.0 = 10:0) (2,)| o < C’H|Dx|% ?ﬁHHw%.

ii) There is 6 > 0 such that for any n € C7(R) N L?(R) satisfying

(1.1.17) I llovr =+ [l |2l 120 < 6,
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any v in HY2(R) N C"%’“’_%(R), the unique solution given in i) when h = 0 satisfies

(1.1.18) Hvx Z‘P”Loo (]—00,0],C7—1) < C(HU v 1) H’D ‘7 1/1”0%7
Moreover, if 0 < 6 < 6 < 2 and if Hn Hl 20 Hn HC 1 45 bounded, one has the estimate
(1.1.19) supl[Da| 2+ (14 12)020 — 7/020) (2 )| 1o < C[lIDal> 9] -

2<0
Notation. We shall denote by &, the set of couples
1

(n.4) € C'(R) x (HYV*(R) N C2772(R))

such that the condition (1.1.17) holds. By the proposition, the boundary value problem
Py =0, ¢|,—0 = ¢ will have a unique solution ¢ satisfying all the statements of i) and i) of
the proposition.

Proof. By Lemma 1.1.5, the equation Py = 0,hy + 0,ha, ¢|.—0 = 1 has a solution in F if
and only if the fixed point problem (1.1.6) has a solution in E. Moreover, since (1.1.6) holds
modulo constants, we get

0
(1.1.20) —1—/_ K(z,2'YM() -V .p(2,-)ds

0 0
K(z,2")Myh(%',-) d?’
+/_oo (2 JMon(, ) d+ (n’azso—n’zazwrhl

where h = (hy, h2), K(2,2'), My, M(n/) are the matrices of operators

1 z+z' a:c 895
K(z,7') = §e( +2)|1Ds <]D | ID ‘)
+ Lele=11Ds] —0, ~(sign(z — )0
3 / 9
2 (sign(z — 2')) | D,| | D, |

-1y ~1
(1121) M(n'>=<°, %Dl "l )), Mo=<_°1 O 10| )

-1 n

Let us notice first that if U is in L?(] — 00,0] x R), then !f K(z z) (2/,£)d2'| may be
bounded from above by expressions of the form

0
/ el El ¢ A, €) d'
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where u stands for one component of U. It follows that U — fEOO K(z,2")U d?' is bounded
from L?(] — 00,0] x R) to itself. Moreover,

[Moh|[2 <[]z,

(1.1.22) , , ,
M@0z < C Qoo Il U 2
Consequently
0,0
z| Dy x
(1.123) || Vi — P! <|Dm| ¢) |0 < CU )0l V2Pl g2 + C Bl g2

O
| Dz 4

implies that for ||n||z~ small enough, the fixed point problem (1.1.6) has a unique (modulo

This, and the fact that by Lemma 1.1.3, *lP=! < ) is in L2L? if 1 belongs to H'/2(R),

constants) solution in . Moreover, the norm of ¢ in E, i.e. ||V, .| ;2,2 is bounded according

to (1.1.23) and (1.1.2) by 2(H|Dx|% Y| 2 + C |l f272) if [[7]| Lo~ is small enough. This gives
(1.1.11) and (1.1.12).

We notice next that (1.1.13) holds by definition of the H'/?(R)-norm. To prove (1.1.14), we
shall show that the fixed point problem (1.1.6) has a unique (modulo constants) solution ¢
in the subspace of E formed by those functions ¢ for which sup,<q |V (2, )| 172 < 400.
Taking (1.1.13) into account, we see from (1.1.20) that it is enough to show that

0
(11.24) sup / K(z,2YM(1f) - Vaop(2, ) d2|| - < C (I o) 17 N oo || D2 ).
z< —00 H 2
and
(1.1.25) ilgllo)Hn/ax@ - 77’28290HH,%(R) <Ol llgr-1) 1l Szléguvm,z(ﬁqu%(R)-

Inequality (1.1.25) follows from Property (A.1.21) in Appendix A.1. Taking into account
(1.1.22) we see that (1.1.24) will follows from (1.1.11) if we prove that, for any g in L?(] —
00,0] x R), there is an ¢?(Z)-sequence (c;); such that

< Cj2j/2 gl 22
L2

sup
2<0

0
/_ K(z,72) (Ajg) (2, d?

for any j in Z. According to the definition of K, the left hand side of this inequality is
bounded from above in terms of

0
H/ =N e 11 s o Bga(, €) d2’
— 00

L?(df)

which has the wanted upper bound by Cauchy-Schwarz.
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To prove (1.1.15), we rewrite the second component of equality (1.1.20) as

0
(1126) (145020 — 0/ Ouip = AP Dy o+ / [K(2,2)M ) Vool )] 42’

—00
where [-]o stands for the second component. By (1.1.13) and (1.1.24), we conclude that
(1.1.15) holds.
We notice also that the right hand side of (1.1.26) is a continuous function of z with values
in H~'/2. This is trivial for the e*/P=/|D,| 4 contribution. For the integral term, it suffices to

show that if g is in L?(] — 00, 0] x R), then HfEOO [K(z,2") — K(20,2")] (¢, ") d2’

o goes

to zero if z goes to zg. This reduces to showing that

H/ U eI _ ok e} (50!, €)]
—00

L2 (df)

goes to zero if z goes to zg. This follows by dominated convergence, from Cauchy-Schwarz
and the fact that

0
C(z,20,8) = / |e~lexliEl e_‘z‘)iz"‘fwz €| d2’

—00

is uniformly bounded and goes to zero as z goes to zg at fixed &.

The same proof shows that ¢ is also continuous on | — 0o, 0] with values in H _%(R) C
H_%(R). Using (1.1.26) to express 0,¢ from (14 1?)0.¢ — n'0,¢ and 9., we conclude that
0. is also continuous with values in H 3 (R).

This concludes the proof of i) of Proposition 1.1.6.
i) bis. By i), we only need to study large frequencies. We notice that if ¢ is in H %"”%,

e?|Del ( :cT/)w) is in L%(] — oo,O],H‘”'%). Moreover, we have seen after (1.1.21) that U —

f_ooo K(z,2)U(%,-)d?" is bounded on L?L?. Consequently, for any j > 0

< C||A; [ M)V, ¢]

0
Iy R CRYE T lyose

L2L2

Since v > u+ %, we have the product law C7~! HM2 ¢ HPS 5o the right hand side of the
preceding equality is bounded from above by

17 v ) 17 Nl o1 27302 e (21| Vo2t |

L2HH+% .

where ), ||cj(z’)\|2LQ(dz,) < 400. We conclude that

Vazp(z,-) — elPal ( Ozt >

D < C(In'ler-1) I llev=1 Ve 240

1 L2HME)
LZG—OO,O]7HP'+§)
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so that the fixed point giving ¢ provides a solution in E with V, . € L?(] — 00,0}, H “+%)

and [ Voo < O||1Da)z ¥

L2 HM+% Hqu% :

Let us check that (1+7/?)0,0—n'0z¢p is in L>(]—o00, 0], H_%””%). The case of low frequencies
follows again from i). Thus, by (1.1.26), we just need to stuy for j > 0 the L?norms in z of

AjelexI |Dm| (0
0
8y [ [KGAMONTasol )],

The L?(dz)-norm of the first expression is bounded uniformly in z < 0 by

O |Da2 0] 2 < O2¥| 21D 2 0

HLL+% :

On the other hand, the L?-norm of the second quantity is smaller than

0
—j 1 —|z—2'
(1.1.27) 9=i(uty) ‘/ e PN g ey ci 16] 95(2,€) d2

L3 (d§)

where

—

(sl
gj(Z/, g) = 2](M+Z)Aj [M(n,)v:c,z’@(z/v )] (5)
By the product lax C7~1 . HPS H“Jr%, we know that

2 ! 2
§>jo lgil32p2 < CI ller=1) Va0, ey -
J

Cauchy-Schwarz then shows that (1.1.27) is bounded from above by C279#||g;|l;2;2. This
gives the wanted inequality (1.1.16). The continuity is established as in 7).

Before starting the proof of ii), we state the following lemma.

Lemma 1.1.7. Let ¢ be in CP(R*), x in C§°(R) with X equal to one close to zero. Let b
be some function homogeneous of degree v > 0, analytic outside 0. For j in N*, z, 2/ <0,
x € R, define

1 , / .
(1.1.28) k(2,7 x) = o /e’xf—ziz Elp(e)p (279¢) de.

T
Denote by k:(jf(z, 2, x) the similar integral with @(2_3{) replaced by x(&). There is C' > 0 such
that for any j in N*,

(1.1.29) sup / kj-c(z, 0,7 —a')g(x') dz’ < 02" ||g]l oo
2<0 R Lo°(dx)
and
0 .
(1.1.30) sup / / kf(z, x—a)g(2,2')d2' da’ < 020V g|| oo oo -
z<0 —oo JR L (dx)
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Moreover, when 0 < r <1,

(1.1.31) sup
2<0

< Cligll e
Lo°(dx)

/ kE(2,0,2 — 2')g(2) da’
R

and if 0 <r <1 andp€]l,1/(1—r)],

(1.1.32) sup
2<0

0
[ [ K=o oy a e
—oo JR

<C HgHLOOLP .
Lo°(dx)

Proof. For j in N*, we perform the change of variables ¢ = 27¢’ in (1.1.28). Making then
Og-integration by parts, we get a bound

|k:;c(z, 7, x)| < Cn 27047 (1+27|z| + 27|z £ z/|)_N

for any N in N. This implies immediately (1.1.29) and (1.1.30). To treat the case j = 0, we
remark that, in the expression

[ et e () de

we may deform in the complex domain the integration contour close to £ = 0, replacing £ by
€ + ie(sign z)¢. We obtain

(1.1.33) k(2,2 0)| < C(1+ o] + |2 = 2)) "

Since r > 0, (1.1.31) follows at once. To get (1.1.32), we bound the left hand side by

0 ) %
(sup/ [/ ‘k‘éc(z,z/,a:'ﬂp da;'] ’
2<0 J -0 R

where p’ > 1 is the conjugate exponent of p. Using the bound (1.1.33) and r > 1/p/, we get
the finiteness of this quantity. O

dZ’) 91l Lo 2o

End of the proof of Proposition 1.1.6. To prove ii) of the proposition, it is enough to show
that under the smallness condition (1.1.17), the fixed point problem (1.1.6) has a unique (up
to constants) solution in the subspace of those ¢ in E such that SUPZSOHVLZ‘Pchl < +o00.
According to (1.1.20), this will hold if we prove that

(1.1.34) 50|11 (020, D2l ) | ¢ a < CYIDRI ¥ -y

(1.1.35) supl| (7 = 1°0:0) (2. )| s < C I o)1 ler=+ | Vieell o
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and

(1.1.36) sup
z<0

/ K(z, 2)M(7) - V() de

cr-t
1 1
(I o) (N s + 1o | [ 1 ) [ Vs oo

Moreover, these inequalities, (1.1.20) and the smallness condition (1.1.17) imply that estimate
(1.1.18) holds.

We notice that (1.1.35) is trivial. To prove (1.1.34), we write the function in the left hand side
1

as e?1P=1b(D,) | D, |2 9 for some b(&) homogeneous of degree 1/2. Then using the notations of

Lemma 1.1.7, for j > 0,

A (e7P+16(D,) | D7 ) = /k;(z,o,a; — o) [|Da|? Ay (2)) d,
So(e?1P+Ib(D,,) | D, |2 v) = /kg(z,o,x — 2)[|Ds|? Sov] (') da’

Estimates (1.1.29), (1.1.31) with » = 1/2 show that the L®-norm of these quantities is
. 1
bounded by 2-7(0=1/2) 1Dz wHCV,l/Q uniformly in z < 0, whence (1.1.34).

To prove (1.1.35), we notice that by (1 1.21), the operator associating to a R2-valued function
g, f_ooo K(z,2)Ajg(,-)dz" (resp. f K(z,2")Sog(7',+) dz’") may be written from

0
/ kj-c(z, 2 —a)Ajg(, 2" da’

(resp. the same expression with j = 0 and A; replaced by Sy), where g; is a component of
g, and k; is given by (1.1.28) with b homogeneous of degree 1. It follows from (1.1.30) with
r =1 that

0
Aj/_ K(z,2YM(1) - V(<) d?

sup
2<0

LOO

§C’HA]-M( V(,DHLooLoo <2701 SupHA M) - Vo(z

<0 HCV 1

Since the Hilbert transform is bounded on the subspace of those f in C7~! whose Fourier
transform vanishes on a neighborhood of the origin, the expression (1.1.21) of M (/) shows
that this quantity is smaller than

(1137 C (I =) Il sup [[ V(=" ) gpoa 2776070
On the other hand, (1.1.32) shows that

(1.1.38) sup
2<0

0
S0 / K(z M) - V(<) d2!
—00 oo

< CO|SoM () - V| oo 10
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Since the Hilbert transform involved in the definition of M (n') is bounded on LP for 1 < p <
00, we see that we are reduced to estimating HSO(n’Vgo)HLOOLp and HSO(n’2V<,0) HLOCLP. Taking
p > 2, we conclude that (1.1.38) is bounded from above by a multiple of

2 1—2 2 1—2
150(1' Vo) || Foo 12| So (1 Vo) || Locoe + [[So (12 V ) || Fow 12| So (2 Vo) || o oe
We write for k = 1,2,
S (1" V) HL°°L2 < Hn/zVQDHLwH ek HH ol Hcv Vel g1 s

150 V)| e e < 117 Vol powirr < C I [l [0 |22 190l o »

using property (A.1.21) of the Appendix A.1 and the fact that the product is continuous
from C7~! x C~! to C~'. Taking for instance p = 4, we get a bound for (1.1.38) of the form
(7 llcv) 171202 1 ||1/2 IVl Loogrr—1. Combining with (1.1.37), we obtain (1.1.36).

Let us prove the last assertion in ii). If we cut-off spectrally the quantity to be estimated
outside a neighborhood of zero, the upper bound follows from (1.1.18). We have thus to study

SI<118H\D:C\_%+9 X(D2) (140020 — 110:0) (2,)|| oo

where x € C§°(R) is equal to one close to zero. By (1.1.26), the wanted inequality will follow

from
- : 3
ilSlISHX(Dx)BZIDx‘ |Dm|2+9wHL°° = CH|D$|2 ¢HC’77%7
0

(1.1.39) sup / [|Dm|—%+9 X(Dy)K (2,2 YM(n') - Vm,zso(z/,-)] dz’

2<0 —00 2

of (T PS4 Y
1—20

from the boundedness assumptlon of Hn H Hn H o—1 and from (1.1.18). The first estimate

follows from (1.1.31) with 7 = 3 1 10, as in the proof of (1.1.34). To prove the second inequality,
we bound its left hand side from quantities

0
| [ e - gt a2 da
—o0 JR

where kT is given by an integral of the form (1.1.28) with $(277¢) replaced by X(£) and b homo-

(1.1.40) sup
2<0

Lo

geneous of degree r = % + 6, and where g is any of the components of Sy (M(n’)V%Zcp(z’, a:’))
By (1.1.32), we bound (1.1.40) by C ||g|| ;e s if p < 1/(3 — 8). We have seen above that this
quantity is smaller than

C(Ir o) |1 217 | o 2?1Vl oo

Taking % = % — 0, we get the conclusion. O
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Corollary 1.1.8. Let ) be in L> N CY(R) satisfying the condition (1.1.17). We define for 1
in H'/2(R) the Dirichlet-Neumann operator G(n) as

(1.1.41) Gy = [(1+12)d0 —1/0e] |

where @ is given by Proposition 1.1.6. Then G(n) is bounded from HY?(R) to H='/?(R) and
satisfied an estimate

(1.1.42) 1G] 512 < CI0 lev—)||1Dal? ¥ -

In particular, if we define G /2(n) = \Dx\_% G(n), we obtain a bounded operator from H'Y?(R)
to L*(R) satisfying

(1.1.43) |Gy2 ] 2 < CI e 1Da2 ]
Moreover, G(n) satisfies when 1 is in C"%’“’_%(R)
(1.1.44) IG@)ll s < C (I 1) |[1Ds]2 ¥

where C(+) is a non decreasing continuous function of its argument.

1.
cr2

1-20’

: WHHﬂ H??'Hé@il 1s bounded, then

If we assume moreover that for some 0 < ' < 0 < 3,

|Dx|_%+€ G(n) satifies
1

(1.1.45) 11Dl ™2 G g0 < CI [l ) 1Dl ]| oy -

Proof. Inequalities (1.1.42) and (1.1.43) follow from (1.1.15). The bound (1.1.44) is a conse-
quence of (1.1.18), the definition (1.1.41) of G(n)y and the fact that C7~! is an algebra. [

1.2 Main Sobolev estimate

Consider a couple of real valued functions (n,1) defined on R x R satisfying for ¢ > 1 the
system

8t77 = G(T,)w7
1 1
oY +n+ 5(@&!))2 - W(G

with Cauchy data small enough in a convenient space.

(1.2.1)
("7)7;[) + am'r/amw)2 =0,

The operator G(n) in (1.2.1) and in the rest of this paper is the one defined by (1.1.41) in
Corollary 1.1.8. We set, for 1,1 smooth enough and small enough functions

(1.2.2) By = G(Z)f_?‘@f;?fxw

Let us recall a known local existence result (see [52, 35, 2]).
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Proposition 1.2.1. Let vy be in ]7/2,+00[\3N, s € N with s > 2y — 1/2. There are 5y > 0,
T > 1 such that for any couple (no, o) in HS(R) x H%’V(R) satisfying

o1 1
123) Vo= Tamum € HE®),  Imlen + 104l o,y < o

equation (1.2.1) with Cauchy data n|i=1 = no, ¥)|i=1 = o has a unique solution (n,1) which
is continuous on [1,T| with values in

-1 =1
(1.2.4) {{10) € B (R) x H3I(R); ¥ — Togppn € HE*(R) }.
Moreover, if the data are O(g) on the indicated spaces, then T > c/e.

Remarks. The assumption vy € H 2 implies that g is in 3773 so that Corollary 1.1.8
shows that G(n)1o whence B(ng)yp is in C7~1 € L>°. Consequently, by the first equality in
(1.2.3), |Dw|% Y is in H*"3 C C""% as our assumption on s implies that s >« + 1/2. This
gives sense to the second assumption (1.2.3).

— The well-known difficulty in the analysis of equation (1.2.1) is that writing energy inequal-
ities on the function (7, \Dx\% 1) makes appear an apparent loss of half a derivative. The way
to circumvent that difficulty is now well-known: it is to bound the energy not of (n, \Dx\% V),
but of (7, |Dm|% w), where w is the “good unknown” of Alinhac, defined by w = 1 — Tg(;)yn
(see Chapter 2). This explains why the regularity assumption (1.2.3) on the Cauchy data
concerns g — T'g(;,)p, M0 and not vy itself. Notice that this function is in 3 while 1y itself,

written from o = wo + T(yy)y, 0 is only in H %’S_%, because of the H*-regularity of ng.
— By (1.1.44) if 4 is in 3773 and nisin C7, G(n)y is in C7~1, so B(n)y is also in C7~}

with || B(n)Y||gy-1 < C’(||77,Hcvfl)H|Dx|% ¢H(ﬂ*%' In particular, as a paraproduct with an
L°°-function acts on any Holder space,

10212 Tagyunll ooy < CU llen-1) Il 1Dl ] ey

This shows that for |||, small enough, 1 — ¢ — Tpg(,),n is an isomorphism from 23

to itself. In particular, if we are given w in H 35 O %’7_%, we may find a unique % in
.1 1 1
C2772 such that w = ¢ — Tg,yn. In other words, when interested only in €7 %-estimates

1 1
for |D;|? w, we may as well establish them on |D,|2 v instead, as soon as |||, stays small
enough.

— We check in Appendix A.4 that our assumption (1.2.3) implies the one made by Lannes
in [35] so that Proposition 1.2.1 follows from Theorem 4.35 in [35].

Let us state now our main result.

We fix real numbers s, s1, 5y satisfying, for some large enough numbers a and v with v ¢ %N
and a > ~, the following conditions

(125) 5750781€N7 S_azslzs()z%‘i"y.
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We shall prove L?-estimates for the action of the vector field

(1.2.6) Z =t0 + 220,

on the unknown in equation (1.2.1). We introduce the following notation:

For (n,1) a local smooth enough solution of (1.2.1), we set w = 1 — T(yn and for any
integer k < sy,

k

(1.2.7) MO @) =3 (1270t ) | oy + || Da]? 2202, )|
p=0

He)-

In the same way, for p a positive number (that will be larger than sy), we set for k& < sp,

k

(1.2 N = 3 (1200t o + D2l 2268, ,)-
p=0

We consider the set of functions (1, ) satisfying for any integer p < s;
(20, )mo € HP(R),  (00,)'ho € H2"7772(R),

(20,)" (Y0 — Timoywoo) € HT*P(R),

and such that the norm of the above functions in the indicated spaces is smaller than 1. For
€ €]0,1[, we solve equation (1.2.1) with Cauchy data n|;=1 = eno, ¥|i=1 = €¢bp. According to
that proposition, for any T > 1, there is €, > 0 such that if ¢ < &f), equation (1.2.1) has a

(1.2.9)

solution for ¢ € [1,Ty]. Moreover, by Proposition A.4.2, assumptions (1.2.9) remain valid at
t=Tp.

Our main result is the following;:

Theorem 1.2.2. There is a constant Ba > 0 such that MS(Sl)(TO) < %326, and for any
constants By, > 0, BL > 0 there is gy such that the following holds: Let T > Ty be a number
such that equation (1.2.1) with Cauchy data satisfying (1.2.9) has a solution satisfying the
reqularity properties of Proposition 1.2.1 on [Ty, T[XR and such that

i) For any t € [Ty, T[, and any € €]0, 0],

1 _1
(1.2.10) |1D=]2 (2, -)Hm,% + In(t, )|y < Boogt™ 2.

i1) For any t € [Ty, T, any € €]0, &)
(1.2.11) NGO () < Boost™2+5,

Then, there is an increasing sequence (O )o<k<s,, depending only on Bl and € with 05, < 1/32
such that for any t in [Ty, T, any € in |0,e9], any k < s1,

(1.2.12) M®\(t) < %Bgaték.
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The rest of this paper will be devoted to the proof of the above theorem. In [5], it is shown that
this result, together with an L®-estimate of the solutions of (1.2.1), implies global existence
and modified scattering for solutions of (1.2.1) with Cauchy data e(ng, o), where (n9,0)
satisfy(1.2.9) and ¢ is small enough. For the reader’s convenience, we reproduce below these
two statements. The proofs are given in [5].

The L% conterpart of the Sobolev estimates of Theorem 1.2.2 is the following:

Theorem 1.2.3. Let T > Ty be a number such that the equation (1.2.1) with Cauchy data
satisfying (1.2.9) has a solution on [Ty, T[xR satisfying the regularity properties of Proposi-
tion 1.2.1. Assume that, for some constant By > 0, for any t € [Ty, T[, any € in |0,1], any
k < 51,

M®) (t) < Byet®*,

S

(1.2.13)
N&(1) <VE<1

Then there are constants Boo, BL, > 0 depending only on By and some £, €]0,1], independent
of By, such that, for any t in [Ty, T[, any € in )0, (],

1 _1 2/
NEO(8) < 5 Booet ™24 P,

(1.2.14) )
1 _1
D212 ()| g + L0t ) o < 5 Bocet ™2

The main result of global existence for the water waves equation with small Cauchy data
deduced in [5] from the above estimates may be stated as:

Theorem 1.2.4. There is g9 > 0 such that for any e €]0, g, any couple of functions (ny, o)
satisfying condition (1.2.9), and whose norm in the indicated spaces is smaller than 1, equation
(1.2.1) with the Cauchy data n}i=1 = eno, Y|t=1 = e has a unique solution (n,v) which is
defined and continuous on [1,+oo] with values in the set (1.2.4).

1
Moreover, u = |Dy|2 ¢ + in admits the following asymptotic expansion ast goes to +oo:

There is a continuous function a: R — C, depending of € but bounded uniformly in e, such
that

T ? ie? la(z/t)|? 1
(1.2.15) u(t,z) = %g(;) exp<4|$t/t| + (“;6_4 |_|(x/{52|2| log(t)) +et 2 " p(t, x)

where kK is some positive number and p is a function uniformly bounded for t > 1, ¢ €]0, gg].

In the rest of this paper, we prove Theorem 1.2.2 i.e. we show estimates for the Sobolev norms
M (t) introduced in (1.2.7) assuming a priori Holder estimates of the form (1.2.11). To do
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so, we first need to establish a collection of estimates for the Dirichlet-Neumann operator.
Chapter 2 will be devoted to such a task. Next we have to design a normal form method
that will allow us to eliminate in the Sobolev energy the contributions coming from the
quadratic part of the non-linearity. This is the object of Chapter 3. Chapter 4 is devoted to
the commutation of the Z-vector field to the water waves equation, and in particular to the
Dirichlet-Neumann operator. In Chapter 5, combining the results obtained so far, we prove
the Sobolev estimates for the action of the Z-vector field on the solution we are looking for.
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Chapter 2

Estimates for the
Dirichlet-Neumann operator

The Dirichlet-Neumann operator G(n) has been defined in the first section of Chapter 1 (see
Corollary 1.1.8) and H'/?_estimates have been obtained for it. The goal of this chapter is to
prove Sobolev estimates for G(n) and related operators. We shall make an extensive use of
paradifferential operators. We refer to Appendix A.1 for the main definitions and results on
this topic.

We use in this chapter the notations introduced at the beginning of Chapter 1, in particular
for the elliptic operator P introduced in (1.1.1). We shall consider a couple (7,1)) belonging
to the set &, introduced after the statement of Proposition 1.1.6. This implies in particular
that estimates (1.1.14) and (1.1.18) hold.

Given (n,v) in &, we introduce the notations

G () + (0:1)(9:9)
2

(2.0.1) Bl = =P

’ V(UW = a:cl/} - (B(UWWM
Remarks. i) It follows from equality (1.1.41) and the fact that ¢|.—¢o = ¢ that

Gw = (1+ (90)*) 020 — Dandep | __,
(2.0.2) B(n)¢ = 0.0,
V()Y = (0zp — 0z10:) | .=0-
If one goes back to the (x, y)-coordinates introduced at the beginning of Section 1.1, for which

the fluid domain € is given by {y < n(z)} and the velocity potential is ¢(z,y) = p(z,y—n(x)),
one sees that B(n)y = (9y0)|aq and V(n)Y = (0.¢)|sq-

i1) We rewrite, for further reference, the first equality of (2.0.2) taking into account (2.0.1),
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as

(2.0.3) B(n)y — (0:m)V (n)y = G(n)y.

Finally, we shall eventually denote 1’ instead of (9,7) to simplify some expressions.

It follows from (2.0.1), the estimate (1.1.18) and the classical product rule in Hélder spaces
(see Proposition 8.6.8 in [25]) that we have the following

Lemma 2.0.5. Let v €]3, —i—oo[\%N. There exists a non decreasing function C: Ry — Ry
such that, for all (n,v) € &,,

(204)  1COBlerr + IB@Wlers + IVl grar < (I llov1) [ 1D ¥

1.
c2

2.1 Main results

We shall state in this section the main result that will be obtained in this chapter. We want
to get estimates for the Dirichlet-Neumann operator G(n)v, as well as the related operators
B(n)y, V(n)y introduced in (2.0.1), in terms of Sobolev and Hélder norms of n and ¢. The
main result will be expressed in terms of the “good unknown” of Alinhac w = w(n)y defined
by the relation

(2.1.1) w(my =1 — Ty-

We shall explain, in the comments following the statement of the next theorem, the interest
of working with (n,w) instead of (n,%). Recall from the introduction that w defined by
(2.1.1) appears naturally when one introduces the operator of paracomposition of Alinhac [7]
associated to the change of variables that flattens the boundary y = n(x) of the fluid domain,
namely (z,y) — (x,z =y —n(x)). This is a quite optimal way of keeping track of the limited
smoothness of the change of coordinates. Though we shall not use this point of view here, it
underlies the computations that will be made at the beginning of the next section.

Let us now state our main result.

Theorem 2.1.1. Let (s,7) € R? be such that

1 1
— = >7>3, —N.
S—5>7 7%2

There exists a non decreasing function C: Ry — Ry such that for all (n,v) in H5(R) x
H%’S_%(R) such that (n,1) belongs to the set &, introduced after the statement of Proposi-
tion 1.1.6, the following properties hold:
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(1) (Tame estimate)

(2.1.2) ([G)Yll s + Bl g1 + 1V ()P o

< C(Illem) {N1Det2 %]l ey iz + [11D2 12 0]

HS*%}'

(13) (Paralinearization) Define F(n)y by
(2.1.3) G(n)y = |Da|w — 0 (Ty(myyn) + F(n)y.
Then

@14)  (F@] gors < CUnlle) {IDal2 0l ooy 10lls + Il |1l ]

HS*%}'

(7i1) (Linearization)
(2.1.5) [IGY = [Da| ¥l g1 + 1Bm)p — Dol Yl gsr + IV (MY — 00t groa

< C(nlls) {I1Dal? 6] ooy Ilizs + s 11Dal? 9|

HS*%}'

Let us comment on the above statement.

— All these estimates are tame: they depend linearly on the Sobolev norms. Moreover, we
consider the case where n and v are at exactly the same level of regularity (i.e. n in H® and
Y in H %’s_%). This is important to prove H®-energy estimates for the water waves equation.
Indeed, as already explained in the introduction, we shall write in Chapter 3 the water waves
equation as a quasi-linear system in the unknowns (7, ]Dx]% w). To be able to obtain H*-
energy inequalities for this equation, it is important to check that the right-hand sides in the
inequalities of Theorem 2.1.1 are controlled by the H*-norm of (7, ]Dx]% w). Let us show that
this property holds. To do so notice that by Lemma 2.0.5 if (n,v) belongs to &, then B(n)i
belongs to C7~! so that B(n)y is in L®. Then, as a paraproduct with an L>-function acts
on any Sobolev spaces, we have

1
11022 Tpypnl| oy S 1B Lo 0]l -

(2.1.6) 1
< CInlle) [[1D2]2 9| ey Il s -

Thus if we express ¢ as w + T'p(;)y7 then one obtains

(2.1.7) Dtz ], o g < [1DalE ] oy +C Ulmlle) 1Dl ] -y Nl

1 replaced with

1
Had we proved the statements of the theorem above with H|Dgc|§ ¢HH5*

1D, o]

this quantity from the H®-energy (which is the H*-norm of (7, |Dw|% w)).

s> then this would give a bound in terms of HnHH preventing us to control

s+
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— It has been known since Calderén that, for n a smooth function, G(n) is a pseudo-differential
operator that, in one dimension, differs from |D,| by a smoothing remainder. The paralin-
earization result (ii) above gives a more precise description of G(n)Y¥ when 7 has limited
smoothness. Namely, this result states that G(n)y — |Dy|v is the sum of the “explicit”
contribution — |Dy| Tg(p)y — Ou(Tv(m)yn) and of a smoothing remainder F(n)y.

— Assertion (iii) of the theorem computes the error one gets when approximating G(n),
B(n)y, V(n)y by their linear part. In this direction, we mention that we shall prove two more
technical statements that will be used below. In section 2.6 we study the Taylor expansion
at order 2 and 3 of G(n)y and of related quantities as a function of 7, when 7 goes to zero.
The explicit knowledge of this expansion will be used in the rest of the paper. In particular

we shall prove that, for some explicit quadratic term F(<g) (), ‘F(n)w — Fl<g) (n)wHHS is

estimated by

Cllmllem) Inllor {1D21? 0l ooy Inllszs + Il 1D212 ¢l ey

This estimate will allow us to have a quadratic approximation of the equations without loss
of derivatives.

The proof of Theorem 2.1.1 will be given in the next sections. Let us describe the strategy
we shall use.

To be able to obtain estimates for G(n)y (and the other quantities B(n)y, V (1)), we need
to return to the definition of this function from the boundary values of the solution ¢ of
the elliptic boundary values problem Py = 0, ¢|.—9 = %, where P is given by (1.1.1). The
beginning of the next section is devoted to the study of a related elliptic paradifferential
problem T, W = f, W|.—¢ = w, where W = ¢ — Tp_n is a function whose boundary value
is the new unknown w, and where pg is the symbol of P. The point is that the choice of W
is made so that the right hand side f = T},,,W is a continuous function of z with values in
HS™=3 (C H? if v > 3) while a mere paralinearization of Py = 0 would give that T}, is a
continuous function of z with values in H5~!. This gain of smoothness in the right hand side
will be instrumental in the proof of the estimate in (éi) of the theorem.

Once the elliptic problem satisfied by W is established, we deduce from it bounds for W
in z < 0 in terms of W|,—9 and n (see Proposition 2.2.9). They are proved microlocally
decomposing the elliptic boundary value problem into two coupled forward and backward
parabolic equations, and performing a bootstrap argument exploiting the gain of smoothness
of f =1T,,W explained above.

These estimates of W are next used in section 2.3, which is devoted to the proof of the tame
estimate (2.1.2) from the bounds of W in z < 0.

Section 2.4 studies the paralinearization of the Dirichlet-Neumann operator: one establishes
that F'(n) defined by

F(T/)T/) = G(UW - (|Dac| W= 890(TV(17)¢77)
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is a smoothing operator satisfying (2.1.4), using again the bounds on W obtained in sec-
tion 2.2.

The assertions of the statement (iv) of the theorem are deduced from the preceding result in
section 2.5.

We end up Chapter 2 with a section devoted to a variant of the estimates of Theorem 2.1.1.
Actually, inequalities (2.1.2) and (2.1.5) hold when 7 and 1) are at the same level of regularity
(i.e. nin H® and v in H %’s_i). We shall need estimates of the same type when 7 is smoother
than 1, namely 1 in C7 and ¢ in H 24=3 for some p < v — 2. These bounds are established
in Section 2.7.

2.2 Sharp estimates

Let us introduce the following notation. Set

1 / 7
a:m, b= —-2an, c=an,

where 7’ stands for 9,n7. Then the solution ¢ of Py = 0, ¢|,—¢9 = % obtained in Proposi-
tion 1.1.6 satisfies,

(2.2.1) %0 + ad2p + b0, 0,0 — cd,p =0 in {z <0},
(2.2.2) ©|2=0 = 1.

Assumption 2.2.1. We fix (s, u1,7) € R® such that
1 1
S—§>’7>3, 0<pu<s, 7§Z§N.

Throughout this section, we assume that (n,1)) is in the set £, defined after the statement of
<1 . 1
Proposition 1.1.6 and that moreover (n,v) € H® x H2" is such that w € Hokts,

We introduce the function defined on {(z,2); z < 0}

(2.2.3) W=9¢—-Ty,n

where the paraproduct is taken relatively to the z-variable alone, z < 0 playing the role of a
parameter. In particular by (2.0.2), Wl.=0 = ¥ — Ts(;)yn = w(n)1. Our goal is to study the
regularity of ¢, W in terms of the regularity of v, n and w.

Let us set a notation that will be used constantly below. If u is defined on {z < 0}, we
shall denote by |lul|y- the z-dependent function defined by ||ul| 4~ (2) = ||u(z, )|/ g-. The
inequality || f||z» < [|g||~ thus means that | f(2)| g4 < ||g(2)| g for any z such that f(z)
and g(z) are well defined. We denote by C' various non decreasing functions of their arguments.
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Lemma 2.2.2. There exists a non decreasing function C': Ry — Ry such that

(2.2.4) O2W + (Id + T )PW + Ty0,0,W — T,o,W <
satisfies the bound
(2.2.5) sup £2) 12 < O lrs) Iz 509 V() s -

Remark 2.2.3. — In equation (2.2.4) above, we make appear as a coefficient of 92W the
operator (Id + T,_1) instead of T,. By definition (A.1.3) of the paradifferential operators,
Ty — Id is a Fourier multiplier whose symbol is supported for |£| < 2. Therefore, (Id+Ty—1) —
T, = Id — T is a smoothing operator. Nevertheless, we prefer to use (Id + T,—1) instead
of T, because a — 1 = O(n?), ¥ — 0, so that the remainder coming from symbolic calculus
will vanish at ” = 0. In that way, we shall get the quadratic bound (2.2.5) instead of a mere
sub-linear bound as (1, ) — (0, 0).

— The idea of the proof of the proposition is as follows: we shall paralinearize equation (2.2.3).
This will give us

8390 + (Id + Ta—l)ag‘p + T1p0.0.p — Te0,p = f{ + fé,

where f} is a a remainder that has similar bounds as f in (2.2.5) and f{ is made from
expressions of type T83¢(a — 1), Ty,0.4b, Th.,c. These contributions will not be smoother
than 7" (since ¢ involves 1) i.e. will not be in a better space than H~2 if 5 is in H®. The
gain in introducing W instead of ¢ lies in the fact that

(02 + (1d + Ty1)02 + T40,0. — T.0. ) To.on

will be equal (up to smooth remainders) to fi, which gives the asserted result.

To start the proof, we first obtain a paradifferential description of the coefficients a, b, c in
(2.2.1).

Lemma 2.2.4. One may write
(2.2.6) a—1=Tun +r, b=Te o0 +712, c=Tun" + Toyn + 13
where 1y, £ =1,2,3, belong to H 3 and satisfy

(2.2.7) Irell goves < C(I llen=2) 1l (|7 || o €= 1,23,

Proof. We use the fact (see section 5.2.3 in [38]) that if F' is a smooth function vanishing at
0 and if w is in H¥(R) with s > 1/2, then

F(n') = Tpipyu+ R()
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where R(f) € H* 5(R) and | R(1f)| grevr-2 < Ol gr) 10 || s
Since a — 1 = F1 (') and b = Fy(r/) with

2
U 2u
A =-1rg RO=-1rg

so that F{(n') = ab and Fj(n') = b? — 2a, we obtain the first two formulas in (2.2.6). To get
the last one we write

= C”]” _ TaTI” 4 Tnna + r?l’,
where the remainder r3i is in H5t7~3 by the paraproduct formula (A.1.17) in Appendix A.1
and satisfies the bound (2.2.7). We use the first equality (2.2.6) to express a in T;7a. We get

Tn//a = Tnnl + Tn// ab?’}/ + 7"%7

for a new remainder of the same type r% (as a paraproduct with an L* function acts on any
Sobolev spaces, see (A.1.12)). Finally, by symbolic calculus (see (A.1.14)), Ton Toyn' = Topyrn’
modulo another remainder of the same type. Since T,»1 = 0 by definition of a paradifferential
operator, this concludes the proof of the lemma. O

Proof of Lemma 2.2.2. We use the notation D = —id. If po(x,&, () is a polynomial in ¢, with
coefficients that are paradifferential symbols in (z,§) i.e.

p0($7£7 C) = Zp8($7£)<av

we shall write Tj,,¢ for ), Tpe (Dg)(z, ).
Let us write the contributions to the left hand side of (2.2.1) as

(a —1)D2p =T, 1(D3¢) + Tpz,(a— 1) + Ry,
ngch(,D = Tb(DchZQD) + TDzngob + Ra,
cD.p =T.(D,p)+Tp,,c + Ra,

where Ry, ¢ = 1,2,3, the remainders in the paralinearization formula, satisfy estimate (2.2.5).
In the second term in the right hand side of the above equalities, we express a — 1, b, ¢ using
(2.2.6). The remainders ry in (2.2.6) will give rise, according to (2.2.7), to new contributions
satisfying (2.2.5).

Now we introduce
po(a,€,¢) = + € + (a = 1) +bEC + icC

and
Ty, = D?+ (Id+ T, 1)D? + T,D,D, — T.D.,.

Notice that we do not have Ty = D? (because we assume in Definition A.1.2 that the cut-
off function €, which enters into the definition (A.1.3) of paradifferential operators, satisfies
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0(&1,62) =0 for |&2] < 1). However, T),, — Tvpo =Te2 — D? is a smoothing operator. Then we
see that (2.2.1) may be rewritten as

Tpo(p = _TD%goTabn/ - TDxngoTbZ—zanl

(2.2.8) . . "
—iTp, Ty —iTp, o Tan” + 1

where r satisfies (2.2.5). Since D2y, D, D, (resp. D,¢p) is in L*°(] — o0,0],C7~2) (resp.
L®(] — 00,0],C771)) and ab, b*> — 2a, a (resp. abn”) belong to C?7~1 (resp. C7~2), it follows
from the symbolic calculus result (A.1.14) that the differences

TD:%@Tab - TabD%gm TDzngDsz—2a - T(b2—2a)DxDz<p7 TDzapTabn” - Tabn”chp
are operators in L(H*™1, H¥™73) (vesp. Tp,,T, — Tup., is an operator in L(H*™!, H51772))

with operator norms bounded from above by

C(Hn/”(ﬁ*) sup ”Vx,zQOchfl .
2<0

We conclude that (2.2.8) may be written

(2.2.9) T =Ty +r
where r is a remainder satisfying (2.2.5), and where ¢ is the symbol
(2.2.10) q(z,€,¢) = abd*¢ + (b* — 2a)0,0.0 — abn 0. — ia(D.p)E.

By definition of W, the left hand side of (2.2.4) is up to sign Tvpo(go — Ty, 1), so that taking
(2.2.9) into account, and remembering that T}, —Tp, = T¢2 — D? is a smoothing operator, we
see that the proposition follows from the following lemma.

Lemma 2.2.5. Under Assumption 2.2.1,

sup Han/ - TpoTazeon‘ -3 S CIn'llm=1) nll g= sup Vi, 20l g1 -
z<0 2<0

By the formula of composition of paradifferential operators (A.1.7), which is exact at order 3
since po(z,-) is a polynomial of order 2 in (&, (), we may write

(2.2.11) TpoTo.o = Tpoo.p + Ty +Tgy + R
where R is an operator satisfying

HM&(HS,HHH) < C(”n/HCvﬂ) Sglo) V20l gy1
and where g1, go are given by
1 2
91(2,§,¢) = n (341105290 + (55110)(5:(;@90)),

92(5,6,0) = — 5 ((©200) (0%0) + 2(0,0ep0)(0:0%0) + (22p0) (D20-1))
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Computing these expressions using that (2.2.1) implies that
(02 + ad2 + b0,0.) 0. = 02y,

we obtain

(.6.€) = 2 (26 43¢ + 100 + (26 +10)0,0.¢).
(2.2.12) i

92(2,6,0) = ~cd.

Finally, we get that the right hand side of (2.2.11) may be written T, + R where e is a symbol
of the form

6(33‘, Z, 67 C) = C2F0(ﬂj‘, Z) + CF1($7 2, 5) + F2(x7 2, 5)7
where Ty is a function of (z, z), I'1, 'y are symbols in (x,€) depending on the parameter z,
with
a2, 2,8) = a(9.9)&? — ib(92¢)¢ — 2ia(0,0:9)¢.

We are reduced to showing T,n' —Ten = 0. Since 1 does not depend on z, we have T,.n = Tr,n,
so that it is enough to check that I's(x, z,&) = q(x, z,£)(:£). This follows from the above
definition of I'y where we substitute to 9?¢ its expression 92¢p = —ad?¢ — 00,0, + cO.p
coming from (2.2.1), remembering that ¢ = an”. This concludes the proof. O

We thus have proved that the unknown W solves the paradifferential equation PW = f,
where

(2.2.13) P =0+ Id+ Ty 1)0* + Tp0,0, — T.0..
Our next task is to find two operators P_ and P, such that

P = (0. — P)(0. - Py)
modulo an admissible remainder.

Lemma 2.2.6. Set
P_=—|Dg|+Tpye, Py =I[Dal+ T

where p = p(x,§) and P = P(x,§) are two symbols given by

p(@,§) = a(x) (10xn(x)§ — [€]) + c(x),

(2.2.14)

Pz, &) = a(x) (10:n () + [£]) -
Then
(2.2.15) (0. — P-) (0. — P) = P+ Ry,

where P is given by (2.2.13) and Ry is a smoothing operator, satisfying

2
(2.2.16) [Roull s < Clllnll o) 1l |10zl g

for any p € R and any u € H*(R).
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Proof. Below we freely use the facts that, for any symbol a = a(z, §),
Ta(:c,f)(if) = T40xz, Ta(x,§)|§| =Tu|Ds|, 0:(Tou) = TaOpu + Ty, qu.

Since b = —2a0,n, by definition of P_ and Py, we have P_ + P, = —T,0, +T.. Consequently,
we have (2.2.15) with

Ro=P_Py — (Id + T, 1)0?
= Tpt1g |Dal = 1Dal Tp—jg) + T i Tp—ig) = Ta10s-

The proof of (2.2.16) is in two steps. We first give an exact formula for T, ¢ Dz |—|Dz| Tp_j¢|-
Namely we prove that Tp,, |¢| |D|—|De| Tp_je| = T,-10%—T, for some explicit symbol g. Then
we use symbolic calculus to estimate the difference between T}, ¢ Tp_j¢| and T}.

To compute T}, (¢ | Dz| — |Dz| Tp_j¢| we use the two following identities (see Lemma A.1.11):
for any function a = a(x) in L>°(R) and any function u in L?(R),

(2.2.17) |Dg| Ty | Da| e + 8, TpOpu = 0,
(2.2.18) |D| TuOpti — 9,T | Dy u = 0.

Now, by definition,
p+I1&l = an' (i) +an” + (1 —a)l¢], P —I[¢]=an'(i€) + (a — 1)¢],
SO

(2.2.19) T,

ptlel Dz = |Da| Tp_g|

= Tay s | Dal + Loy | Dol + T1—a | Do|* — | Ds| Tayy O — | D Tus | D]
Since Ty Oy + Ty = Oy (Tan") — T(a,ay > the identity (2.2.18) implies that
(2.2.20) Tong s |Dal + Tt | De| = 1Dl T s — Tigpapy 1 Dal
On the other hand, (2.2.17) implies that
(2.2.21) Dal Tur |Da| = —0uTasDy = T — Tar .
Setting (2.2.20) and (2.2.21) in (2.2.19), we obtain that

Tp—l—\s\ |Dw| - |Dm| TP—\&\ = —T(a,a)n' |Dw| +T1-q |D9ﬂ|2 + Taxaaw + Ta—lag
= T(a—l)ag - Tq

with
(2222) q =1 (0ra) ] - Dra(i€) + (a — D[]
We conclude that Ry =Ty ¢ Tp_je| — Ty-
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It remains to estimate the difference between T}, ¢ Tp_|¢ and T;. To compute T}, ¢/ Tp_|¢|,
it is convenient to introduce the symbol

p(z,§) = a(z) (i0n(x)€ - [¢]) ,

and to decompose p as p + c. Since 8?@(3:, ¢) =0 and 8?]5\ =0 for k > 2 and £ # 0 and since
the symbols p, P belong to T'}_; (R), using (A.1.7) applied with (m,m’, p) = (1,1, — 1), we
obtain that

TorigTr-lg) = Toy + Q1

where 1 is of order 3 — v and the symbol ¢; is given by

@1 = (p+ €)(P ~ 1€) + 306+ €D0L(P ).

This simplifies to

1 1
q1 = _52 + pP + 2(162 + ;agpaxP + ;‘—ZGxP

On the other hand, using the notation (A.1.4), we have
My (p+ 1€ + My (P~ 1€]) < Clllnlle) Il
and hence ||Q1H£(Ht,Ht+~/73) < C(HnHCV) HUH%W
Similarly, (A.1.7) applied with (m,m’, p) = (0,1,2 — ~) implies that
TeTp-jg) = Te(p—gl) + Q2

2
where Q2| g rr++-s) < Cllnllen) il

The previous observations yield T}, ¢ Tp_j¢) = T + Q1 + Q2 with

1 1
7=+ pP + 2a€% + gﬁgp&cP + gé—|8wP + (P —[&])-

Now using the calculation results
9 1
pP = —a&”, E(@gp)(ﬁwP) +cP =0,

we obtain that

r= (0= DIgP + 0P — cle

and it is easily verified that 7 = ¢ where ¢ is given by (2.2.22) (recalling that ¢ = an”). We
conclude that Ry = Q1 + Q2 and the previous observations yield

2
[ Roull g5 < Cllnll ) Il el o -
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Having proved this first estimate for the remainder, we prove it is estimated by the derivative
of u only:

2
[1Roullgn < Cllnllcr) Inllen 192wl s -

To do so, introduce £ = £(&) such that £(§) = 1 for |{| > 1/3 and &(§) = 0 for || < 1/4.
Split Ry as
Rofi(Dx) + Ro([d — /%(Dx))

Notice that Ro(Id — k(D)) = 0 since A(Id — k(D)) = 0 for any paradifferential operator A.
On the other hand,

R0 (D)l s < CUInll ) Imllee 17(Da )] g
2
< C(HnHm) ”77”cv ”a:cU”Hu—l .

This completes the proof. O

By construction, it follows from the previous lemma that
(0, — P_)(0, — P+)W = PW + RoW.
On the other hand, f := PW is estimated by (2.2.5). Introduce now
w=(0; — PL)W.
Then

(2.2.23) { (0. = P_)w = f + RoW,

Since Rep(z,£) < —c|¢] for 1 < [£], the first equation in (2.2.23) is parabolic. Since
Re P(z,&) > c||, the backward Cauchy problem is well posed for the second equation. Hence,
up to time reversal in the second equation, System (2.2.23) is a system of two paradifferential
parabolic equations. We begin by recalling a classical estimate for such equations.

Lemma 2.2.7. Let p € R, T € [0,+00). Let u in C°([0,T]; H*(R)) N C1([0, T]; H*~1(R))
and F in L>=([0,T]; H*(R)) satisfying

o + |Dm| U+ Tq_|§|u =F,

for some symbol g € TH(R) (independent of time) such that Req > c|&|. Then, for any e > 0,
u belongs to CO([0,T); H**172(R)) and there exists a positive constant K depending on M{(q)
(see (A.1.4)) such that

(2.2.24) ||uHL°°([O,T};H#+1*5) < K [u(0)| gusr-= + K ||FHL<>O([0,T];Hu) + K ||UHLO<>([07T};H;L) :
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Proof. This follows from [41] (see also [6, Prop. 4.10] and [3, Prop. 3.19]). We recall the
proof for the sake of completeness. Write

Ou+Tyu = g := F + (Tje| — | Dz )u.
Since Tj¢| — |Dy| is a smoothing operator we have

Hg”LOO([O,T};HH) < HFHLoo([o,T};Hu) + HUHLOO([O,T];HM) :

Given 7 < 0, one denotes by e(r,-,-) or simply e(7) the symbol defined by e(r,z,§) =
exp(7q(z,§)) so that e(0,z,§) =1 and d-e(7, 2,§) = e(7, 2, §)q(x, ).

Now, given y € [0,7T] and ¢ € [0,y], write
O (Te(t—y)u) = Ter-9)9 + (Tore(—y)t = T To)

and integrate on [0, y] to obtain
y
Tlu(y) = Te(—y)u(o) + /0 {Te(t—y)g(t) + (Tﬁte(t—y) - Te(t—y)TQ) u(t)}dt
Which is better formulated as
Y
u(y) = Te(—yu(0) + /0 {Te(t—y)g(t) + St —y)u(?t) }dt + (Id — Ty)u(y),

With S(T) = (T@TE(T)’LL — Te(T)Tq)-

According to our assumption that Req > c|¢|, ¢ € T'}(R), we see that e(7) belongs uniformly
to T'Y(R) for 7 € [T, 0]; which means that SUP-¢[_7,0] MY (e(r,-,-)) < C(M{(q)) where the
semi-norm M{(q) is as defined in (A.1.4). Therefore d.e¢ = eq belongs uniformly to T'{(R).
It follows from symbolic calculus (see (A.1.8)) that S(7) = T,
order 0. Therefore there exists a constant K depending only on Mll (¢) such that, for any
y € [0,7] and any t € [0, y],

— T Ty is uniformly of

15t = y)u(®)l gn < K u®)]|
Similarly, (A.1.12) implies that
1Ty (O] e < K Nu(O)] s -

On the other hand, |y — t|' ¢ (€)' ~¢e(t — y,x, &) is uniformly of order 0 so that

Yy
/0 HTe(t—y)g(t)Herl—s dt S ”gHLOO([O,y};Hu) .

It follows that there exists a constant K depending only on Mll(q) such that, for all y € [0, 7],

[w@) | gusr-e < K [Ju(0)|| gusr-e + K ||F||Loo([o,y];Hu) + K HUHLOO([o,y];Hu) .

This proves that u € L>([0, T]; H*T1=¢(R)). Since u € C°([0, T]; H*(R)) by assumption, this
implies, by interpolation, that u € C°([0,T]; H*T'=2¢(R)). This gives the desired result with
¢ replaced with 2¢. O
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We are now in position to estimate (w,W') by using the previous lemma and the fact that
(w, W) satisfy (2.2.23). For later purposes, it is convenient to state this as a general result.

Lemma 2.2.8. Consider 7 <0, p € R and € > 0.
(i) Let v in L®([r,0]; H*T1(R)), V in CO([r,0); H*T1(R)) N C([r,0]; H*(R)) satisfying

If 0,V (0) € H*'=¢(R) then V € C°([r,0]; H*t27¢(R)) and there exists a non decreasing
function C depending only on v, T, u, e such that

(22.25)  [IVa 2Vl poo (pr, 0, mre+1-4)

< Cnllen) 10V O) s + 2l zmss + 1V Lo g )-

(i3) Consider V in L([r,0]; H*~O=3)(R)), v in CO([r,0]; H*(R)) N C*([r,0]; H*~1(R)), and
fan L*°([r,0]; H*(R)) satisfying

(2.2.26) (0. — P_)u = f + RyV.
Then, for any ' in]7,0[, v belongs to C°([7',0]; H*T1=¢(R)) and there exists a non decreasing

function C depending only on v, 7,7, u,e such that

(2.2.27) lell o sy < CUMler) (171 oo rpazmy + 12l oo gz

+ C(lnller) Inll e ”Vx,zv”Loo([no};Huflf(wa)) :

Proof. To prove statement (i) we apply Lemma 2.2.7 to the auxiliary function u(t,z) =
(0;V)(—t,z) which satisfies
Z?tu + ’Dx’ U+ Tp_|§|u =G

where P is given by (2.2.14) and where G(t,z) = —(9,v + T5,pV)(—t,z). Thus the estimate
(2.2.24) applied with T' = —7 implies that there exists a positive constant K = K(||1]|--)
such that

||u||Loo([o7_T];Hu+1fs) < K [[u(0)| gusr-= + K ||G||LOO([0,_T};H;L)
+ K Hu”Loo([(],—TLHH) .
This yields
102V | sy < K102V Ol s+ K 052 e s
+ K [0V [l poo (17,00 0y -

Since 0,V = P,V + v can be estimated by means of 9,V and v, we obtain (2.2.25).
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To prove statement (i7) we apply Lemma 2.2.7 to the auxiliary function u(t,z) = tv(t+ 7, )
which satisfies u(0,2) = 0 and

O+ |De|u+Ty_jqu=F
with ¢ = —p (where p is given by (2.2.14)) and
F(t,z)=tf(t+r,2)+t(RV)(t+T1,2) +v(t + 7, ).

It follows from (2.2.16) and the assumption v > 3 that ||F'[| e (o, _r),n) is bounded by the
right-hand side of (2.2.27).

Since uli=o = 0, the parabolic estimate (2.2.24) implies that

[l oo ([0, =) it 12y < KN F[| oo o,— sy + K N[0l oo (g0, — ), 1) -

Clearly,
ol o spasiny = 50D (1 = T)o()l g < 171 sup [[0(2)]] 00

z€[1,0] z€[T1,0

and
sup ||vf|guri-e < ——— sup |[[(z = 7)u(2)]| s
z€[’,0] ’T — T ze[r,0]
<1 sup )l
|T - 7—/| te[0,—7] e

Therefore, the previous estimates imply (2.2.27). O

We are now in position to prove the main result of this section. Given 7 < 0, we use the

notations
E(T) = Sl[lpo {”aZQOHH—l/Z + Haxtp — axnaZQDHHﬂ/z} ,
z€|[T,
(2.2.28)
D(7) := sup H@zgo— |Dx|<pHH,1/2.

z€[T,0]

Proposition 2.2.9. Let (s, i1,7) € R? be such that
1 1
S_§>7>37 OSIU’SS7 7¢§N7

and assume that (n,1) is in the set £, defined after the statement of Proposition 1.1.6 and
-1 .
that moreover (n,) € HS x H2" is such that w € Hah+s

Consider e > 0 and 7 < 7" < 0. There exists a non decreasing function C: R — R such that

sup 10-W (2) = PaW (2)|| gusv—s—c < c1lnll s + c2 |0xw]] gru—
(2.2.29) =€l
+ o E(T) + c3D(1),
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and

(2.2.30) oup Ve aW s < e [l + s 0ulgn + esB(r) + sD(r),
z€[T’,0
where
(2.2.31) c3:=C(|nllgv),  c1=c3 St[lp] Ve 0(2)lgv-1,  c2:=calnllcn-
z€[T,0

Remark. We prove not only a priori estimates but also an elliptic regularity result. Namely,
the previous statement means that if the right-hand side of (2.2.30) is finite, then so is the
left hand-side.

Proof. Given 7 €] — 00,0[ and (i, o) € R?, introduce

Ay(150) = Sl[lp] 10.W — PyW|| o ,
z€[T,0

Ag(ip) := sup [V W/ -
z€[1,0]

One denotes by A; the set of u €] — oo, s| such that the following property holds: for
all (o,7,7') € R? such that

o€ luu+y-3), <7 <0,

the function 0, W — P, W belongs to C°([r/,0]; H° (R)) and there is a non decreasing function
C: Ry — R, depending only on (s,~, s, 0, 7,7") such that

Ay(1'50) < et |Inllgs + c2]|0ew]| s + e3A1 (T3 =1/2) 4 c2As(1;—1/2),
where ¢, ¢ and ¢ are as in (2.2.31).

Similarly, one denotes by As the set of u €] — 0o, s] such that the following property holds:
for all 7 €] — o0,0], the function V, W belongs to C%([r,0]; H*(R)) and there exists a non
decreasing function C: Ry — R, depending only on (s,~, u, 7,7') such that

Ao(ms 1) < e |Inll s + 03{“890“’“1{# + Ai(75—1/2) + As(7; _1/2)}'

The proof of Proposition 2.2.9 is in two steps. The key point consists in proving that
(2.2.32) A =]—00,s], Ay =]—00,5].
To prove (2.2.32), we proceed by means of a bootstrap argument (as in [2]).

Recall that, by notations, w = (9, — P;)W and

(0. — P_yw = f + RoW,
(0. — POW = w,
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where f is given by Lemma 2.2.2. It follows from the estimate (2.2.5) for f and Lemma 2.2.8
that, for any (s,7,u) as above, any 7 < 7/ < 0 and any £ > 0, there exists a non decreasing
function C: Ry — R such that

A(thip+1—¢) <er|nllgs + cada(rsu — 1 — (v = 3)) + csA1 (T3 ),
As(tip+1—¢) < c3||0pwl| gusr-e + c3Ai(T5 0+ 1) + c3Aa (5 ),

where ¢1, ¢ and ¢3 are as in (2.2.31). This implies that, for any € > 0,
(2233) p—(y=3)+ecec A, p—1—(y—3) € A

= min{u+1—c—(y—3),s} € Ay,
and
(2.2.34) p+d—v+ee A, pe Ay = min{u+1—e¢,s} € As.
Now, let us show that (2.2.33) and (2.2.34) imply (2.2.32). Firstly, notice that, clearly,
(2.2.35) 5/2—~ €A,  —1/2 € A,

Observe that 5/2 — v < —1/2. Now assume that [5/2 — v, k] x [5/2 — v,k] C A1 x As for
some 5/2 — vy < k < s, and set

1

. 1
6:m1n{1(7—3),1}, u=rk—1+2 v=r+(y—3)—2e.

Then p < k and p+4—~y+¢ < k. Therefore u+4—~v+¢ € Ay and p € Ay. Property (2.2.34)
then implies that min {u + 1 —e,s} € As. Since + 1 — e = k + £ we thus have proved that
min{x+e¢,s} € Ag. Similarly, v—(y—3)4+e < k and v—1— (y—3) < k; so Property (2.2.33)
implies that min{x + ¢, s} € A;. We thus have proved that

[5/2 —7,k] x [5/2 =7,k C A1 x Ay with & = min{x + ¢, s}.
In view of (2.2.35), this implies (2.2.32).
To conclude the proof of Proposition 2.2.9 it is sufficient to prove that

(2.2.36)  Aa(7;-1/2) S E(7) + [Inll g sup Ve z0(2)llca s
(2.237)  Au(r;-1/2) S D(7) + C(||77||02){H77Hc2 E(r) + sup IVa20(2) oo 11l 172 }

Recall that

Ai(m;-1/2) = sup [|[0:W = PLW|lg-12,
z€[T,0]

Ag(r;=1/2) = sup {10 W],y + 0],y }-

z€[7,0]
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Let us prove (2.2.36). Since 0,W = 9, — Tpz,,n we have

10:-W1l 3 < N10=0ll 3 + [|0Z¢]| o Il -

2

and hence sup,¢(; ) H(‘)ZWHIr 3 is bounded by the right-hand side of (2.2.36) by definition
of E(7). To estimate 0, W, write

a:cW = a:c(P - Tazapaxn - Tazazw]
= 0pp — 0200 + (0200 — T, 5)02m — Th, 0.,
SO
Ha:cWHHfé < Haxﬁp - 82908:077“15[7% + ”829081‘77“5[7%
+ 1 To.00enl -1 + I Tos0.0ml -3 -

This implies that
10:W1l,, 3 < E(T) + K [n]l g1 sup [ Va2l e

which completes the proof of (2.2.36).
Let us prove (2.2.37). By definition of P, and W, we have
O.W — PLW = (0, — Py)p — (0. — Py )T, om
= (0 — IDx)p — Tp_jejp — To2,n + P To,on.

The first term in the right-hand side is estimated directly from the definition of D(7). To
estimate the third term we write HTaszHf% S H@ggpuc,l HnHH% and then use the equation

(2.2.1) satisfied by ¢ to estimate H@ggpuc,l. To estimate the last term, by using (A.1.5), we
first notice that

(1+ Mo (P —1€D) 1 To. ol 1,2

||P+T6z80,’7||H71/2 N
< L+ Mg (P~ [€D) 8=l oo 1] /2 -
Since M} (P — [£]) < C(|nllox) 1|10znll o1, we obtain that

1P+ To. ol 172 < Cl1nll02) 102 oo 1]l 1172 -
Similarly, (A.1.10) implies that
1 Tp— g2l 172 S Mo (P =€) [10ull 172 < Clllnllc2) 10l 1 10501 g2 -

Since

10x0ll -1/ S |02 — 0xn0- 0| gr—1/2 + |0enl 1 10201 g-1/2
S A+ 10nll 1) E(T),

by combining the above estimates we conclude the proof of (2.2.37). This completes the proof
of the induction argument and hence the proof of the proposition. O
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2.3 Tame estimates

In this section we prove the tame estimates (2.1.2).

Proposition 2.3.1. i) Let (s,v, 1) € R? be such that

1 1 1
~ = S<u< N.
s 2>7>& 5 SHSs, 7%2

Consider (n,v) € £,N (HS+%(R) X H%“(R)) and set w = — Tpuyyn. Then

B(p)yy € H*3(R), V(e H' 3 (R),

and there exists a non decreasing function C: Ry — Ry depending only on (s,~, u) such that:

(2.3.1) (BN -y + VOV -y

< C (Inllos) {1 Dal® 6] ey Mllgs + 1921 ]|}

ii) Let (s,v,u) € R be such that

1 1
s—§>7>3, 1<pu<s, 7§Z§N.

Consider (n,v) € £,N (HSJF%(]R) X H%“_%(R)) Then G(n)y € H*L(R) and there exists a
non decreasing function C: Ry — Ry depending only on (s,~, 1) such that:

(23.2) IGO gu-s < C (Umllerm) { 1Dl 0l ooy Il + 10212 0]y }

Proof. We begin by proving the following estimates.
Lemma 2.3.2. Let 7 < 7/ < 0 and consider (s,7, 1) as above. There exists a non decreasing

function C: Ry — Ry such that for all (n,v) € &N (HS+%(R) X H%’“(R)),

sup [0l . 1+ sup [|Owp — Oendoll ., 1
selro] L HTE O g R

< C(Inll) {I1Del* ] oy 1l e + 1001l g + B () + D7)},

where D(1) and E(7) are as in (2.2.28).

Proof. We begin by estimating 9.¢. To do so, write d,¢p = 9. W + T2, to obtain

(2.3.3) sup H(‘)zngHW < sup [0, W]

1S

- ol ey
z€[1',0] z€[r’,0] ZESE/ITO]H Z('DHL ”nHH“ 3

1
HM3
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It follows from (2.2.30) applied with p replaced with u —1/2 € [0,s — 1/2] that

(23.4) sup [V W () ey < e [l s + cs]|Onso]

1 1 +e3BE(T) + e3D(7),
z€[7',0] HE 2 2

H*™

where
c1:=C(Inlley) sup Ve 0(2)lr-1s  e3:=Cnllcy)-

z€[T,0]

On the other hand, since 92¢ = —ad?¢ — b0,0,¢ + O, ¢, we have

sup Hag(pHLoo < O(||77||02) sSup Hvx,zgpncl-
z€[7,0] 2€[77,0]

As a result, since p <'s, (2.3.3) implies that

sp [10:01 -3, < €1 e+ 5|02y + esB7) + Do)
ze[r!,

and the asserted estimate for 0, follows from (1.1.18) which implies that ¢; is estimated by
1
Ul |1Del? ¥y

The estimate for 0, — 0,90, n follows from similar arguments, the decomposition
a:c(P - 82908:077 =0, W + Tazazw - TaznazSD - RB(@Z(,O, 89677)7

and the classical estimates for paraproducts (see (A.1.17) in the appendix). O

We now apply Lemma 2.3.2 to infer the tame estimates (2.3.2) and (2.3.1). Clearly, since

B(n)¢ = 9.¢|.=0, V()Y = (Opp — 0:00:m)|.=o0,

Lemma 2.3.2 implies that ||B(n)Y|| gu-1/2 and ||V ()| gu—1/2 are bounded by

1
C (Imlle) {11Pal? ¥l -y Il gz + 100l -y + E(=1) + D(=1) }.
It follows from (1.1.14) that
1
E(=1) + D(=1) < C(|lnllc)|[| Dal? | 2-

Therefore, to complete the proof of (2.3.1), it remains only to observe that, since ¢y = w +

Ty,

D212 9] 12 < 1212 @] 2 + | Tgponl] 4
(2.3.5) S 1Dz 12 0| 2 + B0 o< 11l 4
S IDal? || + IB@)G ] oo Il e
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where [ B(n)t||;« is estimated by means of (2.0.4).

Now, by using the estimate (2.3.1), the usual tame estimate for products (see (A.1.18)), (2.0.4)
and the identity

G(n)Y = B(n)y — (V(n))den,

we then obtain

1 1
(2.3.6) 1G] -1 < C Unlle) LDl 0l ey Wnllgs + [[1D212 ]|y -
Now since 1 <'s, by definition of w = ¢ — Tpg(,),n and (2.0.4), we have

(2.3.7) 1Dal2 ],y < [1Dal2 9],y +C Unlle) 1Dl ]y Il

and hence (2.3.2) follows from (2.3.6). This completes the proof of Proposition 2.3.1. U

2.4 Paralinearization of the Dirichlet-Neumann operator

We here study the remainder term in the paralinearization formula
F(n) = G — {|Ds|w = 0, (Tyyun) |-

We prove an extended version of (2.1.4) where we add two extra parameters p,o.

Proposition 2.4.1. Let (s, i1,7) € R? be such that
1 1
S_§>7>37 1§M§57 ’YgiN

Assume that (n,7) is in the set £, defined after the statement of Proposition 1.1.6 and that
moreover (n,v) € H® X 3 is such that w = Y — Tp(m)yn 15 in et ) Then, for any o <
p+y =3, F(n)y € H°(R) and

@41 IFmYlge < Cnlle) {IIDel? ¥ ooy 0l + Inlln 1] ]l ey }

where C' is a non decreasing function depending only on (s, ,7y,0).

Remark 2.4.2. For p <s, it follows from (2.3.7) and (2.4.1) that

(242 IF0lge < CInlle) {11Del? 6]l ey Il + Inlls [1D22 0]y }-

Proof. We use the notations and results of §2.2.
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Lemma 2.4.3. There holds

243)  sup (VoW (@l s < C(lnlcr) (Dl 0]l oy Il + 1Dl ] ey}

and, for any o < u+~y—3 and any T € [—2,0], we have

(24.4)  sup [|0.W — PLW|| 4o
z€[T,0]

< () {1Del? ¥l ooy Illszs + Il [1D2]2 ]l ey } -

Proof. The first (resp. second) estimate follows from (2.3.4)) (resp. (2.2.29)), the Hoélder
estimate (1.1.18) (to bound the constant ¢; which appears in (2.3.4) and (2.2.29))1, the Sobolev
estimate (1.1.14) (to bound E(7) and D(7)) and the estimate (2.3.5) for ||| Dz|2 ¢||,,. O

Given Lemma 2.3.2 and Lemma 2.4.3, the proof of Proposition 2.4.1 now follows from a close
inspection of the proof of Theorem 1.5 in [6]. Recall that, by definition,

Gy = [(1 + (821200 — 0unate] | ._,-
Write
(2.4.5) (14 (921)*)0s — Ounyep
= 0.0+ T(azn)z 0.0+ 2Tazg08,~cna:c77 - (Tam@xcﬁ + Tazgoa:cn) + Ry,

where

R = RB(az‘py (amn)z) - RB(achD, 890"7)
+ Taz¢RB(3xn7 0zn) + 2(TazgoTazn - Tazwazn)aﬂm

is estimated in LZ°(H?) by means of the paraproduct rules (A.1.14), (A.1.17) and (1.1.18).
We next replace 0.¢ by 0.(W + Ty.,n) and 0, by 0,(W + Ty_,n), to obtain,

(1+ (82m)*)0:0 — 0unOap = OW + T(g,20:W — T, 0 W

+ T+ (00m)2)020M = T0,m0:6.0M + (0200, 0021 — To, 0020
+ R+ Ry

with

Ry = —(Tia,n2To24 + Tia,m2020)M + To,0T5.0,0 — T(03m)8,0.0)7
+ (Tazapazn - TaznTaz@)axn-

Again, it follows from the paraproduct rules (A.1.14) and (A.1.17) that the L°(H?)-norm
of Ry is estimated by the right-hand side of (2.4.1).
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Setting this into the right hand side of (2.4.5) we obtain

(14 (0em)*) 020 — 0unOnp
= W + T, )20 W — T, 0 W
+ 15, 00,7021 — To,p0:n
+ 114 (0am)2)0201 — L(0,m)0,0.0M + B1 + Ra,

Now it follows from the elliptic equation satisfied by ¢ that

(1+ (9:0)*)020 — (951) 0000 = —02p + (0u1) x40 + D001

Therefore
(1+ (82m)*)0:0 — 0unOap = OW + T(g,20:W — T, 0 W

Furthermore, (2.4.4) implies that
OW + Ty 0-W — T, g0uW = PLW + Ty 12 Py W — T @ W + 11
where the L3°(H?)-norm of r is estimated by the right-hand side of (2.4.1). Now write
PLW + T(g, 2 P+ W — T,y 0: W = (|Dy| + Tr_jg )W + 72,

with
A=(1+ (5x?7)2)P — 10m¢,
(P is given by (2.2.14)) and where

r2 = (T2 T — Ta,m2p)W + Tio,n2 (|Da| — Tig) ) W-

It follows from (2.4.3) and (A.1.11) that the L3°(H?)-norm of rg is estimated by the right-hand

side of (2.4.1).

Now, since A = [¢|, by (2.2.14), and since 0, — 0,00,n|.—0 = V and W|,—o = w, we conclude

that
(1+ (021)*)0200 — 0anOpp = | Da| w — 0u(Tym) + [R1+ Ro 411 +72] | _,

This concludes the proof of Proposition 2.4.1.

2.5 Linearization of the Dirichlet-Neumann operator

In this section, we prove the estimates (2.1.5). For later purposes, it will be convenient to

prove the following sharp estimates which depend on an additional parameter pu.
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Proposition 2.5.1. Let (s, i1,7) € R? be such that
1

Consider (n,7) € &N (HSJF%(]R) X H%’“_%(R)) set w = P — Tpyyn. There exists a non
decreasing function C: Ry — Ry depending only on (s,v, ) such that

(251)  1IG®)Y — |Dal ¥l s < CYDel> 0]l oy Wl +C Il 1Dl %] g
(252) 1B —Dalwll ey <CIIDal2 9 omy Il +Cllnllon |1 D2 ]2 @] .
(2.5.3) IV )% = Baoll g < CIIDIZ 0] oy Il +C Il [[1Dal® |

where C = C(||nlcv)-

Proof. Abbreviate B = B(n)y and V = V(n)1. In view of the definition (2.1.3) of F(n), we
can rewrite G(n)yY — |Dy| 1 as

G(Tl)l/J - ’Dx‘ 1/} - ‘D:c‘ Tpn— 5x(Tv77) + F(UW
Using (A.1.12), it follows that
IG)Y = 1Del ¥l gur S (1Bl oo + IV lIgoe) Inll g + 1E P s

Since v — 3 > 0, the estimate (2.4.2) (with (o, u) replaced with (u — 1,4 — 1)) for F(n)y
implies that

1 1
(2.5.4) 1)l s < C|[1Da]2 9| oy 10l s+ Cllmll oo [[1 D] |-
The estimate (2.5.1) then follows from the L>-estimate of (B, V) (see (2.0.4)).
Since B — Vdyn = G(n)¢ (c.f. (2.0.3)) we have B — VI,n = |Dy|w — 0, (Tvn) + F(n), so
B — |Dac|w =V — 890(TV77) + F(UW

Since

Vo — 0x(Tyn) = Ty, V + Rp(V,0:n) — To,vn,

we obtain
B = ’Dx‘ w+ Tawv — Ty, vn+ Rg(V, axT]) + F(n).

The estimate (2.5.2) follows from the tame estimate for V' (see (2.3.1)), the estimate (2.4.1)
for F'(n)y and the classical estimates for paraproducts (see (A.1.12) and (A.1.17)) together
with (2.0.4).

Similarly, with regards to V = 0,% — B0, n, replace ¢ by w + Tpn to obtain

V =0, — BOyn = Opw + 0, (Tpn) — Boyn
= Oyw + Taan — T&mB — RB(B, 8957]).

Consequently, the estimate (2.5.3) follows from (2.3.1), (A.1.12) and (A.1.17). O
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Remark 2.5.2. Assume that 3/2 < u < s —1/2 instead of 3/2 < u < s. Then, since ¢ =
w + Tp(m)yn, it follows from (A.1.12) and (2.0.4) that

I1Dal v = [Dalwll -y = [[1Dal Togyunll -y S NIBY] oo Il

(2.5.5) j
< C(nle) 1Dzl? | 4y Inll s -

Similarly || \Dx\% ) — \Dx\% wHHM and [|0z9) — Oyw|| u—1/2 are bounded by the right-hand side
of (2.5.5). The estimates (2.5.2)—(2.5.3) then imply that

(2.5.6) 1By = [Dal 9l ey + V)Y = 0etll s

< C (nlle) 1Dt ]l oy Illszs + nllcn 1217 ]| -

The previous estimates means that B(n) — |D,| and V(n) — 0, are operator of order 1: they
map H‘”’%(R) to H“_%(R). In sharp contrast, the estimate (2.5.1) means that G(n) — |D,|
is an operator of order 0. In fact even more is true: G(n) — |D,| is a smoothing operator.
Indeed, the proof of (2.5.1) shows that, if we further assume that p > s+ 2 —~ and if we use
(2.4.1) instead of (2.5.4), then we obtain that ||G(n)y) — |Dz| 9| ys—1 is bounded by

C (Inllc) { D2t 0l ey Wl + Il (1Dl 0]}

2.6 Taylor expansions

We here study the Taylor expansions of the Dirichlet-Neumann operator G(n) with respect
to the free surface elevation 7. Craig, Schanz and Sulem (see [19] and [46, Chapter 11]) have
shown that one can expand the Dirichlet-Neumann operator as a sum of pseudo-differential
operators and gave precise estimates for the remainders. We present now another demon-
stration of this property which gives tame estimates. Tame estimates are proved in [19] and
[8, 29]. Our approach depends on the paralinearization of the Dirichlet-Neumann operator
with tame estimates. Furthermore, the scheme of proof allows us to prove similar expan-
sions for the operators B(n), V(n). The key result of this section is the estimate (2.6.3)

for F(n)y — Fi<a)(n)y.

Denote by A(n) either G(n) or one of the operators B(n), V(n) and F(n). In this section, we
compare A(n) to A<g)(n) where

= |Dz| ¥ — | Da| (n[Dg| %) — 02(n02)),

<) (MY = G<oy (MY + Dm0z,

<2y(Mtp := 0utp — 0un | Dee| ¥,

(2.6.1) F(<2 (MY = = |Dz| (n|Dz[¥) + [Da| (T1p,yn) — Ox(n0xt) + Ox(To,4m)-

G(<2 (my

)
n)
)
)
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Remark. When we later compute the cubic resonances, we will be forced to study cubic ap-
proximations to the Dirichlet-Neumann operator. The proof of the next proposition contains
also the analysis of the cubic terms.

Proposition 2.6.1. Let (s,v, ) € R be such that
1
s=1/2>y=214, szp=5 7¢N

and consider (n,v) € Hs+%(]R) x (C"(R) N H%”(R)) such that the condition (1.1.17) is
satisfied. Then the following estimates hold.

There exists a non decreasing function C: R — R such that, for any A € {G,B,V},

(262) Ay — Aoy s

< Clnllon) Il {1l ll ey 19l e + Il D% 0]}

and

(2.6.3) |[F()v — Feoy | ;e

1 1
< Ol Wl {113 ] oy Il + Il 12213 ]}
Remark 2.6.2. The estimates (2.1.7) and (2.6.3) applied with y = s — 1/2 imply that

(2.6.4) ||F(n)¢ — F<yy(n

Hs}?

< C(lmlles) Il {1l 6] -y Il sz + Il (1Dl ]

where recall that w(n)y =¥ — Tg)yn

Proof. We shall need to consider the cubic terms in the Taylor expansions of G(n), B(n)
and V(n). Set

1
<o) () = Gz ()9 + 1Dl (1D ] (71 D2l 9) + 5 12l (7020)
+ 50207 1Dul ),

B<z) () := G(<3) () + 0105 — (9:m)? | Da| ¥,
Vi<sy(mi := 0x%p — 0:mB<2)(n)1.

For k € {1,2,3}, set

= & {I1Dal? ¥l oy Wl + Il (1Dl ] }-
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The proof is in four steps. In the first two steps we prove the weaker estimates:

HA(??W - A(gk)(??)wHHkkfl < C(”UHC'V)Tkv

for A € {G,B,V} and k € {2,3}. (For k = 2, comparing this with (2.6.2) we see a loss
of 2 derivatives.) Then, in the second step, we prove (2.6.3). This is the key step. Indeed,
once (2.6.3) is granted, we show in the fourth step that one can obtain the optimal estimates
stated in the above proposition for A(n) — A<q)(n) with A € {G,B,V'}.

STEP 1: First estimates for G(n)

In this step we prove that

(2.6.5) 1G)Y = [Da| Pl gu—2 < ClInll )T,
(2.6.6) |G — G<oy Y| s < Cllnll ) T,
(2.6.7) |G = Gi<ay (Y| s < ClInll ) T3

To do so, we use the property, proved by Lannes [32], that one has an explicit expression of
the derivative of G(n)y with respect to 7. Introduce g: [0,1] — H#1(R) defined by g(\) =
G(An)y. Then

(2.6.8) g'(A) = =G (nbo(N)) — B (11v0(N)),
where bo(A) := B(An)y and vo(A) = V(An). Since

(A) + A0yn0rt)
1+ A2(0;m)?

bo(\) == B = 2 v0(A) = Byth — Abo(A) Dy,

it follows that by and vg are C'* from [0,1] to H*~2(R), with

() o (90 + B — 220 ho(Y)).

T 1+ A\2(0,1)
v(N) = —bo(X)0zn — AbG(X) Dz,

These expressions show that ¢'(\), by(N), vo(A) may be written as sums of expressions of the
form ag(\,n,n')As(An)ar (A, n,n')A1(An) where a1, as are analytic functions of their argument
with a1(\,0,0) = 0 and A1(n), A2(n) belong to {G(n), B(n),V (n),d,}. Moreover, in the case
of ¢'(\), one may assume that ag is constant and that As(n) belongs to {G(n), 0.}

We may thus iterate this computation, which shows that g(\) is C* with values in H*~17F,
and ¢ (\) is a sum of expressions of the form

14

(2.6.9) Aga Q) TT aeOom ') Ae ()
/=1
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where Ay(n) is in {G(n),B(n),V(n), 0z}, £ < £, Apya(n) in {G(n), 0, } and ay are analytic
functions vanishing at (n,n') = (0,0). To compute the first terms in the Taylor expansion of
g, we need to compute explicitly

g"(A) = =GOn) (b1 (N)) = 8z (nv1(V)),
b1(A) = p(A) — B(An)(nmbo (X)),
vi(A) = vp(A) =V (An)(nbo(A))-

Since g(0) = |D,|, B(0) = |D.|, V(0) = 9,, it follows from (2.6.8) and the above equalities
that
g'(0) = = [Dg| (n|De| 1)) — 00 (1021)),
and
9"(0) = 21Dy (n(| D (7 |Dx|¥))) + [ Dal| (859) + 82(1 | Ds| ).

If (1.1.17) is satisfied then (n,1)) belongs to the set £, introduced after the statement of
Proposition 1.1.6. Using the Holder estimates (2.0.4) we successively prove that, for k = 0,1, 2,
we have (An,nby()\)) € £,——1 and according to (2.6.9)

(2.6.10) 195N iz < Cllmll ) IlIES |1 Ds \WHCW

Using the tame estimate for product (A.1.18) and the tame estimates for G(n), B(n) and V(n)
(see (2.3.2), (2.0.4), and (2.3.1) applied with p replaced with g — 1/2 together with (2.3.7)),
we obtain

9™ ) i1 < Cllmll )T for k € {1,2,3}
The desired estimates (2.6.5)—(2.6.7) are then obtained by writing that, for n = 0,1, 2,

n 1 _1\n
(2611) Gl = 9 = 3" 1™+ [ B0 an
k=0 " 0

n!
This completes the proof of (2.6.6) and (2.6.7).

Also, by using (2.6.10) with £ = 0,1 and (2.6.11) with n = 0,1 we have
(2.6.12) |G = 1Dal oz < Clnllon) Inllon |1 D212 TZJHCW”

(2.6.13) G = Gy 8]l s < Cmllen) e [1Dal? ¥ oy -
Notice that (2.6.12) (resp. (2.6.13)) holds for any v > 4 (resp. v > 5) with v ¢ 3N
STEP 2: First estimates for B(n) and V (n)

In this step we prove that

(2.6.14) B¢ — By || s < Cllmll o) T,
(2.6.15) B¢ — Bi<sy) || s < Clmll o) T,
(2.6.16) |V (n)y — Wgzmwum,g < C(Inllo-) T2,
(2.6.17) [V = Viesy ¥ [| s < CllInll )T
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By definition of B(n)y we have

B@W=I:%EFWWW+mwm)

= G + 0endat)p — (0em)* B(n).

Therefore

(2.6.18) B(n)y — Bi<o)(m)tp = G(n)t) — G <o) (M)t — (9xn)*B(n)¢.

The estimate (2.6.14) for B(n)y — B(<2)(n)Y then easily follows from the previous estimate
for G(n)y — G(<2)(n)¥ (see (2.6.6)); indeed the tame estimate for products (see (A.1.18)) and
the estimates (2.0.4) and (2.3.1) for B(n)y imply that

“(89077)23(77)7/)“]{“71
1@ oo IBOYE s + [ BOD o 1053 o 19l e
< Cllnlle) I 11Dal? @l ey + Illos 112212 ]| oy Il §

< C(lnllg)Te-

(2.6.19)

where we used (2.3.7) in the last inequality. Consequently, (2.6.14) follows from (2.6.6).

To prove (2.6.15) we begin by noting that, directly from the definition of B(n)i, the estimate
(2.6.5) implies that

(2.6.20) B¢ — [Da| ¥l gu—2 < C(lInllcv) T,

Similarly, the estimate (2.6.12) implies that
1
(2.6.21) IB()Y = Dol ¥l -2 < Clllnlles) Il [[1Dal2 9] -y -

By definition (B(1) — B<s)(n))¥ = (G(n) — G(<3)(m)¥ — (8z1)?[B(n) — |Dxl4. The first
term is estimated in (2.6.7) by the right hand side of (2.6.15). The second one is bounded
using (2.6.20), (2.6.21) and the tame estimate (A.1.18). This proves (2.6.15).

Since V(n)y = 0,9 — (B(n)1)dxn, the estimates (2.6.16) and (2.6.17) are consequences of the
tame product rule in Sobolev spaces (see (A.1.18)) and the estimates (2.6.14), (2.6.15).

For later references, we also record the following estimates

(2.6.22) V)Y — el ens < Clllnlos) Inllos 10212 4] s
(2.6.23) 1B — Beaymll s < Cllnllen) Inll2 1D]2 ]l -y
(2.6.24) 1V = Vieaymtll s < Clnllen) Il 11Dzl ] -y
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The estimates (2.6.22) and (2.6.24) follow from the definition of V()Y = 0,9 — (B(n)Y)0xn
and (2.6.21). The estimate (2.6.23) follows from (2.6.18) and (2.6.13).

STEP 3: Key estimate
In this step we prove that

(2.6.25) ||F(77)71Z) - F(§2)(77)¢||Hu+1 < C(Inllgv) To-

The proof is based on an interpolation inequality which requires to take into account the
cubic terms. Introduce F{<3)(n) defined by

Fiegy(m = G<zy(m)y — {\D:c\ (0 =Ty (myes1) — 8x(TV(§2)(77)w77)}'

Lemma 2.6.3. There exist a constant K > 0 such that for all (n,v¢) € H%(R) x H%’“_%(R),
(2.6.26) [ E<y || sz < K l1ll e 1029 s
(2.6.27) | Fi<a) (e = Faoym|| ysr-s < KT

Remark. It follows from (2.6.26), (2.6.27) and the triangle inequality that

(2.6.28) [Et<s) M| srs < Clnll )T

Proof. Notice that one can write F{<2)(n7)1 under the form

F(§2)(77)1/} - ’Dx’ (77 ‘D:c’ w) + ‘D:c‘ (T\DxIwTI) - 8x(778xw) + 5x(Tamw77)
= — [Dy| (T | D | ¥) — 0x(T5020)
- ’D:c‘ RB(T], ‘D:c‘ 1/}) - 896RB(777890¢)

Now the identity (A.1.22) in Lemma A.1.11 of Appendix A.1 implies that

(2.6.29) |D2| T,y | D] + 0,T, 05 = 0.
Thus
(2'6'30) F(§2) (77)¢ - - |Dac| RB(U) |Dac| Tzz)) - amRB('r/a am¢)y

and the estimate (2.6.26) thus follows from (A.1.17).

It remains to prove (2.6.27). Below, for A € {G,B,V,F}, we set Ay = A<py(n)y —
A<k—1)(m)y. We begin by noticing that

G@i) = — Dz (nB2)) — 9:(nV(2)) + D,

1 1
D=3 |Di| (7% | Da|? ¥) + 58;0(772&0 |Dz| 1),
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which can be checked by direct computations from the definitions of B(), V() and G(3). Thus,
(2.6.31) Figy = — |D| T Bay — 0. T, V(o) + D + Ry,
where Ry := — |D.| Rg(n, B(2)) — 0:R5(n, V(2)) is estimated by means of (A.1.17).
Now observe that
Bg) = G(g) + 0:m0ut) = Floy) — |Da| Tip, jpn — 0xTo,yn + 03m0zt.
Setting this and V() = —0,1| Dz |7 into (2.6.31) yields

Fgy = —|Ds| Ty Fioy + D+ Ry
+ | Dy | T, | Dy | T\Dz|w77 + [ Dy TnawTﬁsz
- ‘D:c’ Tna:cna:cw + a:cTna:ch ’Dx‘ 7/}

Since D = —3(G(<a)(n?) | Da| ¥ — |D,|2 %) we have
1 2 1 2 1 2
D = 3 [ De| T\, 2y + §3xTa,|Dz\¢77 - §F(§2) (17) [ D] .
The cancellation (2.6.29) implies that

‘D:c’ T, ’Dx‘ T\Dx\w” = —5xTn3xT|Dx\w77-

Using this identity and replacing 7? by 2T,m + Rp(n,n), we obtain after some simplifications
that

1
Fig) = = |Da| Ty Fieay (¢ = 5 Fieoy (n%) [ Do ¥

- ‘D:c‘ TnTaznaﬂcw + 8IT77T81-17 ‘D:c‘ (0
+ | Dy 15 Ta2ym + | Dy | T\Dzﬁann

(2.6.32)

+ R1 + Ro,
with
1 1
Ry = 5 |Da| Ty, 2y R (1) + 505 T, 0, 0 R (1,)
+ 0, Ty Rp(0xn, | Dz | 1) — | Da| T, R (021, Ox)).

The remainder Ry is estimated by means of (A.1.17). The first two terms in the right-hand
side of (2.6.32) are estimated by means of the estimate (2.6.26) for F(<sy(n). The fifth and
the sixth terms are estimated by means of symbolic calculus (using the estimate (A.1.14) and
|D,|* = —82). To conclude the proof it remains only to estimate the sum of the third and
fourth term, denoted by ¥. Modulo a term which is estimated by means of (A.1.7), ¥ = ¥’
with

¥ = — |Dy| Tyoan0et + 02 Tyoun | De| -

Now the cancellation (A.1.23) in Lemma A.1.11 implies that ¥’ = 0. This concludes the
proof. O
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It follows from (2.6.7), (2.6.23)-(2.6.24) and (A.1.12) that Fi>4)(n) := F(n) — F(<3)(n) satisfies

(2.6.33) | Foay || s < ClIMller ) Ts.

On the other hand, by using the triangle inequality and the estimates (2.4.2) for F'(n)i and
(2.6.28) for F(<3)(n), we have

(2.6.34) [Een ¥l gurs < NE@E] s + [ i<y rivs < Cllinlle) T,

where, as already done, we used (2.3.7) and the fact that p+~v—3 > p+ 7 to apply (2.4.1)
with (u,s) replaced by (u—1/2,5s —1/2).

We complete the proof by means of an interpolation inequality. Namely, write

1F a0 s < [1Feny @) s | Foa 9] e

to deduce, from (2.6.33) and (2.6.34),

| Fen (]| s < CUInlle) T3 = Ol or) T

Then write
F(np — Fl<ay(n) = Fsay(my + Fi<g)(mY — Fiea)(n)¥,
and use (2.6.27) to complete the proof of (2.6.25).

STEP 4: Optimal estimates

Now we return to the estimate of G(1) — G (<g)(n). By definition (see (2.6.1)), we have

En) = Gn)¢ — [Da| (¢ — Tpyyn) + 0:(Tyn),
Fieoy (M = Geoy(myY — [Da| ¥ + | Da| T\p, 1w + 0z (T, ym)-
Subtracting and using (2.6.25), (2.6.21) and (2.6.22), we find that G(n) — G(<2)(n) can be

written as the sum of two differences which are well-estimated in H5~1(R) U H**1(R) C
H#=1(R). This proves (2.6.2) for A = G.

Now, using (2.6.19) and the previous control of G(n) — G(<2)(n) in H*~*(R), an inspection
of the second step yields the desired estimate for B(n) — B(<g)(n) in H#=1(R). This in turn
implies the estimate for V(1) — V(<2)(n) in HH#=1(R). This completes the proof of (2.6.2) and
hence the proof of the proposition. O

2.7 Smooth domains

In this section, we estimate G(n)1, B(n)y and V(n)y in the case where ¢» € H*(R) and n €
C7(R) with ~ larger than . We study the action of these operators and prove approximation
results.
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The main new point is the following approximation result for B(n):

(2.7.1) B = Pe)ell s < C (nlles) Wl 11D ] 2

where P, (n) is given by

(2.7.2) Py (n) = |Dg| 4+ Tp_jg) with P = 5 (10206 + [€]).

o
1+ (0:m)

The key point is that the right-hand side of (2.7.1) is at least quadratic in (7, |Dw|% 1) and
1

involves only the L?-norm of | D,|2 1, while one bounds B(n)w — Py (n)y in HY~3(R) where v

might be arbitrarily large. This is not a linearization result for B(n)y because Py (n) # | D,

(except for n = 0). However, (2.7.1) will allow us to prove a sharp linearization estimate for
G(n) as well as to bound G (7)Y — G(<2)(n)Y.

Proposition 2.7.1. Let (v, 1) € R3 be such that
1
Spsv-2 y¢goN

(1) Let n € CY(R) and ¢ € Hév“_%(R) with the assumption that ||n||oy s small enough.
Then G(n)y, B(n)y and V (n) belong to H*~1(R). Moreover, there exists a non decreasing
function C: Ry — Ry depending only on (v, 1) such that:

273) 1G] s + 1Bl gucs + IVl s < C (nlleo) (1Dl ]|,

(13) Let n € CY(R) and ¢ € H%(R) with the assumption that ||n|| - is small enough. Let
Py (n) be as given by (2.7.2). Then G(n)y — |Dy| v and B(n)y — Py (n)y belong to H'=3(R).
Moreover, there exists a non decreasing function C: Ry — R4 depending only on v such that:

IGM)Y = 1Del ll s < C (lnllg) 1l [1Da12 9] 2

(2.7.4) 1
1B — Pr(m)¢ll grv-3 < C (Inlle) Inll o [[1D2]2 9] 12

Remark 2.7.2. (i) As already mentioned in Remark 2.5.2, the estimate (2.7.4) means that
G(n) — |Dy| is a smoothing operator.

(74) With the assumptions and notations of statement (ii), notice that (2.7.4) implies that

1
(2.7.5) IB()¢ — | De| ¢l s < C (Inll ) Inlln [[1Da]2 ] ey -
Indeed, it follows from (A.1.10)that
1
1P+ ()9 = [Dal Ull gur < ClInllen) lInll e 1212 9]y -
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Proof. Notice that statement (4) is a corollary of statement (7¢). This is clear for the regularity
results and the estimates for G(n)y and B(n)v, using the triangle inequality and (2.7.5). For
V(n)y, this follows from the definition V(n)y = 9,9 — (9,n)B(n)Y and the product rule
(A.1.21) (applied with p' = u+ 1> |u — 1| = p) which yields

H(a:cn)B(UWHHu—l S Ha:cUHCuH HB(UWHHHA < C(”anw) Haxnllcw H’Dx’% 1/’“

HPD)
where we used the estimate (2.7.3) for B(n)y and the assumption v > p — 2.

To prove statement (i) we use the strategy used previously to study G(n)y. Recall that

_ 2
276 { G = (1+ (9:m) )z — o | s

B(UW = az(P’z:Oa

where ¢ = ¢(x, z) solves the Dirichlet problem:

(2.7.7) 20 + ad?p + b0, 0.0 — cO.0 =0 in {z < 0},
(2.7.8) @ =1 on {z = 0},

where a = (1 + (9,1)?)7, b = —2ad,n, ¢ = ad?n. Tt follows from Proposition 1.1.6 that,
if ||n|lcy is small enough, then there exists indeed a unique solution ¢ to (2.7.7)-(2.7.8).
Moreover, V, ¢ is continuous in z €] — 0o, 0] with values in H~'/?(R) and there exists a non
decreasing function C': Ry — R, independent of 7,1 such that

(2.7.9) ]Sup O}HVm,z(SD(Z) — AP lp)| e < CUmllo) (7] o H|Dx|% Ol
zE|—00,

and

(2.7.10) E}Silp . ”Vx,z(P(Z)HHflﬂ < C(HWHCW)H‘Dﬂc’% TZJHLz-

To prove statement (ii) we paralinearize (2.7.7) and factor out the paradifferential equation
thus obtained. The desired result then follows from a parabolic regularity result.

We begin with the paralinearization lemma.

Lemma 2.7.3. There exists a non decreasing function C: Ry — Ry such that

(2.7.11) 2o+ (Id+ Ty_1)0%p + T40,0.p — T.0.p = fo
with
1
(2.7.12) ]sup ) 1 fo(D g5 < CUnlle) Inlloy [[1D2]2 9| 1o
zE|—00,
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Proof. We follow the beginning of the proof of Lemma 2.2.2. Write

(a—1)07¢p = Tu 1050 + Tyay(a — 1) + Re(a — 1,05¢),
b0, 0, = Ty0, 0,0 + Tazazgob + RB(b, a:cazﬁp)y
cO,p = Tc0.0 + Ty, + Rp(c, 0.¢p),

so that (2.7.11) holds with

for=—(Tazpla— 1)+ R(a — 1,02¢)) — (To,0.4b + Rp(b, 0:0.¢))
+ Tﬁchc =+ RB(Cy 3,290)-

It follows from (A.1.20), (A.1.17) and the assumption v — 3 > 0 that

[ Toze(a = D o5 S lla = Ulgrr [|070]| sz »

1To,0.0b 15 S 10l -1 1020201l gr-s/2

”TazgoCHH%B N HC”C'%2 ”8290”1171/2 )
and
HRB(a - 1785%90)HHW—3 S lla— 1HCW*1 HO%DHH*S/? )

HRB(bv 8968290)”11773 5 Hb”cwfl ”aﬂc({)Z‘PHH%/2 )

[1B5(c, 020l rv-s < el g2 1020l gr-1/2 -

Now use (2.7.10) and write
la = gy + Ibller—1 + llell a1 < Cllnller) Inllen
to complete the proof. O

Let P_ = P_(n), P = Py+(n) and Ry = Ry(n) be as given by Lemma 2.2.6, so that (0, —
P_)(0, — Py)p = fo+ Rop, where Ry is a smoothing operator, satisfying

[ Boull grr--s < CClInllow) Il e 10zl g,

for any r € R and any u € H"(R). The key point consists in proving that one can express,
on z = 0, the trace of the normal derivative 0,¢ in terms of the tangential derivative. To do
so, as above, we exploit the fact that ¢ = 0, — P, satisfies a parabolic equation.

Lemma 2.7.4. For any 7 <0, the function ¢ := (0, — Py )y is continuous in z € [1,0] with
values in HY73(R). Moreover, there exists a non decreasing function C such that

(2.7.13) s )| jos < Clnlen) Il ||| Dal ] o
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Proof. We prove only an a priori estimate. The regularity result is an immediate consequence
of the method used to prove the estimate. We shall prove a slightly stronger result. Namely
we shall prove that, for any ¢ €]0,1], (2.7.13) holds with sup,¢(. g HEHH%S replaced with

SupZG[Tvo} HEHHW*Q‘FE :

Since

(0: — P_)p = fo+ Royp,

the parabolic estimate (2.2.27) asserts that, for any 7 < 72 < 0 and any u € R,

HfHLOO([7'27O};H[J‘+1*€) < C(”nHC'Y)(HfOHLoo([Tl,O};HH) + Hf”L‘”([ﬁ,O};H“))

+ C(”n”cv) Hﬂ”m ”VSQZSDHLOO([7—170};H#*1*('Y*3)) .

Consequently, for any p <~ — 3,

HEHLOO([T%(]};Hu{»lfs) < C(Hn”cw)<Hf0||L°°([—rl70};HW*3) + |’£HL°°([7—1,0};HH))

+ Clnllo) nlln 1922l e g i)
so, the estimate (2.7.12) for fp and the estimate (2.7.10) imply that
12l o 1y a1y < CClmlle) Imlln 10212 2]
+ e el e ey
Hence, by an immediate bootstrap argument, it is sufficient to prove that, for any 7 < 0,
Il o a7y < C(Umllcn) Imllen [[1D212 ] o

This in turn follows from the fact that ¢ = (9. — |Dx|) — Tp_j¢|, by definition of P, and
the estimates (2.7.10), (2.7.9) and the operator norm estimate for paradifferential operators
(see (A.1.10)):

1 Tp- ]l -3 < Mo (P~ [EDI0zll 3 < Clllnlles) Inllen 10l -
This completes the proof of Lemma 2.7.4. O

Since B(n)Y — Py ()Y = (0= — Py (n))¢lz=0 = ¢(0), it immediately follows from (2.7.13) that

1B = Pe)ell s < Clnlon) [l 1D 9] 2

To estimate G(n) — |Dg| ¢, starting from (2.7.6), we write

(1 + (89677)2)82'90 - 89677896()0 = ach + T(aam)z 2P — Tazﬁa@‘(p + Rl’
R, = Tazap(a:cn)2 + RB(82907 (89677)2) - Tazgoa:cn - RB(ax(P7 896 )
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Again, it follows from the paraproduct rules (A.1.20) and (A.1.17) that, for any 7 < 0,
the CO([r,0]; HY~3)-norm of R’ is estimated by the right-hand side of (2.7.4).

Furthermore, since (1 + (9,1)?)P — i(0,n)¢ = |€], by using the symbolic calculus estimate
(see (A.1.7)), it follows from (2.7.13) that

020 4 T 09,2029 — To,n0rp = |Dal @ + 1,
where the C°([r,0]; H'=3)-norm of r is estimated by the right-hand side of (2.7.4). This

concludes the proof of Proposition 2.7.1. O

We next study the Taylor expansion of the Dirichlet-Neumann operator. We recall that the
sum of the linear part and the quadratic part is

We shall prove an estimate for G (7)1 — G(<2)(1)¥ similar to the linearization estimate (2.7.4)
proved above. Namely, we shall prove that G (7)1 — G (<2)(1)% is a smoothing operator, such
that if n € C7(R) with v large enough, then one can estimate G (7)Y — G(<2)(n)¢ in HY4 by

means of a low Sobolev norm of |Dw|% 1 only.

Proposition 2.7.5. Let v € R be such that v > 4 + %, v ¢ %N. Consider n € C7(R)

and 1 € H%’l(R) with the assumption that ||n||o. is small enough. Then G(n) — G (<9)(n)¥
belongs to HY=4(R). Moreover, there exists a non decreasing function C: Ry — R, depending
only on v such that

(2.7.14) |G — Giany ]| s < C Umllen) Il [[1Dal2 6] -

Proof. As in the proof of Proposition 2.6.1, there holds

Gy — G(0 / GOAN, G\ = GO BON)E) + 8x(nV (An)b).

Let us fix some notations. We denote by

1 .
P, = W(M&cﬂf + [€1),

the symbol obtained by replacing n with An in (2.7.2). Hereafter, we denote by C various
1
constants depending only on [|n]|o, and we set  := HUH%W || D22 wHHl.

Notice that G(0) = |D,| and G(0) = |D,| (n|D+| %) + 0:(ndx1). One has to prove that there
exists a constant C' depending only on ||7|| -, such that

IGA) — G(0)] 11 < CR.
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To prove this estimate we shall prove that

(2.7.15) |G (B\n)) — | Da| (|Da| ) — | Dl (Typy —1epyt) || rroa < O,
and

(2.7.16) 1020V )6)) — B2 (00at) + A0u(Tyor s )| rra < C,

(2.7.17) | Dzl (Typy—1e)¥) = A0u(Ty0,m) P ¥)-

We begin by proving (2.7.15). To do so, we use (2.7.4) to replace G(\n) by |D,| and B(\n)
by Py (An). Write

IG(An)(nB(An)v) — |Da| (B Y) || gr—a < Clinll gy 11BNV 172
< Cnllgn IBONY |12 < CQ,

and

1Dz (nB) = [De| (0P M) || g1 < [[n(BOAN)Y — PrOn)) || s
< nllew IBOD)Y — Py ()| s
<CQ,

where we used the product rule (A.1.21).

Now, by definition of Py (n) we have

[ Do | (NP4 (An)1) — [De| (1|Dz| ) = |De| (N Tpy—1g),

so, to prove (2.7.15) it remains only to prove that

(2.7.18) |1Dz] (1T —je0) = | Dl (Typy 1) || -1 < O

Set px = Tp,_je;tp. We first simplify |D.| (nTp, _j¢7) by paralinearizing the product npy.
That is, we write npy = T)px + (Tp,n + R5(1, pa)) and use (A.1.20) and (A.1.17) to obtain
that

[T\l s + 1RB(0: 03) | a3 Hp)\HH,% Il -
Now it follows from (A.1.10) that

1
loall,,—3 < Clinlles 1059l -1 < Clinllcy [ 1Dal2 ¢ -

2

Therefore
|Dm| (77TPA—|§|7/)) = |Dm| (TnTPA—\EW) + R’

with ||Ri| -4 < CQ. Next, since 8?77 = 0 for £ > 1, it follows from symbolic calculus
(see (A.1.11) applied with (m,m’, p) = (0,1,7 — 1)) that

|De| (TP, —je1¥0) = |Da| Ty(py—jep¥ + R2
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where Ry = Ry +|Dq| (T, Tp, —j¢) — Ty(py—je)) )V satisfies | Ry || z,-a < CQ. This proves (2.7.18)
and hence completes the proof of (2.7.15).

The proof of (2.7.16) is similar. By definition V(An)y = 0,9 — A(0zn)B(An)y so (2.7.4) and
the product rule (A.1.21) imply that

10V (An)3p) = Oz (10240) + A0z (n(0xn) Py (An)Y) || s < CR.
Thus to obtain (2.7.16) it is sufficient to prove that

102 (n(82m) Py (M) ) — (T, )| 1y < CQ

As above, this follows from (A.1.20), (A.1.17) and (A.1.11).
To prove (2.7.17), notice that

n(Px = [§]) = ia(x)€ = B()[€],  n(0an)Pr = iB(2)€ + ]

with
_ 1(A0un)?
1+ (A0pn)?’

n(A0zn)

A s v s PR

Therefore
D Typy—e)) = | Da| TaOz — |Da| Tp | De| s 0 Tya,mypy, = 02150z + 0xTo | Dyl
and the desired identity (2.7.17) follows from Lemma A.1.11 in Appendix A.1. O

Corollary 2.7.6. Let v € R3 be such that v > 4 + %, v ¢ %N. Consider n € CY(R) and

(NS H%’I(R) with the assumption that ||n|| o~ is small enough. Then F(n)—F<2)(n)Y belongs
to HY™*(R). Moreover, there exists a non decreasing function C: Ry — R, depending only
on vy such that

|F () — Freny (|| s < C (i) lInlZs [|1D2l2 &) -

Proof. By definition Fi<g) (7)) = G(<2)(m)¥ — |Dz| ¥ + |De| Tip, |90 + 0:To,41m, 50
F(n)y — Fl<oy(mv = Gy — G <oy ()
D] Ty Do w1 + 02 (Tv (yy—,471)-

The difference G (7)1 — G(<2)(n)Y is estimated by (2.7.14). To estimate the last two terms in
the right-hand side above, we use (A.1.20) to deduce that

H‘D:c‘ TB(n)w_|DacW1nHH’yf4 SNB®MY — [De| Yl 172 ”U”cw )
| irea STV = el g-1s2 Inll e »

|02 Tv (nyy—0,m

Now write

1Bt — |De| ¥l g-1/2 < B = Pl g-172 + 1Py (m) — [Daf bl g-1/2 -
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The first term in the right-hand side above is estimated by means of (2.7.4). To bound the
second term, observe that, since Py (1) — |Dz| = Tp_¢|, (A.1.10) implies that

1
1P+ ()¢ — [Dal ¥l 172 S OMg (P — [€) 102l 172 < Cllnll o /1Dl 9| -
On the other hand V()Y — 0,9 = (0,n)B(n)y so the product rule (A.1.21) implies that

IV = 0ull 172 S 10atllons IB@)El -1/ < C llnllen 10212 ] 2

where we used the product rule (A.1.21) and the estimate (2.7.3) applied with g = 1/2. This
completes the proof. O
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Chapter 3

Normal form for the water waves
equation

The main goal of this paper is to prove that, given an a priori bound of some Holder norms
of Z¥ (n+i ]Dx\% ¥) for k' < s/2+ kg, we have an a priori estimate of some Sobolev norms
of Zk(n+i ]Dx\% w) for k <'s, where recall that w = 1) — Tg(;)yn. The proof is by induction
on k > 0. Each step is divided into two parts.

1. Quadratic approximations: in this step we paralinearize and symmetrize the equations.
In addition, we identify the principal and subprincipal terms in the analysis of both the
regularity and the homogeneity.

2. Normal form: in this step we use a bilinear normal form transformation to compensate

for the quadratic terms in the energy estimates.

Since the case k = 0 is interesting in its own, we shall consider the case k = 0 and the case
k > 0 separately. In this chapter, we consider the case K = 0. The case k£ > 0 will be
considered in the next chapters. The overlap between this two cases will be small. Moreover,
we will prove a slightly better result in the case & = 0 then in the case k& > 0 (compare
Proposition 3.6.4 with Proposition 5.2.1).

3.1 Quadratic approximations without losses

We now consider the Craig-Sulem-Zakharov system
aﬂ] = G(n)¢7

1 2
O +m+ 5(@#/)) T3 G
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In this section we use the abbreviated notations

Gy + 0:m0z
1+ (9ym)*

Assumption 3.1.1. Let T' > 0 and fiz (s, ) such that

(3.1.2) B = V =0, —B0yn, w=1—"Tpgn.

s>o0+1> 14, QQ%N.
It is always assumed in the rest of this chapter that :
i) (n,9) € C°([0,T]; HS(R) x H2*"2(R)) is such that w € C([0, T]; H25(R)).
i1) The condition (1.1.17) is satisfied uniformly in time. Namely we assume that

(3.1.3) sup {Ilaw( Mee-s + 10020 [0 0] 122 }
te[0,T

is small enough, so that we are in position to apply Proposition 1.1.6 as well as the results
proved in the previous chapter.

Remark. Let us comment on the smallness condition. For our purposes ||0,1(t)||qe-1 =
O(et=/2) and ||/ (t)|| =1 < 1n1ll 7= = O(t?) for some § < 1/2 so that (3.1.3) will be satisfied.
One can also notice that, for smooth solutions, we have (see [20])

i(/n dx—i—/T/JG wdaz>—0

Now it follows from Corollary 1.1.8 that

0< / G () da = / (1212 )G o ()t dae < C (| [[100) ||| D2 ||

so that
12
||77H2L°°([TO,T];L2) < |Imoll7= + CUn6|| o) ||| D2]2 thol| 72-
Thus, for (3.1.3) to be small it is sufficient to require that supcjo 7y [[1(t)llces 170l 72, and

| \Dx\% tol| > are small enough.

For t € [0,T1], we set
1
My(t) == [n()ll s + ||| Da] w(B)]| 1

No(t) = [In®)ll e + [[1 D212 8| 2o

From (2.0.4), (2.1.2) and (2.1.7) we know that

1Bl gs=1 + IV g1 < C (Ng) M,

(3.1.4)
1Bllco—1 + [[V]|go-1 < C(Ng) No.

We start with some basic remarks about the Taylor coefficient a which is defined as follows.
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Notation 3.1.2. Define
(3.1.5) a=1+08B+Vd,B.
If (,¢) € CO([0,T); H5(R) x H2° 2(R)) solves (3.1.1) then

(n,0) € CL(0,T]; H1(R) x H3* 3(R)),
(B,V) € C°([0,T]; H'(R) x H'(R)).

In addition, it follows from the shape derivative formula for the Dirichlet-Neumann (see [35])

that G(n)y € C1([0,T]; H**(R)) together with

(3.1.6) G () = G(n) (9 — (B(n)¥)dm) — 0 ((V (n))dsn).

Then it follows from the definition (3.1.2) that 9,B € C°([0,T]; H* ?(R)). Consequently, a is
well-defined and belongs to C°([0,T]; H*~%(R)). It is known (see [4, 32]) that a = —9, P|,—,
where P is the pressure. Here, we shall use the following identity for a which is proved in the

appendix (see (A.3.9)):

(3.1.7) a ! e (1 +Vd,B — B9,V — %G(n)V2 - %G(n)B2 - G(n)n) :

1+ 0,

Lemma 3.1.3. i) For any v > 3, there ezists a nondecreasing function C such that,
1

(3.1.8) lo = lea < C(Umlle ) [ Inlles + 1Dal? ] oy |

Using the notation N,, this means that ||a — 1| o1 < C(N,)N,.
i1) There exists a nondecreasing function C' such that

(3.1.9) |0ra — 82¢| ;.. < C(N,)NZ,
(3.1.10) la— 1+ |Dg|nllcr < C(N,)N2.

Proof. Let us prove (3.1.8). By (3.1.7), we know that
lla =1l < C(lnller) [Haxn\\%l +Vller 102 Bllgr + 1 Bller 102V [l
GOV || + |G B || o + 1G]l r |-

By (1.1.44) applied with v replaced by v — 1, we may write

IGmnller < C(lnllev-1) Inllgr s
HG(U)B2H01 < C( Hn”cwl ) ”BHéwl )
GV 1 < C(IInll e ) VG
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where we used that C7~! is an algebra to obtain ||B?||,-, < |B||Z-1, V3 grer S IV]1Z-1.
Since C7~2 is an algebra, we get from the definitions (3.1.2) of V, B,
1
IViler + 10V llen < [[1Da]2 9| ey + Inlles I1Bllga-1

and

1
1Bller-s < CImlln ) [IGESlens + [1D2l2 ¥l oy |
Combining the inequalities and (1.1.44), we get finally (3.1.8).

The proof of the second estimate is similar. By using the identity (3.1.7) and (3.1.6) applied
with 1 replaced with V2, B2 or 7, together with the following expressions (see (3.1.5) and
Lemma A.3.1 in Appendix A.3)

B=-V0;B+a—-1, OV =-V9,V —adyn, 0m=Gn),

we obtain that d;(a+G(n)n) is bounded by C’(NQ)NQQ. Using again (3.1.6) to compute 9;G(n)n
we find that 9;G(n)n — G(n)0yn is bounded by C’(NQ)NQQ. Since G(n)oyn = G(n)G(n)y, we
deduce from (2.6.12) that modulo quadratic terms which are estimated as above, G(n)dn is
given by |D,|? .

Eventually it follows from the identity (3.1.7) and the estimates (2.0.4) that

la — 14 G(n)nllcn < C(N,)N,.

So (3.1.10) follows from (2.6.12). O

Notice that (3.1.8) implies that a is a positive function under a smallness assumption:

Corollary 3.1.4. If N, is small enough then
(3.1.11) a(t,z) >1/2, V(t,z) €[0,T] x R.
Assumption 3.1.5. Hereafter, it is assumed that N, is small enough, so that (3.1.11) holds.

Remark 3.1.6. Wu proved that a is a positive function (see [53, 52] and also [32]) without
smallness assumption.

Notation 3.1.7. Given two functions f, g defined on the time interval [0, 7], we write
(3.1.12) f=g mod[H?],

to say that there exists an increasing function C, independent of (n,,T) such that for
all t € [0,77,
1£(8) = 9Ol e < C(No(1)) No(t)* M ().

We say then that f is equal to ¢ modulo admissible cubic terms.
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We write now the water waves system as a paradifferential system of quasi-linear dispersive
equations. This will allow us to get energy estimates for the good unknowns n and w.

Proposition 3.1.8. Use Notation 3.1.7 and Assumptions 3.1.1 and 3.1.5. Introduce
a=+va—1, Ul=n+Twm, U?=|D.|?w.
Then

QU + Tyd,U" — (Id + T) |Dy|2 U? = F,
(3.1.13)

atU2 + |Dm|% TV 1/2890(]2 + |Dm|% (([d_|_ Ta)Ul) _ F2,

&I~
for some source terms F', F? satisfying
1
(3.1.14) F' = Feoy(n) — 5 Tozen  mod [H7],
1 1 1 1
(3.1.15) F? =2 |D,|? R5(|Dy| v, |Dy|w) — = | Dy|2 Rp(0,1), Opw) mod [HE],
2 2
where F<9)(n)y is given by (2.6.1).
Proof. The proof is in two steps.

STEP 1: Paralinearization of the equations

We begin the proof of Proposition 3.1.8 by proving that

(3.1.16) {@n+R@m—Wﬂw=ﬂ,
Ow + Ty Opw + (Id + Ty—1)n = f2,
with
(3.1.17) J' = Feny(n) — Togyn  mod [H°],
(3.1.18) 1% = S Rs(Del 0, D] ) — L R0t 0ut0) - mod [F*+7).

The first half of this result is already proved. Indeed, by definition (2.1.3) of F(n)v, the first
equation of (3.1.16) holds with f! := F(n)y — Ty 1. Consequently, the previous estimates
for F'(n)y — F<a)(n)y (see (2.6.4)) and V()1 — 0x%) (see (2.6.22)) imply (3.1.17).

To prove (3.1.18), we use the elementary identity

1 (8andath + G(n))?
2 1+ (9.n)2

1 1
= 5V2 + BVd,n — =B?,

1 2
5(8907;Z)) - 2
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which is proved in the appendix (see (A.3.8)). The paralinearization formula ab = T,b+Tpa+
Rp(a,b) then implies that

2 1(0m0:1) + G(n)o)?
2 14 (9,m)2

=TyV — 1B + Tvaan + TBV&m

L (0:0)

1 1
+ §RB(V, V) + Rp(B,Voyn) — §RB(B, B).

By using the identity B — V9,n = 0yn (see (A.3.2)), one obtains
—1TpB + 1TV o.n = —Tp0m.
On the other hand, starting from the definition of V' = 0,4 — Bd,n we have

TyV =Ty (0 — BOxn)
=Ty (0x%) — TOzn — T,y B — Rp(B,0:n))
=Ty 0, (¢ —Tpn) + TvTy,pn — Tv Ty, B — Ty R5(B, 0:n)
=Ty O,w+ Ty Ty, pn — TvTy,n B — Ty Rp(B, 0.1m).

Consequently,
TyV +Tvo,yB =Tvow + Ty Ty, 0 + (Tva, — TvTo,n) B — Tv Rp(B, 0:m).

By writing 9y¢) — TpOn = Oyw + Ty, pn and using (3.1.1), the expression of a — 1 in terms of
B,V given in (3.1.5) and the preceding expressions we thus end up with

Oyw + Ty Opw + (Id 4+ Ty_1)n = f2,
where
f? = (TvTo,y — Tvo,n) B+ Tva,s — TvTa,B)n

1 1
+ §RB(B, B) — §RB(V, V) + TvRB(B, aﬁ]) — RB(B, V@xn).

The end of the proof is simple: (i) we use the paralinearization theorem to estimate all the
remainders Rg(a,b); (i7) we use the symbolic calculus theorem to estimate the two terms of
the form T, T}, — T,,. More precisely, it follows from the symbolic calculus (see (A.1.14)) that

I(Tva.y = TvTo.n)Bll oy S IV 5 10enl 5 1Bl o,
1(Tvo,B = TvTo,B)nll ey S IV Iz 1102 Bllgase 10l s -
On the other hand (A.1.12) and (A.1.17) imply that
1Ty R (B, Qe or 3 S IV I I1RB(B, Oen)l o1

S IVl oo 182l 3 (1B grs-1 -
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By using (A.1.17) with § =s — 1 and a = 3/2, we obtain that
125(B, VO or g S 1V Ol o3 1Bl grs— -
Using the bounds (3.1.4) for B and V, we thus find that
H(Tvaw - TVTﬁxn)BHHH% 5 Nngv

I(Tvo.s = Ty To,p)mll .y S N2M,

2
1T Ra(B, 0un)|| vy S Ny Ms.

It immediately follows from the previous analysis that
2 _ 1 1 sl
fo= iRB(B,B) — §RB(V, V) mod [H®"2].
Now write

RB(B7B) = RB(B - ’DxWAB) +RB(’D93’1/}7B - ’Dx‘w) +RB(‘D93’1/}7 ‘Dx’w)a

and
RB(V7 V) = RB(V - 8907[1, V) + RB(am¢a V- 890(“)) + R3(6m¢, amw)

Using Proposition 2.5.1, (2.6.21), (2.6.22) and (A.1.17) we obtain

(3.1.19) 1% = R Del 6, | Del ) — £ Ris(@t 0u0) mod [H+3],
as asserted.
STEP 2: Symmetrization
Since 0Ty,b = Ty,b + T,0b with 9 = 0; or 0 = 0;, we find that
(O + Ty 0:)U" = (0; + Tv0:) (0 + Tam)
— (Id + To)(& + Ty 0 )y + {Tata + Ty Tha + [Ty, To] ax}n
and hence (3.1.13) holds with

Flim (Id+ To) f* + {Tata + Ty o + [T, Ta]&c}n,

where f! is given by (3.1.16).

Clearly, from the assumption a > 1/2 and the estimate of the C'-norm of a (see (3.1.8)) we
obtain that the C'-norm of @ = \/a — 1 is bounded by

(3.1.20) [eller < C(Ng) N
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Recall that we have proved that H fl‘
estimate for « implies that

s < C(Np)NyMs so, using (A.1.12), the previous

(3.1.21) T.f' =0 mod [HY].

Using the symbolic calculus estimates (A.1.12) and (A.1.8) applied with p = 1, we next deduce
that

TvTy,an =0 mod[H®], [Ty,To]0,n=0 mod[H"].

Together with (3.1.21) this implies that
F'= f' 4+ Tp.n mod[H®].

Now (3.1.9) implies that Ty,,n = %Tagwn mod [H?], so (3.1.17) yields the claim

1
F' = Foy)(n)y - 51ozyn  mod [H?].

It remains to prove the second identity (3.1.15). Since

1 1
U + |Dy|? Ty -1/20.U% = |Dg|? (O + Ty Opw)

€]
1
= |Dsﬂ|2 (f2 - (Id + Ta—l)n) )
and since, by definition of o = /a — 1,

(Id+T,)(Id+T,) = 1d + T, T, + 2T,
= Id+ Ta2+2a + (TaTa — Taz)
=Ild+ Ty 1+ (ToTo —T,2),

we find that the second equation in (3.1.13) holds with
F? = |Dy% f 4 |Da* (TaTo — T ).
It follows from (A.1.8) (applied with p = 1/2) that

H‘D:c‘% (ToTo — Ta2)77\

e S llallEe Il g -

This implies, since, as already mentioned, the C! norm of « is bounded by C(N, o) Ny, that
D2 (TaTa — Ty2)n = 0 mod [H?],

and hence F? = \Dx\% f? mod [H?]. The identity (3.1.15) then follows from (3.1.19). O
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3.2 Quadratic and cubic terms in the equations

Previously in §3.1 we paralinearized the water waves equations and identified the quadratic
terms, with tame estimates for the remainders. Our next goal is to prove that one can further
simplify the equations. We want either to eliminate the quadratic terms from the equations,
or to eliminate the cubic terms from the energy estimates. In this section we introduce some
notations. The strategy of the proof is explained in Section 3 of the chapter of introduction.

ul n Ut N+ Tan
u = 2 = 1 s U: 2 = 1 s
u |Dz|2 % U |Dz|2 w

with @ = y/a — 1 where a is as given by (3.1.5) (see also (3.1.7)). Assuming that Assump-

Set

tions 3.1.1 and 3.1.5 hold, our goal is to estimate the Sobolev norms H?® of U given an a priori
estimate of some Hoélder norm C? of u. Recall that we fixed s and o such that

1
s>p+1> 14, ggiN.

In this section, we introduce some notations in order to rewrite the water waves system under
the form

(3.2.1) oU + DU + Q(u)U + S(u)U + C(uw)U =G,

where G is a cubic term of order 0, satisfying

(3.2.2) Gl gz < Clllull o) 1ullEe 11U s

and where (u,U) — Q(u)U and (u,U) +— S(u)U are bilinear while C(u)U contains cubic and

higher order terms. In addition

e U~ Q(u)U and U — C(u)U are linear operators of order 1 with tame dependence on
u: this means that for any p € R, if u € C9(R) then U — Q(u)U € L(H*, H*~!) and
U C(u)U € L(H*, H*=1), together with the estimates

1) | s sy < Cllull) el
2

”C(U)HE(HH,HM%) < Cllullge) llullge ,

for some nondecreasing function C' depending only on ¢ and p.

e the linear operator U — S(u)U is a smoothing operator with tame dependence on wu:
this means that for any m > 0 there exists p > 0 such that, for any p € R, if u € CP(R)
then U — S(u)U € L(H*, H*™) together with the estimates

1S o gy < Clllullen) Tl

for some nondecreasing function C' depending only on m, p, .
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To do so, we rewrite the conclusion of Proposition 3.1.8 as
U+ DU+ A =F,

where F' = (F', F2) was computed in the proof of Proposition 3.1.8, and where

a2y po( 0, ), Ty3,0" = Ta Dil 0"
cL = 1 3 =
D> 0 |Dal? Ty 120002 + | D2 ToU!
We set
g = F—I—Ao—l-S,
with

(32.4) Ag= 2 Tozul , S =— . Feyyo
0 5 D212 Rp(|D2| ¥, | Dy| w) — 5 |Da|? Rp(0:0, Opw),

where F(<2)(n)Y is given by (see (2.6.30))

Fi<o) (MY = —|Ds| Re(n, | Dz| ) — 0 R(n, 01).

Then we may rewrite the equation for U as
U +DU+ A+ Ay +S =0,

where G = 0 mod [H*] by Proposition 3.1.8.

For later purposes, we write the explicit expression of G = (G!, G?):

G'= (Id + To)F(n)Y — F(gz) (M + Tata_azv+%ag¢77
o+ {~TaTo,v + Ty To,n + [T, Tu] o,
11 1
G* = |D, % (5Rs(B. B) = 3R5(1Dal 4D w))
3.2.5 1/1 1
(3:29) D21t (3Rs(V,V) — 3 R, 02

1
+ | D)2 (Tv T,y — Tvo,n) B + (Tva,B — TvTo, 5)n)
1
4 |D,|2 Ty Rp(B, 8,1) — |Du|2 Ry(B, V)

1
+ ’DxP (TocTa - Ta2)n'
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Definition of Q(u) and C(u).

Here we define the terms Q(u) and C(u) which appear in (3.2.1). They arise when one splits
Ag and A; to isolate quadratic terms. Write A; = Q1 + C where

o0l = T 1 1, (D22 U

Q1= 1 3 ’
D[R T,y 12020 + [DfE Ty U
1
(3.2.6 o Tawd U =Ty, iU
2. = 1 2
D212 Ty g, gy -2/20U° + 1Dzl Ty 1y, 1 U

Moreover, the quadratic term ()1 can be written under a form involving only the unknowns
u and U. We have

1 372

Q1= (WU = T oipa 422V = Togipyjua D2 U
- = 1 2 1 1
Dal* T, |, ~4uig-12%0" + 1Dl T_yp U

We write below C' as given by (3.2.6) under the form C(u)U. This is an abuse of nlotations
since C' cannot be directly written under the form of a function of v = (n,|Dy|% ¢) and
U. Instead, C' is an operator acting on U whose coefficients depend on (n,1). This abuse of
notations will not introduce confusion since the estimates for this operator will always involved
only u and U. This is because the nonlinear estimates we proved for the Dirichlet-Neumann
operator involved only ]Dx\% 1 and never 1) itself.

Similarly, write
Tuan.

to decompose Ag as a sum Ay = Qp + Cp of a quadratic term and a cubic term. The cubic
term Cp, being of order 0 will contribute to the remainder G in equation (3.2.1). Eventually,

we set
11 1 172
U 2T|DI|%U2U T—%\Dx\ul \Dx\ U

AP T
3.2.7 Q=0Q1+Qp= w| Pl 2U
( ) 1 0 1 0,U2 + |D$|%T—%|Dx|u1Ul

D.|2T
| (E| 81|Dz|7%u2|5‘71/2

Definition of S(u).

Here we define the term S(u) which appears in (3.2.1). To do so, with regards to S, write
n=U'—-T,n and
) _1 5
|Dz| ¢ = [Da|?u”, 0y = Oy [Da] 2 07,

‘Dx\w:\Dx‘%U27 axw:ax’D:c _% U27
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to obtain S = S(u)U + S where S(u)U = (Eggg;g;;) with

(S(u)U)! = |Dy| Rp(|Ds|? u2,U) + 0, Rp(0y | Do "2 u,UY),
1
(S@W)F)* = =5 1Da|? Rs(|Dal w?, D] U?)
1 1 _1 9 _1l o5
+ 5 |Dﬂc|2 RB(aw |Dw| 2u aam |Dm| 2 U )a
and

(3 2 8) § = <_ ‘Dx’ RB(’DJ/" 1/}7 Ta?’]) - 8xRB(8x¢7 Tan))
2. 0 .

Definition of G.

It follows from the computations above that (3.2.1) holds with
(3.2.9) G=G-8-Cy

where G is given by (3.2.5), S is given by (3.2.8) and Cy = (% Ton,0) arises when we

T 3

|Dx‘7u2
rewrite Ag in terms of u and U. We have proved in Proposition 3.1.8 that G = 0 mod [H*®].
On the other hand, it follows from (A.1.17) (resp. (A.1.12)) and the estimate (3.1.20) for «
that S = 0 mod [H*] (resp. Cy = 0 mod [H#]). This proves that G = 0 mod [H*] as asserted
in (3.2.2).

3.3 Quadratic normal form: strategy of the proof

To help the reader, let us reproduce here the explanations given in Section 3 of the in-
troduction. We want to implement the normal form approach by introducing a quadratic
perturbation of U of the form

®=U+ E(u)U,

where (u,U) — E(u)U is bilinear and chosen in such a way that the quadratic terms in the
equation for ® do not contribute to a Sobolev energy estimate.

Writing

and replacing 0,U by —DU — (Q(u) + S(u))U, we obtain that modulo cubic terms,

0® = —DU — (Q(u) + S(u))U — E(Du)U — E(u)DU
=—-D®+ DE(u)U — (Q(u) + S(u))U — E(Du)U — E(u)DU.
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It is thus tempting to seek E under the form F = E; + FE» such that

(3.3.1) Q(u)U + Ey(Du)U + E1(u)DU = DE;(u)U,
S(u)U + Es(Du)U + Eo(w)DU = DEy(u)U,

to eliminate the quadratic terms in the equation for ®. However, one cannot solve these two
equations directly for two different reasons. The equation (3.3.1) leads to a loss of derivative:
for a general u € H* and s > 0, it is not possible to eliminate the quadratic terms Q(u)U by
means of a bilinear Fourier multiplier E; such that U — E;(u)U is bounded from H® to H*.
Instead we shall add other quadratic terms to the equation to compensate the worst terms.
More precisely, our strategy consists in seeking a bounded bilinear Fourier multiplier (such
that U +— E1(u)U is bounded from H*® to H®) such that the operator Bj(u) given by

(3.3.3) By (uw)U := DE,(u)U — Ey(Du)U — E;(u)DU,

satisfies
Re(Q(u)U — B1(w)U,U) gsx s = 0.

The key point is that one can find Bj(u) such that U +— By (u)U is bounded from H® to H*.
This follows from the fact that, while U — Q(u)U is an operator of order 1, the operator
Q(u) + Q(u)* is an operator of order 0. Once Bj is so determined, we find a bounded
bilinear transformation F; such that (3.3.3) is satisfied. We here use the fact that Q is a
paradifferential operator so that one has some restrictions on the support of the symbols.

As explained in the introduction, the problem (3.3.2) leads to another technical issue. Again,
we shall verify that one can find Fy(u) such that

|| B2 (u < K ||ull e -

)HE(HS,HS)
and such that the operator Bg(u) defined by
Bo(u)U := DE3(u)U — Ey(Du)U — Ey(u)DU,

satisfies

(334) Re(S(u)U - BQ(U)U, U>HS><HS =0.

3.4 Paradifferential operators

Below we shall consider the equation
(3.4.1) E(Du)U + E(u)DU — D[E(u)U| = H(u)U,
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where (u,U) — E(u)U and (u,U) + II(u)U are bilinear operators of the form

1 ) — ~
B@U = ), Gy / et uk (&) AN (&1, £2)U (€2) dé déa,
1<k<2
1 iw(€14+€2) 0 k 7
(w)U = 1<z:k<2 (2r)? /e Ete)yk () MF (&1, &)U (&) d&r dés,

where A* and M* are 2 x 2 matrices of symbols.
We shall consider the problem (3.4.1) in two different cases according to the frequency inter-

actions which are permitted in E(u)U and II(u)U. These cases are the following.

(i) The case where II(u)U is a paraproduct of the form T,b. Namely, the case where there
exists a constant ¢ €0, 1/2[ such that

Supp M*  {(61.6) € B ¢ |&2l > 1, [&1] < el -

(ii) The case where II(u)U is a remainder of the form Rp(a,b). Which means that there
exists a constant C' > 0 such that

Supp M* € {(61,€2) € R ¢ |1 + &l < C(1+ min(l&], |&2) }-

There is another important property of the symbols which have to be taken into account.
Indeed, when solving the equation E(Du)U + E(u)DU — D[E(u)U] = II(u)U, we will have
to invert a matrix which yields a small divisors issue. Here this problem arrises only for low
frequencies. Therefore, we need to quantify the order of vanishing of the symbols on & = 0,
& = 0or & + & = 0. For the analysis of the first case, for instance, since |{&2] > 1 and
|€1 + €3] > 1/2 on the support of MF, it is sufficient to quantify the order of vanishing in &;.
We are thus lead to the following definition.

Definition 3.4.1. Let (m,~,v) € [0,+00[>. One denotes by S,"" the space of functions
(&1,&) — A(&1,&2) with values in 2 x 2 matrices, C™ for (£1,&) € (R\ {0}) x R and
satisfying

(3.4.2) dc €]0,1/2] such that Supp A(&1,&2) C {(51,52) & > 1, &) < c|£2|},

and, for all (o, B) € N2,
(3.4.3) 08,06, A(61,62)| < Cap 1] (&)™ 2 (€1).

If a = a(&1,&) is a scalar valued function, we shall say that a € Sy"" if als € S;"7 where Iy
the identity matriz.
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To analyze the remainders terms it is convenient to introduce the following definition.

Definition 3.4.2. Let (m,vy,1n) € [0,+0c[>. One denotes by SR™ . the space of func-

tions (&1, &2) — R(&1,&2) with values in 2 x 2 matrices, C* for (&, 52;17€V2(]R\{0}) x (R\ {0})
and satisfying

(344)  IC>0 st SwppR(€,&) C {(€,6) 1 &+ &l < CO+min(&l, |&l)},

and

(3.4.5) g0z, R(@,@)( < Clap 62|70 (€777 (1 + [€a] + [€2])™

Notation 3.4.3. Given a scalar function v, a matrix A in one of these two classes of symbols
and f with values in C?, we set

~

(3.4.6) OpBlu, A f = (2;)2 / e EOFEG(E) A(Ey, &) Fl&2) dEy dEo.

When there is no risk of confusion, we will use the notation Op® [v, A]f also for scalar sym-
bols A and scalar unknowns f.

m

Proposition 3.4.4. i) Given m € R, one denotes by SR}, the space of functions (£1,&2) —
R(&1, &) with values in 2 x 2 matrices, C™® for (&1,&2) € R? satisfying (3.4.4) and

(3.4.7)

8?1552]%(51752)‘ < Caﬁ(l + ‘61‘ + ’52’)771—05—5.

Then for any a € [0, +o00[ and any o € [0, +oo[ such that a + o > m,

(3.4.8) 10P% [0, RIf| jyosa-m < K N|0ll o | 1l
and
(3.4.9) 10D [0, RIf| jyosa-m < K 0]l ca |1 £ 7o -

it) Let m in R and let vy,v9 in |0,+o00[. Consider two real numbers a € [0,+o00[ and o €
[0, 400 such that a + o > m + vy + ve. If R belongs to SR} ,, then

vi,ve
HOPB[U7R]fHHcrvLafmfulle é K ||U||H‘7 ||fHC’“

and
HOpB['U,R]f”HU+a,7,L,V1,,}2 S K ”U”C‘Z ”f”H" N

Proof. i) Notice that (3.4.4) implies that there holds Cy ! (&1) < (&) < Cp(&1) on the support

Of R(fl, 52)
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Consider a dyadic decomposition of the identity (see Appendix A.2) and write

Aj Op®[v, R]f = Z Z Aj Op?® [Akv,R] Aof
k>0 £>0

+§:Aﬂm3m“wﬂ%f
k>0

+ Z Aj OpB [S(]U, R] Agf
>0

+ A; OpP[Syv, R]So f.

By using the previous remark and (3.4.4) one can assume that |k — ¢| < Ny and j > k — Ny
in the first sum and the two other sums are non zero only if j < Ny, k < Ny, £ < Np.

The summand of the first sum can be written
AE = Ay [ Kot == ) Seon) e () i

with
2 ok ey 12t aatn) ke of
Ky = W/e 11272282) 5(61)p(&2) R(2761, 2°60) dErdés.

Since R satisfies (3.4.7), the partial derivatives of the non oscillating term are O(1) (since
|k — £] < Np), whence the estimate

-N
| K o(21,22)| < CNQHHkm(l + 2F| 2| + 26\2’20

for any N. Therefore

AR < 18 £ / 25 (14 28z — ) ™V |Ago(yr)] dyr - 2

SO

k0 k —Lla—ko+k
145 2 < C2™ 18 £l e 1ARVI 2 < C277E7 ey [ £l [0l e

Since we sum for |k — £| < Ny, k > j, we obtain for a + 0 > m

S 1A < €279 | £l g ol o 277
k.t

The analysis of the other terms is trivial. This proves (3.4.8). The proof of (3.4.9) is similar.

it) Since we assume that (3.4.7) holds, if |{1] > 1 or |£2] > 1, the other term is large, and
they are of comparable size. Then we have

Op®lv, R]f = Op® [Sov, R] (Sof) + Op® [v, R] f

where 50 cut-offs on a ball with a large enough radius and where R is in SR;’;;F”H”?. It
suffices to study the first term, in which we decompose

v = ZAkv, f= ZAgf.

k<No {<No
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If we set
Ak = /Kk,e(l" = Y1, — Y2) Apv(y1) Aef (y2) dyrdyz

then the kernel K}, , satisfies

—N
|Kk,£(21, 22)| < 02k(1+l/1)+f(1+1/2) (1 + 2k|21| + 25|Z2|>
whence
4] 2 < C 1A [Dgril g2 252 < C [l ol s

To be able to sum on k < 0, £ < 0, we need the assumption v1 > 0, o > 0. We then
obtain that HOpB [Sov, R] (Sof)|| 2 < Cllfllpee 0]l > (together with a similar estimate in
[l 2 [[0ll foo)- O

In the rest of this section, we study the case where A € S;"”. In particular, we shall prove
that, for all v € C? N L*(R) and all A € SJ*7, the operator Op®[v, 4] is well-defined and
bounded from H**t™(R) to H*(R) for any p € R. To prove this result, we first notice
that OpZ[v, A] is a pseudo-differential operator. Indeed,

0pln. Al = - [ e*aa.o)F ) de,

where the symbol a is defined by
1 N
(3..10) o@,6) = o= [ TG € dea

Since v € L*(R) and A(-,€) is bounded, a(-,&) is well-defined and belongs to L%(R;dx) by
Plancherel’s theorem.

The following two lemmas state that, in fact, if A € S;"7, then a is a paradifferential symbol
of order m and regularity C*~7~%. We first consider the case v = 0 and then the case v > 0.

Lemma 3.4.5. (i) Let (m,v) € [0, +00[?, A € S§™7 and consider a scalar function v € CPNL?
where p is such that p > v,p € N,p —~v & N. Then, for all 8 € N and for all € €]0,1], there
exists a constant K such that the symbol a defined by (3.4.10) satisfies

sup €70t 6)| -, < K {lelen + £ ol ol

CcpP—

(ii) Let (m,~,v) € [0, +oc[® and assume that v > 0. Consider A € S;"Y and a scalar function
v € CP N L2(R) where p is such that p > v+ v,p € N,p —v —v &€ N. Then, for all 8 € N,
there exists a constant K such that the symbol a defined by (3.4.10) satisfies

< Kffvflep -

Ccr——v

sup H(@B_mafa(',i)(
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Proof. Let us prove statement (i). Consider the dyadic decomposition of the identity Id =
(D) + Z‘;‘;l A; introduced in (A.2.1). We have to prove, for j € N* and 8 € N,

HAjagﬁa(-,f)HLoo(dx) < K |||l e <£>m—62_j(p_ﬁ/)’

and an analogous estimate for the low frequencies. One can assume without loss of generality
that 8 = 0.

Consider j € Z and a C*° function <;~5 with compact support such that <;~5 = 1 on the support
of ¢ and ¢ = 0 on a neighborhood of the origin. Then

Ajala,§) = o= [ a2 IE)a6) A6 €) dés

2J
T om

=2 /Ej(2j(x —2'),8)Aju(a’) da’

/ 2 @=a8 Ge VAo (2! A(20€y, €) da’ dy

where
(3.4.11) Bj(.6) = — [ 665(6)) A2y, €) de
4. (2, = on e 1 1, 1.

Then, integrating by parts, the inequalities (3.4.3) and the support condition (3.4.2) imply
that for all n € N there is a constant C,, such that, for all (z,¢) € R? and all j € Z,

2" Bj(2,€)| < Cu(277)(€)™.

Consequently, the kernel satisfies [|£}(-, )| 114,y < K{277)(¢&)™. For j > 0, we deduce that
125a(, )l oo amy S (6™ 1870l 10 27 S (™ 27707 0y

On the other hand, for j < 0, write
(3.4.12) 14;a(, )| oo < KE)™ 1A70] oo = K ()™ 125011725 1A0] o
Estimating [|Ajv]|; . < 27/2(|Aj0] 2, we get

14 0 (-, &)l oo < KZ/2(E)™ [ Aj0ll7e 1 Ag0ll5 -

Since a(-, €) € L*(R) and since .1 27¢/2 = O(e~!), summing on j < 0 (using Remark A.2.1),
we obtain that

[@(Da)al- )l co—r S NP(Da)al,8)llpee S i ollzss [lolge
€

which completes the proof of statement (7).
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We now prove statement (i¢). Since S, C Sy 7tV the analysis of the high-frequency
component follows from the previous proof. It remains only to bound the low-frequency
component. Namely, it remains to estimate H@(Dx)af a(',ﬁ)H 0o Again, it is sufficient to
consider the case = 0. As above,

(Dy)alr,€) = / E(x — 2/, )(®(Dy)o) (o) d’

with
E(z,§) = %/eizgl‘f(&)z‘l(flaf) dé1,

where ® € C3°(R) satisfies ® = 1 on the support of ®. To conclude the proof, we have to
estimate the L'(R; dz)-norm of E(-,¢). This will follow from the following fact: if g = g(&) is
a compactly supported function, C* for £ € R\ {0} and such that its derivatives satisfy

9@ < 1€, |d@© <1, 1g"©)] < g2,

with v > 0, then its inverse Fourier transform § belongs to L!(R). O

We thus have proved that Op®[v, AJU = o= Jg €a(z, U (€) d¢ where a is a paradifferential
symbol. We now claim that Op” [v, A] is a paradifferential operator.

Lemma 3.4.6. Let (m,~,v) € [0,+0o>. Consider A € S, and a scalar function v €
CPNL2R) withp>~v+v,pg€N,p—~v—v &N. Then

Op®Plv, A] =T, + R,

where T, is the paradifferential operator with symbol a given by (3.4.10) and R is a smoothing
operator of order m — (p — v — v), satisfying

RS smo-r < K sup [ (€17 "0fat.6)|

VS -

Ccr——v

Proof. By virtue of the support condition (3.4.2), there exists a C'*° function O satisfying the
same properties as 6 does in Definition A.1.2, except that

O(&1,&) =1 if [§] <& (1+[&]) and [&] > 2,
O(1,62) =0 if |G > &1+ &) or  [§ <1,

for some 0 < &1 < &1 < g3 < €2 < 1/2 with the additional assumption that ¢ < & where ¢ is
the small constant which appears in (3.4.2). Denote by 7.° the operator defined by

~

197 = Gz [ €710, QN6 EF(6) dér de

o, which is better written as
Op? [v,A] =T, + R with R := T[? —T,. Since 6 are © are two admissible cut-off functions (in
the sense of Remark A.1.4) it follows from [38, Prop. 5.1.17] that R =T° — T, = T2 — T? is
of order m — r if a is a symbol of order m in £ with regularity C" in . O

where @(¢1,&) = [e ™a(x,&)de. Now, OpPlv, A] = TP
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We conclude this part by establishing two identities.

Lemma 3.4.7. Let (m,~,v) € [0,+0o[3. Consider A € SJ"” and a real-valued function
v € CPNL2R) withp>~vy+v,pE€N,p—~v—v &N. Then

(OpB[Uv A])* = OpB[U, B]7

with B(&1,&) = AT (=€, &1 + &) where AT is the transpose of A.

Proof. We have

BT 1

OpZlw, AW (1) = —— / B(E)AlEr,n — )W (n — &) deo.

2
so that
(OF 0, ATUIW) = o [ Tl A€ & — )W (62— &) da des
- o | AR &I (6 - €)W () deadey
~ 5 | OV BU (@) (€2) dee
with B(&1,&2) = AT(—&1, 61 + &). O

We shall also use the identity
(3.4.13) 20, OpPlu, Alf = OpB[zd,v, Alf + OpPlv, Al(zd,.f) — OpPlv, & - VeAlf.
Indeed, this follows from an integration by parts, using
28, EHER) = £, eiE1+8) 4 g9, eirE1H+E2),
In particular,
(3.4.14) 20, Tob = Tro,ab + To(x0rb) + Sp(a,b),

where Si(a,b) = Op®la, R]b with R = —¢ - V¢ where 6 is given by Definition A.1.2.

3.5 The main equations

We continue our normal form analysis by studying the equation
(3.5.1) E(Dv)f + E(v)Df — D[E(v)f] =II(v)f,
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where v = (v!,v?), f = (f', f?) and (v, f) — E(v)f and (v, f) — II(v) f are bilinear operators
of the form

E(v)f = Op® [Ul,Al]f +0Op® [U2,A2]f7
II(v)f = OpP [vl,Ml]f + OpP [vz,Mz]f.
We first consider the case where (M?', M?) € S;*7 x S*7.

Proposition 3.5.1. Let (m,~) € ([0, +oc[)?, v € [1, +00[ and consider (M*, M?) in SJ*7 x

SO, Then there exist A € S;rﬂﬂ and A% € Sﬁ1/2 such that

E(v)f = OpP[v', A'|f + OpP[v?, A?]f,

satisfies (3.5.1) and (M*', M?) — (A', A?) is continuous from S, x S to S:fﬂ/z X S:T{/T

Proof. We have

DE(v)f = OpP [v!, D(&1 + &)A' (&1, 6)] f + Op® [v%, D(&1 + &) A% (&1, 6)] f,

E(Dv)f = OpP [ — | D, |7 0%, AY(&1, &)] £ + Op® [ | D7 o', A%(¢1,9)] £,
E(U)Df = OpB [U17A1 (51752)D(£2)]f + OpB [,U27A2(£17£2)D(£2)] fv

where D(¢) = (Y 1) [¢ \% is the matrix-valued symbol of the operator D. To solve
E(Dv)f + E(v)Df — D[E(v)f] = 1(v)f = Op® [v!, M'] f + Op® [v*, M*] f,
we thus have to solve

—D(& + &)A + AD(&) + 6|7 A2 = MY,
(3.5.2) 1
—D(& + &)A* + A’D(&) — |G| A" = M.

Denote by afj (resp. mf]), 1 <i,j <2, the coefficients of the matrix A* (resp. M*), k = 1,2.
To solve (3.5.2), we have to solve two 4 x 4 systems for the 8 unknowns afj. To simplify the
computations, it is convenient to observe that this 8 X8 system can be decoupled into two other
4 x 4 systems: one system for (a?,al,, ad;,a2,) and another system for (al;,a?,,ad,,a%).
They read

€1+ Gl aby + |62 ) +J€l2 aly =mly,
—‘51‘1‘52’%@%1 _‘51‘%65%1 ‘Hfﬂéa%z = m3,,
—|£1+£2|%a%2 +|fl|%a%2 —|£2|%a§1 = M3y,
€61+ 6l ady — &1l aly —|&al2 ady =mb,
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and

(3.5.3) —J&1 + Eal2ady +l61]Zad, + |eal2ady, =ml,
(3.5.4) €1+ &l2ad — [&l2ad, +|&l2ad, =my,
(3.5.5) €1+ Eal2ady +|61]7ad, —|6)2al;, = mly,
(3.5.6) &1+ &lady —|6]aky — |&]7dd, =mb,.

Clearly, these two systems are equivalent and it is enough to solve one of them.

Let us solve (3.5. 3) (3.5.6). By using (3.5.3) and (3.5.6) one can determine a2, and al; by
means of al, and a3;. It remains only a 2 x 2 system for (al,,a3;). Set

§ =&+ &l — |Gl —1&l, D=6 —4]&]]&].

It is found that

2 AT RLPe! 3.1 3.2 1 2
dazy — 26112 1622 agy = — [§1]2 mgy + [§2|2 Mg + [&1 + &2 2mTy,
11 1 1 1
Sagy — 2161|2 [&2|7 a3 = |€1]2 m3y — [&2|7 myy + |&1 + Eol2myy,
thus
l 2 l 1 l 2
5(|§1 + &2|2miy — [&1]2 magy + €22 m22)
2 1
+5 161]2 |62 (16 + &lEmly + (€] m3y — |62 mj,),
1) 1 1 1
agy = 5( &+ &lrmiy + [61]2 m3, — &2 m%l)
(3.5.7) 2 1.1 1 1 1
+5 €112 1627 (&1 + &ol2mTy — 1|7 myy + [€2]? m3y),
1
ajy = 7(|51|2 (g9 + |52|2@21 +m22)
’§1+§2’2
1
aj, = 7(|51|2a21 + |£2|2a22 m%l)'

€1 52’2

We here give simplified expressions for § and D on the support of the symbols m . Notice
that, by definition of the spaces S,"7, we have |¢1| < €3] /2 on the support of the symbols mk. /2
We then observe that

£1£2>0 = 6=0 andD:—4|£1||£2|,
1§ <0and [§1] <[&| = 6=-2[&] and D = —4(§][& + &

Thus, for all (£1,&2) e R?,if |&1| < [&2] /2 then |D| > [&1]|€2]. Consequently, since |&3| ~ (£3)

on the supports of m¥;, we have |D| > |£1] (€2) on the supports of mf]

5
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Now, since mfj € Sy"7 for some v > 1/2 by assumptions, one can write mf] = |£1|1/ 2 ’I’hfj

with ﬁlfj € S;"’_Z /2 Furthermore there exists a C°° function 6: R? — R satisfying

(3.5.8) ie,&) =0 for o] > 3 l&l or &l < g,

such that mf] = 5(51752)7%%'

Introduce the coefficients
) 1 1 ~ 0 1 1 ~ 0
c1 = 95 1€1]2 1€ + &2, co = 95 16112 622, c3:= 95\51’7
~ 2 1 1 ~ 2 3 1 ~ 2
cq = 95 €11 [€2]2 |&1 + &2]2, 5= 95 16112 [€2]2, ¢ := 95|51||f2|,

In view of the support restrictions (3.5.8) and the simplified expressions for 6 and D given
above, these coefficients belong to 58’0.

k

Thus, for any coefficient ¢, (¢ =1,...,6) and any symbol m;;, one has Cgm’fj € S"™7 . Now,

v—1/2"
using the formulas (3.5.7), we obtain that a3, and al, can be written as linear combinations

of terms of the form cmfj. This implies that the symbols a2, and ai, belong to S;"’_Z /o This

in turn implies that afy,ai; belong to 577 /2 which concludes the proof. O

We next consider the following problem:
Eg(Dv)f + Er(v)Df — D[Eg(v)f] = S(v)f,

where we recall that S(v)f = <(S(v)f)l) with
(S@)F)! = [Dal Ri(|Ds|2 0%, 1) + 0: R0 | Do | 72 0%, f1),
(SE)1)? =~ 5 |Daf? Ri(IDa|? 2, [0, )
+ 51Dt Re(@, 1D17% 2,0, Daf 73 1)

We shall see that it is useful to split S(v)f into two parts. Introduce

(3.5.9) sﬁ(v)f:<(s(”)f)1), sb(v)f:1< 0 )

These two operators are different because S°(v)f satisfies S”(v)f = S°(f)v, while S%(v) f does
not satisfy this symmetry.

Our purpose is to study the equations
SHv)f,
S (v)f.

E*(Dv)f + E*(v)Df — D[E*(v)f]

E’(Dv)f + E’(v)Df — D[E’(v)f]
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The next proposition states that one can solve these equations, and that the solutions E*(v)
and Eb(v) f are smoothing operators depending tamely on v. Recall that the spaces of symbols
SR have been introduced in Definition 3.4.2.

V1,V2

Proposition 3.5.2. There exist four matrices of symbols R, R2, R» R*2 in SR(ILO such
that the following properties hold.

i) Let (u,p) € R x Ry be such that pu+ p > 1. The bilinear operators given by
(v, f) = EF(v)f = Op®[o!, R¥']f + OpP[v?, R¥?]F,
(v, f) = E’(v)f = Op’[v", R"'] f + Op°[v?, R,
are well-defined for any (v, f) in (CP N L3(R)) x H*(R) or in H*(R) x (CP(R) N L3(R)).
i) There holds
(3.5.10) E*(Dv) + E*(v)D — DE*(v) = S*(v),
(3.5.11) E’(Dv) 4+ E*(v)D — DE’(v) = S°(v).

iii) The following estimates hold.

e For all (u,p) € R xRy such that u+p>1 and p ¢ %N, there exists a positive constant K
such that, for any f € CP(R) N L?(R) and any v € H*(R)

(3.5.12) 1)l grs < K 1l 10
(3.5.13) 1 ) f | s < K (oo + IHF o) 100
where Hv is the Hilbert transform of v.

o for all (u,p) € R x Ry such that p+p > 1 and p ¢ %N there exists a positive constant K
such that

(3.5.14) IE* ) f | o+ B @) F || o < K (0l go + [H0l o) 11 -

iv) The operators Re E*(v) = 1(E*(v) + E*(v)*) and Re E’(v) satisfy

(3.5.15) Re E*(Dv) + Re E*(v)D — D Re E*(v) = Re S*(v),
(3.5.16) Re E°(Dv) + Re E°(v)D — DRe E”(v) = Re 8 (v).

Moreover, for all (u,p) € R x Ry such that w+p > 1 and p & %N, there exists a positive
constant K such that for any f € H*(R) and any function v € CP(R) N L?(R) such that

0(&) =0 for [¢] 2 1,

(3.5.17) [Re B ) f || s + 1R B (0) | e pr < K Mloll o |11
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Remarks. Some technical remarks are in order. Had we instead obtained symbols R%!, R%2,
R R*? in SRil,o for some vy > 0, then we would have obtained the bound

14 s + 2@ s < K Rl 1

that is, up to the harmless loss of vy derivative, the estimate (3.5.14) without the extra term
|[Hvl| - However we shall see that our symbols only belong to SRy (see (3.5.19)). For such
symbols, in general, one cannot expect a better estimate than (3.5.14). For our purpose, it
is crucial to have an estimate which involves only ||v||~,. To overcome this difficulty, the key
point is that, on the one hand, the right-hand side of (3.5.12) does not involve ||v||~, || f]| g
and on the other hand the estimates (3.5.14) and (3.5.17) are sharp. The latter estimates
will be used in the proof of Proposition 5.2.1. Finally an estimate analogous to (3.5.12) for
E’(v)f does not hold. We shall circumvent this by using the symmetry S°(v)f = S°(f)v, so
that the estimate (3.5.13) is enough for E”(v)f. As already mentioned, this is the reason why
it is convenient to split S(v)f as the sum of S*(v)f and S°(v)f.

Proof. The proof is divided into two parts. We first study E*(v), then we study E”(v).
STEP 1: Analysis of Ef(v)

Set ((&1,&2) =1 —0(&1, &) — 0(&2,&1) where 0 is the cutoff function used in the definition of
paradifferential operators (see Definition A.1.2). Then

Ra(ah) = gy [ €#0790c(6 a(ehe) dé de
Introduce
(3.5.18) m3y(61,62) = |61] 72 (161 + &l [&1] — (€1 + E2)€1)((E1, £2).
Then

2
S*(v)f = Op®[v®, M?|f  with M? = (nt)n 8)

We seek Ef(v)f under the form OpP[v!, R#1f 4+ OpP[v?, R%2|f satisfying (3.5.10). Denote
by rfj the coefficients of the matrix R**. It follows from the proof of Proposition 3.5.1 that,
to solve (3.5.10), it suffices to set r; = ri, =3, =r2, = 0 and to solve

—J&1+ &3y 163 + |&l3rd, =0,
€1+ &lordy —lalorl +lglar, =mb,
61+ &al3rdy +l613rE, — &l =0,

&+ &lrrhy —lGlerh, — &l =o.
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As already seen in the proof of Proposition 3.5.1, we have
1
i = pl& + &lemi,

2 1 1 1
ri = 7 |[? (&l |61 + &f2miy,

2|§1|+5 1
7‘%2 == |52| 11,

6+2 1
= IE2'|5|

where 0 := |&1 + & — [&1] — €] and D = 62 — 4&1] &)

Notice that on the support of m?; we have (& + £2)& < 0 so that £1& < 0 and [&| < |&.
Then [&; + &o| = [|&2] — [€1]] = [§2] — [£1] and we have

6=-2]&| and D =4[] ([&]—[&]) = —41a]|& + &

This allows us to simplify the computations. It is found that

= ————ml,
2[&1 + &of2
S — 1|§2|% _m?
2|&61]2 [61 + &2
T%Q :07
7‘%1 = - ! 1m%17
2|62
SO
L 1 §i+8& &
7421 - ‘61’ ‘61 +§2‘ < ’5 +§2‘ ’51’> C(§17§2)7
1 §+8 &
T22 __‘62‘ ’51—’_62‘ < ‘5 +§2’ ‘51’>C(§l7§2)7
T%Q :07
G +8& &
Tll ’51 +§2‘ < |£1 +£2| H) C(§17§2)-

We thus obtain the desired result (3.5.10) with

1 (&1+&) & &1 + & 0
Rﬁ’liz——<1—7—> s 1 1,
2 e ral el (@ 52)( 0 |£2|§|£1+£2|§>

1 (§1+&2) & 0 0
R < _7_> , 1 )
2\ e elial) ) <|51|§|51+£2|5 0)

(3.5.19)
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Set H = —id, |Dm|_1. Then Op” [vl,Rm]f is given by
1 ~ |Da| Rs(v', 1) + H | Dy| Ris(Ho', 1)
2\~ |Dal2 Ru(o", [Do|? £2) 4+ H |Dal? Ri(Ho', D42 £2))
and Op® [v2, Rm]f is given by
1 0
2 \IDu|% Ri(1Do|7 02, £1) = H|Do|? Ris(H|Ds|2 02, 1))
To prove (3.5.12) we have to estimate various terms of the form

1
A1 |D,|" Ra(Ag |Do|V, |DL|° F),  Aj € {H,Id}, a+b+c=1, ce{0.5} ab>0

Since Rg(a,b) = Rp(b,a), the estimate (A.1.17) and the fact that H is bounded on Sobolev
spaces imply that
|41 1D2[* R (A2 | Do’ V. [ D" F)|| -1
< ||Rg(Az | D"V, | Dy|¢ F e
5 HA2 ’Dx’ VHH;L71+a+c
S IV Iz 1 Fll e

Dl Fl| e

where we used (A.2.4) in the third inequality. This proves that

100" [, BT £ s S M1 g 1l
HOpB [U2,Rﬁ72]fHHH+pfl /S HUZHHH ||f||CP ’

which imply (3.5.12). Similarly, we have

100° [0, B £ s s S ([0l + [H0 o) 15 e
(3.5.21) 1005 [0, R¥2) £ || yusos S 102 o 1 e

which proves (3.5.14).

It remains to prove statement iv). Notice that, since D* = —D, (3.5.10) implies that
E*(Dv)* + E*(v)*D — DE*(v)* = S*(v)*.

This and (3.5.10) implies that Re E*(v) satisfies (3.5.15). We now have to prove that

(3.5.22) |Re E*(0) £ || jpuso1 < K N0l 11l e

provided that the Fourier transform of v is supported in the unit ball. To do so we begin by
noting that Lemma 3.4.7 implies that

Re Ef(v) = OpB[v!, R¥ (&1, &) + RM (—&1, & + &)
+OpP[v?, R*2(&1, &) + R¥ (=&, &6 + &)7).
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We begin by proving that

(3.5.23) |0pP [0}, R*' (&1, 6) + REN(=€0, &0+ &) | g oy S 10 |

Below we use the following notation : given a scalar symbol p = p(&;1,&2) we denote by p the
symbol defined by p(&1,82) = p(—&1, &1 + &2).

To prove (3.5.23) we write R*! under the form R» = ¢ (¢9). Then

a+a

R (61, 6) + RY (61,6 +6)T = %C ( 0 b?ﬁ) +

with

o=l (- )
(3.5.24) T = |6 (1 + %%) :

=teltia it (1- g )
(3.5.25) b=—|&1+ &2 &) <1+é—z|é—h>
so that

a+a=—1& + & — &+ &,

&1+ & [&

b+B= 2|6l |61 + Ealf +|%alF |6y + 6ol ( Gt & ) |2|.

As above it follows from (A.1.17), (A.2.3) and (A.2.4) that

B[ 1 1. [ —l&+él-lel+lal 0 <l
H Op [v ’ 2C < 0 —2lea] 261 +6] 2 )] HL:(HH,HMMA) ~ HU HCp :
Set
1 §1+ &2 &2 > &1 1 1
3.5.26 ,€9) == , == 22 ) 2= &2 &+ &2 .
352) A& =566 (P - ) ol +
We have to prove that similarly
3521 (LI [y el

Notice that on the support of

<fl+§2 _é)
|61+ & &
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we have |£1] > |€]. Introduce now Y € C*(R?\ {0}), to be chosen later on, such that
T(gl,fg) =1 for |£1| > |£2| and T(gl,fg) =0 for |£1| < |£2| /2 Then

<§1+§2_§_2>:<51+§2 f2> T(6, &)
161+ & [& &+ &l (& 7
and we can decompose [ as
B = §1+§21ﬁ +\§1+§2] B2 where
€1 + &2|2

1|4

1 L. |€2|_
pr = §C(§1,§2)’§ | €117 [€2]% <| Y (1,60 )) ,

52 51 et (12l

Then Op® [, 8] = H ]Dx]% Op®t, B1] + \Dx\% Op®[v!, B2]. We claim that YT can be so
chosen that 5, € SR?/471/4 and similarly By € SR?/471/4 so the result (3.5.27) follows from
statement 4i) in Proposition 3.4.4. To do so we consider a function v € C*°(R) such that
v(t) =1 for |t| <1 and v(t) =0 for |t| > 2. Then we set T(&1,&2) = v(£2/&1) and it is easily

verified that
o0.0% (‘52; (gl,@))

‘ < Caplé|™ &) 77.
SIE

This concludes the proof of (3.5.27).

To prove (3.5.23) it remains only to prove that

(3.5.28) |opB[o,(C-¢) (32)] HE(H%HW,I) S ol -

Here we use our assumption on the spectrum of v to write v = x(D,)v for some function x
in C§°(R). Then

08 [ot, (C—¢) (32)] = 0nB ot (&N € - ) (22)]
Since 0(—£1,8&2) = 0(£1,&2) = 0(&1, —&2) we have
((&1,62) = C(—€1,6 + &) = ((&1, 6 + &) = (&1, &) + & (61, &),

where ¢’ (51,52) = fol 0¢,C(&1,y61 + &) dy is such that x(£1)('(&1,&2) belongs to the symbol
class SR} introduced in the statement of Proposition 3.4.4 (in fact this symbol belongs to

reg

SR, since it has compact support in (€1, &2), which also insures that (3.4.4) holds).

Therefore directly from the definition (3.5.24) of @ we have x(&;) (E— C)'d € SR(1)71. Statement
i1) in Proposition 3.4.4 then implies that

109° [0 X (€D (€ = )] [l g w1y S K(D)e [l gis < Mo o
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where ¥ € C§°(R) is equal to one on the support of x. Similarly

OpB [x (D), (= ¢)b] = | Da|? OpB[v!, ]
with
1 1
-5 (el el 2 1al) v e e SR,

Statement 4i) in Proposition 3.4.4 implies that HOpB [vl, b'] HE(H“ Hu+p=1/2) S Hv This

proves (3.5.28) and hence this completes the proof of (3.5.23).

g

To complete the proof of (3.5.22) it remains to prove that

OBE[2, #2(61,€0) + R¥2(~61,61 + )7 g svsnsy S 120

In view of (3.5.21), to prove this estimate it is sufficient to prove that

(3.5.29) HOPB [U27Rﬁ’2(_§1=§1 +&)"] H‘C(H&H/HFP*Q) S H”2H(JP :

Since

R (61,6 + &) = <1 T §%> et 6 (g \51\20\5212> |

and since x (&) (&1, &1 +&) has compact support, we have y (&) Rb2(—£1, & +62)T € SR?/QJ/2
so (3.5.29) follows from Proposition 3.4.4.

STEP 2: Analysis of E°(v)

Introduce

1|6 +f2|

(3.5.30) e ) = g
12 22

- (J&1] €| + &162) ¢ (&1, &),

: 0 0
so that S”(v)f = OpPv?, M?] with M? = ( ) >

0 msy

We seek EI’( )f under the form Op®[v?, R»'|f + OpP[v?, R*?]f satisfying (3.5.11). We still
denote by r ~the coefficients of the matrix R”*. Agam it follows from the proof of Proposi-
tion 3.5.1 that to solve (3.5.10), it suffices to set 7, = ri, = rd; =2, = 0 and to solve

—J&1+ &lFrdy 163 + |&l3rd, =0,
&+ &lerd — el +lglrh =0,
€1+ &l3rdy +l613rE, — &l =0,

e+ G2l — Jalrrhy — |62 = mb,.
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As already seen in the proof of Proposition 3.5.1, we have

1) 1 2 1
5 = D |€2]2 m3q + D €11 |€2]2 m3,,

1) 1 2 1
7”%2 =D €112 m%z + D €112 |&2] m§2,

1 1 1
Ty = —71(151’27‘%2 + 6|25, +m§2)7
&1 + &2
1 1 1
i = 71(\51‘27’31 + ’52’27‘%2)7
&1+ &2|2

where 0 := [€1 + &| — [61] — [62] and D == 0% — 4§ [ [&].

Consequently,

1
2 _ G2l

D 22
1
(6 +2[&]) €112
T:2L2 = D m%Z?

1
s 01+ 8&l7
M2 =TT M

11

1 &2 162 26 + 2|6 + 28] 4

1 = 1 D Mag.
|61 + &2

On the support of m3, there holds &2 > 0 and we have § = 0 and D = —4&;| |£2]. Therefore

1
1 61+ &2 1 1 2
M= —""—1 1M2, Tog = ———1Ma2,
2[£1]2 |€2]2 AISIE
1
7’%2:0, T% :_2|£|%m%27
2

We next give a simplified expression for m3, based on the identity

1] |&a] + &162

~ (sign(er) + sgn(e2) sign(er + &) = (4 22 ) SHEE
R

[&] " 16l &+ &l

Then, by definition of m3, (cf. (3.5.30)), we have

1 CATAEATNE
m3y = _§’§1+§2\2 ISIRNISIE <%+é_;>

&1+ &

mC(&, £2).
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Therefore

. :}<€1 3
S AN ST

HERTAHE (

> (&1 + &),
§2 > §1+ & L+&

(3.5.31) [STRENISIPAISIE RS

2 _
T2 =0,

¢

&1 f2> &1+ &
&1+ &)

1 1 1
Ty = Z|51+52|2 IS1E <m+@

Then Op® [vl, Rb’l] f is given by

=

H|D,| Rg(Ho', f1) + H |Dy| Rp(v', H 1)
H|Dy|? Re(Hol, |Dy|? £2) + H |Da|? Re(v!, 1 |D,|? f2)

and Op® [v2, Rm]f is given by

1 0
1 (waﬁ Ris(H| Do 02, ') + H Dy RB<|Dx|%v2fo1>) |
Then it follows from (A.1.17) and (A.2.5) that

1E> (@) f|| o < K (0l co + 1H0 ] 0o) I gz
IE" @) f]| oo < K (I lco + IHL N co) N0l -

It remains to prove statement iv). As in the previous step, since D* = —D, (3.5.11)implies
that
E’(Dv)* + E’(v)*D — DE’(v)* = S°(v)*.

This and (3.5.11) implies that Re E”(v) satisfies (3.5.16). We now have to prove
Re () fl| s < K ll [1F 10 -
Again, Lemma 3.4.7 implies that
Re E’(v) = Op®[v!, R7M(&1,6) + 7 (—€1, &1 + &)

+OpP[v?, R"2(61, &) + B2 (=61, &+ &)

The L(H*, H***~1)-norm of Op” [0l ROL(€, &) + R (—€1,6 +&)7] is estimated from the
fact that

R &, &)+ R (-&,6 + &) = (g 2)
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with

1 L) 1 &1 G+&
(3.5.32) =1 (’&H’&H&IE |> (¢~ Ofreit 1 e el
po L §i+& &
(3.5.33) =58+7 (CJrC)‘&Jrf 6 ’|£2| 11 + &2,

where 8 is given by (3.5.26). We estimate the £(H*, H**~1)-norms of Op®[v!,a] and
Op®[v!, b] separately.

Let us estimate the £(H*, H**P~1)-norm of Op®[v',a]. To do so it is convenient to rewrite
the third term in the right hand side of (3.5.32) as

&1+ & §1+ & &1+ &
45215 + & = (- 08 €1 + & +<£2!§1+§2”
so that a = a1 + a9 with
1 &1+ &
" <‘§1’+’52‘+5115\mrm@\)
&1 §1+ &
(C C)§2|£ | (C C)€2|£1+£2|.

We begin by estimating the contribution due to a;. To do so we notice that

OPB[ <|§1|+|§2|+£1|£|>+€2£1+£2}f

&1 + &
= Ra(|Da|v", ) + Re(v',|Dy| ) + Re(Dyv', H) + HR(v', Do f),

where D, = —i0,, and then we use arguments similar to those used to prove (3.5.20). To
estimate the contribution due to ag, notice that we have already seen that x(&1)(¢—() belongs
to SRi(l) so that

M) - Ot € SRT1, x(&)(C—¢)& € SRy}

\6\

and hence one may apply the arguments used to prove (3.5.28).

One can estimate the £(H*, H*+t*~1)-norm of OpP[v',b] in a similar way (using (3.5.27) to
estimate the contribution due to % B).

The L£(H*, H*P=1)-norm of OpB[v2, R*2(&1, &) + R (=€, &1 +&)T] is estimated by similar
arguments. O

We need also the following variant of Proposition 3.5.2.
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Proposition 3.5.3. Consider a real number (3 in [0,00[. There exist four matrices of symbols
R%’l, Rﬁﬁg, Rbﬁ’l, Rbg’2 n SR&O such that the following properties hold.

i) Let (u,p) € R x Ry with p+ p > 1. The bilinear operators given by
(v, f) = Ef(v) f = Op® [v}, RE'] £ + Op® [v?, RS f,
(v, f) = Ey(0)f = Op’ [v!, R3'] f + Op® [, R} f,
are well-defined for any (v, f) in (CP N L?(R)) x H*(R) or in H*(R) x CP(R).
i1) There holds
(3.5.34) E%(Dv) + E5(v)D — DE}(v) = &5 (v),
(3.5.35) E%(Dv) + Ej(v)D — DE}(v) = Gj(v),

where 6% and 6% are such that

(3.5.36) Re(S*(v)f — &5(0) f, ) psxms =0,
(3.5.37) Re(S"(v)f — &%3(v)f, f)gowms =0,

for any f € H?(R)?, and satisfy

(3.5.38) 185 )| g0 gy < K ol
(3.5.39) 1S5 £ oggm oy < K lloll o -

iii) The following estimates hold. For all (u,p) € R x Ry such that p+p > 1 and p ¢ %N,
there exists a positive constant K such that

(3.5.40) 1B ) | gacos < K 0l £l

(3.5.41) |EB ) f || ot < K 0l 1F N e -

Proof. We begin by studying Eg (v) under the additional assumption that v(§) = 0 for |£] > 1.

2
m1

We have Sf(v) = Op®[v?, M?|f with M? = < 0

0
0) where m?, is given by (3.5.18).

Introduce the following weight

(& + &)

wibi, b2) = (&1 + &) 4 (£2)%

and set

M(&1, ) = w(&r, &) MP (€1, &) + w(—E€1, & + E)MP(—&,& + &),
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so that 6%(1}) = OpB[v?, 9] satisfies (3.5.36). Let us prove the estimate (3.5.38). To do so
introduce R, (v, f) = Op®[v, w¢]f where ¢ is the cut-off function 1 —60(&1, &) —6(&2,€1). Then
Proposition 3.4.4 implies that R, (v, f) satisfies the same estimates as Rp(v, f) does. Now
OpB[v?, wM?] is given by

<’Dx’ Rw(‘Dﬂc’% U27 fl) + 0z Ry (02 ‘D:c‘_% U27 fl)>
0

and hence OpP[v?, wM?] satisfies the same estimate as S(v) does. Proceeding similarly, one
estimates OpP[v?, w(—&, & + &)M?(—&1, & + &)T] which completes the proof of (3.5.38).

Then to solve (3.5.34) it is sufficient to seek &(v) such that
(3.5.42) &(Dv) + €(v)D — DE(v) = Op® [v?, wM?]
and then to set Eﬁﬁ(v) = &(v) + (¢(v))". Now we recall that Ef(v) = OpP[v!, R¥!] +
OpB[Uz, R%?], as given by Proposition 3.5.2, solves
E*(Dv) + E*(v)D — DE*(v) = Op®[v?, M?).

Therefore
E(v) = Op® [vl,wRﬁ’l} + Op® {02,wRﬁ’z] .

satisfies (3.5.34). Therefore one obtains the desired result with Eﬁﬁ(v) = Op”® [Ul,Rﬁﬁ’l] +
Op®[v?, Rﬁﬁ’z] where

RYM (61, &) = w(€1, &) R (61, &) + w(—€1,6 + &) R (—€1,6 + &)

We have symbols of exactly the same form as those found in the proof of Proposition 3.5.2
except that the cut-off function ( is replaced with w¢. Thus Eﬁﬁ(v) satisfies the same estimates
as Re E*(v) does. In particular, for any function x in C§°(R) such that x (&) = 0 for |¢] > 1/2,
there holds

125 (X (D2)0) f || s < K [0ll o £ g

This completes the analysis of Eg(v) in the case when the spectrum of v is contained in the
unit ball. Now consider a general function v € C?(R) N L?(R). Introduce a function x in
C3°(R) such that x(§) = 0 for [{] > 1/2 and x(§) = 1 on a neighborhood of the origin. We
then set

B (v) = E*((1 = x(Dy))v) + 5 (x(Da)v),

where Eg (X(Dx)v) is as given by the previous step and where E* is given by Proposition 3.5.2.
It follows from (3.5.10) and the previous analysis that (3.5.34) and (3.5.36) are satisfied. On
the other hand, (3.5.14) and the fact that the (1 — x(D,))H is bounded on Hoélder spaces C*
(with p ¢ N) imply that

1% (1 = X(D))0) Fll ysos < K 0l 11z -
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We thus obtain (3.5.40) by combining the two previous inequalities.

The analysis of E% (v) is similar. O

3.6 System for the new unknown

Recall that
(3.6.1) U+ DU + Q(u)U + C(uw)U + S(u)U =0 mod [H?].

As explained above, our first task is to prove that there exists an operator of order 0, denoted
B(v), such that

Re(Q)f — B(v)f, f)asxms =0,

where (-, -) s x s denotes the scalar product in H*(R)?.

Lemma 3.6.1. There exists B' € Sg,o and B? € Sg}oz

such that for all v = (v, v?) € CP(R)?
B(v) = Oplu', B'] + Op®[e?, B?),

satisfies B(v) = B(v)* and Re(Q(v)f — B(v)f, f)usxus = 0 for any f € HFL(R)2.

Proof. Write

2Re(Q()f — B(v)f, f)msx s
= 2Re(A*(Q(v)f — B(v)f), A°f)r2xr2
= (A(Q)f = B(v)f), A frzxrz + (Af, A%(Q(v) f — B(v)f)) 1212
= ((A*Q(v) + Q)*A®) f, f) 12wz — ((A*B(v) + B(0)"A*) f, f) 12 12

where A = (Id — A)'/2. Since we seek B(v) such that B(v) = B(v)*, this means that we have
to solve

(3.6.2) A% B(v) + B(v)A® = A%Q(v) + Q(v)* A,

We first rewrite Q(v)f as Op®[v!, Q'f + Op®[v?, Q?]f. Recall from (3.2.7) that

11 , L -
Q(u)U = (TazDz%ugaxU — ET\DM%u?U T_%le‘ul ID,|? U )

1 i
|Da? Taz\mr%uﬂ&r”?axw D> Ty, U
Then set
1
1 0 |22
Ql =3 ‘gl‘ 0(61762) 1 )
2 —|§1+&[2 0
(3.6.3) 1
1 —&2 — 5&1 0
Q% =& |62 0(&1,&) 2 1 1,
0 — &1+ &2 & || :
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where 6 is given by Definition A.1.2. We have

3 £2
Op°[!, Q'f = ) ! —T_11p,r |Dal? f
’DI,ET—HD ‘vlfl 0
1
OpB?, Q2)f = oA vapdel" = 2Ty 4.l ’ .
0 D2 Ty b 17217200 2

Then Q! € $1/*" and
A% 0pPlt, Q'] + (0p°[v!, Q))" A% = Op°[v!, Q']
where Q! is given by (see Lemma 3.4.7)
Q'(&1,62) = (L1 +&)7Q' (&1, &) + (&2)7Q' (-6, & + &)

— 1 2s 0 ‘62’1/2
= (& +&)7 606, &) (_ 62 0

NI)—t

2s 0 0 _‘52‘% )
(&) [&1] 0(—&1, &1 + &2) <|£1+£2|1/2 0

Since 6 is even in & (by assumption (A.1.2)) and since

L 90 00 _
0(&1,& + &) :9(51,52)4‘51/0 8—52(51,52-1-@/51)(1@/, and g €S, 10

we obtain that Q! € 525 1/2, 0

Similarly Q2 € $-% and A% Op®P[v?, Q2]+ +(Op Blv2, Cg])* A% = OpP[v?, 0%] where Q2 € 525

1/2 3/2
is given by
= (& +&)PQ% &, &) + (£)PQ% (61,6 + &)T
_1 & — 34 0
= 2s 20 2 1 1
(&1 +&2)7¢ [61]72 0(61,&2) < 0 et el 6 |£2|_§>
_1 151 + &9 0
2s 2 0(— , 2 ) 1.
+ (&) &2 0(—& §1+§2)< 0 Eal} (6 + &) 16+ &l 2)
Now set
1. 1 1 -1/2,0
(3.6.4) - eTar T €
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and
2 1 2 _ 40,0
(3.6.5) B = e e L €S

Then B(v) solves (3.6.2). Moreover, since QF(—£,&; + &)1 = QF(&1,&)T for k = 1,2 and
since (61 + &2)% + (§2)* = ((—&1) + (&1 + &))* + (&1 + &)* we check that Op®[v!, B']
and Op®[v?, B?| are self-adjoint, so is B(v). O

We next study the equation
EA(Dv) + Ez(v)D — DE4(v) = —B(v)

where B(v) is given by the previous lemma.

Lemma 3.6.2. There exist Al,A2 mn S?’l/z

E(v) = Op” [Ul,Al] + Op” [Uz,Az] satisfies

such that, for all v € C3 N L*(R) the operator

(3.6.6) EA(Dv) + Ea(v)D — DE4(v) = —B(v)
and such that the following properties hold.

i) Let p be a given real number. There exists K > 0 such that, for any scalar function
w € CYR), any v = (v!,0?) € C3N L2(R) and any f = (f1, %) € H*(R),

[[Twl2, Ea()] f|| o < K lwllon lollca 1] g
where I, = (}9).

ii) Let p be a given real number. There exists K > 0 such that, for any v = (v',v?) €

C*NL*(R) and any f = (f', f*) € H"(R),

(3.6.7) | Ba@)f || 7 < K [0llcs 1S 1| g

Proof. Since B! € Sg,o - 52}12/2 and B? € Sg}% - 53}12/2, the fact that there exist A7 and Ao

in S?’l/z such that E4(v) satisfies (3.6.6) follows from Proposition 3.5.1. Now, Lemma 3.4.6
applied with p = 3 — ¢ (with € €]0,1/2[) implies that, if v € C?(R) N L?(R), modulo a
smoothing operator, E4(u) is a paradifferential operator whose matrix-valued symbol a, given
by (3.4.10), has semi-norms in Fg_g /2 estimated by statement (#7) in Lemma 3.4.5: this means
that E4(v) can be written as F4(v) = T, + R with

o1 H“”f’?a(vf)“cﬂg < K |olles (€)77,

IRAN o3 < K ll0llgs 1F 1 g -

Since p—3/2 > 1, the statements i) and i) now follow from Theorem A.1.7 in Appendix A.1.
U
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We next prove an analogous result for the quadratic term S(v).

Lemma 3.6.3. There exist two matrices of symbols R', R? in SR(ILO such that Egr(v) =
Op®v!, R'] + Op®[v?, R? satisfies the following properties.

i) There holds

(3.6.8) Er(Dv) + Egr(v)D — DER(v) = &(v)
where & 1is such that

(3.6.9) Re(S(0)f = &) f, f)msxms =0,
for any f € H5(R)?, and satisfies

(3.6.10) IS 2, mrute-1y < K[l -

i1) For all (1, p) € R x Ry such that u+p > 1 and p € N, there exists a positive constant K
such that

(3.6.11) | Er() f|| o1 < K 0]l I1F 1| g -

Proof. Set Er(v) = Eg(fu) + E’(v) where Eg(fu) and E2(v) are as given by Proposition 3.5.3
with 8 = s. O

The main result of this chapter is the following proposition.

Proposition 3.6.4. Use Notation 3.1.7 and Assumptions 3.1.1 and 3.1.5. The new unknown
& =U+ Fa(u)U — Er(u)U
satisfies

0P+ DP + (Q(u) — B(u))® + (S(u) — S(u))® + C(u)® =0 mod[H?].

Proof. Set E = E4 — Fg. Since

8t<I> = E?tU + E(@tu)U + E(u)@tU,
D® = DU + DE(u)U,

by using (3.6.6) and (3.6.8) we find that
0y® + D® = 0,U + DU + B(uw)U + S(u)U + E(Oyu + Du)U + E(u)(0,U + DU).
Thus,
P+ DP+ (Q(u) — B(u))® + (S(u) — 6(u))® + C(u)® = F mod [H?]
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with
F=(Qu) + S(u) + C(u)) E(w)U — B(u)E(u)U — &(u)E(u)U
+ E(Opu + Du)U + E(u)(0,U + DU).
Since || E(w)l zps ) < C llullce it follows from (3.6.1) that
E(u)(8,U + DU) = —E(u)(Q(u)U + C(u)U + S(u)U) mod [H?]
and hence F = F; + F» mod [H?] with
Fi = [A(u), Ew)]U + [S(w), E(w)|U — (B(u) + &(u)) E(w)U
Fy = E(Ou + Du)U,
where recall that A(u) = Q(u) + C(u).

We now have to prove that F; = 0 mod [H®] and F3 = 0 mod [H?].

For this proof, we say that an operator f — P(u)f is of order m if there exists py € R such
that for any real number p > pyg, it is bounded from H* to H*~™ together with the estimate

||P(u)||£(Hu,Hufm) < Cllullce

for some constant C' depending only on ||ul|,,. We shall use the fact that if P(u) is of order
m and L(u) is of order —m for some m € [0, 1], then

P(u)L(w)U =0 mod[H?],

provided that s is large enough (for our purposes, it is easily verified that the requirement that
s is large enough will hold true under our assumption on s imposed in Assumption 3.1.1).
With this definition, A(u) = Q(u) + C(u) is of order 1 (this is most easily seen by using
the expression (3.2.3) for A = A(u), the rule (A.1.5), the estimates (3.1.4) for ||[V| -0 and
(3.1.20) for ||a||qo). Lemma 3.6.2 implies that E4(u) is of order 0 (see (3.6.7)). Similarly,

since B(u) = OpPlu', B1]4+0p®[u?, B?] with B, B? in 53}12/2, Lemma 3.4.6, Lemma 3.4.5 (see

statement (ii)) and (A.1.5) imply that B(u) is of order 0. The estimate (A.1.17) implies that
S(u) is of order 3/2 — p provided that g is large enough. Similarly, (3.6.10) and (3.6.11) imply
that & and Fr(u) are of order 1 — p. We shall only use the fact that, with our assumption
on o, S(u) and &(u) are of order 0 while Er(u) is of order —1.

Since E(u), B(u), &(u) and S(u) are of order 0, we obtain that
S(u)E(u)U =0 mod [H?], E()S(u)U =0 mod[H?],
Bw)E(u)U =0 mod[H®], S(u)E(u)U =0 mod[H"].

Now we claim that [A(u), E(u)]U = 0 mod [H®]. To prove this result we estimate separately
the contribution due to E4 and the contribution due to Eg. Firstly, notice that since Er(u)
is of order —1 and since A(u) is of order 1 we have

A(u)Er(u)U =0 mod [H?],
Er(u)A(uw)U =0 mod [H?],
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which imply that [A(u), Er(u)]U = 0 mod [H®]. Now we claim that similarly
(3.6.12) Aw)EA(u)U — Ex(u)A(w)U =0 mod [H?].

This we prove by using symbolic calculus. We need some preparation and introduce g(u)
defined by
A(u) = A(u) — Ty 0, — T, D.

Directly from the definition of A(u), one can check that A(u) is an operator of order 0, so
that

AW)EA(w)U =0 mod [H],

Ea(u)A(uw)U =0 mod [H?].

It remains to estimate the commutators of E4(u) with Ty 0, and T, D. Since Ty d, has a
scalar symbol, it follows from statement ¢) in Lemma 3.6.2 that

TyvO0y(Ea(u)U) = Ea(u)Ty0,U mod [H?].
To estimate [To.D, Ea(u)], we use instead the equation (3.6.6) satisfied by E4 to obtain:
T.DE(w)U = T, (EA(u)DU + E4(Du)U + B(u)U).
Since Ty, Ea(Du) and B(u) are of order 0 we directly find that
ToEA(Du)U + T B(w)U =0 mod [H®].
Since « is a scalar function, we can apply statement ¢) in Lemma 3.6.2 to obtain
ToEA(u)DU = E4(u)T,, DU  mod [H?].

This proves the claim (3.6.12) which completes the proof of F; = 0 mod [H®].

It remains to prove that F» = 0 mod [H*] where F» = E(0yu + Du)U. This will follow from
the operator norm estimate of E(v) (see (3.6.7) and (3.6.11)) and the estimate of the C®-norm
of dyu + Du. The key point is that, since

o — | Dy
8tu+Du:< tT, ‘ ‘1/} )

D7 (0406 + 1)

directly from (3.1.1) and the definition of B(n)y we have

1 G(n) — |Dy| 9 )
D27 (—3(0:0)? + (1 + (0am)?)(B(m)¥)?) )

Then (2.0.4), (2.6.12) and (A.2.4) imply that

(3.6.14) 1+ Dulles < C(llulles) llullés
As above mentioned, (3.6.7) and (3.6.11) then imply that F» = 0 mod [H®].

This completes the proof of Proposition 3.6.4. O
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3.7 Energy estimate

Proposition 3.7.1. Let T > Ty > 0 and fix (s,v) such that
>+ L > 14 & 1N
s = -N.
75 Y EyG

There ezists a constant C' > 0 such that for any d > 0, for any N1, there exists €9 such that for
all e €]0,¢e¢], for all My > 0, if a solution (n,v) to (3.1.1) satisfy the following assumptions

i) (n,9) € CO([To, T); HS(R) x H2°"2(R)) and w € CO([T, T); H2*(R)),

1
1 < Niet™ 2,

ii) for any t € [Ty, T], [n(®)llc + |1l v ()] -3

iii) 11(To)l s + ||| Dal? w(Ty)|

Hs < M1€,
then for any t € [Ty, T,

(3.7.1) ()| + |[1D]2 w0 (1)

Hs < CMlEté.

Proof. By using mollifiers and standard arguments, it is sufficient to prove this result under
the additional assumptions that n € C*([Ty, T); H¥TH(R)) and w € C([Ty, T7; H%’SH(R)).

Set o =y — 1/2. Then it is obvious that
1
No(t) = [In)llce + [|IDa]2 ()| o = Nul)ll e

< @l + 10212 & @) -4

As already mentioned in the remark made after the statement of Assumption 3.1.1, it follows
from the assumptions 4i) and éii) above that, if € is small enough, then for any ¢ in [Tp, T,

1/2 H1/2 <

[ 9xn(t )”C”f 1+ [|0en(t) Hn

Therefore Assumptions 3.1.1 and 3.1.5 are satisfied (we can replace the time interval [0, 7]
by [To,T] without causing confusion since the equation (3.1.1) is invariant by translation in
time). Thus we may apply Proposition 3.6.4 which implies that ® = U + E4(u)U — Er(u)U
satisfies

0@+ D® + (Q(u) — B(u)® + (S(u) — 6(u))® + C(u)® =T

for some source term I' such that ||| 5. < C(|Jul|ce) ||u||%g NU|| - If ||u|| e is small enough,
it follows from (3.6.7) and (3.6.11) that

1 3
(372) S 10l < 1] < 2 10l
Similarly as already seen (cf. (2.1.6)) we have

1 1
(3.7.3) 5 Ulze < il g + 10212 |
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Therefore,

(3.7.4) 1Tl g+ < Clllullce) Nullee 11575 -

We want to estimate ||n]| s + H|Dw|% wl s+ In view of (3.7.2) and (3.7.3) it is sufficient to
estimate the L2-norm of ® = AS® where A = (Id — A)'/2. This unknown satisfies

(3.7.5) O® + D® + L(u)d + C(u)d =T
where

L(u) = A*(Q(u) = B(uw))A™ + A*(S(u) — S(u))A™,
I'= AT + [C(u),A°]®.

To estimate the L?norm of & we take the L-scalar product of (3.7.5) with ®. The key point
is that, by definition of B(u) and &(u), we have Re(L(u)®, ®) = 0 where (-, ) is the L2-scalar
product.

We need also to estimate the L?-norm of the term [C(u), A%]® as well as Re(C(u)®, ®). Both
estimates rely on the fact that, directly from the definition (3.2.6) of C'(u), the estimates
(2.6.22) and (3.1.10) imply that C(u) is a matrix of paradifferential operators whose symbols
are estimated in the symbol class T} by C(||u|z,) ||ul|ze. Therefore it follows from (A.1.8)

that ||[C(u), A%]®]|, is bounded by C(|[ullce) |ullze |||z

On the other hand, it follows from Lemma A.4.6 in Appendix A.4 that
. . . 2

(3.7.6) | Re(C(u)®, &)| < Clfullco) ullEe | 9|7

Therefore, it follows from (3.7.4) and (3.7.6) that

(3.7.7) 1), < [|B(T0)[|2, + /T C(l[ulr)llce) u(r)|Ze |8(7)|| dr,

and hence

: _ .
H‘I’(t)H2L2 < H‘ID(TO)Hi2 +K/T E?H(I)(T)H; ir,
0

for some constant K depending on the constant N7 which appears in assumption 7). The
Gronwall lemma then yields H@(t)Hi2 < |’<I>(T0)Hi2t52K,

Since |||, ~ 1]l g + |[|Dz]? |

s> this gives the asserted estimate (3.7.1). O

Remark. Notice that (3.7.7) implies the estimate (1.5) asserted in the introduction, as ex-
plained at the end of Section 3 of the introduction.
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Chapter 4

Commutation of the Z-field with
the equations

We begin the analysis of the Sobolev estimates for Z*U by establishing some identities which
allow us to commute Z* with the equations (recall that Z = t0; + 220,). This problem
has already been obtained by Wu [54] and Germain-Masmoudi-Shatah in [23]. We shall
prove sharp tame estimates tailored to our purposes. To find the quadratic terms in the
equations satisfied by Z*U, the main difficulty consists in estimating Z*F(n)y)— Z*F, (<2) (M,
ZFG () — ZF | Dyl v, Z*V () — ZF0up, Z¥B(n) — ZF |Dy| v and ZF(a — 1). These will
be the main goals of this chapter.

The plan of this chapter is as follows. In section 4.1 we compute ZG(n)y. We then establish
some identities which allow us to commute the Z field with B(n)y, V(n)y and F(n)i. Next
we estimate the cubic terms.

4.1 Action of the Z-field on the Dirichlet-Neumann operator

The goal of this section is to compute the action of the vector field Z on G(n)y. We use the
abbreviated notation

_ Gy + 00t

B =By = T @ V =V(n)y = 0p1) — By,

We notice also that the time t plays here the role of a parameter (as soon as we assume we
may take derivatives relatively to it) that will not be written explicitly.

Proposition 4.1.1. Let (n,v) be in C7 x 2!, with v in ]2, +oo[\3N. Assume that |||~ <
0, where § is the constant in i) of Proposition 1.1.6, that Z1) € oz, 0:0%m, Z(09n) € L™ for
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0<a<1l, and that Zn is in C7~ L. Then

(4.1.1) ZG(np = Gn)(Zy — (B)v)Zn) — 0:((Zn)V (n)v) + Ra(n)

where

Ra(n)y = 2[G(n)(nBm)y) —nG(n)Bm)y] + 2(V(n))0zn — 2G(n)Y.

Let us introduce the following notation, where 1’ stands for 9,7,

P=(1+12)02+08%— 0,00, — 0.0,
(4.12) Zi n'*)0; + 0; n n

O+ 2x0, + (22 + 2n — (Zn))0s.

The operator P is the Laplace operator 82 + d; written in (z, z)-coordinates (see (1.1.1)).
In the same way, Z is the vector field t0; + 2(x0, + y0,) written in (x,z)-coordinates. As
(A, t0; + 2(z0, + ydy)| = 4A, we have

(4.1.3) [P, Z] = AP.

To prove Proposition 4.1.1, we shall show that, under its assumptions, if ¢ is the unique
solution in E to Pp = 0, ¢|.—0 = % provided by i) of Proposition 1.1.6, then Zy, which
according to (4.1.3) solves P(Zy) = 0, belongs to E, so is the unique solution of that elliptic
equation in E with boundary data (Z¢)|.—p. It follows then from the definition (1.1.41) of
G(n) that

) ((Z9)]e0) = (L +1)0. —n/0:)Zo] | _.

Computing explicitly both sides from ¢, G(n)y, B, V, we shall get (4.1.1).
We start proving the regularity properties if Z¢ indicated above.

Lemma 4.1.2. Let (n,v¢) be in C7 x H2! (at fized t), with v in ]2, +0o[\3N and |7/ -
small enough. Assume moreover that Zn, O, Zn' are in L™ and that Oyp, Zv are in
H%(]R) Then the unique solution ¢ in the space E of Pp = 0, ¢|.,—9 = ¥ provided by i) of
Proposition 1.1.6 satisfies V, .o € E, Zp € E (at fized t).

Proof. Assume given an action (A, f) — M) f of some abelian group A on the space of real
valued functions defined on {(t,z,z); z < 0}, sending E into E. Assume also that there is
some continuous function A — m(\), R -valued, such that

a:c [M)\f] = m()\)M)\(axf)y az [MAf] = m()‘)MA(azf)

and that
M(f1f2) = (Mxf1)(Mxf2), (Mxf)|z=0 = Mx(f|.=0)-
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Let ¢ be a solution in E of Py = 0. Then, using the preceding properties of M},
P(Myg) = m(\)2My [ (1+ (M ')?) 02 + 02
= 0, (M5 ") 00w — 0- (M) 9t |.
If, in the right hand side, we substitute " to M;ln’ (resp. 02 to (M/\_ln/)z), we make appear
Py = 0. Consequently, we may rewrite the preceding relation as
P(Myp) = 0.hy + 0zh3.

with

P =m0 (M5 ) = 02) 00 — (M5 ) = )],

hy = —m(\)* M, [((M;ln’) - n’)c‘?ch]-
Using again that Py = 0 and that M) commutes to restriction to z = 0, we obtain finally

P(M)\‘:D - 90) = azhi\ + amh%\,
(Mrp — @) | 220 = Mxtp — 2.

Since ¢ is in E, hy, h) are in L%(] — 0o, 0[xR). Since 1 is in C7~! and since by the equation
d%pisin L2(]— o0, 0[; H~'(R)), the same is true for 9,h}. Since moreover, at fixed A\, Myp—¢
is in F, we may apply inequality (1.1.11) which implies that

(4.1.4) HVm,z(MMD - QD)HLsz < C[H|Dm|é (M — ¢)HL2 + HhAHBL?}

with a constant C' independent of A staying in a compact subset of A. We apply this inequality
first with A = R, M) being the action by translation relatively to the z-variable, so that
m(A) = 1. Then My = Id and we get

11Dz]2 (Mo — )| 12 < [[1Dal2 ] 1 1AL
1M o2 < C IVl 22 1A,

where, for the second estimate, we used that 7’ is lipschitz relatively to z. We deduce from
(4.1.4)

HVSB,Z(QD(t7$ + )‘7 Z) - @(t7$7z)) HL%L? é ¢ |)‘| [H|DI|% Tz[)HHl + HVLZCJDHLZ[P]'

It follows that V, .(9,¢) is in L?L?. Using the equation Py = 0, we obtain as well 92 € L?L?
so that V; .¢ is in E.

Applying the same reasoning to time translations, we get that dyp is in E.

Let us prove now that Zy belongs to E. Denote Zy = t0; + (220, +220,) so that (Z — Zy)p =
(27— (Zn))0.p is in L?(] — 00, 0[xR) (at fixed t) as well as its (z, z)-gradient by what we just
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saw. This shows that (Z — Zy)¢ is in E, so that we just need to check that Zyp is in E, so
that V, .Zop is in L?(] — 0o, 0[xR). We use estimate (4.1.4) where M), is the action of R

on functions given by Myp(t, z,2) = (A, A2z, \22) and where m(\) = A\2. Then V<M§f1‘0>
converges in the sense of distributions to VZyp when A goes to 1, and the assumptions
YALNS H%, Zn' € L*®, Vo € L?L? show that, when X stays in a compact neighborhood of
1, the right hand side of (4.1.4) is bounded from above by C'|\ — 1| (Notice that the action
by M) on functions of (¢,x) has Z as infinitesimal generator). Dividing (4.1.4) by A — 1, we
conclude that V. .(Zop) is in L?(] — o0, 0[xR) as wanted. O

Proof of Proposition 4.1.1. We notice first that by the definition (1.1.41) of G(n) and the one
of B, 0,¢|,=0 = B(n)y, so that

Zpl=0 = Zy + (2n — (Zn))(B(n)y).

As G(n)yisin H 1/2 a5 a function of z by Proposition 2.3.1, we see that under the assumptions
of the statement, B belongs to H/2(R), so that Zp|.—¢ is in H'/2. Moreover, by Lemma 4.1.2,
Zy is in E. By uniqueness of solutions in E to P(Z¢) = 0, Zp|.—o € H'? given by
Proposition 1.1.6, we deduce that

(415)  G)[2e+ @n—(Zn)B] = [(1L+1)0.(Ze) —1/0:(Z0)] | =0

Let us deduce (4.1.1) from this equality. From the definition (4.1.2) of Z we get
0.(Z¢) = Z(0-0) + 20.00 + (22 + 20 — (Z1)) D2
Multiplying by (1 + 7?) and using that Py = 0 to express the 92 term, we get
(1+0%)0-(Z¢) = (1 +n0*)Z(0-) + 2(1 + 1)

(22 + 20— (Z0)) [0/ 00 — 02p) + 0.1/ 0u0) -

We compute from that expression the right hand side of (4.1.5) remembering that 0,¢|,—o = B
and that V = (0,0 — 7/ 0,¢)|2=0-

We obtain

G [Z¢+ (20— (Zn)B] = 1 +1*)ZB +2(1+7*)B
(4.1.6) + (20— (Zn)) [0,V + 00, B]
— 00, [Z¢ + (2n — (Zn))B].

We are left with transforming this expression into (4.1.1). We notice first that d,¢ satisfies
P(0,p) = 0, 0,¢|,—=0 = B and that by Lemma 4.1.2, 0,¢ is in E, while B has been seen
to belong to H 3. We may thus apply again the uniqueness result of Proposition 1.1.6 to
conclude that

GB = [((1+12)0: —1/,)(0:)]

z=0-
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Expressing in the right hand side of this equality (1 +72)92¢ from the equation Py = 0, we
get

(4.1.7) G(n)B = —0,V.
Using that formula, and, by definition of B
(L+0)B = Gn)v + 1/ (9:1)

we rewrite (4.1.6) after simplifications as

G(n)[2¢ — B(Zn)] = Z[G(n)¥] +2[nG(n)B — G(n)(nB)]
+2G(MY + (Zn)(0:V) + (Z0')(9xp — 1 B).

Expressing in the last term 0,9 from V + B(0,n), by definition of V', we get (4.1.1). This
concludes the proof. O

4.2 Other identities

Next we notice that properties of ZB(n)y and ZV(n)y can be deduced using B(n)y —
(V(n))ozn = G(n)y and the previous calculation result for ZG(n)y. The conclusion is
given by the following lemma.

Lemma 4.2.1. Use the same notations and assumptions as in Proposition 4.1.1. Then

(42.1) ZB(n)y = B(n)(Z4 — (B(n)y)Zn) + Rp(n)y,

(4.2.2) ZV () =V (n)(Zy — (B(n)y)Zn) + Ry (),

with

(423)  Re( = |~ AV @00+ (@) @:B)) - 05V (0))
T e

and

(4.2.4) Ry ()¢ = —(Rp(n)¥)0:n + (0:B(n)Y) Zn — 2V (n)i),

where recall that Ra(n)y is given by (4.1.1).

Proof. We abbreviate B = B(n)y, V =V (n)y and Rg = Ra(n)y.
Starting from B — V9d,n = G(n)y, we have
ZB — (ZV)n — VZdwm = ZG(n)0.

129



Since ZV = Z(0,1) — Bd,n), we have
ZB — (Zv)a:cn = (1 + (89677)2)ZB - (Zaxw)a:cn + Ba:cnzaxny

SO
(1 +(9:m)*)ZB = ZG () + (Z0:) 00 — BOZ 0y +V Z0p).

Now, according to the identity (4.1.1) for ZG(n)y, we obtain

(14 (0.m)*)ZB = G(n)(Zy — BZn) — 8.((Zn)V) + Re
+ (Zam¢)8xn - Baﬂcnzam"? + VZ@M?-

Then, it is a simple calculation using Z9, = 0,2 — 20, to verify that

(1+(0:1)*)ZB = G(n)(Z+p — BZn) — Znd,V + Rg
+ V(—25x77) + 5x?75x2¢ - 28x778x¢
— BOndyZn + 2B(9n)?

SO

(1+(0:0)*)ZB = G(n)(Z+p — BZn) — Znd,V + Rg
+ 5x?75x(21/1 - BZW) + (a:cn)(a:cB)ZT/
— 2V, — 20,10,m + 2B(9,n)>.

On the other hand, by definition of B(n), we have

B(0) (24 ~ BZn) = 5o (G(0) (20 — BZn) + 00 (215~ BZn).

Thus, we obtain that Rp(n)y is given by

. 2
1+ (9.1)2 [ — Zn0;V + Re + 0un(03 B) Z1 — 2V 0y — 20010050 + 2B(0,m) } .

Since

—20,00,m + 2B(0,n)? = —2(0ytp — BOyn)0pn = —2V Iy
by definition of V, this yields the desired result (4.2.1).

It remains to prove (4.2.2). Starting from V = 9,1 — B9,n, we have
ZV = Z (0,4 — BOyn)

= amZT;Z) - 28x¢ - (ZB)am'r/ - Bzax'r/

= 0, 2 — 20,0 — (ZB)0yn — B0y Zn + 2B0yn

= 0,(Z¢ — BZn) + (0:B)Zn — (ZB)0yn — 2V.
Since

V(n)(Zy — BZn) = 8,(Z — BZn) — (B(n)(Z4 — BZn))d.n,

the desired result follows from (4.2.1).
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The previous identities have been stated in a way which is convenient to compute ZF(n).
Our last identity is about ZF(n)1) where recall that

F(T/)w = G(T/)w - (|Dm| (¢ - TB(n)wn) - am(TV(n)dJn)) .

Lemma 4.2.2. Use the same notations and assumptions as in Proposition 4.1.1. There holds

ZF () = F(n)(Z¢ — (Bn)y)Zn) — 2F (n)y
— |Da| Ty B(n)t — 0z (TiznV (n)0)
— |Dy| Re(B(n)¥, Zn) — 0z Rp(Zn, V (n)y)
+2G(n)(nBn)Y) — 2nG(n)B(n)y
+ | De| Try (yen + 2(V (1)¥)0:n + 0x(Try, ()yp1)
+ 2| Dy | Sp(B(n),n) + 20, Ss(V (), n),

where Sp is given by (3.4.14); Rp and Ry are given by (4.2.3) and (4.2.4) and Rp(a,b) =
ab — Tab Tba.
Proof. We write simply A instead of A(n)y for A € {B,V,Rg,Rp, Ry }.

Recall that
ZG )y = Gn)(Zy — BZn) — 0:((Zn)V) + R,

with
Rg =2[G(n)(nB) — nG(n)B] + 2V d.n — 2G(n)y.

Consequently,

Fl)d = Gn) (20 — BZn) — 9:((Zn)V) + Re — Z|Dal (¥ — Tm) + Z0:(Tyn).
We shall study the terms separately.
Start with Z |Dy| (¢ — Tgn). Since Z |Dy| = |Dy| Z — 2|D,|, we have

Z|Dy| (¥ = Tn) = [Dal Z(¢ = Tn) = 2|Da| (4 = Tsn),

By using the following consequence of (3.4.14):
(4.2.5) Z(Tyb) = Tzab+ T, Zb + 255(a, b),
we find that

Z|Dy| (v — Tpn) = |Da| (Z¢ — TpZn) — |Da| Tzn — 2| Ds| (v — Tn)

Now set
C = B(n)(Z¢ — BZn), W :=V(n)(Z¢ — BZ),
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to obtain, by definition of F(n),
G(n)(Z+p — BZn) = |De| (Z¢ — BZn — Ten) — 0:(Twn) + F(n)(Z¢ — BZn).
Writing |D,| (Zvy — BZn) under the form
|Da| (Z¢ — BZn) = |Da| (Z3p — TpZn) — | Da| (TzyB) — | Da| RB(B, Zn),
and combining the previous identities, we conclude

ZFE ()Y = — |Dy| (TzyB) — 0:((Zn)V')
+2|Dy| (¥ — Tpn) — 2G ()Y
(4.2.6) +2[G(n)(nB) — nG(n)B]
+ |Dy| Tzpn + 2V 0rn — |De| Ten — 0:(Twn) + Z0:(Tyn)
— |Dz| R3(B, Zn) 42| D.| Sp(B,n) + F(n)(Zy — BZn).

To simplify this expression, we use three facts. Firstly, by definition of F'(n), we have
2|D,| (Y — Tpn) —2G ()Y = 20:(Tyn) — 2F (n).
Secondly, we paralinearize the product (Zn)V to obtain

0x((Zn)V) = 0. (T2, V + Tv Zn+ Rp(Zn,V))
= Tznamv + TBxZnV + 890(Tvz77) + amRB(ZU, V).

Thirdly, since Z0, — 0,Z = —20,, (4.2.5) implies that
Z0:(Tyn) + 20:(Tyn) — 0:(Tv Zn) = 0:(Tzvn) + 20:58(V, 7).
Now substitute the above relations into (4.2.6) and simplify. We conclude that

ZE(n)p = — | Dyl T'znB — 8x(TZnV)
+2G(n)(nB) — 2nG(n) B + |Dy| Tzp-cn + 2V 0un + 0:(Tzv-wn)
— |Ds| R(B, Zn) — 0, Rp(Zn, V) + 2|Dy| Sg(B,n) + 20,58V, n)
—2F(n)y + F(n)(Zy — BZn).

The desired result then follows from (4.2.1) and (4.2.2). O

4.3 Estimates for the action of iterated vector fields

In this section, we shall estimate the action of iterated vector fields Z on the Dirichlet-
Neumann operator G(n), and on related operators. We shall express these actions in terms
of convenient classes of multilinear operators.
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We denote by £ the algebra of operators generated by the operators of multiplication by
analytic functions (n,7') — a(n,n’) (defined on a neighborhood of zero), by the operators

(43.1)  G(n)|D.| (D)2, Bm)|Dul 2 (D)%, V(n)|Dal 2 (Dy)72, bo(Da)

where by(D,) is any Fourier multiplier, continuous, smooth outside zero, and satisfying esti-
mates |8°‘b0 )| = O(|¢]“*(€)~¢) for some ¢ > 0 or 00 (£)] = O((€)™*). Notice that all
these operators are of order zero i.e. if n is in C7 and if y > 0 is such that v > p+35 3 the first
of these operators acts from H* to H* by Proposition 1.1.6. By the definition (2.0.1) of B(n)
and V'(n), the same holds true for the second and third one. By Corollary 1.1.8 we have also
boundedness from C?~! to itself.

We denote by & the right ideal of £ given by these elements of £ that may be written as linear
1

combinations of G(n) |D|™ 2 (Dx>_%E and by(Dy)E where E is in £ and by(D;) is a Fourier

multiplier as above, with ¢ > 1/2.

Definition 4.3.1. Let p e N, g € Z, p+q > 0, N € N. One denotes by C [N] the vector
space generated by operators of the form

(432) Epo [(Zplbql(Dx)al)El] o [(Zmqu(Dx)ag)EZ} o0 [(prquN, (Dx)aNf)EN/}

where N' > N, bj(D,), j =1,...,N', is a smooth Fourier multiplier of order q;, Ej is in €
for 1 < j < N', aj is some analytic function of (n,n') vanishing at (n,n") = (0,0), and the
integers p;,q; satisfy the inequalities

N’ N’
433) > (prtae)<pta D .pr<p, prte>=0, ¢ =-1,r=1... N
r=1 r=1

We set CI for CY[0]. We denote by CNf; [N] the subspace of C} [N] generated by operators of
the form (4.3.2) where Ey is in E.

We study first the composition of an element of C; [N] and of (9,, Z)-derivatives.
Proposition 4.3.2. Let C be an element of C} [N], ¢, k be in N. There are elements C;,h of

CPHRTi N fori+j <k, h < ijhinN such that

(4.3.4) oLzkC = Y Cloith .
i+j<k
h<?

Moreover, if C is in CE [N], then C’ 5 isin Cé’i’f ,i _; IV,

‘We consider first the case when / + k=1 and C isin &.
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Lemma 4.3.3. Let E be in £. Then

ZE = EZ 4 C} + C*,0,,

4.3.5
(4.3.5) O, E = FEd, + CY

where CY are in CY. If E is in g, the first equality holds with CL in C~§.

Proof. Consider the case when £ = G(n) \Dx\_% (Dx>_% € . Writing G(n) = E \Dx]% <Dx>%
1

and decomposing |D,|2 (Dx>% = by(Dy) + b((D5)0, where by, b are symbols satisfying the

same conditions as by in (4.3.1), with b = 0 close to zero, we may write

(4.3.6) G(n)=FE +E"9,
with E', E” in €. Write
(4.3.7) (2, E) = [2,G(1)] | D] " (Dy) ™ + Ebo (D)

for some Fourier multiplier by(D,) as in (4.3.1), and express [Z, G(n)] using (4.1.1) and the
fact that G(n)B = —0,V i.e.

[2,G(n)]d = —Gn) ((Zn)Bn)d) — 0. ((Zn)V (n)y)

(4.3.8)
+2G(n) (nB(n)¥) + 20, (nV (n)y) — 2G(n)¢.

If we express ) = \Dx]_% (Dx>_%1/1 and use (4.3.6), (4.3.7), we see finally that [Z, E]¢) may

be written from expression

Eod: (Zn)Eyy),  Eo((Zn)Eoy),

(4.3.9) ~ _
EOOE(E0¢)7 E0¢7

where Eo is in € and Episin &.

Since, on the other hand

[02,G(n)] =20'n"B(n) — "0,

(4:3.10) or B = ~ 2t + LA o, + o, con
(02, V()] = =1'[0x, B(n)] — 0" B(n),
we see that, if Ey is in &, [0, Ey] may be written as a linear combination of quantities
Ep Ou(atnn) By
with Ej in &, so that the second equality in (4.3.5) holds.
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Plugging this information in (4.3.9), we see finally that [Z, E]¢ is a linear combination of
quantities of the following type

(4.3.11) Eo((0:20)Eq),  Eo((Zn)(9.0)Ege),

E(ZnEw).  Eo((d.a)Eqe),  Eov,
where a is some analytic function of (n,7), Eo is in £ and E{ is in €. We may write 1) in the
above formulas as n = by(Dz)n + bj(Dz)n’ where bj, b} are Fourier multipliers of order —1.

It follows then from Definition 4.3.1 that the quantities on the first line of (4.3.11) may be
written C1,0,1 with C1; in C!;. Those one the second and third lines are of the form C}

with C¢ in 56 This gives the first formula in (4.3.5) when E = G(n) \Dx\_% <Dx>_%. If £ is
the operator by(D,) in (4.3.1), the same conclusion holds.

Consider next the case when E = B(n) ]Dx\_% (Dx>_% or E=V(n) ]Dx\_% <Dx>_%. We may
express B(n), V(n) from G(n) and explicit quantities, which shows that [Z, E] may still be
written from expressions (4.3.11), but with Eo in € instead of €. We thus get an expression
Cl+ 01,0, with CF in CY.

We have thus shown both equalities (4.3.5) when E is any of the expressions (4.3.1). If E is
a general element of £, the conclusion follows by composition. O

Remark. If E is in &, the expressions obtained above for [0, G(n)], [0, B(n)], [0x, V (n)]
show that [0, E] will not be in CJ in general. Nevertheless we may write

OB = OpX(D2) E + (1 = x) (D) EOz + (1 = X)(D2)[0r, E]
which shows that
(4.3.12) 0,E=F0o,+E"
with B/, E” in €.

Proof of Proposition 4.3.2. We notice first that it follows from Definition 4.3.1 that, by con-

catenation of expressions (4.3.2), C; [N] o Cf;,/ [N'] C Cgi;’,/ [N 4+ N’]. Let us prove that

[92,C [N]] € €4y [N,

[Z,CE[N]] € CEYL[N] + CP4 [N] 0 0y

(4.3.13)

It is enough to consider operators of the form (4.3.2) and to argue by induction on N'. If
N’ = 0, we just get an element Ey of £, with p = ¢ = 0, and the conclusion follows from
(4.3.5). Assume that the conclusion has been proved with N’ replaced by N/ — 1 in (4.3.2)
and for any p,q with p+ ¢ > 0. We may write (4.3.2) as Eg o ((ZPbg,(Dy)a1) o C) where
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C is an element of Cé’:gf which is the product of N’ — 1 factors, so to which the induction
assumption applies. We write

|2, By 0 (276, (Da)ar) 0 C| = [Z, Bo] © (27by (Da)ar) o C

+ Eyo (ZPby, (Dy)ar) o C + Ey o (ZP'by, (Dy)ay) o [Z,C).

The assumption of induction implies that the last two terms belong to C¥ gy Cp +1 0 0. By
(4.3.5), the first term in the right hand side may be written

C& o (Zplbql(Dx)al) o(C + Cil o (&CZ”lbq1 (Dx)al) oC
+ (ZP'bg, (Dy)ar) o [0y, C] + (ZP'bg, (Dy)ar) o C 0 0.

By the assumption of induction, the composition rule and (4.3.5), the first three terms belong
to CP*!. The last term is in C2 0 8, C C,” +1 o 0y. This gives the second inclusion in (4.3.13).
The proof of the first inclusion (4.3.13) is smlilar. Formula (4.3.4) follows then by induction,
using (4.3.13) and the fact that [Z,0,] = —20,. O

We shall use the preceding results to obtain bounds for the action of vector fields on operator
of the form G(n), B(n), ...Let us define some norms.

Definition 4.3.4. Given T' > 0, n € N and o € [0,+00], one denotes by C™°([0,T] x R)
(resp. H™([0,T] x R)) the space of functions f: [0,T] x R — C such that for any integer
p in [0,n], one has ZPf € CO([0,T]; C°t"P(R)) (resp. ZPf € CO([0,T]; H°t""P(R))). One
uses the notations

I1£(t) ZHZ”f Ollgotn-p@y>  fllne= sup [If()ll,q
p= 0 tG[O,T}
=S N2 fOllgonvwy:  |flug = sup [£(E)],,
=0 te[0,T

We shall use the variants C%’"’J([O, T xR) (resp. Ham 7(]0, T] x R)) for the spaces defined as
above, but with Ct""P(R) (resp. HU+" P(R)) replaced by Gzt P(R) (resp. H%’C”'”_I’(R)).
The norms on these spaces are H|D |2 ano (resp. HD |2 f‘ng

We gather here some elementary estimates which follow from the definition of [|-||,,

Lemma 4.3.5. Consider (n,o1) € N? and o € [0, +o0].

i) For any f € C""717([0,T] x R),

(4314) Hf”n,crl—l—o S Han—l—crl,o :
i1) There exists a constant ¢ such that for any f,g in C™°([0,T] x R),
(4.3.15) 19l < cllfllnollglo
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iii) For any F € C™(RY) satisfying F'(0) = 0, there exists a nondecreasing function C: R —
R, such that for any f € C™°([0,T] x R)Y, one has

(4.3.16) IE e < CUS o) [[fllno-

The bounds involving the preceding norms that we shall obtain below will be deduced from
estimates for the action of an element of C} on a function given in the following lemma.

Lemma 4.3.6. Let v €]2, +oo[\3N, ¢/ € [0,1[.

i) Take (,k',p, N in N, q in Z with p+q > 0 and C an element of C;[N]. For any N' > N,
any integer h with 0 < h < £, any ', 7" with i’ + j' < k' define,

I(N/vhvi/vj/) = {(plv"'7pN’7q17"' 7qN’) € NN/ X ZNI7

N/

e+ a)+ @+ +h) <ptqg+k+e
r=1

N’

S pr+i <pt¥

r=1

(4.3.17)

pr+gr =0, g > —1, Tzl,...,N/}.

For I an element of Z(N', h,i',j") and (n,4) two functions, smooth enough so that the norms
below are finite, set My a(n,v) for the minimum of the following quantities

05727 |

N/
[Tz (Do)l ...
r=1

(4.3.18)
< 111127 (Dz)n \m) 1277 (D) | s 02 27 bl oas 10" <
r#r!
Then
(4.3.19) 10525 Cl g <Co) Do D Y Mra(n )

N'>N  h<t I€I(N'hij")
finite i'+35' <k’

where the first sum is finite and where C'(n) depends only on ||n||ov. If o is a real number
with 0 < o' < 1, o’ # %, if we define Mr oo(n,v) by the minimum of the quantities obtained
replacing H* by C° and H” 1 by C7' 1 in (4.3.18) we have also

(4.3.20) |0L 2K Cop| o < C) D > > Mise(n, ).

N'>N k<t I€I(N'hij)
finite i’ +35' <k’
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ii) Assume that C is in CE [N]. Then H@ﬁZk, |Dx|_% C’?ZHH#,,% is bounded from above by the

right hand side of (4.3.19) and, for any 6 > 0,
above by the right hand side of (4.3.20).

A ]Dx]_%Jre C{EHCJ_%% is bounded from

Proof. i) Apply (4.3.4) to write

(4.3.21) azFCp= N CL,oi Tz
7:/+jlgk/
h<t

with C’]’x’h € Cgiéi;i_lj, [N]. Let us bound

P
15102 24| -

By Definition 4.3.1, C’;i , may be written from expressions of the form (4.3.2) with N > N

and with the indices (p1,...,pnN/;q1,- - -, qn) satisfying inequalities (4.3.17). Since v > p/+ %,

the operators Ey,..., Eys in (4.3.2) are bounded in H* and in 7! (see Proposition 1.1.6

and Corollary 1.1.8). Moreover, by property (A.1.21) of the appendix, we have the estimate
0Vl gy S N16llv-1 |0]] gur - We apply this to bound the action of (4.3.2) on 8% Thzi . If we

estimate the ZPrb,, (D, )a, terms in C7~! and 8%l+hZi/{bv in H* | we get a bound by

N/
(4.3.22) Cn) [TN1277ba. (Do) ar|| s [ 03274 | -
r=1

On the other hand, if we estimate the ZPr' (D)% a,-factor in H* and the other ones in C7~1,

we get as well a bound

(4.3.23) Cm) [] 1127 be.(Da)ar|| -1 || 2P bg,, (Da)ar|
1<r<N’
r£r!

HY 8gl+hZilw“CV*1

with a constant C(n) depending only on ||7|| . Let us remark that we have the estimates

l
127704, (Da)ar|| o < C) 3 T2 D) ],
PT1+“‘+P7"ZSPT' j=1
Z(prj+Q'rj)Spr+Q'r
prj"l‘Q'rj >0, QT'jZ_l

EURURTR RCTRND DY | LT R
prytotpr,<pr 1<l
Z(pr'j +QT'j)§pr+q'r ]#]/
Pr; +Q7"j >0, dr; >-1

(4.3.24)

% HZprj/ <Dx>qrj,77HHp/+1'

Actually, we notice first that [Z,b,, (Dy)] = l;qu(Dw) for another symbol of the same order
as by,. Consequently, we may as well estimate the norm of b, (Dm)Zplfar for p,. < p,. if
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gr > 0, we are reduced to estimating H@gTZp;'ar , and H@ngplfarHHﬂf for ¢. < ¢, pl. < py.

-
Since a, is an analytic function of 7,7, we express the quantities inside the norm as a
sum of expressions a,(n,n )(agl ZPm n) - (GZT‘ ZPe 1) where @, is some new analytic function,
a+-+d, < 4., P+ -+, <), and 7 = nor . Using that C7~! is an algebra, we obtain
the first estimate. The second one follows from the inequality ||abl| s < C|lallgy-1 ||l o

which holds since v — 1 > p/ > 0.

Consider now the case ¢, = —1, so that p, > 1 and we have to estimate HZI”Taer,2 and
HZprarHH#,,l. As C772 is also an algebra, the first estimate (4.3.24) follows. The second is a
consequence of the inclusions C7~1 - H¥~1 ¢ H¥~1 and C*"2. H* < H* -1 which are true
since v > 2 >/ + 1.

We plug estimates (4.3.24) in (4.3.22), (4.3.23) and obtain the bound (4.3.18). The inequalities
(4.3.17) follow from (4.3.3), where we replace (p,q) by (p+ & —i',q+ ¢ —h —j') and from
the conditions on the indices in the right hand side of (4.3.24). Estimate (4.3.20) is obtained
in the same way.

i1) If we cut-off C' for non zero frequencies, then the estimate follows from 7). Consequently,
/ _1 -~ / _1 -~

we have to study ||Z* |D,| ™2 X(DI)CTZJHLQ and || Z¥ |D,| 2T X(Dx)Cl/JHLOO, where x is in
CP(R), x = 1 close to zero. By (4.3.21), and the fact that [Z, x(D)] = x1(D5) for some
C3°(R\ {0}) function x;, we are reduced to the study of |Dx|_%+€ X(Dm)C’;iﬁng",zZ, where
according to the last statement in Proposition 4.3.2, we may assume that C’;l, belongs to
CNé’f;?,/_i/ [N]. This means that this operator may be written as a linear combination of ex-
pressions (4.3.2), with N’ > N, indices (p1,...,pn/,q1,---,qn’) satisfying (4.3.3) and Ej in
~ 1

E,ie. By =G(n) Dy 2 <Dm>_%E or Ey = bo(D,)E, where E is in € and by(D,) is a Fourier
multiplier homogeneous of degree larger or equal to 1/2 close to zero. It follows from Propo-

1 1
sition 1.1.6 that |D,| ™2 x(D,)Ep is bounded on L? and |D,| 2™ x(D,)E, is bounded on
Holder spaces if @ > 0. Consequently, estimates (4.3.22), (4.3.23) still hold for the building
1 sy~
blocks of |Dy|™2 x(Dy)C}0% Z" 4, which gives the wanted Sobolev estimate. The case of the

Holder bound is similar for |Dx|_%+9 X(Dw)C’;;ﬁngi/J, 0> 0. O

We may prove now the main result of this section, which gives estimates for the action of Z*

Proposition 4.3.7. Let v,7o be given in ]0,+00[\3N with v > 79 > 2 and let so, 51,5 be
integers satisfying

s>s81 >80 > =(s+2y—1).

N —

Let k be in N*, pin Ry with p+k < s—1. Let (¢,n) be in &, and in Haknts Hbwtl
smooth enough so that the norms in the inequality below are all finite. Let A(n) be one of the
operators G(n), B(n), V(n). There is a non increasing function C(-) such that, for any (n,)
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as above
(2" A(m) — Am)(Z = 2))¢]| .
<1g, (4 k—s0+7%)C(Inllcr) H‘DI‘% meHZk”Hle

1

+ O
1
+ C(HUHTC,S()—E') H |D$| ? ¢Hmin(,u+k—so+~/o,k),'y |77|k—17ﬂ+2
+ ]-R: ([lu’] - (’7 - 70))O(H”7||];:7SO—E) H|D(E|% mein(u—l—k—so+“/o,k)n/ |”7|k,u

where we have denoted by ||-|| the norms defined in Definition 4.3.4, 1r, is the indi-

*, k7 | |*,*

cator function of Ry, H |Dw|% ¢H should be understood as zero if p+k—so+v <0

ptk—so—0,y
and where k = min(k, sp).

Remark. The key properties in (4.3.25) is the fact that the terms involving kZ-derivatives
of 1 in the right hand side are multiplied by specific factors, well tailored for the induction
argument that will be used in section 4.5 and in Chapter 5.

Proof. Let us show first that

(4.3.26) (ZA@) — A)(Z —2F)p = Y CLLZ1 [ Dy|* (Dy)30)
i<k
where C; belongs to CE;’ [1].

Consider first the case k = 1, A(n) = G(n). Then
(2Gm) - G2 = 2))v = (12.G)] +26() )
may be computed from (4.3.8) as a sum of expressions of type
~ o 1 1 ~ o 1 1
Eod, | (2°n) o |Dal? (D2)¥4],  Eo| (2°0) Eo|Da|? (Da) 30

with Fy, Eo in £, a = 0, 1. This, together with the second commutation relation (4.3.5) shows
that [ZG(n) — G(n)(Z — 2)]¢ may be written as C{ ]Dx\% <Dx>%w + Y0, \Dx\% (Dxﬁw with
C{in C} 1], C¥ in CL4 [1]. If now A(n) is equal to B(n) = (1+7)"1G(n)+7n' (1+7%)710,, we
see that [ZA(n) — A(n)(Z — 2)]4 is the sum of the product of the right hand side of (4.3.26)
with & = 1 by (1 4+ 7?)~!, which is still of the same form, and of the quantities

=214+ 0720 (Zn )Gy,  Z(n' (1 +n?) ") 0w

(S

which may be written as C{ | D,| <Dm>%¢ for some CJ in C} [1]. Consequently, (4.3.26) with
k =1 holds as well when A(n) = B(n). The same conclusion holds for V(n) = 9, — n'B(n)
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since Z0, — 0;(Z —2) = 0. We have thus proved (4.3.26) when k = 1. Let us prove that this
equality holds for any &k by induction. We write from (4.3.26)

(Z’H_IA(?]) — A(n)(Z — 2)k+1)¢ = Z ZC’;@%Zi( |Dm|% <Dac>%¢)
ek
+ (2AM) - A)(Z =) (2 - D).

It follows from (4.3.4) with k = 1, £ = 0, that the first sum is of the form of the right hand
side of (4.3.26) with k replaced by (k + 1). Moreover, the last term may be written

(CY0, + CY) D4 |2 (Dy)3(Z — 2)*4)

1
with C¥ in CL,, C in C}. Commuting |D,|2 <Dm>% to the powers of (Z — 2), we see that we
get again a contribution of the wanted form.

We may now prove (4.3.25). We write u = [u] + ¢/ with ¢/ € [0,1[. According to (4.3.26), we
have to bound for any ¢ =0,. .., [u],

(4.3.27) |0LCL 7 D, |2 (D)2 || o

where 1 < k—1,1+ 75 <k, C’; in CE;Z [1]. We apply estimate (4.3.19) with ~ replaced by ~o,
K =0,p=k—i,q=—j, N>1,¢ =02 |D,|? (D)2,

We obtain a bound in terms of a sum for N > 1, h < ¢ of the minimum of quantities (4.3.18)

where we set j' =7 =0 i.e.

18149 27 | Dy 2 (D) 24|y

N
(4.3.28) [1llz7D
r=1

(4.3.29) <H | ZP(D,

r#r!

HahﬂZZ‘D ‘2 q/JHCWO .

Y-

where the indices have to obey the restrictions deduced from (4.3.17), namely
Nl

Y r+a)+(i+j+h) <k+(
r=1

N/
Y p+i<k
r=1

pT+QT207 QTZ_l, 7‘:1,...,N/.

(4.3.30)

To finish the proof of estimate (4.3.25) we have to bound (4.3.27) by one of the four terms I,
II, 111, IV of the right hand side of (4.3.25). We distinguish several cases.

Case 1: For any r =1,..., N, p. + ¢ < 59 — 0.

141



In this case, we use (4.3.28). Since p, < k, we may bound HZp"<Dm>q"77Hm0 by [[0l5 s —&-

Moreover, since the exponent ¢ in (4.3.27) is smaller than k£ — 1, and since (4.3.30) implies
1

i+j+h<k+1<k+ [u], the last factor in (4.3.28) is bounded by || D,|? We see

that we obtain a bound by I1.

T’Z)‘k—l,p—l—%'

From now on we may assume that there is some r, say r = 1, with p; + q1 > sop — 9. Notice
that (4.3.30) implies then that for r > 1

(4.3.31) prt+ar <k+l—p1—q <k+[u—(s0 =) <s0—

where the last inequality follows from the assumptions k 4+ ¢ < s — 1 and the inequalities
between s and sg.

Case 2:py=kand j+h <y —70, ¢ <v—",r>1

Since p; = k, the second inequality (4.3.30) implies that ¢ = 0, p, = 0 for r > 1. We use
the bound (4.3.29) with 7/ = 1. For r > 1, we estimate || Z? (Dx>qr77HCVO = H(Dx>anHmO <

Inllc~ according to the assumption on ¢,. In the same way ||6§;+h |Dw|% <Dr>%¢cha71 is

bounded from H|Dw|% ¢HC%%. If we notice that HZpl<Dm>‘1177HHH,+1 < HanHHMH’ using
that the first relation (4.3.30) implies ¢1 < ¢ < [u], we conclude that we obtain a bound by I.
The cut-off for k 4+ p — sp + o > 0 comes from the fact that by (4.3.30) and our assumption
on p1,q1, we have so — 0 < p1 + ¢1 < [p] + k.

Case 3: p1 = k and either j + h > v — v or there is r > 1 with p, + ¢, > v — 0.

We notice that, as p; = k, inequalities (4.3.30) implies ¢, < [u] for any r and j + h < [u].
The assumptions of this case imply that v — 79 < [u] so that the cut-off condition in the
term IV in the right hand side of (4.3.25) holds. We notice also that ¢ < [u]: if not, the
first inequality (4.3.30) and p; = k, would imply that j + h = 0 and ¢, = 0 for r > 1,
which would contradict the assumptions of this case. It follows that, in (4.3.29) with ' = 1,
|z <Dm>‘J117HHH,+1 < Inly,,,- Moreover using (4.3.31), we estimate for r > 1 |z (Dw>q"77HmO
by 77 k- Finally, since (4.3.30) implies that

i+j+h<k+l—(p1+aq)<k+[u—(so—)

taking into account the assumption made after the conclusion of case 1, we may bound
h+7 i 1 1 1 . . .
10277 Z7 | Dy |2 (D) 20| g -1 DY ||| Dzl w”min(k—i—[u]—so-i-’ymk) 1. We obtain a contribution

yY0— 5
to the term IV in (4.3.25).
Case 4: p1 < k.

We use (4.3.29) with " = 1. As above, the last factor in this inequality is bounded from

1 .
above by [||D,|> wHmin(k-i-[u]—So-i-'Yo,k),’yo—% and for r > 1, | ZpT<Dx>anHmO S Inllg g5~ Since

4.3.30) implies p1 + ¢1 < [p| + k and since p; < k, [|ZPY{(D;)?"n| ;.41 is smaller than
HH+

|77|k—1,u+2‘ We thus get a contribution to term IT1 in (4.3.25).
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This concludes the proof. O

Corollary 4.3.8. Under the assumptions of Proposition 4.3.7 and if moreover v > 4
|(A(n) — A(0) )],
< () Il 1D212 259 ey
+ Lz (11— (= 90))C (Inllgy0) Ill o0 10212 ¥,
(4.3.32) + 1, (1 & — 50+ 70)C (11l o) [1Da]2 ]| oo || 250 s

+ (Il 0) Mg 1D212 ],y 0

1
+ C(HT,”SO,O) H ‘DSU‘ 2 w”/i'f‘k_sO'f"\/(),’y ‘T,‘k—l,,u—l—Q

+ 1 (11 = (7 = 90D C (Il 0) 1Dl ¥4y 1m0 e

Proof. We have to bound HZk(A(n) - A(O))?[)HHM. Since A(0) = |D,| if A = G or B and
V(0) = 0., we have ZFA(0) = A(0)(Z — 2)*. Tt follows that Z*(A(n) — A(0)) — (A(n) —
A(0))(Z — 2)F is estimated by (4.3.25). We just need to study

(4.3.33) [(A(n) — AO)(Z = 2)F4|| 1,.-

Assume first that u > sy — v. When A(n) = G(n), apply (2.5.1) with (u,s) replaced by
(u+1,u+ 1) and v replaced by 9. We obtain a bound by

C(Inllcoo ) 1012 (Z = 20| ey Wl g + Imllno (12212 (Z = 250,y .

The last term is bounded from above by the contributions I 4+ I1 of the right hand side of
(4.3.32). The first term may be controlled by V since k < u + k — sy + 7 because of our
assumption on p. When A(n) = B(n) or V(n), we argue in the same way applying (2.5.6)
with (p, s) replaced by (u+1/2, 1+ 1).

Assume now that p < so — 0. Set 1 = (Z — 2)¥1). We want to estimate for 0 < £ < [u]

105 (A0n) = A) ¥l e < [[(A() = A©)) 90| g + [[02, AT g0

with g/ = p — [p]. The first term in the right hand side may be estimated when A(n) = G(n)
from (2.7.4) since p/ <~y —3fory>4,soby I +1V. If A= B or V, the bound follows from
the one of G, the expressions of B, V in terms of G and the law product C7~1 . H¥ ¢ HH .

Consider now the second term. According to (4.3.10), [9£, A(n)]J is a linear combination of
quantities of the form
s
a(nf ) L( ..., 00 ) A(n) 3™ 14

where N € N*, ¢; € Nwith {1 4+---+lnp1 =0 < [p], 64+ --+€n > 0, L is a multilinear form
in its arguments, A(n) is taken among G(n), B(n), 0, and a(n’) is some analytic functions
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of /. Using again the product law C7~1. H" ¢ H" we bound the H* -norm of the above
expression by

([l gro-rs) 17 a0 | A0 (Z = 2%

We use that /n41 <[] — 1 and (1.1.16) to estimate the last factor by HDI\% w‘k e Since
M3

Yo + [1] < sp, we see that we obtain finally a bound by term I7 in the right hand side of
(4.3.32) when [u] > v — 0. If [u] <~ — 70, we use instead the bound provided by I and IV,
remembering that we are in the case p < sy — 9. This concludes the proof. U

Next we state a corollary of the previous estimate under a form which is convenient for later
purposes.

Proposition 4.3.9. i) Under the assumptions of Proposition 4.3.7 and if moreover v > 4

Ay, < CUnllen) [1Dal? 25| s
+ L (11 = (7= 90))C (Inllg0) I1ll o0 10212 ¥,

+ 1k, (1 4k — 50+ 90)C (11l ) 11Dl 2 8] oo | 250 gy

(4.3.34) )
+ C(HnHSO,O) ‘ | D2 w‘k—l,u+%

+ C(Inllag o) 11D Vg Mt s2

+ T (] = (7 = 90)C (11l 0) 1Dl ]| Ml

i1) Under the assumptions of Proposition 4.3.7 and if moreover v > 4
1 1
(4.3.35) [ A, < ClIDu2 w‘k,u—i—% +CllIDal* ] iy Mt

where C = C(HWHSO,O)'

Proof. The first inequality follows from (4.3.32) and the triangle inequality and the second
inequality follows from (4.3.34) and the definitions of the norms [|-[|,., and [, ,. O

Remark 4.3.10. The key point is that, in the right-hand side of (4.3.34), (4.3.35) when say
k ~ s, the factors estimated in Holder norms contain at most s/2 + Cst Z-derivatives.
The method of proof used above provides as well Holder estimates.

Proposition 4.3.11. Let v € N with v > 4. There exists €9 > 0 such that for all integer
k € [0,y — 4] and all numbers o in |3,y — k|, o & %N, there exists an increasing function
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C: Ry — Ry such that, for allT >0, all v in C’%’k’0+%([0,T] xR) and all n in C*1([0,T] x
R) N CO7 ([0, T] x R) satisfying supyen 71 [11(t) || g1 < €0, one has

(4.3.36) HZkA W —An)(Z —2) 1/1”00 = (”77”k,0+1) H77Hk,0+1 H‘D:c‘% wHk_l,UJrg
and
(4.3.37) lAGYE o < C Ul 1Da1? %], 42

for any A € {G,B,V}.

Proof. Write o = [o] + ¢’ with ¢’ €]0,1[. From expression (4.3.26), we see that it is enough
to bound for £ =0,..., 0]

|65C022 1Dl (D2) 24
withi <k-—1,i+j <k, C']i- in CE;Z [1]. We apply estimate (4.3.20) with ~ replaced by 7o,

Yo>2coseto2, K =0, p=k—i,q=—j, =07 |Dw|% <Dm>%1[). We obtain a bound in
terms of the minimum of the quantities

Nl
TTI1Z7 D2y nl| oy 057 27 1D 2 (D) 38| o
(4.3.38) =t
<HHZPT'< >HZpT Yo 77H0cr’+1Hah+]ZZ’D ‘2 chm 15
r#r!

where the exponents satisfy (4.3.30).

If for r =1,..., N’ we have p, + ¢, + v < 0 + 1, we use the first bound. Since h + j + 1 <
k+/¢<k+ o] and i <k — 1, we get the wanted inequality (4.3.36).

If for some 1/, for instance " =1, p1 + ¢q1 + 70 > 0 + 1, then for all r > 2
Pr+q <k+l+vy—0c—-1<k+y—-1<k+o+1—7

since, taking -y close enough to 2, we may assume 2vy < ¢ + 2. Similarly, i + 5 + h <
k+o0+1—~p. We use the second bound (4.3.38) with ' = 1. Since p1+q1 < k+/¢ < k+[o] and
i < k—1, we obtain (4.3.36). Estimate (4.3.37) follows from (4.3.36) and Corollary 1.1.8. [

The second objective of this section is to obtain estimates for the remainder in the Taylor
development at zero of n — G(7).

Let us introduce a notation: if Z denotes the couple (Z,9,), and if k is in N, we set Z* for
the famlly (Zklaﬁ”u)kurkngk.
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Proposition 4.3.12. Let m be in N, m > 3. There is a positive constant o such that
the following holds: For any family (Aj(n))i<j<m of operators with As(n),...,Am(n) taken
among a(n,n")G(n), a(n,n')B(n), a(n,n )V (n), a(n,n' )., where a is an analytic function of
(n,n") vam’shz{zg at zero and such that Ai(n) = G(n) or Oy, for any k € N, any d € N, for
any u = |Dy[2 9 + in such that sup,c(o 1 | ZFu(t, ')Hcdﬂ and Supeo 7] | Z*u(t, -)HHHQ are

finite, the following estimates for Ry(n) := |Dx|_% Ai1(n)o -0 An(n) holds

3
125 Rl ga < Clal 3 JTIZ5ulgarall 250l yaca
kit +ka<k j=1

(4.3.39) k1,k2,k3<ka

125 1D.1” Ro(m)t)[| o < Clu] > HHZJUHCHQ 0> 0)
k14-tka<k j=1

where Clu] depends only on HZ(k_1)+uH0d+a for the first estimate, and on HZ(k_l)+uHcd+a

1-26’

and on a bound for Hn H Hn HC \ for some 0" €]0,0][ for the second one.

D=

Proof. We may write each of the operators A; under the form A;(n) = E;(n) |Dw|% (D)
with E; in £ and Ey in €. For j = 1,...,m — 1, we decompose A;(n) = E}(n)d, + Ej (n),

with %, EY in £, and in & if j = 1. Then

m—

Ay(m)o--- H M0s + E (1)) En(n) |Da|? (D).

Using the second commutation relation (4.3.5) and the fact that Ef, EY are in C~8 and E}, EY,
j=2,...,m—1, E, are in CJ [1], we see that A;(n)o---o A,,(n) may be written as a linear

combination of operators C(n)d% |Dw|% (D,)2 where ¢/ <m —1 and C is in 521 1 [m —1].

We have to estimate, in order to study the first inequality (4.3.39) HZ KD~ 2 Ai(n)o---o
Apm(n ¢HHd+k” for any decomposition k = k' + k”, so to bound for (=0,...,d+ K,

/ _1 ~
10227 1Da| ™2 Cn)e ||
where ¢ = 9 \Dx\% (Dxﬁw. By ii) of Lemma 4.3.6 (applied with ' = 1), we may bound

this by the right hand side of (4.3.19) i.e. by a finite sum indexed by N’ > m —1 > 3,4/, j/
with ¢/ + j* < k' and h < ¢, of the minimum between the quantities (4.3.18), namely

Ha] +hzl aZ’ ‘D ’2 wH

N/
[1llz o
r=1
(T2

r#r!

(4.3.40)

HCV L

e ) 127Dyl 08 72 1Dl (0
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where the exponents satisfy the following inequalities

N/
S prta) @+ +0+h)<m—1+K +¢

r=1
> pr i <H,

pr+Qr207 QTE_l-

(4.3.41)

Set po=1,q =7 +h+¢,and forr=0,...,N', k. =p, + (¢ —d —m —2);. Then

Hzpr <DI>QT'77

‘cw < HZkruHch
(1.3.42) |02+ 2" 3L |Dal2 (D) 30| 5y < [125u] v
e HZp'r<Dx>Q7‘,r]

it <125

|0+ 27 0% | Dl (D) 74| 1 < || 270 s

for some o depending only on v and m. We notice that if ¢, <d+m +2, k., =p, <k <k
andif ¢ >d+m+2, k. =p,+q¢- —d—m —2 <k —3 by (4.3.41). We check similarly that
ko < k. Moreover, there is at most one r for which k, = k. In the expressions (4.3.40), we use
(4.3.42) to bound N’ — 3 factors by HZ’“WHC“Q, choosing those r for which k, < (k—1)4,
so by HZ(k_l)+uHcd+a. We use the first (resp. the second) estimate (4.3.40) when the largest
k. is obtained for r = 0 (resp. r = ). Taking (4.3.42) into account, we obtain in all cases a

bound
3

C (12" ullgare) T 112"

r=1

|oall 250 e

with ky, kg, k3 < k4, after renumbering of the k;’s. Tt follows from (4.3.41) that 3"} (p, +¢-) <
m—1+4+k+d and Elllpr < k. The last inequality implies Zil kr <kifg.—d—m—2<0
for r = 1,...,4. If there is at least one r for which ¢, —d —m — 2 > 0 we get Zi‘kr <
Z;l(pr +qr) —d—m+1 < k. We have obtained the conditions on the summation indices in
the first inequality. The second inequality is proved in the same way. O

Let us now state and prove corollaries of the preceding results that will be used in the rest of
this paper. We take for o the constant given by Proposition 4.3.12 when m = 3. We take sy
an integer. We assume that we are given (1, ) and d € R, with € H0:4+an 0.4+ and o)
. . 1

in Fzsodte q G0t Then y = | Dy |2 9 + in will satisfy, on the interval [Ty, T] on which
it is defined, for any k < s,

sup HZku(t, -)HHHQ < 400, sup HZku(t, ’)Hcd+a < +00.

[T07T[ [T07T]
Corollary 4.3.13. Assume that (n,1) is a solution of the water waves system (1.2.1), satis-

1

fying the above smoothness properties. Then u = |D,|2 1 + in satisfies the equation

(4.3.43) Dyu = Dy u+ QoU) + CoUd) + Ro(Ud)
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where U = (u,u) and

Goft) = 1D % (D 1D (-t @)+ (IDa] (-4 )]

+ 2 1Du] (0= @) Dol () = 1Du((w— @)D |Do|~* (ut w),

Co(U) stands for the cubic contribution

CoUd) =

1 3
+ 75 |Dal [ (w = 0)? D2 (u+ @)
1 1
+ 75 Dl [(u = @2 D,2 (u + )]
Moreover, the remainder EO(U) satisfies the following bounds: one may write EO(Z/{) =

|Dw|% Ry(U), where for any k < so

3
(4.3.44) IZ*Ro)|| a < Cll D TTIZ 9 ull sl [ 25| s
k1+-+ka<k j=1
k1,ko,k3<kq

with a constant Cy[u] depending only on HZ(k_l)+uH0d+a. Moreover, for 6 > 0 small, we get
also Holder estimates

4
(4.3.45) 12% 1D, " Ry@)||pa < Cild D TTI2% ] case
kyt-+ka<k j=1
where Cilu] depends only on HZ +uHcd+a and on a bound for Hn Hl 20 H HC 1 for some
6’ €]0,0].

Proof. We apply formula (2.6.11) with n = 2. We get

2
(4.3.46) _ Z]% (k) /01 (A —2 1)29(3)()\) d\

k=0

where g(\) = G(A\)y. We have seen that ¢(3)()\) has the structure given by formula (2.6.9)
i.e. the structure of the expressions considered in Proposition 4.3.12 (up to an extra uniform
dependence on the parameter A € [0,1]). By Proposition 4.3.12 the integrated term in (4.3.46)
may thus be written R}(U) = |Dw|% Ry, with Ryl satisfying the inequalities of the statement.
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Let us study the Taylor expansion in (4.3.46). The expressions of ¢(0), ¢’(0), ¢”(0) obtained
page 68 show that

on = G(T/)w = ‘Dx’ Y — ’Dx’ (77 ‘Dx’ w) - 5x(773x1/1)
1 1
+ D2 (1(1Da| (7D $))) + 5 |Da| (7°054) + 505 (0 [ D] ¥)
+1Da* By

The second equation in (1.2.1) implies, when combined with the above expansion of G(n),
that

Oud =~ — (@) + S| — (D2l ) 1Dl (11Dl ) + m2e]

+a(n)P |1, G, 1 96, | Dal 0, 1D | (0D ), 6246, Co(n, ), | D |2 |

where P is a polynomial, sum of components that are homogeneous at least of degree 4 and
(3 is the cubic term in the expansion of G(n)1, and where a is some analytic function of 7.

Since we have seen that ]A%I satisfies (4.3.44), (4.3.45), Leibniz formula shows that the last term
in the above equation satisfies similar bounds, replacing eventually « by some larger value.
Computing from the above expressions dyu, we get (4.3.43). This concludes the proof. O

4.4 Nonlinear estimates

Our next goal is to estimate the action of Z* on various remainder terms. This task is quite
technical and requires some preparation. We gather here various estimates which are exten-
sively used in the sequel. Namely, we estimate [(F |, |TcF|g ,, [TrClg,, and |[R5(¢, F)| g -

Recall that, for any real number s > 0,

ICE N s S €I oo 1 | gz + IE N oo 1€ s »
ICE  zzs S NSl gown IE N s -

We need similar estimates for [(F|; ,. We shall prove that, for any s > 2 and any (K,v) €
N x [0, 4o00o[ such that v + K < s — 2, there holds

(4.4.1) ‘CF‘K,V S ”C”%p ‘F‘KJ/ + ”F”%,O ‘C‘K,w
(4.4.2) ICF g S €510 1F k0 -

These estimates can be deduced from the following result: for any real number m € [0, +o0]
and any (K,v) € N x [0, +o0],

(4.4.3) [CF g S NS0 1l + 1E Nl kim0 ISl s
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where we use the convention that [|F[, x99 = 0 for v+ K —m +2 < 0. Indeed, by
applying (4.4.3) with m = s/2 (resp. m = s+1) one recovers (4.4.1) (resp. (4.4.2)). Moreover,
(4.4.3) is convenient to prove estimate by induction on K since

1ZF |yt k—mt2.0 < NF bt (k+1)—mt2,0 -

We begin by proving estimates similar to (4.4.3) for [Tt F| . [Tr(|f, and [Rp((, F)|k , as
well as for Sp((, F') where Sg is defined by (3.4.14).

Recall that the notations ||-|[,. , and ||, , are defined for any real number r (see Notation 4.5.1)
so that [|-||, , =0 and ||, , =0 for r <O0.

Proposition 4.4.1. Consider m € R, K € N and v €]0,+o0[. Below one uses the conven-
tions that

(4.4.4) [€lln0 =0 for m <0, 1Nk —my10=0 forv+ K —m+1<0.

(1) There exists a positive constant ¢ such that,

(4.4.5) ’TCF‘KW sc HC”m,o ‘F‘K,y tc HF|’y+K—m+1,O K‘K,O‘

(1) There exists a positive constant ¢ such that,

(4.4.6) TeCli, < €m0 F o+ el Fl gk —mi10 €l -

(i7i) For any a in [0,4o00[ there exists a positive constant ¢ such that,

(447) ’RB(Ca F)‘K,y—i—a <c ”CHm,a ’F’K,V t+c HF”K—m,a ’C’K,I/ '

(iv) Let Sp(a,b) = Op®la, R)b with R = —2€ - V6 where 0 is given by Definition A.1.2. Then
for any a in [0, 400] there exists a positive constant ¢ such that,

(448) |SB(C7F)|K7V+Q S C||C||m7a |F|K,V + CHFHK—m,a |C|K,V'

Proof. Let us prove statement (7). By definition

K
’TCF‘K,I/ = ZHZZTCFHHHK*Z'
=0

It follows from (3.4.14) that one can write Z*(T;F) as a linear combination of terms of the
form T(”S)(Z’“C)Z”2F where nq1 + ns + ng < £ and where we used the following notation:
T (v)f = OpBlv, (—2¢-V)"6] f where § = 0(£1, &) is the cutoff function used in the definition
of paradifferential operators (see Definition A.1.2), -V = £,0¢, +&20¢, and where Op®[v, A f
is as defined in §3.4 (so that 7 (a)b is the paraproduct T,b).
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We thus have to prove that, for any £ < K and any (n1,n2,n3) € N3 such that ny+ng+ns3 < £,

(4.4.9) 1T (2™ ) Z"F || e S IClmo 1Flicw + NF im0

Notice that, for any n € N, 7™ (v)f satisfies the same estimates as T, f does. For n = 0
this is obvious since T (v) = T,. For n > 0, with the notation of Proposition 3.4.4, one
has (—2¢ - V)"0 € SR, (the condition (3.4.4) is satisfied since (£1) ~ (&2) on the support
of V¢0). Then Proposition 3.4.4 implies that, for any o €]0,+o00[ and any real numbers p, p/
such that p' > p >0,

(4.4.10) 1T W) ] e S N0l oo 1 e
(4.4.11) 1T @) £l e < K 0l 2 1f o -
For n = 0, these estimates follow from the paraproduct rules (A.1.12) and (A.1.20).

We now prove (4.4.9). Either ny < m or ny > m. We first consider the case where ny < m.
Since v+ K — ¢ > v > 0 we may use (4.4.10) to write

[T (2 ) 27 F | e S 127Gl 127 F e
Now write [|Z™ (][00 < [[Clly.0 < I€]l,,0 and

12" Fll gosrc—e < Flpy ik < N Flpgsre—e < 1F ks
by definition of the norms ||||n0 and ||n0 This proves (4.4.9) for n; < m.

We next consider the case where n; > m. We apply (4.4.11) to obtain that

HT(M)(ZMC)ZHZFHHHKJ S ”ZMCHH HZNZF”C”K*‘“'

~

Since ny < ¢ < K, notice that ||Z"(]|;2 < ||k - On the other hand

|2 F|

< |lzr]

CvtK—ni—ng+1  SiNCE N1 +ng <L

<3|zF

p=0

CV+K7[+1

Cu+Kfn1+17p

(4.4.12) < iuzpﬂ
p=0

Cv+K—m+1—p S1ce 1y 2 m.

Now observe that, since nq1 > m, nq +no < £ and ¢ < K, one has
m4ny—K—-1<m+l—nm—-K-1=m-nm)+({(—-K)—-1<-1<v
and hence ng < v+ K —m + 1. Setting this into (4.4.12) yields

v+K—m+1

oo < || ZPF]
p=0

12" |

Cv+K—m+1—p = ||F||V—‘,—K—m+1,07
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which completes the proof of statement (7).

Statement (i7) is a corollary of statement (7). Indeed, (4.4.5) applied with (¢, F') replaced
with (F, () implies that

Tl S NE o 1€l + 1Sk —mr1,0 k0 -

By using this estimate with m replaced with v + K —m + 1 we obtain (4.4.6).

Finally we shall prove statement (iii) by using arguments similar to those used in the proof
of statement (7).

Set x(&1,&2) :=1—0(&1,&) — 0(&2,&1) where 0 is the cutoff function given by (A.1.2). Then
Ri(¢,F) = OpP[¢, x(&1,&)]F. Thus Z‘Ri((, F) is a linear combination of terms of the
form R(”S)(Z"IC, Z™F) where nj + ny + ng < £ and where we used the following notation:

R™(v, f) = OpPlv, (-2¢ - V)"x]f-
We thus have to prove that, for any £ < K and any (n1,n2,n3) € N3 such that ny+ng+ns3 < £,

(4413) HR(nIS)(ZTHC? ZMF)HHHK%m S.z ”C”m,a ‘F‘K,V tc ”FHK—m,a ‘C‘K,V :

For any n € N, R(™ (v, f) satisfies the same estimates as Rg(v, f) does. Indeed, with the
notations of Proposition 3.4.4, one has (—2¢-V)"y € SR, for any n > 0. Consequently, for

reg
any real numbers o, a in [0, 400 such that o + a > 0, there holds

(4.4.14) [R™ @, /)| prosa S I0llga 1 £l »
(4415) HR(n)(v7f)HHo+a 5 ”v”l-l‘7 ”fHCa :

We now prove (4.4.13). Either ny < m or n; > m. We first consider the case where n; < m.
Then we use (4.4.14), ne < ¢ < K and n; < m to write

RN (2™ ¢, 22 F) || yosceva S | RTN(Z™C, 27 F)|| fposse—nga
SNZ" g 1272 F| o re—ns
S Gllma | Flic -
On the other hand, if n; > m then
[R(2™ ¢, 27 F)|| yossc-eva S | BTN(Z™C 27 F)|| o sy v
SN2 ¢l =y 1272 F ||

5 ’C’K,y ”FHng,a 5 ‘C‘K,V HF”K—m,a

where we used in the last inequality that nqy + ny < £ < K and hence ny < K — m since
ny > m. This proves (4.4.13) and hence completes the proof of statement (7).

The proof of statement (iv) is analogous to the proof of statement (iii). Indeed, by definition
Sp(C, F) = OpPlu, (=€ - V)O]F and hence Z¢Sp(¢, F) is a linear combination of terms of the

152



form Op®[Z"2¢, (€ - V)"30)Z™ F with ny 4+ no 4+ n3 < £ and n3 > 1. As already mentioned,
one has (—2¢ - V)"0 € SRV for n > 0, so Proposition 3.4.4 implies that Op®[v, (¢ - V)"0]f

reg

satisfies the same estimates (4.4.14) and (4.4.15) as R™ (v, f) does. O

Remark. For further references, let us state and prove an estimate analogous to (4.4.10)-
(4.4.11) in Holder spaces. Consider a positive real number o with o ¢ N. Then

(4.4.16) 1T F N, o S ISl 1E 0 -

To see this, using elementary arguments similar to those used in the proof of statement i) of
Proposition 4.4.1, one needs only to prove that, for any n € N and for any real number ¢ in
[0, +00], one has

(4.4.17) 1T @) f]l o < K 0]l [1f ]l o -

For n = 0, this follows from the paraproduct rule (A.1.13). For n > 0, using the notations
and the observations made in the proof of Proposition 4.4.1, notice that 7™ (v) = Op? [v, R]
where R = (—2¢ - V)"0 belongs to SRY,,. Now the wanted estimate follows easily from the

reg*

estimate of the kernel K}, ¢ made in the proof of Proposition 3.4.4.

The previous proposition has the following corollary.

Corollary 4.4.2. Consider m € R, K € N and v €]0,+oc[. There exists a positive constant
¢ such that,

(4.4.18) [CF i < cllCllpmo [Fl i + I F s k—mi1,0 1€ 5w s

where ||(||,,0 =0 form <0 and [|F||, x_,110=0 for v+ K —m+1<0, by convention.
Proof. Write (F =T:F + Tr( + Rp(¢, F') and apply Proposition 4.4.1. O

For further references, we shall also need more precise estimates.

Proposition 4.4.3. Consider m € R, K € N and v €]0,+0c0[. One uses the conventions in
(4.4.4) and denotes by 1g, the indicator function of R,.

(i) There exists a positive constant ¢ such that,

’TCF’K,V <c ”CHm,O ’F’K—l,u—l—l +c HF”V—l—K—m—‘rl,O ’C’K—l,o

(4.4.19) p .
+ g, (m) [Cll e |25 F|| o + ey (K = m) | Fl| o [|[27¢]| 2

(13) For any real number a in [0, +oo[ there exists a positive constant ¢ such that,

’RB(C7F)‘K,u+a S c ”C”m,a ‘F‘K—l,y—l—l + C]'R+ (m) ”CHC“ HZKFHHu

tc ||FHK_m,a |C|K_1,V+1 + clp, (K —m) [|[F||ca

(4.4.20)

25| e
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(7i1) There exists a positive constant ¢ such that,

[CF g < cllCllimo 1001+ NNtk —mt10 1€ 1,041

+ clg, (m) [[][en HZKFHHV

(4.4.21) +elg, (m—v = 1) [Cllgus |27 F| 2
+clg, (K —m) | Fllgus | 27¢]| 2
+elr, (v + K —m+ 1) [ Fllon [|25¢]) .

Remark. Assume m > 1. By using in addition the obvious inequalities

1R+(m) ”CHCl HZKFHHV < HC”m,O ’F’K,I/7
Ir, (m—v = 1) [[{llgver < e, (m) [[Cllgm

it follows from (4.4.21) that

[CF ke < llCllpo [F i + ¢ NE s im0 1€ 1041
+ el (K —m) | Fllew [ 25¢] 12
—|—C].R+(I/—|- K—-m+1) ||F||Cl HZKCHHV'

Let b > 1 be any fixed real number. Using the obvious inequalities

[Fllcver < 1Fllce + 1ry (v + 1 = b) [Fll i
(1.4.22) L, (K = m) [ Fllgors < IFllgwssccmes
1R+(K—m) < 1R+(V—|—K—m+ 1),

one has the following corollary

ICF g < ellllmo 1 Flcy + s —ma2.0 1€l k—1041
(4.4.23) +elp, (v + K —m+ 1) ||Flleo | 25¢]| 0
+clp, (v + 1= b) [|Fllgvrrc—msr | Z5¢]| -

Similarly, by using (4.4.22), we deduce from (4.4.19) that
ITeF iy S S0 1Fl i —1s1 + L (m) 1K e |25 F [

(4.4.24) Ty gk—mt1,0 €10
+1p, (v + K —m+1)||F|e || 25¢|| 2
F 1R, (V41— 0) [|F | gorrmir || Z5¢]| 0.

Proof. Let us prove (4.4.19). Write |T¢F|, , = HZK(TCF)HHu + T F| gy ya1- 1t follows
from (4.4.5) that
TeFl g1 1 < €lClmo 1F T —1,041 + N F s g —mr10 1S K105
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which is smaller than the right hand side of (4.4.19). To estimate the H”-norm of Z¥ (TCF)
we write, using the notations introduced in the proof of Proposition 4.4.1, that

|Z5(TF) o D). I(na,ng,ng) with I(ny,ng,ng) == ||[TU)(Z2™¢) 2" F|| ..
ni1+n24+n3<K

We split the sum into two pieces, according to n; < m or ni; > m. We further split the first
(resp. second) sum into two pieces, according to ny = 0 or 0 < ny < m (resp. ny = K or
m < ny < K). The same arguments used to prove (4.4.5) imply that

Z I(n1,n2,n3) S ”C”m,o ‘F‘K—l,u-‘rl?

ni+n2+n3<K
0<ni<m

and

Z I(n1,n2,n3) S HF”V—l—K—m+1,0 ’C’K—l,O'

ni+no+n3<K
m<ni <K

Moreover, the paraproduct rules (A.1.12) and (A.1.20) imply that

I(K,0,0) = ||TyxcF|| 4 SNZ5¢) 2 1F lgosr s
1(0, K,0) = | T, 25F|| ;1 S ¢l || 25 F || 0

The first (resp. second) of the two previous inequalities is to be taken into account only for
K > m (resp. m > 0), we obtain the desired result (4.4.19); indeed for K < m (resp. m < 0,

the sum > . _x I(n1,n2,n3) (resp. >_, -, vanishes).

The proof of (4.4.20) is similar.

To prove (4.4.21) we write (F' = T¢F + Tr( + Rp((, F'). The first (resp. third) term is
estimated by means of (4.4.19) (resp. (4.4.20)). The second term is estimated by means of
(4.4.19) applied with (¢, F,m) replaced with (F,(, v+ K —m+ 1). O

We shall also need the following estimates.

Lemma 4.4.4. Consider an integer n in N* and a positive real number . Then, for any
integer m such that m > 2 and 2m > n + p + 2, there exists a positive constant ¢ such that

12" (TaTo = Tan) f |
<cllallcz [1Bllez (|2 || -2
(4.4.25) + ctg, (n—m)(||2"al| 2 18]z + Nl [1278]] 2 ) 1l
¢ lall 0 8]0 101

+ etz (n =) (llallyo 1510+ Il 10 1Bl ) 1l
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Proof. Using the notations introduced in this section, Z™(T,T, — Tyy)f can be written as
Z"(TaTb — Tab)f = Ry + Ry + Ry + R3 + R4 where

Ry = (T,Ty — Tawn) 2" 1,

Ry = (TZaTb +TaTzo — T(za)p — Ta(Zb)) 7",

By = (TD(@)T, + T, 70 () - TV (ab) ) 2771,
R3 is a linear combination of terms of the form

T (Z2Ma)TU) (ZM20) 275 f, b+ Lla+ny+no+nz<n, ng<n-—2
and R4 is a linear combination of terms of the form
7" (Z™a)(Z™2b)) 2™ f, L+mi+me+m3<n, mg<n-—2.

e The terms Ry and R; are estimated by means of the symbolic calculus rule (A.1.14) which
yields

(TaTy — Tap) Z" fll g S llall o 10l || 27 F || -2
|(T2aTo = T(zayp) 2" || e S N Zall o [0lloa [ 277 £ g
(TaTzo — Tuize) 2" || gy S Nallor 1200l [| 277 £ g -
So ||Ro|| gu is controlled by the first term in the right hand side of (4.4.25). Since || Zal/o1 <

lall and [[Zb] 1 < [[Bll, 0 for m > 2, and since || 27~ f|[ - < |f]
R; is controlled by the third term in the right hand side of (4.4.25).

ne1,u—1s W€ verify that

e Let us estimate the H*-norm of Ry. Since T (a) = OpPla, (—2¢ - V)] with (—2¢ - V)8 €
SR

reg» S already seen, Proposition 3.4.4 implies that

ITD@TZ" 7 || g S Nlallen [TZ2" 7 || e S llall o 18l zoe 11277 F || s

By applying the same estimates for the two other terms which enter in the definition of Ro,
we conclude that the H*-norm of Ry is controlled by the third term in the right hand side of
(4.4.25).

e Let us estimate R3. Set A = T(1)(Z™Ma)T(*2)(Z"2b)Z"s f. We shall split the analysis in
several cases.

If n1 < m and ny < m, we write

1Al S (127 al| oo | 2720 e 127 £
S ”a”m,O ”b”m,o ‘f‘n—l,u’

since n3 < n — 2. Since |f|n_2,u < |f|n_1’u_1, this proves that the H*-norm of A is controlled
by the third term in the right hand side of (4.4.25).
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If m < n1; <n, then we notice that the assumption 2m > n + p + 2 implies that
m>2m—-—n;>n+pu+2—-—n; >ne+n3s+p+1)+1

song <m—1and ng+ p+ 1 < m — 1. Consequently, the estimates (4.4.10)—(4.4.11) and
(4.4.17) imply that
1Al S 1127 all 2127200 e [ 27 F | i
< ol 1.0 180l 17T -

so the H#-norm of A is controlled by the fourth term in the right hand side of (4.4.25). The
analysis of the case m < ng < n is similar.

Assume that n > m and n; = n. Then ¢; = 5 = no = n3 and hence the paraproduct rules
(A.1.12) and (A.1.20) imply that

1Al e S 127l 2 1181 oo [ f | gt

so the H-norm of A is controlled by the second term in the right hand side of (4.4.25).

This proves that the H#-norm of R3 is controlled by the right hand side of (4.4.25). The
analysis of Ry is similar. O

4.5 Estimate of the remainder terms

The goal to this section is to prove various estimates required when estimating the remainder
terms.

To estimate the remainder terms, we shall need to exploit repeatedly the fact that the com-
mutator [G(n),n] is of order 0. Similarly, when studying the linearization estimates, we have
seen that G(n) — | D,| is of order 0 (while B(n) — |D,| and V(1) — 0, are of order 1). We shall
need to exploit this fact too.

We need to estimate Z*[G(n),n] and Z*(G(n) — |D,|). The analysis of both Z*[G(n),n] and
Z¥(G(n) — |D,|) will be by induction on k, using the fact that one can compute explicitly
Z|G(n),n] and Z(G(n) — |Dy|). In both formula we shall see that the commutator [G(n), Zn]
appears. More generally, to control Z[G(n), ZPn] for some integer p € N, one needs to control
[G(n), ZPT'n]. We thus begin by studying these operators. Below, for p € N, we denote by
J(n, ZPn) the commutator defined by

J(n, ZPn) f = G(n)((ZPn)f) — (ZPn)G(n)f.

In this section, we use various inequalities in some Holder spaces C?(R). We shall freely use
the fact that, for our purposes, one can assume that ¢ ¢ %N up to replacing o with o 4 ¢ for
some § < 1.
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Notation 4.5.1. The notation [|f||, ., has been introduced for r € N and ~y € [0, +oc[. For
the purpose of the next results, it is convenient to extend it to the case when r is any real
number. This is done as follows: (i) for r < 0 one sets || f||,., = 0 for any f and any v, and
(1) for r > 0, one sets || f[|, ., := [|f|[;, Where [r] is the largest integer smaller or equal to 7.
One defines similarly [f|, , for any real number r € N.

Proposition 4.5.2. There exists g > 0 small enough and there exist vy with vy & %N and
Ny large enough such that, for any (s,s1,s0) € N? satisfying

—_

s> 81 > 50 > §(S+2’yo),

for any integer p in [0, s1], any integer K in [0, s1 —p| and any real number p in [4,s— K —p—1]
there exists a mondecreasing function C such that, for any T > 0 and any smooth functions
(n, f) such that supepo 1y [|1(t)]| 0o < €0,

(451) ‘J(TL an)f’K“u, S C ”ano,o ‘f‘Kﬂu + C HfH/.H—K-I—p—SO-i-No,’Yo ‘T,‘K—I—p,y,-i-l )
where C = C([Inlls, 0)-
Remark. This estimate is not optimal with respect to the factors estimated in Holder norms.

The key point is that it is optimal with respect to the factors estimated in Sobolev norms.

Proof. For technical reasons, instead of proving (4.5.1), it is convenient to prove that, for N’
large enough,

(4.5.2) [T, ZPm) Flic e < Clnll g0 11k + C I Nl i tpmso+- 7m0 11 it »
where p = max(p, 1). It is clear that this estimate is equivalent to (4.5.1).

Hereafter, we freely use the following estimates

(453) 12Pully o < Nullyspor  Nuavall, o < llurll, o luzll,g

Hu”n,a-i-m S Han—i-m,a7 ’u’n,a-l—m S ‘u’n—i-m,a :
The proof is by induction on K.
STEP 1: Initialization

We first prove (4.5.2) for K = 0. We prove that, with N’ = 5 and ~ large enough, for any
p € [0,s1] and any p € [—-1/2,s — p — 1], there holds

(4.5.4) 17 2°0)Flou < Cllllso.0 1F 1o+ CIF sy 570 1Mlp s
where C = C(HUHSO,O)'
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To prove (4.5.4) it is sufficient to prove that J(n,7)f := [G(n),n]f satisfies

455) NI e < Cllillgso-s 1F e+ ClFllguss—sornreng (1l giss + 101 grass)

where C = C(||n| oo » |7l cs0-») and where it is understood that ||7|a if @ < 0.
It follows from Proposition 2.7.1 and the product estimate (A.1.21) that, for any pu > —1/2,

IGE) @) e < CInllguss) 1 f |l gurr < C(lnllgurs) 17l e 1 s -

Similarly, by using (A.1.21), (2.0.4) and (A.2.4), we obtain that for any p > —1/2,

GG e < Wiill g 1GDFN iyy < C Ul rers) Nl o [1F s -

This implies that
1T, fll gz < Clnll cies ) N7l e [1F e

which in turn implies (4.5.5) provided that sy — p < N’ and 7 is large enough (indeed, we
then have p+5<s—p+4<s—p+5<s—sy+ N +5 < sy for 79 large enough).

It remains to prove (4.5.5) for s) — p > N’. We further split the analysis into two parts.
Consider first the case where p + p — sp + N’ > 0. Write

(4.5.6) S, 1) f = [Dal (1f) = 7 |Da| f + (G () = [D2)(1f) = (G ) f = [Dal f)-
The first term is estimated by means of (A.1.25) in Lemma A.1.12 which yields that

11Dz (1f) = 01Dl fll g < Wtllea 1 g+ 1 o 11l g -

The second term in the right-hand side of (4.5.6) is estimated by means of the tame product
rule (A.1.18) and the estimate (2.5.1) (applied with (s,~, 1) replaced with (u+1,34¢, u+1),
recalling that @ > 4 by assumption) for the operator norm of G(n) — |Dg|. It is found that

G () = (D2 () g < C(||77||C4){||77f||04 170l e+ 11l s Hﬁf”Hu}

SO

(G () = (D)@ M g < C(H(%ﬁ)”m){ 1 e Il e 4 1l oo 1LF 1] e

o il £l e -

The third term in the right-hand side of (4.5.6) is estimated by means of the tame product
rule (A.1.18)and the estimates (2.5.1) (applied with (s, ~, p) replaced with (1+1,3+¢€, u+1)).
It is found that

1(G(n)f = [Da] Pl gw
<l poe 1G S = [Dal £ll g+ Will g |G ) f = [ Da] £l oo

< C(llon) Nilloe {17 s lguss + Wl 171 o

+ C(IInll ) lll o 1 lles
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where we estimated ||G(n)f — |Dz| f|| - by means of the triangle inequality and (2.0.4) and
(A.2.3).

Since sy —p > N’ by assumption, for N’ > 5 we have s) —p > 4 and hence ||| c4 < ||7]| cso—»-
Since sp > 5 by assumption we have ||7]|os < ||| s - Eventually, for 4 p — sy + N’ > 0, we
have ||f[lca < [|fllgutp—sornr1qo @and hence the desired result (4.5.5) follows from (4.5.6) and
the previous estimates.

We now consider the last case where so —p > N’ and u+p —sp + N’ < 0. We use again
the decomposition (4.5.6). However, we now estimate the first term in the right-hand side of
(4.5.6) by means of (A.1.26). This yields

11Dzl (1f) = 1| De| fll g < lill gz 11 g -

We now estimate the second term in the right-hand side of (4.5.6) by means of the product
rule (A.1.21) and the estimate (2.7.4) (applied with v = p + 5) for the operator norm of
G(n) — |Ds|. It is found that

(G () = 1D} (/) g < CInll guss) N7 a2
< C(lnligwss) lllor 1f 1l g2 -
Similarly,
10(G)f = (Dl Pllgn < 0l 1G0) S = [Dal £l
< C(llnllss) 17l guer 1f gz -

For N" >5and p+p—sy+ N <0 we have p+5 < sp — p < sp so that (4.5.5) follows from
(4.5.6) and the previous estimates.

STEP 2: Holder estimates

We shall need to estimate [|.J(n,n)f|,,, and [|J(n, Zn)f||,, ,- For our purpose, it is sufficient
to have a non optimal estimate in Holder spaces, that is an estimate which involves || f Hng 41
(which amounts to lose one derivative, while J(n,7n) and J(n,Zn) are expected to be of
order 0). We claim that for p = 0 or p = 1 and for any integer n in [0,s9 — p — 5] and any
real number o in |3,50 —p —n — 1]\ 3N,

(4.5.7) 1701 20) Fllnor < CUnllngi1) 1llnpor [l

Directly from the definition of J(n, ZPn), it follows from the triangle inequality, the product
rule (4.3.15) and the estimate (4.3.37) for ||G(n)f||,,, that

10, ZP0) fll,. < |G (ZP0) )|, + [[(ZPG () f]],,.,
S C(Han,o‘—l—l) H(an)an,U-‘rl
12701, C (1l 541) 1141

S C(Hanp'—i-l) Hanan'—i-l Hf”n,o’-i—l
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which implies the desired result (4.5.7).
STEP 3: Induction

So far we have proved that (4.5.2) holds for K = 0. To prove (4.5.2) for K > 0 we proceed
by induction on K. Assuming that (4.5.2) holds at rank K, we want to prove that,

(4.5.8) |J(n, Zpﬁ)f|1<+1,u <C ||77||so,0 |f|K+1“u +C Hf||p+K+1+;3—so+N',~,o |77|K+p+1“u+17

where p = max(p, 1). Notice that

(4.5.9) 1T ZP0) Flic a0 < W0, Z80) fll s seer + 12T (0, Z2P0) fl g -

The first term in the right hand side of (4.5.9) is estimated by (4.5.4). To estimate the
second term, again, the key point is that one can express ZJ(n, ZPn)f as a sum of terms
which are estimated either by the induction hypothesis of by a previous estimate. By us-
ing the operators J(n,n) = [G(n),n] and J(n, Zn) = [G(n), Zn] and by using the identity
G(n)B(n)y = —0;V (n)y (see Remark A.3.3), notice that one can rewrite the identity (4.1.1)
for ZG(n)f under the form

ZGn)Y = Gm)(Zy — 2¢) — J(n, Zn)B(n)y + 2J (n,n)B(n)

(4.5.10)
— (0 Zn)V () + 2(0:m)V (n)9.

Then it is easily verified that

ZJ(n, 2P f =T+ +T"
= J(n, ZPn)(Zf —2f) + J(n, 2P ')
= J(n, Zn)B(n)((Z¥n)f) + (ZPn)J (n. Zn)B(n) f
+2J(n,n)B(n)((Z¥n) f) — 2(Z¥n)J (n,n)B(n) f
— (0 Zn)V () ((ZPn) f) + (ZPn)(0:Zn)V (n) f
+2(9:m)V(n)((ZPn) f) — 2(ZPn)(0zn)V (n) [.

(4.5.11)

We now consider an integer K in [0,s; — 1] and assume that (4.5.2) holds for any integer p
in [0,s; — K] and any real number x4 in [4,s — K — p — 1]. Our goal is to prove that (4.5.8)
holds for any p in [0,s1 — K — 1] and any real number p in [4,s — K — p — 2]. To do so, in
view of (4.5.9), it is sufficient to prove that, for any i = 1,..., 10,

(4.5.12) !JZ‘K# < Clinllsoo 111+ C I lut e rm—sornr o Ml ispen s »

for any p in [0,s; — K — 1] and any real number p in [4,s — K —p — 2].

Given (4.5.2), it is clear that (4.5.12) holds for ¢ = 1 or i = 2. To estimate the other terms,
we need some further preliminary estimates.

Preliminary estimates
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In order to estimate J3, 7°, J7 and J? (see (4.5.11)), we have to estimate A ((ZP0) )|k,
for A € {B,V}. We claim that

1AM (ZPm) N i < Cl1llsg,0 11 s

+C Ul Ktp—sot N7 o 1M Kt -

(4.5.13)

To prove (4.5.13), use (4.3.35) to obtain that

’A(n)((an)f)‘K“u <C ’(an)f‘K“u—i-l

FCZP) 1 —so+4.70 1M i -

(4.5.14)

Firstly, notice that (4.4.18) applied with m = sy — p implies that

(ZPm) Flic s S 0270 50,0 [ L s + 1 Nk repso3.0 1270 ke pn

S ”77”30,0 ‘f‘K,,u—i—l + “f“p+K+p—SO+3,O ‘77’1(+p,p+1 )

and hence |(ZPn)f|f ., is bounded by the right-hand side of (4.5.13). Secondly, observe
that

|’(Zp77)fHu+K—so+4,fyo S ”Zp77|’u+1<—so+4,«,o |’f”u+K—so+4p/0

S 1llsg.0 11t & —so -7 0

since p+ K +p—59+4+v <s—sg+4+ < sg and since 4 < N’ by assumptions. This
completes the proof of (4.5.13).

We need also to estimate || A(7)((ZP0) f)||,1+r11-sp+ N7 7o for A € {B,V}. To do so, write

JADZ0) D)l 101018770

SC(HU” K+1—so+N’ 1) I(ZP0) Nl s i1 —so N7 o1
(4515) prK+1=s0+N"v0+ ptK+1—s0+N' vo+

< C(”nHSO,O) Hf”,u—i—K—i—l—So-i-N/,“/O-i-l

< C(Hano,O) Hf”u—i—(K-i—l)-i—ﬁ—So-i—N’,’yo

where we used (4.3.37), (4.5.3),p > 1l and u+ K+p—sop+N'+79+2 < sp for so > 1/2(s+270)
with vg large enough.

Similarly we have that
(4516) HA(T,)((an)f)Hu—i—K—so-i-4,0 < C(”T,HsmO) ”fH;H—K—S()—i-N’,O
for N’ > 9, where we used (4.3.37) and u+ K +p — sp + 9 < 59 (for g large enough).
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Estimate of J3 and J°. By the induction hypothesis one can apply (4.5.2) with p = 1 and f
replaced with B(n)((ZPn)f) to obtain that

(4.5.17)  [J(n, Zn)Bn)((ZP0) )|k . < Clnllsg0 1B (ZP0) )k, +
C ”B(U)((an)f)”M+K+i—s0+N',% ’n‘K+1,u+1 :

The first (resp. second) term in the right-hand side of (4.5.17) is estimated by means of
(4.5.13) (resp. (4.5.15)). This gives

(4.5.18)  |J(n, Zn)Bm)((Z"0) Pl o < Clnll o0 11

+ C 1yt 14550487 0 1M Kpt i1 -

Thus we verify that (4.5.12) holds for ¢ = 3. The proof for ¢ = 5 is similar.

Estimate of J* and J%. The product rule (4.4.18) (applied with m = sy — p) implies that

(4.5.19)  [(ZPn)J(n, Zn)BM) flk 0 < Clnllsy0 [ Zn)B(0) f K 0
+ C ”J(n7 ZT,)B(n)f”u-i-K-i-p—So-i-ZO ’T,‘K—i-p“u—i-l .

The first term in the right-hand side of (4.5.19) is estimated by means of (4.5.17) (with ZPn
replaced with 1). With regards to the second term, using (4.5.7) and (4.3.37), we obtain for
any € €]0, 1],

17 Zm) Bt sep-sor20 < 100 ZMBONS | scp-sy 2.0
S CUBOD Mt K 4p—so+2,5—e
S Clf 1yt Ktp—so+2,6
S CIF 1t K550+ 70 -

This proves that (4.5.12) holds for ¢ = 4. The proof for i = 6 is similar.

Estimate of J7 and JY. The product rule (4.4.18) implies that

[0 Zm) V() (ZPn) )k S 10220l 52,0 V(M) (ZP0) ) ¢ 0
IV (ZP0) )N s ke —sg+40 10220l i, -

Since [[0xZ1||sy—2,0 < 11lls,0 and [02Z0|k ,, < [0 k41,115 in view of (4.5.13) and (4.5.16) we
verify that (4.5.12) holds for ¢ = 7. The proof for i = 9 is similar.

The estimates for ¢ = 8 and ¢ = 10 are simpler. This completes the proof. O

Corollary 4.5.3. There exists g > 0 small enough and there exist v; with v1 & %N and Ny
large enough such that, for any (s,s1,sg) € N3 satisfying
1
§ >8] > 8) > 5(5""2’}’1)7
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for any integer K in [0,s1] and any real number p in [4,s — K — 1] there exists a nonde-
creasing function C such that, for any T > 0 and any smooth functions (n, f) such that
sup;e(o,7] [11(t) | 0 < 0,

(4520) |G(77)f - |D$| f|K,u S C ||77HS()70 |f|K7N + C ||fHM+K_SO+N17'Yl |77|K7N+1 9

where C = C([Inlls, 0)-

Proof. Again, the proof proceeds by induction on K. It follows from Proposition 2.5.1 and
Proposition 2.7.1 that (4.5.20) is true for K = 0.

Since [Z,|D;|] = —2|D,|, it follows from (4.5.10) that

Z(G)f — Dl f) = (G(n) = |D)(Zf —2f) — J(n, Zn)B(n) f
+2J(n,m)Bn) f — (0 Zn)V (n)f +2(0m)V (n) f.

So the desired result follows from the estimates already established in the last step of the
proof of Proposition 4.5.2. O
We are now in position to estimate ZF(n)y) — ZF<2)(n)i.

Proposition 4.5.4. There exists g > 0 small enough and there exist v, vy2 with vy2 & %N,
Y2 > 7% and No large enough such that, for any (s,s1,s0) € N3 satisfying

(4.5.21) S>s1 >80 > =(s+ 272),

N =

for k in [0,s1] and any real number p in [4,s — k] there exists a nondecreasing function C
such that, for any T'> 0 and any smooth functions (n, f) such that sup;c(o 11 [|7(t)llcs0 < €0,

|E(n) — Freay()¥],,
< Coy InliZen 121 Z¥9)
+1m, (1 k = S0+ N2)Coy [llco [[|Dal? ]l oo [ 250] 10
(4.5.22) +Coy [Ill2,0 HD:c‘% w‘k—l,u-ﬁ-%
+ 1z, (1= 8)Cea 1, 0|1 Dl 0], s
+ Cso [1nll5y.0 H|Dr|é 7[’Hu+k—sO+Nmz 11

1
+1r, (n— Vé)CSO HnHSo,O H|Dm| ’ w”;ﬁk—so—l—NQ,’m |77|k7u—1 ’

where Cyy = C([nllcre)s Cso = ClInllgy0)s and 1r, is the indicator function of R.
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Proof. Let « be large enough, (Ny,79) and (N1,71) be as given by the statements of Proposi-
tion 4.3.9, Proposition 4.5.2 and Corollary 4.5.3, respectively. Then Na, v2,75 will be chosen
so that

7&272_17 NQEH]&X(N,NQ,N175), 72211]&)((7"‘7/2,’}’0,’}’1,]\[2-’-1)

(with 75 ¢ $N).

The proof proceeds by induction. Notice first that (4.5.22) holds for k = 0: if g —sg+ No > 0,
we apply (2.6.3) with (u, s) replaced by (u—1, p—1) and get that the left hand side is bounded
by the first and second terms in the right hand side. If u — sy + No < 0, we use Corollary
2.7.6 with v = p + 4. If moreover, u < 9 — 4 we obtain a bound by the first term in the
right hand side of (4.5.22). If u > 2 — 4, we use the fourth term in that right hand side to
get that bound (taking vy > ~45 + 4).

Hereafter we fix an integer & in [0, s; — 1] and we assume that for any real number y in [4, s— k]
the estimate (4.5.22) holds. Our goal is to prove that (4.5.22) holds at rank k + 1. Since

‘F(U)¢ - F(§2) (77)7/)|k+1# is smaller than

1Em)% = Fiaoy | s +1Z2(Fe = Fragy()v) ],

this reduces to proving that, for any u € [4,s — k — 1],

| Z(F(n)¢ — Flen) (M),
< Cop InllEe 12212 25514y
+1my (i K+ 1= S0+ No)Coy 1l o [[1DslZ ]| g [| 254 0] 10
(4.5.23) +Csy HWHEO,O HD:c‘% w‘k,/ﬁ-%
o 1m, (1= 9)Co0 1012 0| 1D51% ]y, s

1
+ CSO H77H30,0 H|Dm|2 wH/H-k—i—l—so-i-Nz,’yz |”7|k7/»‘+1

1
+1g. (1 —75)Cs 170l 56,0 H|Dr|2 wH,u—i—k—i—l—so+N2,’72 iprepy

provided that Na, 2,74 are large enough.

To prove (4.5.23), we express Z(F'(n) — F(<2)(n))¥ as the sum of (F'(n) — F<a)(n)(Z — 2)1,
which we are going to estimate by the induction hypothesis, and other terms which are
estimated either by the induction hypothesis or by means of the previous results.
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Recall that, by Lemma 4.2.2

ZF(m)y = F(n (Z¢—2¢) F(n)((Zn)Bn)y)

— | Da| TznB(n)¢ (Tzn n)w)

+ 2G(n)(nB(n)¥) — 2nG(n)B(n)¢ + 2(V (n))0zn
— |Dz| Re(B(n)y, Zn) — 0z Rp(Zn, V (n)y)

+ D | Try (1 + O (Try (n)y1)
+ 2| Dy| S(B(n), n) + 20, Sp(

(4.5.24)

V), n)

where Sg is given by (3.4.14); Rp and Ry are given by (4.2.3) and (4.2.4) and Rp(a,b) =
ab—T,b— Tpa.

On the other hand, remembering that according to (2.6.1)

(4.5.25) Fiaoy(my = = Dol (1 De| ) + [Da| (T)p, 1) — 02(n0210) + 02(To,41),

by using [Z,|D,|] = =2 |D|, [Z,0:] = —20, and (3.4.14) one gets that

ZF<oy(m = Fl<oy(Zn)Y + F<oy(n)Zy — 4F <9y (n)¥
+2 ‘Dx’ SB(‘DZ" ¢7 77) + 28:(:58(8:01/}7 77)7

which is better written under the form

(4.5.26) ZF<o)(n)y — Fi<ay(n)(Zy — 2¢)
= Fleo)(Zn)Y — 2F(<2y(n)Y + 2| De| Sp(| Dz| ¥, n) + 20:58(0:1, 1),

We have already seen (see (2.6.30)) that one can either write Fi<9) ()1 under the form (4.5.25)
or under the form

(4.5.27) Fl<o) ()Y = —|Da| Rp(n, | Da| V) — 9xRp(n, 02¢)).

In the right-hand side of (4.5.26) we use (4.5.27) to express F(<9)(Zn)i and (4.5.25) to express
—2F(<2y(n)y. Tt is found that

ZF <2 (mv
= Fl<o)(m) (29 — 2¢)
(4.5.28) — |Dz| Rp(Zn, | Dy| %) — 0. R5(Zn, 0:)

= 2(= D2 (0Dl ) + |Da| (T, ) = 0a(ndtf) + 0u(To,um)

+2 ‘Dx’ SB(‘DZ" ¢777) + 28:(:53(8961/}777)’

Now by combining (4.5.24) and (4.5.28), we conclude that
Z(F(ny — Feg)(my) = FO + -+ F°
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where

FO = (F(n) - Fieoy(n)) (20 — 20)),
Fr=—=F(n)((Zn)Bn)),
F? = = |De| Ty B¢ — 02 (TzyV (n)1)),
F*=2G(n)(nB(n)y) — 2nG(n)B(n)v + 2(V (n)1h)dxn
—2|Dy| (n|Dg| ) — 20:(n0:1)),
F' = —|D| Re(B(n)¥, Zn) — 0. Ra(Zn, V (n)ib)
+|De| R5(Zn, | De| ) 4 0: Rp(Zn), 021),
F° =2|D,| Sp(B(n) — |Da| b, n) + 20,58(V ()Y — 8a10,m),
FO = |Da| Try (e + 02(Try () + 21 Da| (Tip,19m) + 204(To,4m).-

To prove (4.5.23), we have to prove that, for any u € [4,s —k — 1] and any 0 < i < 6,

‘}—Z‘k <Cy, ”nucvz H’D ’2 Zk—HT/JH
o=

o3
+1r, (n+k+1—s0+ NQ)C’yz HnHC“fQ H‘Dx’% 7/’”(]'0 HZk—HnHHu

1
+Cso ||77||3070 ||Dy 2 ¢|k,u+%
(4.5.29) / ) )
+ 1R+ (Iu - 72)650 ”T,”S(LO HDx’2 /l/}|k+17u_g

1
+CSU ”?’]”5070 H’DI’2 wHu-HH—l—so-i—Nz,'yg ’n’k,u—i-l

1
+ 1R+ (Iu - fYé)CSO ”T,”SO,O H’DZ"2 /l/}HM'i‘k"rl—SO‘f‘N%'YZ ‘n’k—l—l,p—l :

The estimate (4.5.29) for ¢ = 0 follows from the induction hypothesis, by applying (4.5.22)
with 1 replaced with Ziy — 2¢). We shall estimate the other terms separately.

STEP 0: Preliminary

We shall need to estimate |G(n)f — |Dz| fll,, 0. 1B f — Dzl fll, 0 and [V(0)f = Oufll, 0
We claim that, for any integer n in [0,so — 5] and any o in ]3,s0 — 1 — k] with o & 1N,
(4530) ”G(T,)f - ‘DSL“ an,U + HB(n)f - ‘DSL“ an,o‘ + Hv(n)f - a:r:f”n,a

< Ol gs2) Ml 1Dl £l 42

(The key point is that the right-hand side is at least quadratic; there is a loss of one derivative

since we estimate the |[|-[|,, ,-norm of A(n)f — A(0)f by means of the ||-||,, ,,o-norm of f while

n,o+

A(n) — A(0) is of order 1, but this loss is harmless for our purposes.)
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To fix matters, we prove (4.5.30) for G(n)f — |D.| f only. Write
IGF = 1Del fllug = D_)|Z5(G0)F = 1Dl Pllgorns
k=0

Now Z* |D.| = |D.| (Z — 2)¥ so
ZNGW)S ~1Dal ) = (Z5G () f = Gu)(Z = 2)*) + (GOn) — IDa)(Z — 2)" .
It follows from (4.3.36) that
125G = G2 =280 0o < CImllgsr) Il (10217 %]l
On the other hand (2.6.12) implies that, for any ¢ > 3 with o ¢ N,

(G () = 1Dal)(Z = 2)" f| o
< C(Hn”cwnfkw) ”n”cwnfw? H’Dx’% (Z - Q)kacanH%-
Since
1 k 1
o sn-ses < Wllugras I1DslE (Z = 2 Fll rnoseg < D2l £, 0
this completes the proof of (4.5.30).

We shall also use the following corollary of (4.3.32): let A(n) be one of the operators G(n),
B(n), V(n), then

[(A(m) = AO))¥ly.,, < Coy [1nll g0 |1 Dsl® Yot

(4.5.31) )
+ Coo[| D22 9|

ptk+1—so+Na 72 ‘n’kwﬂ )
STEP 1: Estimate of F'.
To estimate F' we first claim that (4.5.22) implies that,
[F)l,,, < Con Inlls 240
+ Cso 11l 5.0 ‘{ﬂk—l,;ﬁ—l
+ 1r, (1= 5)Co0 Il 9,y
+CSOHTZHH+1€—SO+N2,~/2+% |77|k,u‘

To prove this estimate, using (4.5.22) and the triangle inequality, it is sufficient to prove that
‘F(Q) (77)1[)‘ - is bounded by the right-hand side of the above inequality. This in turn follows
from (4.5.27) and (4.4.20) applied with (m,a,v) = (so — 2,2, — 1).
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To estimate |]: ! we now apply the previous estimate with ¢ replaced with (Zn)B(n)i.

This yields

|K,u

|E)(Zm)Bm))],,,, < Coa 10l e [|2*(Z0) Bn)¥) ||
+ Cso 1Ml 5.0 |(Z77)B(77)7/)‘k—1,p+1
+ 1, (1= 2)Cs Il g0 [(Z0) B,

+ CSO ||(ZU)B(U)¢||“+k—so+N27ﬁ{2+% |77|k,u .

(4.5.32)

To estimate the first term in the right-hand side of the above inequality we use the product
rule (4.4.23) with m =sy — 1, b =9, ( = Zn and F = B(n)y, we find that

[(Zn) Bk, S nlls 0 1B,

+ 1, (n+k— s+ 3) IBO)Gll s (|25 0| 1.
+ ‘|B(77)¢||u+k—so+3,0 |77|k,u+1

+1r, (0 +1=%) BVl 4sk—so+3.0 17 5s1,0-1
Now |B(n)4|y,, is estimated by means of Proposition 4.3.9. On the other hand,
1ZDBON s S 1200k s Bt
If 49 > Ny + 1 then
(4.5.33) wt+k+1—s5g+No+v<s—s9+No+7 <sg+ No— vy <sg—1.

Therefore HZnHHk_SOJFszJF% < [|nllg,0- Moreover (4.5.33) implies that we can apply Propo-
sition 4.3.11 to bound ||B(77)¢”u+k—50+Nznfz+% (and hence || B(n)Y|| 4 5—sy+30)- This com-
pletes the estimate of the first and last term in the right hand side of (4.5.32).

It remains to estimate the second and third terms in the right hand side of (4.5.32). Both
terms are estimated similarly and we consider the third one only. To estimate this term we
use the product rule (4.4.18) (instead of the product rule (4.4.23) used above) applied with
m = sy — 1. This yields

[(Zn) Bl i1 S 1 20lls—1,0 1By e + 1B s k—so+1.0 1270k 11
S H77Hso,o ’B(W)T/”k,“q + HB(n)/l/}Hlu,-i-k—So—l—l,O ‘n’k+1,p—1 :

Then we use (4.3.35) (resp. (4.3.37)) to estimate the ||, , ;-norm (resp. ||| ;s 41,0-00rM)
of B(n)y.

We conclude that (4.5.29) holds for i = 1.

STEP 2: Estimate of F2.
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Write

_]:2 = |D$| TZ??B(T/)TZ) + 890 (TZnV(T/)w)
= [|Dg|, T2y B + Ty, 20V + Tz |Da| B + 12,0,V

= [|D| s T2y | D] 0 + T, 2900t + F2,
with
F? = Ty (IDa| B + 0,V (1))
+ [IDal, Tzy ) (B)¥ — | Da| ) + T, 29 (V ()Y — 0u)).
Since | D, |> = —82, it follows from identity (A.1.22) that
[[Dal s Tzn] | Dl ¥ + To, 2000t = | Dy Tz | Dl ¢ + 02(Tzy00) = 0.

It remains to estimate F2 (which is equal to —F? in view of the above cancellation). The
estimates for B(n)y and V(n)y would be insufficient to control |D,| B(n)y + 0,V (n)y. We
remedy this by using the identity 9,V (n)y = —G(n)B(n)y (see (4.1.7)) and hence

[Da| B(n)y + 02V ()¢ = [Da| B(n)y — G(n)B(n)y-
Therefore, we conclude that
~F=Fi+F +F;
— Ty (G(n) = (D) BMYG + [|Da], Tn) (B() — | Dal0
+ T, z9(V(n) — Oz)ip.

These three terms are estimated by similar arguments.

Let us estimate 72 = =T, (G(n) — |Dg|)B(n)y. Set A(n)v = (G(n) — |Dg|)B(n)p. We shall
use a corollary of the estimate (4.4.24) whose statement is recalled here

T F e,y S WClmo 1F 11 + 1ry () [l g |25 F ||

TNk —mr1.0 €10
+1p, (v + K —m+1)||F| e HZKCHH
+1g, (v + 1 =0) | Fllgvrr—m HZKCHLQ‘

By using the obvious inequalities

1, (m) [C]l 1 || 25 F)

Hv S ”C”m,o ‘F‘KJ/? ’F’K—l,y—i-l S ’F’K,y7
this yields
Tl S IClhmo Pl

T IFl s k—mt1,0 1€l —1,0
+1p, (v + K —m+ 1) || F| e HZKCHH
+1g, (v +1 =) | Fllgvrr—m+ HZKCHLQ‘
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By applying this estimate with (K, v, m,b) replaced by (k, i, s9 — 1,72), we then obtain that

2], S 120010 Ay,

+1r, (n+ k= so+2) [AMYll e |27 0]
+ |’A(77)7/1”u+k_so+2,0 ’ZW’k_Lo

+1r, (b =2+ DIAMDl gh—sgr2.0 Ms1-1 -

(4.5.34)

Now it follows from (4.5.20) that

|A(’r})’l[)|k,u S C HanmO |B(n)¢|k,u + C ||B(77)¢HM+]€—S()+N1,’)/1 |n|k7u+1 9

and (4.3.37) and (4.3.35) imply that

1
”B(T,)w”/ﬁ-k—So-l-leYl < C(”””wk—soJermH) H‘DwP wH;H—k—so—i-Nl,'yl—i-%’

1 1
B, < O s + DL bl s
Therefore

1 1
(4535) ‘A(T,)wlk“u, S C ”T,”so,(] HDI,2 w"%ﬂ"’% + CH’DI‘Q wHM‘I'k_SOJFNZfYZ ‘n’k“u—i-l .

On the other hand, it follows from (4.5.30) that

||A(77)¢Hu+k‘—so+2,0
(4.5.36) < AV s k—so-+2,00

1
< C(||77||M+k—so+2,ao+2) H77Hu+k—so+2,ao+2 H|Dﬂc|2 ¢Hu+k_so+2,go+g

where the index o appears in the first inequality because (4.5.30) is proved only for o larger
than some number oy large enough. Now, by assumption on p we have p < s —k — 1 and
by assumption on (s,syp) we have s < 2sy — 2y2. Thus, if 7, is large enough (namely for
279 > 09+ 4) we have p+ k < s < 25) — 279 < 259 — 09 — 4 and hence

”nHy,—‘,-k—So—‘rZO'o—l-Q S ”T,”SQ,O :

Thus (4.5.36) implies that
1
(4537) ||A(77)¢||u+k—so+2,0 < ¢ ||77||sg,0 H |DIE| 2 wH,LH-k-i—l—So—i-Nz,’yQ’

Setting (4.5.35) and (4.5.37) into (4.5.34), we obtain that |F2
hand side of (4.5.29).

‘k i is estimated by the right-

STEP 3: Analysis of F3.
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Write

G(n)(nB) —nG(n)B = G(n)(n |Dz| ¥) —nG ) |De| ¥ + J(n,0)(B(n) — |Dz| ),

where recall that by definition J(n,n)f = G(n)(nf) —nG(n)f. Then
G(n)(nBn)p) —nGn)Bn)y
= |Da| (1 |Dz| ¥) + ndze

+(G(n) = [Du]) (D2 ¥) —0(G(n) — |Dal) | Da
+J(n,m)(B(n) = [Da|)¢,

where we used |D,|* = —82. By replacing V()i by V(n)y — 8, + 9,1, we conclude that
F3 satisfies

F?=2(G(n) — |Dg|)(n1Da| 1) — 20(G(n) — |De|) | D] 1 + 2(02m)(V (1) — B2
+2J(n,m)(B(n) — |Dz]),

The first three terms in the right-hand side above are estimated as F2 (except that we use
Proposition 4.3.9 for estimating products instead of using (4.4.19) for estimating paraprod-
ucts).

To estimate |J(n,n)(B(n) — [Ds )¢y ,, we first use (4.5.1) to obtain that

() (B() = [Dz|)¢ 1y, < Clinllg, 0 [(B() = D)l ,
+CNB) = [De )Pl sk —sos Ny o Mgt s

The term [(B(n) — [Dz|)4|y,, is estimated by means of (4.5.31). Now notice that 79 > 3 and
w+k—s0+ Ny <s—1—59+ Nyg < sp— 3 (also, up to replacing v9 by 70 + 9, § < 1, one
can assume without loss of generality that vo ¢ N). So, we can apply (4.5.30) to estimate
1(B() = D)Vl yt—s9+Nosmo-

STEP 4: Analysis of F* for 4 < i < 6.
By definition
F' = —|Dx| Rg(B(n)v — | Dx| v, Zn) — 0xRp(Zn,V () — 0:1)).
So (4.5.29) for i = 4 follows from the estimate (4.4.7) and the estimates (4.5.30) and (4.5.31).

Similarly, (4.5.29) for i = 5 follows from the estimate (4.4.8) and the estimates (4.5.30) and
(4.5.31).

Finally, it remains to estimate F°. We estimate |D,| Try(myw+2|Dx |01 a0d Oz(TRy, ()20, 47)
separately. To fix matters we consider the first term only (the second term is estimated
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similarly). One has to take care of the fact that Rp(n)y involves one Z-derivative acting
on 7. We thus use the sharp product estimate (4.4.19) with m = u+ k — sy + 2 to obtain that
1Dl Trpyws2painlly,, < [Tromyor2iDownly s
SINRBMY + 2Dl Yl 4y k—so2.0 1Mk—1,42

+ 17l s,0 [RBMY + 2 [Da| ]y

+ [ RBM)Y + 21Dz ¢l o || 23]

+ g, (50 = 1= 2) [nllgwss [| 25 (B¢ + 2(Da ¥) | -
It follows from the definition (4.2.3) of Rp(n)1 and the definition (4.1.1) of Rg(n)y that

Rp(n) +2|Dy|tp = I+ IT+ 111
I=-2(G(n) — |Dg| )y

2 /
11 = oy (G By = (V)
1T =~ 00V (1)) — 10, (B0)) 21,

All the terms in the right hand side are quadratic and can be estimated as above; let us
mention that we do not need to use the fact that [G(n),n]B(n)¢ is a commutator (it is
sufficient to estimate G(n)(nB(n)y) and nG(n)B(n)y separately) and that

1]k —s0+2,0 is estimated by (4.5.30)

I\ g k—sor200 HII|| i g—goi20 are estimated by (4.3.37) and (4.3.15)

10 is estimated by (4.5.31)

Il o, UII|,_,, ||Z°11|,. are estimated by (4.3.35), (4.4.18), (4.3.37)

]| 100 is estimated by (2.6.12)

NI oo, IMIT||} o is estimated by (2.0.4)

HZkIHL2 is estimated by (4.3.32)

|ZF111||, is estimated by (4.4.23) with ¢ = Zn, (4.3.35), (4.3.37).
Then (4.5.29) for i = 6 follows from arguments similar to the observations made above
(4.4.23). This completes the proof. O
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Chapter 5

Energy estimates for the Z-field
system

Combining the results obtained so far, we prove in this chapter the Sobolev estimates for the
action of the Z-vector field on the solution we are looking for.

5.1 Notations

We start by recalling or fixing some notations.

We fix real numbers a¢ and v with
1

(In particular, we assume that ~ is large relatively to the fixed positive constants 5, No given
by Proposition 4.5.4). Given these two numbers, we fix three integers s, sp, s; in N such that

S
s—a28125025+7-

We also fix an integer p larger than sy. Our goal is to estimate the norm

Hsfp> )

S1

(5.1.1) MED () = Z(Hzpn(t)\

p=0

+[||Da|? ZPw(1)]

Hs—p

assuming some control of the Holder norms

11D212 % ()| oy + ()l

and
S0

N = (12200 ey + D212 2260 )

p=0
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We want to prove the following theorem.

Theorem 5.1.1. There is a constant By > 0 and for any constants By, > 0, B > 0, there
is e such that the following holds: Let T' > Ty be a number such that equation (1.2.1) with

Cauchy data satisfying (1.2.9) has a solution satisfying the reqularity properties of Proposi-
tion 1.2.1 on [Ty, T] x R and such that

i) For any t € [Ty, T[, and any € €]0,e¢],

(5.12) I1D21% 68| + 9Ol < Buoet™3.

i1) For any t € [Ty, T, any € €]0, &)
(5.1.3) NEO(t) < Boet ™2+ 5%,

Then, there is an increasing sequence (0 )o<k<s, depending only on Bl and € with §s, < 1/32
such that for any t in [Ty, T|, any € in ]0,20], any k < sy,

1
(5.1.4) M®P(t) < §B25t5k.

Remark. This is Theorem 1.2.2 except that we replaced (1.2.10) by (5.1.2), which we can
freely do replacing v by v + %

Proof of Theorem 5.1.1. We fix an integer § such that

(5.1.5) Yy —1>p>4,

where 7} is a fixed large enough positive number given by Proposition 4.5.4. Since we assumed
that ~ is large relatively to 7%, we can assume that v —4 > 3. Moreover, since s —s; > a > 7,
this yields that 8 < s — s1. Introduce the set

(5.1.6) P={(a,n) eNxN;0<n<s, 0<a<s—n-—p}.

For any (a,n) in P we set

(5.1.7) Yim = 02270 s + 1Dal2 02 27| s + |1 D212 02274 -y,
Since
. n L on L on
Z X/(Oc,n) = Z{HZ 7]‘ Hs—n + H‘DSC‘Q Z w‘ Hs—n + H’DZ"Q Z 7/" Hsfnf%}
0<n<k n=0
0<a<s—n—p
we have
(5.1.8) M® < > Y.
0<n<k
0<a<s—n—p
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We shall proceed by induction. This requires to introduce a bijective map, denoted by A,
from P to {0,1,...,#P — 1}. For (a,n) € P, we set

n—1

Aa,n) =) (s+1-8-p) +a,

p=0

with the convention that Z;zlo(s +1—38—p) =0 so that A(«,0) = a. Then we define the
following order on P:

(a/,n') < (a,n) & A(d/,n) < A, n).
So, there holds (o/,n’) < (a,n) if and only if either n’ < n or [0’ =n and &/ < af.
Given an integer K in {0,...,#P — 1} we set

Px = {(a,n) e Nx N; Ala,n) < K}.

We also set P_1 = ) and we introduce, for K in {0,...,#P},

(519) MK = Z Yv(a/7n/)’

(o ,n")EPK_1
where, by convention, Mgy = 0.

We use the forthcoming Corollary 5.2.2 that will be established in the next section. Since
assumption (5.1.3) shows that N,ESO)(t) stays uniformly bounded by 1 is € is small enough,
inequality (5.2.8) shows that

Micir() < Cie [ MED(T) + (14 Nic () M (1)

t
(5.1.10) ] ) les Micn @) de
0

L[ N ()2 M (t) dt’]

To

for some constant C. In the definition (5.2.5) of N, we shall relate v to the size ¢ of the
Cauchy data by v = /e. We shall construct inductively an increasing sequence of constants
(B2, )k and of small exponents (dx )i such that for any ¢ in [Tp, 7]

(5.1.11) M (t) < eBa e tx.

Since My = 0 by assumption, we may take By = 0, SO = 0. Assume that the estimate has
been obtained at rank K. This induction assumption, together with (5.1.3) implies that

(5.1.12) Nk (t) < e|Bso + %EK(V) ¢zt ()
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where, if € is small enough so that B/ % < %, we may take

By (v) = BLVBS
(5.1.13) 5 L, -
vk (e, v) = 5 + (1 —v)Bye” + vik.

Our choice v = /¢ implies in particular that, by (5.1.12), Nk (t) is uniformly bounded so
that (5.1.10) may be rewritten, up to a modification of C, and making use of (5.1.2),

Mici(t) < Crc [ MED(Ty) + M (1)

t !/

dt

+e? [ Mgut)—
T t

L[ N (' M (t) dt’] :

To

Using Gronwall inequality for a non decreasing function «(-) under the form

y(®) <alt)+ [ By dr = y(t) < alt) exp( B(r) dT)
To TO
we get

MK_H(t) < Cg |:Ms(sl)(To) 4+ sup MK(t,)
To<t'<t
(5.1.14)

t
+ [ N2 Mgt at' |70
To

We may take a large enough constant A so that Mgsl)(T 0) < Ae since the Cauchy data are
O(e). Using the induction assumption (5.1.11), we deduce from (5.1.14) and (5.1.12)

M1 (t) < eCret= O [A + Bz,thK
(5.1.15)

o 2
2 (BOO + %BK(V)) t2ny(€,u)+gK] )

+B27K€ =
2’}/[{(8, I/) + 5[{

Our choice v = /e implies that v (e, ) given by (5.1.13) is bounded from below by %\/E, SO
that the last coefficient in the above inequality is uniformly bounded.

We find a new constant Bs g1 > By i such that

(5.1.16) Mpga(t) < €B27K+1th+1

if we define
5K+1 = 2’7]{(8,1/) + 0K + €2CK.
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The expression (5.1.13) of vy shows that Skl = O(v/e). We have obtained the bound
(5.1.11) at rank K + 1.

To finish the proof of Theorem 5.1.1, we are left with deducing from the above estimates
inequality (5.1.4). For k < sy, we define K = A(s —k — 8, k), 0x = 0x41. Then by (5.1.8) and
(5.1.9), M® (t) < Mgk41(t). Estimate (5.1.4) thus follows from (5.1.16) if we take By larger
than 2By gy for any K < #P — 1. Notice that this constant is independent of By, Bl
if € is small enough: actually the only dependence of By k11 on By could come only from

the coefficient of 27K (EM)+3K in the right hand side of (5.1.15). But taking ¢ small enough in
function of By, we may assume that this coefficient is smaller than a power of By i. This
concludes the proof of the theorem, assuming that Corollary 5.2.2 holds. The rest of this
chapter will be devoted to the proof of that corollary (actually of the proposition that will
imply it) using a normal forms method. U

5.2 Normal form for the Z-systems

From now on, we fix K in {0,...,#P — 1} and denote by («,n) is the unique couple in P
such that A(a,n) = K. Then by the definition (5.1.9)

(521) MK+1 = Yv(oa,n) + Mk.

We keep the notations introduced in section 3.2. In particular,

! ! + T a-
" u2 _ 77l U= U2 _ (7 \/15177 ’
U | Dy|2 9 U |De|? w

where a is the Taylor coefficient given by (3.1.5).

As already mentioned in the remark made after the statement of Assumption 3.1.1, it follows
from the assumptions of Theorem 5.1.1 that, if ¢ is small enough, then the condition (1.1.17)
is satisfied uniformly in time. The other smallness conditions which appear in the previous
chapters are trivially satisfied under the only assumption (5.1.2): namely, the smallness con-
dition in Assumption 3.1.5 which insures that the Taylor coefficient is bounded from below
by 1/2 and the smallness condition that |||z is small enough which was used to justify the
identity (4.1.1) as well as its corollaries. Thus we may apply the previous results.

Proposition 5.2.1. There exists a function ® of the form

(5.2.2) =07+ D> D DY Enmsman (05 2 0)00 Z™U

0<n1+n2<n, 0<aitaz<a

where By nya,00 are bilinear operators, explicitly defined in the proof, such that the following
properties hold
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i) ® satisfies an equation of the form
(5.2.3) P+ DP®+ L(u)®+ C(u)® =T,
where L(u) and T' satisfy the following properties:

o (v,f) = L(v)f is a bilinear mapping well defined for any (v, f) in C2(R) x H?(R) with
values in HP~1(R). Moreover, for any v in C*(R), L(v) satisfies Re(L(v)f, f)ysw s = 0 for
any f € HAHL(R).

o ' is a cubic term satisfying the following property: there exists a non decreasing function
Ck such that, for any v €]0,1],

(5.2.4) 10 s < Colllullen) ul2n Yiam) + CreNa )N M,
where

1 —v v
(5.2.5) Nk = N + ;(N,ES@)I (Mx)".

it) There exists ko > 0 and a non decreasing function Ck(-) such that, if ||ul|oy < Ko then

Yiam) < 511@llgs + Cx (NE) (1 + N ) M,

(5.2.6)
1@l ;75 < 2Y(an) + Cx (NS) N M.

There exist kg > 0 and Ky > 0 such that if Np(so)(To) < Ko then
(5.2.7) 12|l 5 (To) < KoMED(Ty).

Let us deduce from the above estimates the inequality that has been used in the previous
section to prove Theorem 5.1.1.

Corollary 5.2.2. Under the assumptions of the proposition, for any K =0,...,#P —1 there
is a non-decreasing function Ck(-) such that for any v in 10,1], any t in [Ty, T],

Micia(t) < BEKoMED (Ty) + Cre (NSO (8)) (1 4 Nic () M (t)
(5.2.8) * /T Cre (NS () [[ult', [ Mica () dt’

+ / t Cr (NFO () Nk (t') 2 Mg (t') dt!

To

(setting Nog =0, Mo =0 when K =0).

Proof. By assumption Re(D® + L(u)®, ®) s, s = 0. Moreover, by Lemma A.4.6 in Ap-
pendix A.4,
Re(C(u)®, ®) o s < Colulln ) [ullen 1917 -
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We may therefore compute % |®(t, )||%15 using (5.2.3) and conclude, integrating the resulting
expression from 7y to t, that

122, ) I77s < 19 (To, )| s +/T Co([[ut’, Mg ) lutt's I 19, )] 30 dt

# I s 98,

We deduce from this inequality

(¢, s < 9T, )l + / Col [t Mo ) et Mg, 19 )]s

# [ IRl

By (5.2.4)and the bound Y, ) < Mg 41 provided by (5.2.1), we get

(5.2.9)

106 M < ColJutt' V)t 12 Mica ()

+ Ck (NK(t,))NK(t,)2MK(t,).
If follows from the inequalities (5.2.6) and from (5.2.1) that

M1 (t) <5 D(t )] o + Cre (NS (1)) (1 + N () Mk (8),
@, )| s < 2Mus1(t) + Cr (NSO () Nk (£ )Mk (¢)

for new values of Ck(-). We bound in the first inequality above || ®(t,-)|/ ;s from (5.2.9),
where we control in the right hand side ||®(¢',-)|| ys and ||I'(¢,-)|| ;5 using the estimates just
obtained. We get

Mici1(t) < 5[19(To, )l s + Cc (NS (#)) (1 + N (1)) M (2)

[ Ot ) [ M)
+ /T t Cr (NS (")) N (¢')* Mg () dt!

(using that ||u||, may be estimated from N, and changing again the value of the constants).
Combining this and (5.2.7), we get (5.2.8). O

We now have to prove Proposition 5.2.1. Let us describe the strategy of the proof. The proof
is divided into four steps. We first write the equation for 09 Z"U under the form

(5.2.10) (0 + D+ Qu) + S(u) + C(u)dsZ"U =G + F,
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where G is a cubic term, F is a quadratic term and where Q(u), S(u) and C(u) are as defined
in Section 3.2. As a preparation for the next step, we rewrite this equation under the form

(5.2.11) (O + D+ Q(u) + S*(u) + 25" () + C(u)) 0 Z2"U = ' + F,

where, again, G’ is a cubic term, F” is a quadratic term and where S%(u) and S°(u) are as
defined in (3.5.9), so that S(u) = S¥(u) 4 S°(u). The main difference between the quadratic
terms F (which appears in (5.2.10)) and F” (which appears in (5.2.11)) is that we shall show
in the second step that one can eliminate F” by a bilinear normal form which produces cubic
terms satisfying (5.2.4)—whereas eliminating F would produce a cubic term whose L2-norm
is estimated by

C(llulle)(lulles + IHullcr)? 102 20l 2 + CNK)NE M.

In the third step we follow the strategy already explained in §3.3. We shall prove that one
can add a quadratic term in the equation which compensates for the most singular quadratic
term. Eventually, in the fourth step we estimate various terms.

Proof. The proof is divided into four steps. Let us mention that, for this proof, we write
simply C(-) instead of Ck(-).

STEP 1: Equation for 0¢Z"U
Using the notations of §3.2 for the operators Q(u), S(u) and C(u), we have
oU + DU + Q(u)U + S(u)U + C(uw)U =G,
where G = (G, G?) is given by (see (3.2.9))
G' = (Id + To)F(n)Y — F(§2) (M + Tata_azv+%ag¢77
(5.2.12) +{ - TaTo,v + Ty Tp,an + [T T.]-ir T.}
alo,V V4Lo,.all Vyla 2" Dl u2 a (7,
+ |DIE| RB(|DIE| ¢7 Toﬂ?) + 8$RB(8$71Z)7 Tan)v
and
1
R(B, B) = 5 Re(|Da| ¥, D))
171 1
~ Dol (3R(V.V) = 5 Rs(0:0),01v) )

5.2.13 1
( ) +|D. |2 (TvTo,n — Tvo,n) B + (Tve,B — TvTs,B)n)

4 |Dy|2 Ty Rp(B, 8,1) — |Du|2 Ry(B, V)

1
+ |Dﬂc|2 (TaTa - Ta2)777
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where we still denote by « the coefficient y/a — 1 where a is the Taylor coefficient.
To compute the equations satisfied by Z"U we use two calculus results. Firstly,
(5.2.14) 20y =072 -0, ZD=DZ—-D,

and secondly, given A(v) = OpP[v!, A'] + OpP[v?, A2] for some matrix-valued symbol A', A2
in some class S, we have (see (3.4.13))

ZAW)f = AW Zf + A(Zv)f + A (v)f

where A'(v)f = OpB[v', A" f + OpBv?, A'?] with A" = —2¢ . VeA” for 1 = 1,2. Notice
that A/’l, A2 belong to S,"7 if Al A? belongs to S,"”.

In particular it follows from (3.6.3) that
ZQu) = Q(Zu) + Q(u)Z + Q'(u) where Q'(u) = Op®[u,Q'], Q' € Sll}%.

Similarly, ZS(u) = S(Zu) + S(u)Z + S'(u) where S'(u) = Op®[u, R'] with R’ = —2¢ - V(R
where R (resp. R’) is given by (5.2.35) below with £ =0 (resp. £ = 1).

Consequently, by induction on n € N, we have
(5.2.15) oZ"U+DZ"U + Q(u)Z"U + S(u)Z"U 4+ C(u) Z"U = Gy + F(n),
where F{;,y (resp. G(y)) is a quadratic (resp. cubic) term defined by induction:

Gy = 2Gm-1) + Gu-1)
+ C(u)Z"U — ZC(u)Z2" U — C(u) 2™ U,
(5.2.16) Fly = ZF 1)+ Fuo1y — Q(Zu) 2" 'U
—Qu)Z" U - Q'(w)Zz" U
— S(Zuw)Z" U - S(w)Z" U — S'(u) 2™,

with, by definition, G(g) = G and F{g) = 0.

Observe that one can write F{,) under the form

F(n) = Z m(Z)Q("3) (Z"lu)Z"ZU + Z m(z)s(ng) (anu)anU
i€l(n) I(n)

where m(i) € N and where we used the following notations :
I(n)={i=(n,n2,n3) EN*;ny+ny+ng<nandny<n},
and Q") and S("3) are defined by
Q") (v) = Op°lo’, QU] + OpB[u?, Q)2],
509 (6) = OpBfu?, RO 4 OpB[o?, B2,
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where for A= Q or A= R, and for k = 1,2, A"3)* is defined by induction:

A(O),k _ Ak, A(a—l—l),k _ _25 . ng(a),k‘

Applying 9% to (5.2.15) we conclude that
(5.2.17) (O + D+ Q(u) + S(u) + C(u) 0 Z"U =G + F,
where F (resp. G) is a quadratic (resp. cubic) term defined by

G = 0;G(n) +C(u)0; Z2"U — 95C(u) Z"U,
(5.2.18) F =07 Fny + Q(u)03 Z"U — 03 Q(u) Z"U
+ S(w)oyZ"U — 038 (u)Z"U.

Observe that one can write F under the form

F=> m()Q")(93 2" u)ag> 2" U
jeJ
(5.2.19)
+> m(5)S") (09 ZMu)0g2 2" U
jedJ

where m(j) € N and J is the set of those (ay, a2, n1,n2,n3) € N such that
(5.2.20) al+as=a, n1+ny+nz3<n, ag+ng <a+n.
There are two terms in the right hand side of (5.2.19) which involve 0¢Z"u. Namely, when
(a1, a9,n1,n2,n3) = (0, 0,7n,0,0) we have
Q)91 ZM )02 Z™U = Q9% Z" u)U,
Sa)(9o1 zm4)9%2 2™ U = S(0% Z™u)U.

We shall see that one cannot eliminate these quadratic terms by the same method. So we
need to transform further the equation.

Notice that if j = (a1, a2,n1,n2,n3) = (@,0,n,0,0) then the coefficient m(j) in (5.2.19) is
equal to —1. Thus we may rewrite the equation (5.2.17) as

(5.2.21) (0 + D+ Q(u) + S(u) + C(u) 83 Z"U + S(0 Z"u)U = G + F/,
where
= m(5) QU (9 2" )9 Z"U
jeJ
+ > m(§) S (901 2 )05 22U
jed’
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where m(j) € N and
(5.2.22) J ={(a1,2,n1,n9,n3) € J; 01 +n1 <a+n}.
Eventually, we split S(u) as S(u) = S%(u)+5” (1) where these operators are defined by (3.5.9).
Since S°(v)f = S°(f)v, we have
S(w)d2Z"U + S(80Z™Mu)U = S*(u)d>Z"U + SH(0S Z™u)U
+ 8°(w)d2 Z™U + S°(U)d2 Z"u.
Now we write the second and last terms in the right hand side above as
SHACZ MU = SH 02 Z"U)u + (SHASZ™u)U — S*(93Z™U)u),
S (U)32Z"u = S (u)d2 Z"U + (S* (V)92 Z"u — S (u)d> Z"U),
to obtain that
(5.2.23) (0 + D + Q(u) + S*(u) + 25" (u) + C(u)) 03 Z"U =G + F"
where
G =G — (SH02Z™u)U — S*(03Z™U)u)

(5.2.24) — (S Z"Mu — S (w)dg 2,
F''=F — S402Z2"U)u.

Hereafter, we use the notation

(5.2.25) N(u) = Q(u) + S*(u) + 25" (u) + C(u).
Then (5.2.23) reads

(5.2.26) (O +D+N(w)oez"U =g +F"
For further references, let us prove that, for any u € R,

(5.2.27) ||N(U)||L(Hu+1,Hu) < Cllullgr) lull g -

Indeed, directly from the definition (3.2.7) (resp. (3.2.6)) for Q(u) (resp. C'(u)), and using the
rule (A.1.5), the estimates (3.1.4) for ||V'||0 and (3.1.20) for ||a||0, we check that

1(Q(u) + C(u))wl g < K |Jull gr [l ot

provided that 7 is large enough. On the other hand, directly from the definition (3.5.9) of
S%(u) and S”(u), it follows from (A.1.17) that, for any p ¢ 4N and any p € R such that
p+p>1,

(5.2.28) (% () + 28" (W)w|| yusp < K llull e Jw]]

HM+% .
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This proves (5.2.27). Similarly, for any positive real number p with p ¢ %N , we have

(5.2.29) [N (W)l z(cot1,c0) < Cllluller) lulley -
STEP 2: First normal form

We next seek a nonlinear change of unknown which removes the quadratic term F” in the
right-hand side of (5.2.26). To do so, we shall prove that for any ¢ € N there exist bilinear
transforms (v, f) — Py(v)f and (v, f) — Re(v)f such that

DPy(v)[ = Po(Dv)f + Pe(v)Df + Q) (v)f,

DRy(v)f = Re(Dv)f + Re(v)Df + 59 (v)f.

We begin by studying the operators Q) (v)f and 5E ( )f. For further references, we state
the following lemma.

Lemma 5.2.3. Let { € N. For all p € R and all p € [4,+00] there exists a constant K such
that

(5.2.30) QW) yus < K lvll o 11 g0
(5.2.31) 1QV W)l o2 < K MVl g2 £l o
(5.2.32) 1SO@) | s < K 0l 1
(5.2.33) 1S W) |l oz < K lvllg2 [l »

whenever these terms are well-defined.

Proof. For £ = 0 we have Q) (v)f = Q(v)f and the estimates (5.2.30)-(5.2.31) follow from
the definition of Q(v)f (see (3.2.7)), the usual estimates for paraproducts (see (A.1.12) and
(A.1.20)) and the Holder estimates (A.2.3) and (A.2.4) proved in Appendix A.2.

l
For ¢ > 0, introduce ) = (1 + gf : Vg) 0 where 6 is given by Definition A.1.2. We claim
that Q) (v) = Op”® [v!, Q1] + Op® [v2, Q1Y?] with

O3 — (—3yrL 16,100 g, U !Sz!é) 7
Q (—3) 5 €110 (€1, 62) <_ PRI I
(5.2.34)

-&H -1 0
(6,2 29 s 2 1 1] .
QW2 = (=3)’¢ 61|72 0 (£1, &) ( 0 e ralte ’52‘_2>

For ¢ = 0 this is true by definition of the symbols Q! and Q? as defined in (3.6.3). For ¢ > 0
this is proved by induction, since QUTDF = —2¢ 'VgQ(Z)vk for k = 1,2. It follows from (5.2.34)
that Q) (v) is a paradifferential operator of exactly the same form as Q(v), except that the
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cut-off function 6 is replaced with (). Since ) is an admissible cut-off function (satisfying
similar assumptions to those imposed on 6, see Remark A.1.4), then Q(g)(v) f satisfies the
same estimates as Q(v)f does. This proves (5.2.30)—(5.2.31).

The estimates (5.2.32)—(5.2.33)are proved by using similar arguments. Indeed, it follows from
(3.5.18), (3.5.9), and (3.5.30) that

m{)? = (=3)/CO (&1, &) 16172 (16 + & 6] — (&1 + &)&)
m)? = (=3 Oen a5 16+ &l (6ol + 6162) el fal )

with ¢ = (1 n gg : vgyg where C(€1,&) = 1—0(€1, &) —0(&, £1). Notice that ¢O (&1, &) =

1— 00, &) — 00 (&, &). Since 81U is an admissible cut-off function, we are in position to
apply the usual estimates for the remainders (see (A.1.17)). O

Next we notice that, for any ¢ € N, it follows from Proposition 3.5.1 and the structure of Q®)
given in (5.2.34) that there exists a pair of matrix-valued symbols P, = (P}, P?) € SS’O X SS’O
such that, for all v = (v!,v?) € C? N L?(R) (with p large enough)

(5.2.36) Py(v) = OpB[vt, P}] + OpP[v?, P}
satisfies
(5.2.37) DPy(v) = Py(Dv) + Py(v)D + QY (v).

We gather the properties satisfied by Py(v) in the next lemma.
Lemma 5.2.4. Let / € N.

i) Let p be a given real number. There exists K > 0 such that, for any scalar function
w € C%(R), any v = (v',v?) € C° N LA(R) and any f = (f', f?) € H*(R), any v €]0,1],

1 -V v
(5:2.38) |Tola, Pe)] Flign < K wlen {Iolles + 5 IoIE" ol f 11

where I, = (}9).

ii) Let p be a given real number. There exists K > 0 such that, for any v = (v',v?) in
C*N L2R) and any f = (f', f?) in H*(R), any v €]0,1],

(5239 1Pe@) s < B {ollon + = Noll? Nl 17
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iii) Let p € [3/2,4+oc[. There exists K > 0 such that, for any v = (v!,v?) in L?(R) and any
f=(f' 1) in CP(R),

(5.2.40) [Pe) oz < Kl fllge [0l -

Proof. We recall that Py(v) is given by (5.2.36) where P} and P? belong to Sé’o. It follows
from Lemma 3.4.6 that P,(v) is a paradifferential operator of order 1, modulo a smoothing
operator, whose symbol has semi-norms estimated by means of statement ¢) in Lemma 3.4.5.
The assertions in statements i) and i) thus follow from Theorem A.1.7. We shall give another
proof of these results which will also prove statement 7).

Let us introduce a class of symbols. Given (j1,j2,73) € R3, one denotes by Sy(j1, je,j3) the
class of scalar symbols m(¢1, &2), C* for (&1, &2) in (R\{0}) x R which are linear combinations
of symbols of the form

p1(E1)pa(E2)p3 (€1 + &2)00 (€1, &)

2 )4 .
with 6 = (1 + §§ . Vg) 6 where 6 is given by Definition A.1.2, and p,(A\) = M7p,(§) for
all 7 € {1,2,3}, all A > 0 and all £ # 0.

Given two functions a = a(z) and b = b(z), one denotes by Té”b the paraproduct given by
replacing the cut-off function # by #) in the definition (A.1.3) of T,b. If m € S¢(j1,j2,j3)

then
1

(27)?

/6”@”52)6(61)771(517 E2)b(E2) dEy dEz = pg(Dx)Tlgf)(Dz)apz(Dx)b.
By virtue of the support properties of (), we have

l ~ Y4 ~
p3(Da) T 2(Da) f = 3(Da) T |y P2(Da)

where p2(€) and p3(§) vanish on a neighborhood of £ = 0 and are equal to ps(§) and p3(§),
respectively, for |£| large enough. Consequently, it follows from (A.1.20) that, to prove state-
ment iii) of the lemma, it is sufficient to prove that the matrices P} = (afj’-l)lgi,jgg and

Pg = (af]’-2)1gi,j§2 are such that, for all (i,, k) € {1,2}3, the coefficient afj’-k belongs to some
class Sy(j1, j2, 73) with j1 > 0 and jo+j3 < 1 (the values of j1, jo, j3 might depend on (3, j, k)).

Consider the symbols Q)1 and Q¥)? as defined in (5.2.34). They are of the form

o 0 mbl "o mi2 0
QY =< 1 012), QY =< ) m)
Moy Mog

where, for any (4,7, k) € {1,2}3,

L R . .. 3
(5.2.41) mi* € Sy(j1,j2. js)  with j; > 30 7220, 5320, jitjati=g
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0k
ij
determined explicitly in the proof of Proposition 3.5.1: We have a%l =aly=a}y =a3, =0

Zk).

Below we write simply mf] (resp. afj) instead of m;;" (resp. a The symbols afj are

and
1 9 9 1 o
a3 = 5( 1+ &2my — [€1]2 myy + €22 m22)
2 1 1 1 1 1
+5 €117 €212 (|61 + &ol2miy + |€1]2 m3y — |€2]2 myy),
1) 1 1 1
azy = 5(|§1 + &|2miy + |&1]2 m3y — &2 m%l)
(5.2.42) 2 1 1
+ = |§1|2 3k (161 + &) 2m3y — |&1]2 mby + |&2]2 my),
1
ajy = 7(’51’“‘22 + ’52’26521 + m22)
61 + &2
1 1 1
aj; = 71(\51’”%1 + €| 2ag, — m%l)
SRR
Recall also that
£1&2 >0 = 0=0 and D = —41&||&],

§16&2 < 0and [§1| < |&2 = 6=-2(&| and D= —4[&][& + &

Denote by 14 the indicator function of the set A. Then

1) 1
) — Ry 1(9)
D9 1{5152<0}2‘§1+§2‘9 )
1 1
216112 [&2]2 11 1 6|2
) = {@16>00 1 T g e<0) 6.
D R E (e ez 'f+f2')
Since
1 1 . . 1 1. .
1{51§2>0} = B + ) sign(&1) sign(&2), 1{5152<0} = 9 §s1gn(§1)s1gn(§2),

and since sign is homogeneous of order 0, it follows that

9“ € Sy(—1/2,-1/2,0) + S¢(—1/2,1/2,-1).

Consequently, it follows from (5.2.41) and (5.2.42) that afj is a sum of terms which belong
to classes S¢(j1,J2,73) with j1 + jo + j3 = 3/2 —1/2 = 1 and j; > 0. This concludes the
proof. O

Lemma 5.2.5. For any £ € N there exist two matriz-valued symbols R%,R% mn SR(?;’/O2 such

that, for all v € C* N L?(R)
Re(v) = Op®[o!, Ry] + Op®[v?, RY]
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satisfies
(5.2.43) DRy(v) = Re(Dv) + Ry(v)D + SO (v),
and such that the following estimates hold.

i) For all (u,p) € R xRy such that p+p > 1 and p & %N, there exists a positive constant K
such that, for any v = (vi,v?) € C? N L3(R) and any f = (f1, f?) € H*(R),

(5.2.44) [Re@) || uso1 < Ellvlco + IH0llco) 1] g -

i1) For all (u,p) € R x Ry such that w+p > 1 and p & %N, there exists a positive constant
K such that, for any v = (v',v?) € HM(R) and any f = (f', f?) € C*(R) N L*(R),
(5.2.45) [Re() f| g < K (F o + I1HF o) 10l g7

Remark. We shall use later that (see (A.2.6)) for any p ¢ N, there exists K > 0 and for any
v>0,any veCPnL?

1, -
(5.2.46) I#ollcr < K | Ivllcn + 5 IollE" o7z ).

Proof. For £ =0 we have S (v)f = S(v)f and hence Ro(v)f = E(v)f+ E°(v) f with the op-
erators given by Proposition 3.5.2. The asserted estimates thus follow from Proposition 3.5.2.

For ¢ > 0, we have seen in (5.2.35) that the symbols of S (v) are obtained from the symbols
of S(v) by replacing 6 with #) (and multiplying by (—3)*). Therefore, R} and R? are deduced
from R} := R®' + R*! and R? := R%? + R"? (which are given by (3.5.19) and (3.5.31)) by
the same modifications. Since () is an admissible cut-off function (see Remark A.1.4), this
shows that Ry(v)f satisfies the same estimates as Ro(v)f does. O

We shall use also the operator E*(v) introduced in Proposition 3.5.2. satisfying

(5.2.47) E*(Dv) + E*(v)D — DE*(v) = S*(v)
and
(5.2.48) |E* ) f]| o < KN Fll o 0] g -

for any (u,p) € R x Ry such that u+p > 1 and p ¢ %N.

Then (5.2.37), (5.2.43), and (5.2.47) imply that
8t+D (Zm ng 8“12”1 )O?ZZMU)
+ (0 + D) (Zm Ry (001 2™y )8?2ZH2U>
+ (& + D) (B0 2")U) = F' + R
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where F” is as given by (5.2.24) and

R: Z M) Pry (8 + D)OS Z™u) 092 2™ U
+ Z M(§) Pag (091 Z™) ((8; + D)2 272U )
(5.2.49) + Z m(j ((0y + D)0 Z™ ) 922 Z™2U
+ Z M(§)Rony (801 Z™1w) ((8; + D)O22 Z™2U)

- Eﬁ((at + D)% Z"u)U + E*(0% Z™u)(0,U + DU).

This implies that

®:=9°7"U — Z M(§) Prg (001 ZM0) 002 272U
(5.2.50) - Zm Ry (091 Z™ )02 272U

- Eﬁ(agznu)U

satisfies
0® + D® = 9,00 Z"U + DOSZ"U — F" — R.

Therefore, (5.2.26) implies that
(5.2.51) (O + D+ N(u))® =T,
where N (u) is given by (5.2.25) and

(5.2.52) T=G —R+ N (®-922"U).

We shall estimate I in the last step of the proof. This is the most technical part of the proof.
STEP 3: Second normal form

We start with the following result, which is analogous to Lemma 3.6.2.

Lemma 5.2.6. There exist Aé,A% n S?’l/z such that, for all v € C® N L*(R) the operator
E4,(v) = OpBvt, Aj] 4+ OpB[v?, A3] satisfies

(5.2.53) DE4,(v) = Eay(Dv) + E4,(v)D + B(v),
where the operator B(v) satisfies B(v) = B(v)* and
(5.2.54) Re(Q()f = B)f, f)aoxms =0
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for any f € HPYY(R)?2, and such that the following properties hold.

i) Let p be a given real number. There exists K > 0 such that, for any scalar function
w € C*(R), any v = (v',0?) € C3N L2(R) and any f = (f1, ) € H*(R),

(5.2.55) I[Tw T, Eag ()] fll s < K |Jwll e [[ollcs | f [z »
where I = (§9).

ii) Let p be a given real number. There exists K > 0 such that, for any v = (v',v?) €
C3 A L(R) and any f = (', f2) € H(R),

(5.2.56) [ Eao () f || g < K [0l 11F ] e

Proof. This is Lemma 3.6.2 applied with s replaced by /. O

Consider now the operator Eg(v) and E%(v) as given by Proposition 3.5.3. It follows from
this proposition that

E%(Dv) + E5(v)D — DE}(v) = &(v),
(5.2.57) X . i .
Ej(Dv) + E(v)D — DEj(v) = & (v),
where &% and &” are such that
(5.2.58) Re(S*(v) f — & (v)f, f) o xrs = O,
(5.2.59) Re(S”(v)f = &"(v)f, f)yoxrs = O,

for any f € HP(R)?, and satisfies

HGﬁ(U)HL(Hu7Hu+p71) S K HUHCP7
(5.2.60) )

HG (U)HL(H;gHuvafl) < K HUHCP .
Moreover, for all (u,p) € R x Ry such that p+p > 1 and p ¢ %N , there exists a positive
constant K such that

(5.2.61)

Set
E(v) = Ea,(v) — Ef(v) — 2B (v).

Then (5.2.53) and (5.2.57) imply that
(5.2.62) DE(v) — E(Dv) — E(v)D = B(v) + &*(v) + 26° (v).
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Moreover (5.2.56) and (5.2.61) imply that

(5.2.63) HE(U)HL(H;L,H;L) < K vflgs -
Now set
(5.2.64) & =d+ E(u)ddZ"U.

It follows from (5.2.62) that
(8 + D)® = (9, + D)®
(5.2.65) + E(Oyu+ Du)ds Z"U + E(u)(0, + D)0s Z™"U
+ (B(u) + &*(u) + 26’ (u)) 92 Z"U.
Recall that ® satisfies
(8, + D)® = —N(u)® +T.
Now write ® = & — E (w)0$Z™U in the right hand side of the above identity and set the result
into (5.2.65), to obtain that
(8 + D)® = —N(u)® +T
+ N(uw)E(u)0y Z"U
(5.2.66)
+ E(Oyu + Du)0y Z"U + E(u)(0; + D)0g Z"U
+ (B(u) + &*(u) + 26°(u)) 92 Z"U.

Eventually we use (5.2.26) to substitute (0; + D)90¢Z"U, which appears in the fifth term of
the right hand side of (5.2.66), by

(0 + D)0 Z"U = —N(u)05Z2"U + G + F',

and we write 02 Z"U = ® + (99Z"U — ®) in the last term of the right hand side of (5.2.66).
By so doing it is found that

(5.2.67) 8% + D® + L(u)® + C(u)® =T,
where

(5.2.68) L(u) := Q(u) + S*(u) + 25 (u) — (B(u) + &*(u) + 2&°(u)),
and where

(5.2.69) I=T+1)+(2)+(3)+ (4)



with

(1) = N(u)E(u)03 Z"U — E(u)N (u)d¢ Z"U,
(2) = E(Oyu+ D)0y Z"U,

(3) = E(u)G' + E(u)F",

(4) = (B(u) + &*(u) + 28" (u)) (93 2"U — ®).

It follows from (5.2.54), (5.2.58), and (5.2.59) that the operator L(v) defined by (5.2.68)
satisfies Re(L(v)f, f) gsx s = 0 for any f in HPH1(R). Consequently, to complete the proof
of the proposition, it remains only to prove the estimates (5.2.4) and (5.2.6)—(5.2.7).

STEP 4: Proof of the estimates (5.2.4) and (5.2.6)—(5.2.7)

We begin by estimating the term (1) which appears in (5.2.69).
Lemma 5.2.7. There holds

(D)l s < Cllwllen) 1ullEn 105270 s
Remark. We shall later estimate |05 Z"U|| ;s in terms of Y, ) and M.
Proof. This is proved by means of the arguments used in the proof of Proposition 3.6.4. For
the sake of clarity we recall the proof.
Recall from (5.2.63) that || E(u)| z(yys gsy < Cl|ull o Also, directly from the definition (3.5.9)
of S¥(u) and S°(u) we have
b
Hsﬁ(u)HL(Hl{Hﬁ) + HS (U)HE(HBJ{[?) é O HUHC“/ .

Therefore
(5% (u) + 28° (W) E@)| g5 70y < C lulln

and similarly
HE(U) (Sﬁ(u) + 2Sb(u)) HL(HB,HB) <C Hu”é’y .

It remains to estimate the operator norm of the commutator [A(u), E(u)] where we recall that
A(u) = Q(u) + C(u) where Q(u) (resp. C(u)) is given by (3.2.7) (resp. (3.2.6)). We claim
that

(5.2.70) I[A@), E@)]]| 25 gy < C llulls -

By definition E(u) = E4,(u) + Er(u) with Er(u) = —Eé(v) — 2E%(v). To prove (5.2.70), we
first observe that,

HA(U)HE(H»’J’,Hﬁfl) < Clulley ||ER(U)||£(H/J‘7H/J‘+1) S lulles s
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where C' depends only on [[ul|,. This implies that ||Er(w)A(u)llzgs gsy < C ||u\|2w Sim-

ilarly, one has [|A(w)Er(u)llzys pey < CHuH?‘/W This obviously implies (5.2.70). Thus it
remains only to prove that

(5.2.71) 1A, Eag )]l 115y < C l1ulln

This we now prove by using the commutator estimate (5.2.55) together with the following
remark. Introduce

A(u) = A(u) — Ty 9, — ToD.

Directly from the definition of A(u) (recalling again that A(u) = Q(u) + C(u) where Q(u)
(resp. C(u)) is given by (3.2.7) (resp. (3.2.6))), one can check that A(u) is of order 0 and
satisfies

(5:2.72) A )< Clullos

)HL(HB,Hﬂ

for some constant C' depending only on ||u||,. By combining this estimate with (5.2.56) we
get

B0 (@) AW pgr5 g1y + A Bag ()| £ g5 g8y < C lullZr

which obviously implies that || [Z(u),EAO (w)] HL(HB ey < ClullZ. So to prove (5.2.71) it
remains only to estimate the commutators of F4,(u) with Ty 0, and T, D.

Since Ty 0, = Ty (¢) is a paradifferential operator with a scalar symbol and since the C Lnorm
of V' is estimated by C'||u|| - for some constant C' depending only on [jul|- (see (3.1.4)), it
follows from statement i) in Lemma 5.2.6 that

H [TVawaAo (’LL)] Hﬁ(Hﬂ,Hﬂ) <C HUH%W )

for some constant C' depending only on ||ul|o,. To estimate [T,D, Ea,(u)], use instead the
equation (3.6.6) satisfied by Ey4, to obtain:

TuDEa, (U = Ty <EAO (W)DU + Ea,(Du)U + B(u)U).
Notice that
(5.2.73) ||B(U)||L(H6,H6) < Cllulley -

Indeed, B(u) = Op®u!, BY] + Op®[u?, B?] where B! and B? are given by (3.6.4) and (3.6.5)
with s replaced by ; so assertion (i7) in Lemma 3.4.5, Lemma 3.4.6 and (A.1.5) imply the
wanted estimate. Also, (5.2.56) implies that [[Ea,(Du)zys ey < C |ullcy. Consequently,
since [|orf| o1 < C'lulloy (see (3.1.20)) we have [Tl zgs oy < C llullcy and hence

| TaEao(Du)ll zogs,mey + 1 TaBW)l oo goy < C lull
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for some constant C' depending only on [|u||~,. Moreover, since « is a scalar function, it follows
from the above mentioned estimate ||| -1 < C'||lul/o, and statement ¢) in Lemma 5.2.6 that

I[Ta, Eao (W) Dl £ggrs, sy < C lull&n

for some constant C' depending only on |lu||-. This proves (5.2.71) and hence completes the
proof of the lemma. O

Lemma 5.2.8. There holds

12 e < Clllulles) l1ull 105 27U s

13)lis < Clullem) Nl {16 1o+ 17170}

Proof. This follows from the estimates (5.2.63) and (3.6.14). O
Lemma 5.2.9. i) For any (o/,n’) such that o/ +n’ < sy, there holds

652" (Va = 1) o < C(NE) N,

it) If (o, ') < (a,n) then
o' 2" (v~ 1) < V) M.
iii) There holds
1052 (Va—1)| ;2 < Cllullgr) Yiam + C(NF) M.

Remark. Here we use the assumption 5 > 2.

Proof. Recall that the Taylor coefficient a can be written under the form (see (A.3.9) in
Appendix A.3):

1 _ 1 2 1 2 _
o=17 @)’ <1 +Vo,B — BO,V 2G(?])V 2G(?])B G(n)n) ,

where we used the abbreviated notations B = B(n)y and V = V(n)y. The assertion in state-
ment i), which is equivalent to saying that ||\/a — 1| , is estimated by c(N ,ESO))N ,ESO), then
immediately follows from the estimates (4.3.15), (4.3.16) and from Proposition 4.3.11. The
assertions in statements 4i) and ¢ii) follow from the product rule (4.4.21), Proposition 4.3.11
and Proposition 4.3.9. ]

Below we freely use the following lemma.
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Lemma 5.2.10. Recall that we fized (a,n) and K such that A(a,n) = K and recall that M
is defined by (5.1.9). There holds

(5.2.74) 105 2" ull o1 S Yiam) + Mk,

(5.2.75) 105 2" U | s < C(l[ullor) Yiam) + C(NS) M.
If (¢/,n') < (a,n) then

(5.2.76) |05 2" ul| 5y S M,

(5.2.77) 109 27U || s < C(NF) M.

For any (o/,n') such that o/ +n' < sy, there holds

(5.2.78) 10 27U || pys < C(NED) N0,

Proof. The estimates (5.2.74) and (5.2.76) follow directly from the definitions of Y{, ) and
M, and the fact that [Z, ]Dx\%] =— ]Dx]%

For further references, we shall prove (5.2.77) and the following estimate

o 7N Q71 n
0;2"U — 0,2 <D %w> < Clllulley) llull g Yiam)

(5.2.79)
+ C’(NP(SO))NP(SO)MK,

which immediately implies (5.2.75). We shall see that the estimates (5.2.79) and (5.2.77)
follow from the definition of U. Indeed,

U= nl + T\/E_ln .
|D;|2 w 0

So, to prove (5.2.79) it is sufficient to estimate the H”-norm of 9% 2" (T\/a—177)- To do so,
we write H@g‘Z"(Tﬁ_ln)HHﬂ
(K,v,m,b) replaced by (n,a + ,s9,7), which gives (bounding all the indicator functions
by 1)

< ‘T\/E—ln‘n,a—l—ﬁ and use the estimate (4.4.24) applied with

Tyan] S IVE= U s apsin + Va1 270 s

+ 171l 0t p—so+1,0 ‘\/5 - 1‘n—1,0

+nlles [| 27 (Va = 1) 12
+ [11ll cots-so1 || 27" (va — 1)HL2’

Since a + 8+ n < s <25y — 1, we can use the inequality

1l ga+sn-sorr < Ml at8-so11,0 < 1llsp0
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in the third and last terms of the right hand side. On the other hand, since (o 4+ 1,n — 1) <
(a,n) for n > 1 and since |n],,_; 4, 5,1 = 0 by convention for n = 0, we have

‘n’n—l,a+ﬂ+1 < Mg

Also, one has HZ”nHHWB < Y(an) + Mk. The wanted estimate (5.2.79) thus follows from

statements i), 4i), and 4i7) in Lemma 5.2.9. The proof of (5.2.77) is similar: we estimate
X' 7 (T\/a—ﬂ]) by means of the estimate (4.4.5) and statements ¢) and i) in Lemma 5.2.9.

Let us prove (5.2.78). We shall prove a stronger result. Namely, we prove that

2
(5.2.80) U — uHSO,B—i-S < C(Np(so)) (Np(so)) )

We shall use the estimate (4.4.16) whose statement is recalled here
(5.2.81) 1T E N, 5 S ISl I1E ] -

We decompose U as

T
(5.2.82) U=u+ | V57 ).
- ’Dx’2 TBTI

So, to prove (5.2.80), it is sufficient to prove that

2
(5.2.83) VC S {\/a — 17 B}, HTC77||SO7B+3+% < C(N[ESO)) (Np(so)) )

This in turn follows from (5.2.81) and the estimate for B (resp. y/a — 1) given by Proposi-
tion 4.3.11 (resp. Lemma 5.2.9 7)). O

Remark. We also have the following estimate, analogous to (5.2.79)

Qrzn, _ aarzn n
02" — 072 <|Dm|;w) < C(llullen) lluller Yiam

HP%

(5.2.84)

+ C(N[ESO))N[ESO)MK,

0
The proof is similar to the proof of (5.2.79), using that u = 771 + 1 .
|Dz|2 w |Dz|2 Ten

We next estimate the source terms F” and G’ given by (5.2.24).

Lemma 5.2.11. There holds

H]://HHﬁ < C(llullgr) lull Yian + C’(Np(so))NKMK.
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Proof. By definition, one can write 7 under the form

F'=> m(j)Q") (93" Z2Mu)032 22U

jeJ’

+3° m(5)s") (05 Zmu)dg 2 U
jed’

— Q% Z™u)U — S*(0%Z™u)U,
where m(j) € N and
J' = {(oa,a2,n1,n2,n3) € J; a1 +n1 <a+n}.

Below we freely use the fact that, by definition of J (see (5.2.20)), if (a1, ag,n1,n2,n3) is in
J then as +n9 < a + n.

Let us split J' into two parts: set J' = Jj U Jj where
/ . / 1
Ji =147 =(a,02,m1,m2,m3) € Sy an+m < glatn) o,

(5.2.85) )
Jy = {j = (o1, 02,m1,n9,n3) € J'; o1 + 1y > 5(044‘”) }

We begin by estimating
> mHQU (0 2 w)ag 2" 4y ml)S (@ 2 w)9g 2.

jed] JeJ]

If j belongs to J; and A denotes Q) (resp. S(3)) then we use (5.2.30) (resp. (5.2.32)) to
obtain
[A07 2" u)072 272U || ys < K (|07 2™ ul| a 1032 22U || s -

If j € J| and (ag2,n2) # (o — 1,n) then one uses (5.2.77) to find that
1022 272U [ ysn <1052 2™2U | go + 05271 272U 5 < C(NF) M,

where we used the fact that if j € J| C J then (ag,n2) < (a,n) and ay < «, so that the
assumption that (e, ng2) # (o — 1,n) implies that (a2 + 1,n) < (o, n). On the other hand

1094 Z™M | s < Np(SO)’
since a1 +n1 +4 < %(a +n)+4< 5 +4 < sp by assumption on sp.

If j € J| and (a2,n2) = (o — 1,n) then (aq,n1) = (1,0) so |09 Z™u|| 2 < |Julloy. On the
other hand, (5.2.75) and (5.2.77) imply that

1092 Z™2U|| gosr < |03 Z"U || ys + Hag_lZnUHHﬁ
< C([lull ) Yiam + C (NS M.
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We now estimate

> m(HQUIN(O 2 u)ag2 2™ + Yy m(5) ST (93 2 )92 2.

jed} Jj€Js

If j belongs to J; and A denotes either Q™) or S() then we use (5.2.31) or (5.2.33) to
obtain
107 2™ u)0y2 2" U gs < K (|07 2™ ul| 2 |052 272U || s -

For any j € J), C J we have a; +n1 < a+n and oy < «, ny < n so that (a1,n1) < (a,n).
Since 5 > 1/2, (5.2.76) implies that

1071 2" ull g2 <1071 2wl ooy < Mk

Since ag + ng < %(a +n) < s for j € Jb, (5.2.78) implies that

(5.2.86) 1052 272U | o < C(NSO) N,

It remains to estimate Q(9%Z"u)U and S*(02Z™u)U. Using (5.2.31), we find that
QS Z"u)U || s < 1|05 Z7ul| 1 1Tl g -

It follows from (5.2.74) and the assumption 8 > 1/2 that H@?Z"uHLQ S Yan + Mk. On
the other hand, we claim that

(5.2.87) [Ulles+s < Cllluller) ulle -
For further references, we shall prove a stronger estimate:
(5.2.88) U = ullgars < Cllulley) ullgn -

To prove this claim, recall that

T
(5.2.89) U=u+t | V507 ).
- ’Dx’2 TBTI

So to prove (5.2.87) it is enough to prove that

(5.2.90) 1T o 1nllgses + [1Del? Tonll goes < Cllullen) e

It follows from (A.1.13) that HT\/E—177H05+3 S Ve = 1| oo |7l cp+s- Similarly, for any r >
1/2, it follows from (A.2.4) and (A.1.13) that

H|D:v|% TB77H06+3 S HTB77H06+3+7- = HBHLOO ||77HCB+3+T-

So (5.2.90) follows from the assumption v > 5+ 4 and the estimate (see (3.1.20) and (3.1.4))

1Va =1 g + 1Bl < Clllullgn) s -

This completes the proof of (5.2.87).

The estimate for S*(02 Z™u)U is similar. O
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Lemma 5.2.12. There holds
(5.2.91) 16/ g5 < Cllullon) {1lEe Yiomy + NEMc } -

Proof. Tt follows from (5.2.24) that
G' =G — (SH02Z™u)(U — u) + S*(03Z™(u — U))u)

(5.2.92)
— (S (U =)o Z"u+ S”(w)03Z™ (u — U)).

To estimate the last two terms in the right hand side of (5.2.92), we use the estimates (for
p & 3N
Hsﬁ(v)wHHer + HSb(U)wHHer S K ”U”Cﬂ ”wHH[,L+% )

1S* @)l o + 18" @] gss < K N0l 1]

which readily follow from the definition (3.5.9), and the estimates (5.2.79) and (5.2.88) for
u—U.

Let us show that the estimate for G follows from the results proved in §4. The key point is
to estimate the ||, ,, g-norm of G' and G? given by (5.2.12)and (5.2.13).

Rewrite G! (as given by (5.2.12)) as
G = Fn)y — Feo) (¥ + Ty, ya_o,v4 1024
+ T maF(n)y
(5.2.93) .
+{ T Toy + T, yan + [Tv. Ta ] - §T‘Dx|%u2T\/5—1}n’

+ |DZB| RB(|DIE| ¢7 T\/E—ln) + a:ERB(a:EQZ% T\/E—ln)v

e The ||, ., g-norm of F(n)y — F<g)(n)y is estimated by means of Proposition 4.5.4 applied
with (k, u) = (n,a + ) which yields

[E(m)v = Feay], o s
< Cop lZoe 19212 270 sy
+1g (o + B+ 1= 50+ No)Coy [[nllomn [[1Del? ©l| oo |27 g
(5.2.94) +Coy 11120 122 Y]yt arprd
1. (0 B = 5)Con 12, 0 1D21? ], 05
t Coo lls0.0 11D 12 %l g Namg Tl 1 s 550
+ 15, (o + B = 75)Co0 [l 0 1Dl Ul s s o g Mlmctpn -
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where Cy, = C([[nllgz ), Csy = C([nlls0): and 1r, is the indicator function of Ry. The first
four terms in the right hand side of (5.2.94) are clearly controlled by the right hand side of
(5.2.91). To estimate the last but one term in the right hand side of (5.2.94), notice that,
since v has been chosen large relatively to 72 and Ns, since a4 +n < s and since s < 25—,
we have o + 5+ n — 59 + Na + 72 < sp and hence | ]Dx]% wHa—i—B—i—n—so-l—Nz,'yz < Np(so) for any
p > 7. It remains to estimate the last term in the right hand side of (5.2.94). Notice that,

because of the indicator function, it is non zero only for o + 8 > ~4. Since § < 74 — 1 by

assumption (5.1.5) on (3, this means that the last term is non zero only for o > 0. Now for
a > 0 we have |77|n’a+ﬁ_1 < M and hence the last term in the right hand side of (5.2.94) is
also controlled by the right hand side of (5.2.91).

e We now estimate the |-|, atp-norm of Ty, Ja—o.v+1o24M- To do so, we first check that one
) T oY
has the following estimates

Jora - 220, < (V) (M)’

so,1 —
(5.2.95) 109 2™ (9ha — 02) || ;o < C(NFOYNEI My for (o, 1) < (o, ),

952" @ — 320) | 2 < Clllullo) [l Vi + C (NSNS M.

To prove these estimates, we use the arguments used in the proof of (3.1.9): we differentiate
in time the identity (A.3.9) for a (by using the rule (3.1.6)) and then we use Lemma A.3.1.
This gives that d;a — 9%t is an explicit sum of quadratic terms which are estimated as in
Lemma 5.2.9. Next, (5.2.95) readily implies that d;v/a — —82¢ satisfies

2
e a——aszsol— C(NE) (NS,

(5.2.96) |02 2" (8pv/a — §a§w) |2 < C(NFOYNFI My for (o, n') < (a, ),

1
1052 (v/a = 50z0)| 12 < Clllullo) Nullor Yiam + O (NSNS M

On the other hand, the estimates (4.5.30) and (4.3.34) imply that 0,V — 9% satisfies

2
|02V = &2, , < C(NE) (NS,

(5.2.97) 109 2™ (0,V — 020) || o < C(NSONEOI My for (o/,n') < (e, ),

Hc‘)ﬁzn(@cv — 8§¢)HL2 < C(HUHC,Y) ”u”C”f Y(a’n) + C(N[ESO))N[ESO)MK.

Set

C:=0n/a— 8,V + %aﬁzp.
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Then, by using the triangle inequality, (5.2.96) and (5.2.97) imply that
2
€l < CNED) (N,

(5:2.98) 0527 ¢l o < CNPINEI M for (o) < (e ),

10927¢|| 12 < Cllulles) Null g Yiamy + C (NS )NEI M.

Now, to estimate the \']n’aJrﬁ—norm of Ten, we apply the estimate (4.4.24) with m = s,
v=aoa+ [ and b = ~. This yields

|TC77|n,a+ﬁ 5 HCHS0,0 |77|n—1,a+6+1 + HCHLO" HZnnHH‘“rB

+ 17l s grn—so+1,0 [€1n—1,0

+ HUHCW HZHCHLz

+1m, (@ + B +1 =) 1l gassn-sss [ 27C] a-
In view of (5.2.98), the first four terms in the right hand side are clearly controlled by the
right hand side of (5.2.91). Again, to bound the last term, we notice that is non zero only

for a > 0 since f+ 1 — v < 0 by assumption. Now, for a > 0, we have (0,n) < (o, n) and
hence HZ "¢ H 12 18 estimated by the second inequality in (5.2.98). On the other hand, again,

S| .
we [|n]| gatstn—sot1 < N,E 0) by assumptions on «, 3,n, s, sg, p.

e Now we estimate the |-[, ., g-norm of T, ;_;F(n)i. We apply the estimate (4.4.24) with
(K,v,m,b) replaced by (n,a+ B, s0, 8 + 2). This gives

T Fe| S Va1 o FO s + Va1 |27 F 0] o

+ HF(,’?)’IIZ)HOC-i-ﬁ-‘rn—S()-i-LO |C|n—l,0

+IEmY oo || 2"(Va =1

+ 1g, (@ — 1) [F(ll gatprin-sor || 2" (Va —1)]| .-
The first and second term in the right hand side are estimated by means of the previous
estimates for \/a — 1 (see Lemma 5.2.9) and F(n)y (see (4.5.23), which easily implies an

estimate for |F(n)y| ko Using the triangle inequality and the fact that one can estimate
‘F(Sg) (’I’])T[)‘k“ directly from (4.5.27) and (4.4.20)). Again, notice that the last term is non

zero only for v > 0. Then (0,n) < (a,n) and || Z"(\/a — 1)HL2 is controlled by Lemma 5.2.9
i7). On the other hand, by assumptions on «, 3,s,n,s) we have « + +n —sgp+ 1 < sp.
Therefore, it remains only to bound [|F'(n)|g, o and || F(17)9]|cs+2. Both estimates are easily
obtained writing

Flny = (G = Dal ) = (1Ds] Tiupyn + 0uTyripum) -

The ||-[|4, p-norm (resp. [|-[| ss+2) norm of the first term is estimated by (4.5.30) (resp. (2.6.12)).
The [|[|4, o-norm (resp. ||| ¢s+2) norm of the second term is estimated by (5.2.81) and (4.3.37)
(resp. (A.1.13) and (2.0.4)).
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The last terms in the third and fourth lines of the right hand side of (5.2.93) are estimated
by means of (4.4.19), (4.4.20), (4.4.25), and Lemma 5.2.9.

We now estimate G2 which is given by (5.2.13). To estimate the first and second terms in
the right hand side of (5.2.13), we use the estimates (4.5.30) and (4.3.34) for the |||, , and
|| g, norms of B(n) — |Dy| and V(1) — 9;. Then the desired estimates follow from (4.4.20)
and (5.2.84).

The third and fifth terms in the right hand side of (5.2.13) are estimated by means of (4.4.25),
Proposition 4.3.11, Proposition 4.3.9 and Lemma 5.2.9. The fourth term is estimated by
means of (4.4.19), (4.4.20), Proposition 4.3.11, and Proposition 4.3.9.

To complete the study of G we have to study the terms involving the operator C(u) in (5.2.16)
and (5.2.18). We obtain the wanted estimates by using the estimates (4.5.30) and (4.3.34)
for the estimates of the [-||,, , and |5, norms of V(1) — 0,, statement iv) in Lemma 5.2.9
(which implies similar estimates for (y/a — 1) + 1 |D,|n) and the rules (4.4.10), (4.4.11). O

It follows from Lemma 5.2.8, Lemma 5.2.11, and Lemma 5.2.12 that the H?-norm of the
terms (2) and (3) in (5.2.69) are controlled by the right hand side of (5.2.4). Since we have
already estimated the term (1) in Lemma 5.2.7, to complete the proof, it remains only to
prove the estimate (5.2.6)~(5.2.7) and to estimate the H?-norms of the term (4) and I’ which
appear in (5.2.69).

Lemma 5.2.13. i) There holds
19 + D)0 Z™ul| 12 < C(l[ull o) lull o Yiamy + C (NSO) NGO Mg,
19 + D)OTZ"U | 12 < Cllull o) 1l v Yiam) + C (NSO NSO M.
i) If (o/,n') < (o, n) then
10 + D)3 Z" u| 1» < C(NED)NE My,
10 + D)3 2" U|| ,, < C(NE) N0 My

i11) If o/ +n' < sy then
! / 2
|00+ D)8 2 o < CNE) (NS

! ! 2
@+ Dy 27U < () (V)

Proof. Notice that the third (resp. the fourth) estimate is an obvious consequence of the first

)

(resp. the second) estimate since ||u|| -, < Np(sO and since Yy 5y < M for (o/,n') < (a,n).

To prove the first estimate, recall that

(5.2.99) dyu+ Du = ( Gy = |Da ¥ ) .

D, |2 (—5(0:0)2 + 31+ (@) (B(n))?)
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Therefore, using (5.2.14) to commute 057" with 0, + D, the first estimate follows from
Corollary 4.3.8, Proposition 4.3.9, Proposition 4.3.11, and the product rule (4.4.23).

To prove the second estimate, we notice that for any (a,n) € P,
(5.2.100) (O + D)0 Z"U = =N ()33 Z"U + G(y, 1y + Flon)»

where g{am) and ]:(’;7”) are given by (5.2.24). According to (5.2.27) applied with pu = 0,
the first term in the right hand side clearly satisfies the wanted estimate. Thus the second
estimate in the lemma follows from Lemma 5.2.11 and Lemma 5.2.12.

Let us prove the estimates in statement #ii). Using again (5.2.14) to commute 092" with
Oy + D, notice that it is enough to prove that

2
(5.2.101) (8 + D)ull,, 4 < C(NE) <N/§SO)) ,

50,4 —

2
(5.2.102) 1@, + D)U ||, 4 < C(NE) <Np(so)) ,

The estimate (5.2.101) follows from (5.2.99), Proposition 4.3.11 and the product rule (4.3.15).
To prove (5.2.102), we use the estimate (5.2.81) whose statement is recalled here:

(5.2.103) 1T Fll,, 5 S NCHna 1] -

Remembering the decomposition (5.2.89) of U as u+ U’ with U’ = (T, z_17, \Dx]% Tpn), and
using (5.2.101), it is enough to prove that

(5.2.104) @ +D)U||,, , < C(NS) (N,§30>>2.

Since it is enough to prove that the right-hand side is quadratic in N,ESO), to prove (5.2.104),
it is sufficient to estimate separately 9;U’ and DU’. Thus, it is sufficient to prove that

2
(5.2.105) ¥C € {Va—1,0/a, B,a:BY, VF € {n.dm}, |TcF 4 1 < C(NS) (N;S@) .
In view of (5.2.103), this reduces to proving that

V¢ e {Va—1,0/a,B,0:B}, (|1 < C(NF)N),

VE € {n, 0}, 1 gy a4 < C(NE) NS,

The second estimate is clear for F' = 7. Since dyn = G (1)1, it follows from Proposition 4.3.11
for F' = 0yn. On the other hand, for ¢ = B (resp. ( = y/a — 1) the first estimate follows
from Proposition 4.3.11 (resp. Lemma 5.2.9). For ( = J:\/a, the first estimate follows from
(5.2.98) and Proposition 4.3.11 (to estimate [|0; V||, ;). Eventually, for ¢ = 0;B, we use that,
by definition of a, OB = =V 9, B + a — 1 so that the wanted estimate follows from (4.3.15),
Proposition 4.3.11 and Lemma 5.2.9. ]
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Introduce

(5.2.106) Xiam) = |08 27U || s + HagznuHHﬁ,%,

and

MK = MK + Z X(a’7n’)7
(5.2.107) (o) =(eum)

1-v
Ni = N 4 %(NP(SO)> MY,

Recall that we want to prove that
(5.2.108) 105 < Clllullen) el Yiaum) + CONi AR M.
According to Lemma 5.2.10 and Lemma 5.2.13 we have

X(a,n) < C(HUHC’Y )Yv(oa,n) + C(Np(so))MKy
(5.2.109)  ||(8; + D)OYZ"ul| 12 + |8k + D)OTZ"U |12 < C(I[ulln ) Yiam) + C (NS ) Mk,
Mg < C(N[ESO))MK

and it follows from the third inequality above that
1 1—v
— NGo) o = ( py(so) v
Nic = N + = (N0 ),
5.2.110 s0) L L () s v
( ) < NE 4 (N0) T (C(NE) M)
< C(NS) Nk

by definition (5.2.5) of N. Consequently, to prove (5.2.108) it is sufficient to prove that

0]l e < Clllulles) Nullgn Xam + C(NSO)NE Mg
(5.2.111)
+ C(llull ) llull oy {H(at + D)Og Z"ul| 2 + || (9 + D)agan\|L2}.

(Let us mention that the factor |jul|,, multiplying the bracket in the second line is linear in
||u|l o instead of being quadratic since (9; + D)0¢Z"U is at least quadratic, see (5.2.100).)

Next we prove that HI:H s is estimated by the right hand side of (5.2.111). Recall that T is
given by (see (5.2.52))

(5.2.112) T'=¢ —R+ N (®-922"U),

with N(u) = Q(u) + S*(u) + 25°(u) + C(u) and where G is given by (5.2.24), R is given
by (5.2.49), and ® is given by (5.2.50). We shall use a cancellation between the second term
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in the right hand side of (5.2.49) and the last term in the right hand side of (5.2.112). To do
so we write according to (5.2.100)

(5.2.113) (0 + D)9222"U = —N(u)d22 2"2U + G

Ocz n2 ]:(052 nz)

where g’ n2) and ]:(” ng) ATE obtained by replacing (a,n) by (ag,n2) in the definition
(5.2.24) of G and F”. We substitute (5.2.113) in the second term in the right hand side of
9

(5.2.49) to obtain, using the definition (5.2.50) of ®, T’ = G’ + qu with
q=1
Z () Pns (00 + D)OS Z™u) 032 Z™U
Z m(j) Ry (9 + D)+ Z™u) 052 2™ U

Zm Rong (091 Z™1) (8 + D)9S2Z™U)
I = —Eﬂ((at + D)oY Z™u)U
I° = —E492Z™u)(8,U + DU)
_ —|—Zm [ 1y (001 Z7100), (u)]a§2zn2U
7 = _N(u)Eﬁ(aaznu)U

Zm Ry (021 Z™Mu)0%2 22U

Z m(y n3 601 AT ){ggaz,nz) + ‘7:(';27”2)}.

We shall further split the sum over J (resp. J’) into two pieces according to the splitting of
Jas J=JyUJy (resp. J' = J{ U .J}) where

1
Jy = {j = (a1, a9,n1,n9,n3) € J; a1 +nyp < §(a+n) },
(5.2.114)

. 1
Jo = {j = (a1, a9,n1,n9,n3) € J; aq +nqg > §(a+n)}

(resp. Ji and Jj are given by (5.2.85) so that J{ = J; NJ' and Jj = Jo N J’). Notice that, if
(a,n) = (0,0) then J = () = J'. Therefore, if j € J; then (a1,n1) < (a,n).

Using obvious notations, we write ['1 = f‘{ + fg for ¢ € {1,2,3,6,8,9}.
We shall use the following notation: for r in [0, +oo[ we set

1,
(5.2.115) lollcrnzz = Ioller + — lloller” lollza »
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where recall that v is a fixed small positive number, and the constants involved are indepen-
dent of v.

Estimates of f%, f% and fi’

Let us prove that

(5:2116) 54 s + 152e < Cullr) 120 Xy + C(NE) N M

If A denotes P, or R,, then the estimates (5.2.39) and (5.2.44) (together with (5.2.46))
imply that
[A(@: + D)o 2o 2720,

(5.2.117)
< ||+ Dyog 2

uHCngH@?ZZ"QUHHgH-

Remembering that, by definition, fl, f% and f:{’ are sums of terms indexed by either J; or
Ji, we are going to use a dichotomy already used in the proof of Lemma 5.2.11. Either
(g +1,n9) < (o,n) or @ > 1 and (a2, n2) = (o — 1, n).

If (a2 +1,n2) < (a,n), writing
1052 272U | gon < 11022 2™ U | o + [|052 71 272U |

we see that the second factor in the right hand side of (5.2.117) is bounded by Mg, by
definition (5.2.107) of Mg. To bound the first factor in the right hand side of (5.2.117), we
first recall from Lemma 5.2.13 that for any j in Ji,

52115) 101+ D)5 2, < (V) (M)

where we used the fact that, for j € Jy, and our assumptions on «, n, s, sy, we have ay+nq < sp.
Secondly, we have

(52119 (00 + D)o 2] < CN)NE M

where, to obtain (5.2.119), we used the above mentioned observation that (a1,m1) < (a,n)
for j € J;. By combining (5.2.118) and (5.2.119) we obtain

(2 + D)(‘)g‘lZ"luH(ijz < C(Np(so))N%{

by definition (5.2.107) of Ni and definition (5.2.115) of the norm ||-||saqz2. This proves the
wanted estimate.

Consider now the case when (ag2,n2) = (o —1,n). Then (a1,n1) = (1,0) and we have to
estimate the H”-norms of

Po((0 + D)0,u) 021 Z"U,  Ro((0¢ + D)) 02~ Z"U.
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Both terms are estimated similarly. Let us consider the first one. Using the estimate (5.2.131)
below, we have

(5.2.120) |Po (0 + D)) 05 Z"U || o < |0 + D)ul| o6 ]|057 27U | 1541

(The key difference with (5.2.117) is that the right hand side of the above inequality does not
involve the L?-norm of (9; + D)u.) As above, using the notations (5.2.106) and (5.2.107), one
has

(5.2.121) 1097 27U || yoss < 08270 || s + 10271 27U || o < X(am) + Mk

On the other hand, according to (5.2.99), (2.6.12), (2.0.4) and the product rule in Hélder
spaces, we have

(5.2.122) |9 + D)ul| s < C(Iullcn) Nullzs

provided that ~ is large enough. Plugging (5.2.121) and (5.2.122) in (5.2.120) we obtain that
the HP-norm of Py ((9; + D)d,u)02~1Z"U is bounded by the right hand side of (5.2.116).

The ||| ys-norm of I3 is estimated by similar arguments.

Estimates of f%, f%, f?’, and T

Consider j € J'. Let us estimate the H®-norms of
Prs ((0; + D)0 Z™Mu) 052 22U, Ry, (0 + D)OS Z™u) 092 Z™2U.
If A denotes Pp, (resp. Ry, ) then the estimate (5.2.40) (resp. (5.2.45)) implies that

|A((8; + D)3 2 )22 272U || 5
S 1@ + D)ozt 27 | 12 |052 272U | -

To estimate the right hand side of the above inequality, we recall that we consider the case
j € J' and notice that (a1,n1) < (a,n) when j € J' (since by definition (5.2.22) of J" we
have a1 + 1 < a+n, a1 <, n; <n for j € J'). Then the second factor in the right hand
side above is estimated by means of (5.2.77) and (5.2.78), while the first factor is estimated
by Lemma 5.2.13 ¢i). This proves that the right hand side of the above inequality is bounded
by C(NS™) N2 M.

This proves the desired estimate of the H’-norm of f% To estimate the H’-norm of f%,
it remains to consider the case when j € J\ J', that the case j = (a1,a2,n1,n9,n3) =
(a,0,m,0,0). Let us study this term, together with I'4. Here we notice that the HS-norm of
Po((8; + D)0 Z™u)U (resp. E*((0; + D)02Z"™u)U) is estimated by means of (5.2.40) (resp.
(5.2.48)) and 4) in Lemma 5.2.13.

The HP-norm of f% is estimated by similar arguments.

Estimate of I
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We claim that
IT%]| ;76 < Cllullen) 1ullEn X (amy-

To see this we use the estimate (5.2.48) which implies that
[

s S 10U + DU g |05 Z"ul| 5y

Since H@g‘Z"uHH&% < X(a,n) by definition (5.2.106) of X, ), it remains only to prove that
(5.2.123) 10,V + DU g < Cllullc-) [ullE -

Since ||Oyu + DuHc3 < C(|lullgy) ullz, (as already seen in (3.6.14)), remembering (5.2.89),

2

to prove (5.2.123) it is sufficient to prove that

1
(5.2124) |oaan| g + 110010212 Tom|| g < Cllullen) lule
and
1
(5.2125) 110212 Taall g + 11D Tal g < Clllwlen)

The second estimate is obvious: For any r > 0, it follows from (A.2.4) and (A.2.3) that

D212 Taanll g S I Tyamanllgeer S oo 1l gasr
11Dl Tonll g < 1 Tonll g4 S 1Bl e 1l g

so (5.2.125) follows from the estimate a0 + [|Bll10e < C(||ullov) [|ulloy (see (3.1.20) and
(3.1.4)).

Let us prove (5.2.124). In view of (A.1.12) we have

HatT\/E_lnHC% + Hat |DI|% TBUHQ%
S (V@ =1l + 183 = D)l + 1Bl + 102l ) (Il + Iomlcs).

Since 0yn = G(n)vy, it follows from (2.0.4) that ||| s < C(||lully) |ullcr- On the other
hand, (3.1.20) and (2.0.4)imply that ||[v/a — 1|0 + || Bl < C(||lullc) ||l - It remains
only to prove that

18scd]| oo + [10:Bll Lo < Clllull o) lull e -

Now notice that (3.1.9) immediately implies that ||0;al| ;o < C(||u|lov) [|ul| v, Which implies
the wanted estimate for dyav since @ = y/a — 1 and since a is bounded from below by 1/2
by assumption (see (3.1.11)). Now, to estimate 9B we use that ;B = —V9,B +a — 1 by
definition of a, s0 ||0:B|| jcc < V|| 100 |02B]| ;00 + |l@ — 1|| oo The first term in the right hand
side is estimated by (2.0.4) while |ja — 1||; « is estimated by means of (3.1.8). This completes
the proof of the claim.
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Estimate of I'6

We divide the analysis into two cases: either a« = 0 or o > 1. If @ > 1, we decompose J as
J U JY U {1, jo} where

jl = (Oé,O,’I’L,0,0), j2 = (1,0& - 1707n70)7
JU =TI\ {2}, S5 =R\ {i}

If @« = 0 we decompose J as J; U JY U{j;1}. Below we consider the case o > 1 and the proof

(5.2.126)

for the case o = 0 will be included in this analysis since we shall use the assumption o > 1
only to give sense to js.

The estimate for the sum over JJ is straightforward: It follows from (5.2.29) and (5.2.40)
that

[P (952 2" w) (N ()52 272U ) || 17
(5.2.127) S 1021 ZM | 12| [N (w)052 272U || 52
< C(H“”CV) HUHCV H(‘)g‘lZmuHLzH((?;JQZMUHCﬁﬁ_
So (5.2.76) and (5.2.78) imply that
[Py (92 Z™ ) N ()32 272U ||y < C(NS) (NSD)* Mg

Now N (u)092 Py, (091 Z™u)Z™2U is estimated by parallel arguments. This obviously implies
the wanted estimate for the commutator.

If (a1, 9, m1,n9,n3) = j1 then (ag,ng) = (0,0). Thus, it follows from the first inequality in
(5.2.127), (5.2.29), (5.2.74) and the assumption 5 > 1/2 that

[Py (021 27 u)N ()05 272U
< C(ljull ) Nl (YViom + M )-

We estimate N (u)092Pp, (05 Z™u)Z™U by similar arguments. This obviously implies the
wanted estimate for the commutator.

If « > 1 and (aq,2,n1,n2,n3) = j2, we have to estimate H [Po(ﬁwu),N(u)]ﬁg_lZ"UHHﬂ.
We claim that

(5.2.128) 1 [Po(9), N(W] || p (601 sy < C ]| -
Let us assume this claim. Then
(5.2.129) | [Po(@sut), N ()] 022U || ;s < C llullgn |05 27U || 511
We then write that, obviously,
10271 27U || o < (102270 o + 1057 27U ||y < Xy + Mic-

The proof of the claim (5.2.128) is then based on the following lemma.
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Lemma 5.2.14. Let p be a given real number.

i) There exists K > 0 such that, for any scalar function w € C*(R), any v = (v',v?) €
CO N L2(R) and any f = (f*, %) € HA(R),

(5.2.130) 1T l2; Po(0z0)] fll e < K lwlion vl [1F] zn s
where I = (§9).

ii) There exists K > 0 such that, for any v = (v',v?) in C° N L3(R) and any f = (f1, f?) in
H*(R),

(5.2.131) 1Po(@e0) f || -1 < K N0l 1l g -

Proof. We recall that Py(v) is given by Op?B [vl, Pel] + 0p# [1)2, PE] where le and PE belong
to Sé’o (see (5.2.36)). Therefore

Po(d,v) = Op® [vl,iﬁlPﬂ + 0p® [v2,i£1Pf].

Since i¢; P} and i€; P? belong to Sll ’0, it follows from Lemma 3.4.6 that Py(0,v) is a paradif-
ferential operator of order 1, whose symbol has semi-norms estimated by means of statement
i1) in Lemma 3.4.5. The assertions in the lemma then follows from Theorem A.1.7. O

Next we proceed as in the proof of Lemma 5.2.7. Firstly, we introduce
N(u) = N(u) — Ty 8, — TaD.
Directly from the definition (5.2.25) of N(u), using (5.2.28) and (5.2.72), one can check that

HN(U)HL(HB,HB) < Clulles

for some constant C' depending only on ||u||-,. By combining this estimate with (5.2.131) we
get
HPO(OSUU)N(U)HE(H6+17H6) + HN(U),PO(({)IU)HE(HBH,Hﬁ) <C ”U”g‘w )

which obviously implies that

[N (), Po()]| g grnss gy < Cllulls

So to prove (5.2.128) it remains only to estimate the commutators of Py(d,u) with Ty 0,
and T, D. The commutator with 70, is estimated by means of statement ) in the above
lemma. To estimate the commutator with 7, D we use again statement ) in the above lemma
to estimate the commutator [Ty, Py] and we use the equation (5.2.37) satisfied by Py(v) to
estimate [D, Pp(0,u)]: Indeed, (5.2.37) implies that

[Da Po(amu)] = Po(DIyu) + Q(O) (Ozu)
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and hence [D,Py(0,u)] is an operator of order 1 which is estimated by means of the esti-
mate (5.2.30) and statement 7i) in the above lemma.

Now let us assume that j € J{'. Then we claim that
(5.2.132) [ [Ps (922 Z™ ), N(W)] || £ oo oy < CN%.

This is proved exactly as we proved (5.2.128), excepted that we use Lemma 5.2.4 instead of
Lemma 5.2.14. Then (5.2.132) implies that

|| [Py (082 Z™ ), N (u)] 922 22U || 6

5.2.133
( ) SCN?(W?QZMUHHBH'

We then write that, as already seen, if (ag,n2) < (o, n), as < a, and (ag,n2) # (o — 1,n)
then (ag 4+ 1,n3) < (a,n) so
10522720 | yor < 1|02 272U s + (105777 272U | i < Mic.
This completes the proof.
Estimate of I'7

Remembering the estimate (see (5.2.27)) HN(U)HE(H5+1,H5) < C(|lullv) [Jull o s we have

1Tz < Cllullen) Nl | E#05 20)U | o
Now (5.2.48) implies that

IE]Ls < Cllulles) llullen U1 0527 54

By definition of X(,,) there holds H(‘)O‘Z"UH 1 < X(an)- So the estimate (5.2.87) for
’ x HP ™2 :
HUHC% implies that

IT7)| 15 < Cllullon) I1ullZn Xiam)-

The estimates for f8, and f% are obtained by similar arguments to those used previously.
Also, to estimate '), using (5.2.40), all we need to prove is that

Here one notices that, while it could be long to estimate these terms separately, one can

Flazmnz) T Flazna)|| s < C N{o)) N (o),

readily estimate the sum writing that, by (5.2.113),

gEaz,m) T ‘F(/:lz,m) = (0r + D)0 Z™U + N(u)03* 2™ U.

The first term in the right hand side is estimated by Lemma 5.2.13 since, as we study fg,
the condition ag + ng < sp holds. The second term is estimated by means of (5.2.29) and
(5.2.78). This completes the estimate of T'.
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To complete the proof of i) of Proposition 5.2.1, we still need to estimate the H?-norm of the
term (4) in (5.2.69). Moreover, we have to prove the bounds (5.2.6), (5.2.7) of statement 7)
of that proposition. These estimates will be deduced from the following result.

Lemma 5.2.15. There holds

(5.2.134) 102270 = ®||,15 < Clullen) 1ull e Xam + CNSD)Nic M.

Proof. Tt follows from the definition (5.2.64) of ® and the definition (5.2.50) of ® that

- 90Z"U = E(u)0%Z"U
= () Py (021 2™ )52 27U
(5.2.135) !
= () Ry (03 ZM )02 27U
J/
— EY 0% Z™u)U.

Then we use arguments similar to those used previously. The first (resp. last) term in the
right hand side of (5.2.135) is estimated by means of (5.2.63) (resp. (5.2.48)). To estimate
the second term in the right hand side of (5.2.135), we decompose J as J;' U JY U{j1,72} (see
(5.2.126)) and then use the estimates (5.2.39) (for j € J7), (5.2.131) (for j = jo), (5.2.40) (for

€ JJU{j1}). The estimate of the third term in the right hand side of (5.2.135) is similar;
we decompose J' as J| U J) where J| and J} are defined by (5.2.85) and we use the estimates
(5.2.44) and (5.2.45) (since j # ji for j € J' and since ag + ny < a+n for any j € J', the
terms ||[Hv||o, and ||Hf]|o, which appear in (5.2.44) and (5.2.45) lead to terms which are
estimated by means of Ng). O

This lemma and the estimates (5.2.60) (applied with some p > 1), the operator norm estimates
(5.2.73) (resp. (5.2.60)) for B(u) (resp. &%(u) and &(u)) readily imply the wanted estimate
of the H-norm of the term (4) which appears in (5.2.69).

Let us prove (5.2.6)—(5.2.7). Recall that (see (5.1.7) and (5.2.106)), by notations,

Yo = 02270l o + 10212 02276 g + 10217 02 270 -y

Xam) = 022"U|| s + |07 Z"ul| 5 -
It is convenient to set

Ay = ([1022™n|s + 112 0227w 575 ) .

Hereafter we denote by C (resp. Cy,) various constants depending only on ||u|| -, (resp. N, ,ESO)).
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It follows from (5.2.84) that

(5.2.136) 105 Z"u|| sy < Aamy + Cy 1l Yiamy + Coo N M.
Using the obvious inequalities

(5.2.137) 102 Z70|| 15 + ||| Dzl 2 0227w | s < 2410y

and

10212 92274l -y S 10227 1Dl @] ooy + D2 10527 1Dal2 )0,

2

(5.2.138) n'<n
<08 zml],,,y + My

It follows from (5.2.136) that
(5.2.139) Yoy < 34 +Cy llull g Yiam + Co [1+ NS M.
Then for ||ul|,- small enough we have

(52140) Yv(a,n) < 4A(a,n) + CS() [1 + NP(SO)] Mk

On the other hand (5.2.79) implies that

(5.2.141) Ay 022U || s + Cy lull o Yiany + Cso NS M,

and using (5.2.134) to estimate H(‘)ﬁZ”UHHﬁ by means of ||®|| s, we find that
(5.2.142) Ay < 1@l gs +Cy luller (Yian) + Xian)) + Coo N Mk

Using the first bound in (5.2.109) to estimate X(a,n) in the right hand side of the previous
inequality, we find that

(5.2.143) Ay S @l gs + Cy llullor Yiam) + Cso Nk M.
Then (5.2.140) and (5.2.143) imply that

(5.2.144) Yian) < 4@l gs + Cyllulley Yiam) + Cso [1 + Ni | Mk,
and hence, provided that C, ||ul|+ is small enough,

(5.2.145) Yian) <5019 gs +Cso[1 + Ni | Mk

Finally, it follows from (5.2.109) and (5.2.110) that the same inequality holds with Mg (resp.
Ng) replaced by Mg (resp. Nk):

(5.2.146) Yiam) < 5Pl gs + Cso [1+ Ni | M.

This establishes the first inequality of (5.2.6).
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Let us prove (5.2.7). The estimate (5.2.134) implies that

(5.2.147) 1@l s < |02 27U || s + Cy lull o Xam) + Coo N Mg,
and the estimate (5.2.79) implies that

(5.2.148) HaanUHHﬁ < Afam) +C4 lull Yian + CsoNp(sO)MK-
Now (5.2.109) and (5.2.145) imply that

(5.2.149) X(am) < Cy 1]l gs + Cs [1 + N | M.

Then (5.2.146), (5.2.147), (5.2.148), and (5.2.149) imply that

(5.2.150) 180155 < Ay + Co 1wl 18]l 55 + Cog Nic M.

If C, |||~ is small enough, we conclude that

(5.2.151) 19| 75 < 24 (qm) + Co Nk Mic,

so we have, according to (5.2.109) and (5.2.110),

(5.2.152) [l 76 < 2A(an) + CsoNrx MK

Using the obvious inequality A, ) < Y(qa,n), this yields the second estimate of (5.2.7) and
hence completes the proof of (5.2.7).

Next, we shall use (5.2.152) at time Tj. Our goal is to deduce from this estimate that

(5.2.153) 19| 75 (To) S MED(Ty)

provided that N,ESO)(TO) is small enough.

Plugging (5.2.140) into (5.2.136) we find that

5:215) 02270y < (144, o) A + Co N M
Obviously, we have

(5.2.155) Aoy € D Ay < MEY
(o ,n")eP

by definition (5.1.1) of the norm MY (recall that P is defined by (5.1.6)). Similarly,

#P
My < 3 My < MED 4 37 [|IDa]2 05 27|y

K'=0 (o n')EP
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1 ro . . . 1
Now, since |D,|2 Z™ 1) is a linear combination of terms of Z¥|D,|2 1), 0 < k < n/, we have

1 o n! o n! 1 o n!
Yo D 2 ey 50 30 N2 D2 W oy < 3 110 2 ul| sy
(o ,n")eP (o ,n)eP (o ,n")eP

since u = (1, |Dw|% 1) by definition of u. So the previous bound for My implies that

(5.2.156) Mg SME)+ N [0 27|
(o ,n)eP

w5

Plugging (5.2.155) and (5.2.156) into (5.2.154) we conclude that
Ha:?Zn“HHaf% < (1+4C, ullgr) Afam) + Co NSO M

S (1+4C, [Jull oy —I—CSONP(SO))Ms(Sl) +cSON[gso> Z Ha?fznquHﬁf%.
(o ,n")eP

Since [lulloy < Np(so), this simplifies to

HagznuHHﬁi% < E = (1 +CS()Np(SO))Ms(Sl) +CSONp(SO) Z Haglzn/uu

~ HB*% .
(o ,n")eP

Taking the sum of the inequality thus obtained for («,n) € P, we conclude that

> o2z ull ooy S#PES (4 CoNg) ME) +CoNEPT 3 (10227l 5y
(am)eP (o ,n")eP

So a := Z(am)ePH@gZ"uHHﬂf% satisfies
(5.2.157) a< (1 + CSONp(so))Ms(sl) + CsoNp(SO)a-

For N,ESO)(TO) small enough, this yields that

S [0 zruT)| oy S MED(T).
(a,n)eP

Plugging this estimate in (5.2.156) and then (5.2.155) into (5.2.152) we obtain the wanted
estimate (5.2.153) and hence the desired result (5.2.7).

This concludes the proof of the proposition. O
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Chapter 6

Appendices

A.1 Paradifferential calculus

We recall here some definitions and results concerning Bony’s paradifferential calculus. We
refer to the original articles of Bony [10] and Meyer [39] as well as to the books of Héormander
[25], Métivier [38] and Taylor [49].

We denote by C(R) the space of bounded continuous functions. For any p € N, we denote
by C?(R) the space of C°(R) functions whose derivatives of order less or equal to p are in C°.
For any p €]0,4+00[\N, we denote by C?(R) the space of bounded functions whose derivatives
of order [p] are uniformly Holder continuous with exponent p — [p].

Definition A.1.1. Consider p in [0, +oc[ and m in R. One denotes by I';'(R) the space of
locally bounded functions a(xz,§) on Rx (R\0), which are C* functions of £ outside the origin
and such that, for any o € N and any £ # 0, the function x — Gg‘a(w,f) belongs to CP(R)
and there exists a constant Cy such that,

(AL1) ViEl2 3 08l < Cal+ gy,

Given a symbol a, to define the paradifferential operator 7, we need to introduce a cutoff
function 6.

Definition A.1.2. Fiz 0 € C*°(R x R) satisfying the three following properties.

(i) There exists €1,e2 satisfying 0 < 2e1 < g9 < 1/2 such that

0(&1,&) =1 if |&] <er|é] and |&f > 2,
0(£1,62) =0 if [&] >exl|éa| or |& <1
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(ii) For all (o, B) € N2, there is Cy p such that

V(€1,&) €R?, 020206, 6)| < Cap(l+ |&f)711AL
(iii) 0 satisfies the following symmetry conditions:

(A.1.2) 0(&1,62) = 0(—&1, —&2) = 0(—&1,&2).

Remark. Notice that 0(&;,&) = 0 for |§2| small enough. This choice (different from [38])
plays a key role in our analysis since we have to handle symbols which are homogeneous in
& and hence not regular for & = 0.

As an example, fix €1, €2 such that 0 < 2e; < €2 < 1/2 and a function f in C§°(R) satisfying
ft)=f(—t), f(t) =1 for |t| < 2e1 and f(t) =0 for |t| > e2. Then set

B¢, 6) = (1— f(62))] (g—) |

Properties (i), (i7) and (iii) are clearly satisfied.
The paradifferential operator T, with symbol a is defined by

—

(A13) Tou(€) = (27)~! / 6(¢ — n,ma(é — n.m)a(n) dn,

where a(0,€) = [ e ®a(z,£) dx is the Fourier transform of a with respect to z.
Remark A.1.3. It follows from (A.1.2) that, if a and u are real-valued functions, so is T,u.

Remark A.1.4. One says that © = ©(§1,&2) is an admissible cut-off function if © satisfies
the properties (i) and (ii) in Definition A.1.2. All the results given in this appendix remain
true for any admissible cut-off function (except Remark A.1.3).

We shall use quantitative results from [38]. To do so, we introduce the following semi-norms.

Definition A.1.5. Form € R, p > 0 and a € I'}'(R), we set

(A.1.4) Mp'(a) = sup  sup H(H’f’)‘al_ma?“(”f)‘Cp(R>

lo|<2+p [§]>1/2

The main features of symbolic calculus for paradifferential operators are given by the following
theorem.

Definition A.1.6. Let m in R. An operator T is said of order m if, for any up € R, it is
bounded from H* to H*~™,
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Theorem A.1.7. Let m € R.

(i) If a € T{(R), then T, is of order m. Moreover, for any p € R there exists K > 0 such
that

(A.15) 1Tl gy < K M a).

(i) Let (m,m’) € R* and p € (0,+00). If a € T7(R),b € T7(R) then T,T, — Tay is of
order m +m' — p where
1

ilala

(A.1.6) ab= "

lee|<p

¢adb.

Moreover, for any p € R there exists K > 0 such that

(A.1.7) ITaTy = Tato |l £ g pru—m—mroy < KM (@) My (D).
In particular, if p €]0,1], a € I'M(R),b € T}* (R) then
(A18) ||TaTb - TabHE(Hu’Hu—m—m’er) S KM;n(a)M;n/(b)

(i7i) Let a € TT'(R). Denote by (T,)* the adjoint operator of T, and by @ the complex-
conjugated of a. Then (T,)* — Ty is of order m — 1. Moreover, for any p in R there exists a
constant K such that

(A.1.9) (T0)* = Tall popgu u—msry < KM (a).

Remark A.1.8. One can improve (A.1.5) by noting that the estimates for T,u involves
only the norm of dyu and not w itself. Indeed, introduce & = &(£) such that 7(§) = 1
for |€| > 1/3 and &(§) = 0 for || < 1/4. Then, by assumption on the cutoff function 6, we
have T, = T,R(D;) and hence (A.1.5) implies that

(A.1.10) 1Tt g < KM (@) Dl s
since ||R(Dg)ul| gp < ||0zu|| gyu—1. Similarly, (A.1.7) implies that

(A.1.11) T T — Tagptl] gmmirsp < KM (@) M (5) [0t s -

If a = a(z) is a function of x only, then Ty, is called a paraproduct. It follows from (A.1.5)
that if a € L*°(R) then Ty, is an operator of order 0, together with the estimate

(A.1.12) Vo eR, |[Toulge S llallpee lullgo -

A paraproduct with an L>-function acts on any Hélder space: for any p in R \ N we have
(A.1.13) Vo eR, |Taullge S llallpoe llullce -

221



If a = a(x) and b = b(z) are two functions then (A.1.6) simplifies to ab = ab and hence
(A.1.7) implies that, for any p > 0,

(A.1.14) HTaTb - TabHﬁ(Hu,Hufmfmurp) <K Ha”CP ”bHCP )
provided that a and b belong to C*(R).
Definition A.1.9. Given two functions a,b defined on R we define the remainder

(A.1.15) Rp(a,u) = au — Tou — Tya.

We record here two estimates about the remainder Rg(a,b) (see chapter 2 in [9]).
Theorem A.1.10. Let o € Ry and B € R be such that oo+ 5 > 0. Then

(A.1.16) 1R, Wl yass-3 gy < K llalgom lullms) »

(A.1.17) [1RB(a, u)|l arsm) < K lallgam) lull zom) -

We next recall a well-known property of products of functions in Sobolev spaces (see chapter

8 in [25]) that can be obtained from (A.1.12) and (A.1.17): If uy,us € H?(R) N L*>°(R) and
s > 0 then

(A.1.18) Jurug| s < K f|luallpoo [luallgs + K fuzll oo luall s -

Similarly, recall that, for s > 0 and F € C*=(C") such that F(0) = 0, there exists a non-
decreasing function C': Ry — R, such that

(A.1.19) IF@)lgs < C(IUN o) 1T s
for any U € (HS(R) N L*®°(R))V.

One has also the following result: for any (r,p,p’) € [0,+0o[? such that p' > p > r, there
exists a constant K > 0 such that

(A.1.20) [Taull gor < K lall g llull o -

One can use this estimate to study the regularity of the product fg when g is in some Holder
space. Writing fg = Trg + Tof + R5(f,g), it follows from (A.1.12), (A.1.20) applied with
r = 0 and (A.1.17) that, for any real numbers p’ > p > 0, the product is continuous from
HP x C*" to HP. By duality, the estimate (A.1.21) is true for any (p,p’) € R x Ry such that
p' > |p|. Therefore,

(A.1.21) V(p,p') € R x Ry such that p" > |pl,  |[fgllge S fllze 9l -

The estimate is obvious for p’ = p € N. When p’ € N one has to allow a small loss.

Here is a couple of identities which are used to simplify many expressions (see the proof of
(2.6.26), (2.6.27), the proof of Lemma 2.2.6 and the proof of Proposition 2.7.1).
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Lemma A.1.11. For any function a = a(z) in L>®(R) and any function u in L*(R), one has

(A.1.22) |Dg| Ty | Da| e+ 8, Tp0pu = 0,
(A.1.23) |Dg| Tu0ptt — 95T, | Dy u = 0.

Proof. There holds

Dy | T | Dy 1+ 0y TaBus =

oz [ GG L) dé dea

with
p(&1,&) = (J& + &l & — (& + £)€)0(&, &),

where 0(£1,&2) is as given by Definition A.1.2. Now, on the support of § we have |&1| < |&3]
and hence (&1 + &2)& > 0. As a result p = 0, which proves (A.1.22).

Set ¥ := |Dy| To0ru — 0, T, | Dy u. Since 0,5 = |D,| (8xTa8xu + |D.| T, | Ds| u) the idenity
(A.1.22) implies that 9,5 = 0 and hence ¥ = 0 since ¥ € H~2(R). This proves (A.1.23). O

We also need a commutator estimate to control the commutator of |D,| and a paraproduct.

Lemma A.1.12. (i) For any p € R there exists a positive constant K such that for all a €
CYR) and all f € H*(R),

(A.1.24) [T | Dol f = Dol (Ta )| g < K llallr 111 g7 -

(i7) For any € > 0 and any o €]0,+00] there exists a positive constant K such that for
all a € CYR) N H TY(R) and all f € C*¢(R) N H°(R),

(A.1.25) @Dzl f = Dol (@f)|| o < K lallca 1£ e + K N1 fllcrse lall o -

(7i1) For any € > 0 and any o € [1,4o0[ there exists a positive constant K such that for
all a € C°TE(R) and all f € H°(R),

(A.1.26) |a|Del f = 1Ds| (af)]| o < K llallgosrse 1]l o -

Remark A.1.13. The estimate (A.1.25) is not optimal (see [33] for sharp results).

Proof. To prove (A.1.24), write [Ty, |Da|] f = [Ta, Ti¢)] f+Ta(|De| = Tie)) f — (|1 D] — Tig)) Tuf »
and use the bounds

Vo € Rv H [Taaﬂﬂ] gHHU’ 5 ||(l||01 HgHHU )
V(O’, OJ) € Rza H’Dx’g - CZ—'IflgHHU/ 5 Hg”H‘77

where the first estimate follows from (A.1.8) applied with p = 1.
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To prove (A.1.25), rewrite the commutator [a, |D,|] f as
[Ta, |Dz|] f + (@ = Ta) |Da| f = |Dal (a — Ta) f.
The first term is estimated by (A.1.24). To estimate the last two terms, we use the bound

(A.1.27) Vre] —1,+00f, |lag—Tug|

e S llallor 191l + 19l pos llall e s

which follows from the paradifferential rules (A.1.12) and (A.1.17) (by writing ag — Tog =
Tya+ Rg(a,g)). By using (A.1.27) with r = o or 7 = 0 — 1 > —1, we find that

10| (af = Taf)l| o < [[(@f = Tal)| grosr S Nlallen 1l gze + 11| oo lall o s
|alDal f = Ta [Dal f[| o < llaller 11Dal fll o + 11Dl fll < lall o -

Since |D,| is bounded from C'*¢ to C° (see (A.2.3)), this completes the proof of (A.1.25).
To prove statement (iii), notice that (A.1.20) and (A.1.17) imply that

la|Dg| f =Dzl (af) = [Ta, [Dall fll o S If 1 llallgosrse -
Then (A.1.26) follows from (A.1.24). O
In Chapters 3 and 5, when studying the quadratic normal forms, we see that there is a small
divisor issue at low frequencies. To help the reader, we end this section with two pictures
which describe the support properties of the function 6 as well as the function ¢ defined by

C(&1,82) = 1—60(&1,&2) — ((&2,&1) (so that the remainder Rpg defined by (A.1.15) is a bilinear
Fourier multiplier with symbol ().
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Figure 6.1: The support of the cut-off function 0(;,&2) is in grey. The set of points (£1,&2)
where 0(£1,&2) = 1 is in darker grey.

Figure 6.2: The support of ((£1,&2) = 1 — 0(&1,&2) — 0(&2,&1) is in grey. The set of points
(&1,&2) where ((&1,&2) = 1 is in darker grey.
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A.2 Estimates in Holder spaces

Here we gather Holder estimates. It is convenient to work in the Zygmund spaces Cf, p € R
whose definition is recalled here.

Choose a function ® € C§°({&; |£] < 1}) which is equal to 1 when [ < 1/2 and set ¢(§) =
®(£/2) — ®(&) which is supported in the annulus {§; 1/2 < |¢] < 2}. Then we have for { € R,

(A.2.1) L=+ 62779,
j=0

which we shall use to decompose temperate distributions. We set A; = ¢(277D,) for j € Z.
We also use in the paper the notation Syv instead of ®(Dy)v.

Remark A.2.1. For p € R, if u € H#(R) then the series > Aju converges to ®(Dy)u.

-1
Jj=—00
Definition A.2.2 (Zygmund spaces). For any s € R, we define C$(R) as the space of tem-
perate distributions u such that

(A2.2) s = 19(De)ull-c +5up 2™ | Aju] o < oo
1=

We recall the following result (see [38, Prop. 4.1.16]).

Proposition A.2.3. Ifs >0 and s ¢ N then C(R) = C*(R) and the norms ||-||cs and ||| cs
are equivalent.

Proposition A.2.4. i) Let v €]0,+o00| with v ¢ %N. There exists a constant K such that,
forall z <0 and all f € C2ts satisfying |Dy| f € L3(R),

(A.23) 11Dzl £l < K]|1Dal? £

CW+%— :

i1) For all 6]1/2,4—00[\%1\1, there exists K > 0 such that, for all f € C7 satisfying |Dw|% fe
L*(R),

(A.2.4) [[=XE fllors < K[l f]l e

(A.2.5) 110272 0 fll oy < K[ £

i11) Let r € R, v €]0, +o0[ with v € N. There exists a constant K such that, for any v €]0,1]
and for all f € CY(R) N H"(R), there holds

L
(A.2.6) Hfler = K| I flle + FI1E" 11F 117 ]

where H = |Dy| ™ 8, is the Hilbert transform.
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Proof. Let us prove (A.2.6). Consider j in Z and a C*° function ¢ with compact support
such that ¢ = 1 on the support of ¢ and ¢ = 0 on a neighborhood of the origin. Then

AHf =5 [ etoeie) fle) i tie)ag

— o [ GO, ) el i€) o’ de

=2 /E(2j(x —2")A; f(a") da’!

where

B() = 5= [ €"5(0) 167 (i) de

Since E(y) and y2E(y) are bounded (using an integration by parts), we have E € L'(R).
This implies that

(A.2.7) [AHS]| oo S NAGFI oo
and hence, using (A.2.2), for v in ]0, +00[\N, we have

(A.2.8) sup 27| A H || o S sup 2718 fll oo SIS Nl -
Jj=0 j>0

It remains to estimate the low frequency. Consider j < 0. Using (A.2.7), the estimate
[Ajull oo < 2772 || Ajull,> and the fact that H is bounded on L2, we get

1AM | oo = IAHFIL NAHS |
S 29 FI 18 N7
Now, for any r € R and j <0, [|A;fll;2 S fll g < I flgr- Thus
IAH N oo S 292\l 1115

Since ;g 2v1/2 = O(1) it follows from Remark A.2.1 that || ®(Dy)Hf| e S IFIE 11 F] 5
The wanted estimate (A.2.6) then follows from (A.2.2) and (A.2.8).

The proof of (A.2.3), (A.2.4) and (A.2.5) are similar. Let us prove (A.2.3). For j in Z, write

D218 = [ By~ o)(Dul} £)(o")

where
1

Ej(y) = 7

[ et o) ag
satisfies || E|| . < 27/2. Consequently,

(A.2.9) 11Dl 271|272 1022 A £]].

~
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Since ). 21/2 < 400 (and using Remark A.2.1) we thus have

(A.2.10) 19(D2) D2 £]] o < [l1Dal? £ -

By combining (A.2.9), (A.2.10) and using (A.2.2) we obtain the wanted estimate. O

A.3 Identities

Consider a smooth solution (7, 1) of the water waves system

O = G(n)v,
(A.3.1) @¢+n+;@wf—QTI%@ggGWW+am@w2=&
Set
:G@ﬁzgﬁwﬂ V = 0,0 — (B(n)¢)0un

anda=1+ 0B+ VJ,B.

Lemma A.3.1. There hold

(A.3.2) o = B — Vn,
1_, 1,

(A.3.3) oY +n+ 5V + BVOyn — 5B =0,

1 1
(A.3.4) O — Bow = —n — 5V - 5B,

1 1
(A.3.5) O+ VO = —n+ 5V 4+ B,
(A.3.6) 0V + Vo,V +ad,n = 0.

Proof. The equation (A.3.2) follows from B — Vd,n = G(n)y (see (2.0.3)). To prove (A.3.3),
we begin by noticing that

(0:0)? = (V + BOyn)? = V2 + B*(0,n)? + 2BV 8,1).
Since

(020021 + G(n))’

(A.3.7) 1+ 02

= (1+ (9,m)*)B?,

this yields

1 (8andath + G(n))?
2 1+ (9.n)2

(A.3.8) %(8901/))2 — = %V2 + BVO,n — 132,

2
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so (A.3.3) follows from the second equation of (A.3.1). Now (A.3.4) can be verified by a direct
calculation, using 9;n = B — V,n and (A.3.3). In the same way, (A.3.3) and the definition
of V imply (A.3.5).

To prove (A.3.6), write

oV +Vo,V
= (at + Va:c)(a:cw - Baxn)
= 0,(O) + VO, b)) — (0, B + V0, B)yn — BO,(0yn + Voyn) + R,

where R = —0,V 0,0+ B0,V I,n = —(0,V)V. Then, it follows from (A.3.2) and (A.3.5) that
1 1
AV +Va,V =0, (—n +5V2+ §B2> — (OB + VO, B)dyn — BB + R.

Now, observing that R + 1/20,V? = 0 and simplifying,
oV +VoV+(1+0B+V9,B)on=0,
which completes the proof of (A.3.6) since a =1+ 0,B + V9, B. O

Lemma A.3.2. There holds

(A.3.9) a= 1+Vd,B— B3,V — %G(n)VQ - %G(n)B2 - G(n)n) :

Proof. Starting from B — V9,1 = G(n)y we have
B — (0,V)0yn — VO 0z = 01G(n)1).

We then use the identity 0,V + V9,V + adyn = 0 (see (A.3.6)) to obtain that

B+ a(0,n)* + V8,V — VOdun = 0,G(n),
and hence, using that by definition of a we have B =a—-1-V3d,B,

(1+ (0em)?)a = 1+ 0G ()t + VA0 + VO B — VO,V Ou.
Now we have (see [32, 35] or the proof of Lemma 4.1.2)
(A.3.10) XG ()Y = G(n)(Opp — Bom) — 0-(V ),
and hence
(14 (8em)®)a = 1+ G(n) () — BOm) — (82V)(0pn + Vun) + VO, B.

Since Oyn + Voyn = B (see (A.3.2)), to conclude it remains only to use (A.3.4). O
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Remark A.3.3. One can further simplify (A.3.9) to obtain

o= e (14 V@V + BO@B - 3GV? - 56mB* - Gl )

Indeed
(A.3.11) G(n)B=-0,V, G(n)V =0,B.

We have already seen the first formula (see (4.1.7)) and the proof of the second is similar: it
relies on the uniqueness result result of Proposition 1.1.6 and the fact that 9,¢ is the harmonic
extension of V' = 0,¢|y—,. Therefore, by definition of the Dirichlet-Neumann operator,

G(n)V = (8yam¢ - am'r/aggb) | y=n
= (020, + 0ud20) | _,
= 8x (ayqb) | y=n

and hence G(n)V = 0, B since dy¢ is the harmonic extension of B = 0y¢|,—.

A.4 Local existence results

The goal of this appendix is to show that Proposition 1.2.1 is just a restatement of Theo-
rem 4.35 in the book of Lannes [35], and to prove also a local propagation of Sobolev estimates
for the action of vector fields on a solution of the water waves equation.

To help the reader we recall the equations and the statement of Proposition 1.2.1. We consider
the system

8t77 = G(T,)w7

1
O+ 0+ 500) - 5

(A.4.1) 1
(1+(9:n)?)

(G + Dumduip)® = 0.

Proposition A.4.1. Let y be in ]7/2,+0o[\iN, s € N with s > 2y —1/2. There are &y > 0,
T > 1 such that for any couple (ng, o) in H3(R) X H%’V(R) satisfying

S 1
(A.4.2) Yo = Tnieypeto € H2*(R),  lnoll + [|[Da]2 vol| -3 < do,

equation (A.4.1) with Cauchy data n]i=1 = 1o, Y|t=1 = o has a unique solution (n, ) which
is continuous on [1,T| with values in

. l . l s
(A.4.3) {{10) € B R) x B3 (R); % — Togypn € H(R) }.
Moreover, if the data are O(g) on the indicated spaces, then T > c/e.
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Proof. Let us check that the assumptions of Theorem 4.35 of Lannes [35] are satisfied under
the hypothesis of Proposition A.4.1. We have to check that the finiteness of the quantity
(4.66) of [35] with tg = v — 3/2, N = s, which may be written

(A.4.4) HID;EI% %Hiﬁ + |Imol| 3= + Z HID;EI% (8240 — (B(10)0)05m0) || 12

laf<s
is actually equivalent to
(A.4.5) Yo € H3Y, my€ H®, o — Thiyypemo € HZ*.
We also need to verify assumption (4.69) of [35], which follows from the inequality

1
(A.4.6) llao =1l <5

where g is given by (3.1.5) (see also (3.1.7)) with (1, 1) replaced by (1o, %0). Let us write
for |a| < s, setting By = B(n9)vo,

02 [1D2]7 (o — Tiymo)] = D27 ((0240) — Bo(%n0)) — | Dl [0%, Tz, ] m0

(A7) 1
+ ‘DIP (TagnOBo + RB(agno, BQ)).

Both assumptions (A.4.4) and (A.4.5) imply that |Dm|% 1o belongs to C7~3 and that Oz1o is
in C771, so that by (1.1.44), G(n)wo and so By are in C?~!. Since v — 1 > 1, the symbolic
calculus of appendix A.1 shows that [02, T,] sends H® to H5~*t! ¢ H'/? for a < s, so that
the commutator term in (A.4.7) belongs to L?. The boundeness properties of the remainder
given in (A.1.17) show in the same way that Rg(9no, Bo) is in HY? if 0%no is in L?. The
equivalence between (A.4.4) and (A.4.5) will follow if we show that Tya,,, By belongs to H 172,
which follows from (A.1.20) and the fact that By is in C7~!. Finally, notice that (A.4.6)
follows from (3.1.8) applied with 7, replaced by ng, 1. O

Proposition A.4.2. Assume that s and v are such that

1 1

Consider a solution (n,1) of (A.4.1), defined on the time interval [To, Th], which is continuous
on [To, T1] with values in (A.4.3) and such that the Taylor coefficient is bounded from below
by a positive constant. Assume that, at time Ty, (no,%0) = (n,¥)|i=1, satisfies

(28,)10 € HY(R), (29,)0 € H2573 (R),

(A.4.8)
(202) (Y0 — Tp(ne)we0) € H25Y(R).
Then
Zn e [Ty, Th); "\ (R)),  Z4 € CO([Ty, Tu); HZ°2(R)),
(A.4.9)

Z(¢ — TB(n)wT]) S CO([T(),Tl]; H%’s_l(R)).
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Proof. Since the equations (A.4.1) are invariant by translation in time, we can assume without
loss of generality that 1o = 0.

The proof is based on the analysis in Chapter 2 and the following observations:

o If (n,9) solves (A.4.1), then the functions 7, and 1) defined by
(A.4.10) mt,z) =272 (M, N%2),  a(t,z) = A% (A, APa) (A>0)
are also solutions of (A.4.1).

e For any function C! function u, there holds

— d 2
(A.4.11) Zu(t,x) = au()\t,)\ x) et

e A bootstrap argument: It is sufficient to prove that there exists T' > 0, depending only
on M defined by

1 1
(A.4.12) Myi= sup | |n(®)ll e + [1Ds12 6(0)] ey + 1517 ()] ],
te[0,T1]
such that
Zn € C°[0,T); HS"Y(R)),  Z4 € CO([0, T); H2"%(R)),
(A.4.13)

Z (% = Tpgyym) € CO0,T]; H2"1(R)).

Let us explain why it is sufficient to prove (A.4.13). Using the equations satisfied by 7,
Y and ¥ — Tpyn (see (A.4.1) and the second equation of (A.4.19)) it is easily seen
that

am € CO([0, Ty); HSH(R)),  dyp € CO([0, Ty); H2* 2 (R)),
(A.4.14) .
0 (¢ — Tpgyyn) € CO([0,T1]; H2°"1(R))

(and hence the same result holds with 0; replaced by td;). Since z0, = %(Z —t0y), it
follows from (A.4.13) and (A.4.14) (evaluated at time T') that

(@0,)n(T) € HY(R), (20,)%(T) € H>* 3 (R),
(202) (Y(T) = Tpmrywayn(T)) € H2*"Y(R).

Since the system (A.4.1) is invariant by translation in time, this means that we can apply
the previous result with initial data at time 7" instead of 0. This yields that (A.4.13)
remains true when [0,7] is replaced by [0, min(27,7})]. Iterating this reasoning, we
obtain (A.4.9).
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We begin the proof by fixing some notations and explaining its strategy.
NOTATIONS

Recall that, given two functions n and ¢ we use the notations

G Ozn) 0y
(A.4.15) B— (”)f:(g ?77)72) YV — 0 — By, w=1— T,
Also we define
(A'4'16) F(T/)w = G(T/)w - ‘D:c‘ w + a:c (Tv?’]),

and (recalling that a is a positive function by assumption)

1 1
a=————(14+V8,B—Bd,V —=G(n)V?-
(A.4.17) 1+ (9zn)? < 2 ¢)

a=+a—1.

3G ~ G ).

Then, it follows from the proof of Proposition 3.1.8 that, with the notations

(A.4.18) u=|{ " o ((d+Ta)n
|Dy|2 % 7 |Dz|2 w 7

one has

QU + Ty 9,U — (Id + Ty) | Dy|? U? = F,

(A.4.19) . )
OU + |Dy|? Ty 1/20,U° + Dy |7 ((Id + To)U') = F2,
where
Fli= (Id+ To) (F(n)y — To,vn) + {Tata + TvTo,a + [Ty, Tu] 85”}77’
and

F?= ‘D:c’% (TaTa - Ta2)77

1

+ | D212 (Ty Ty, — Tva,,)B
1

+ |D |2 (Tvo,B — TvTs, B)N

1 1 1 1
+ 5 |Dm|2 RB(B7B) - 5 |Dm|2 RB(V7 V)
+ | Da|2 Ty Rs(B, 8:n) — | Dyl Rp(B, V).

Notice that we write here the source terms as F', F? instead of F!, F? as we wrote in the
proof of Proposition 3.1.8. This is in order to avoid confusion with F' which is used later on
as a compact notation for F'(n)i.
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STRATEGY OF THE PROOF

Consider A in [1/2,3/2]. We define (ny,%») by (A.4.10) and denote by By, Vi, wx, ux, U,
ay, ay, Fy the functions obtained by replacing (n,) by (nx, 1)) in the previous expressions.
These functions are defined for ¢ less than 77 /X < 277/3.

The remark (A.4.11) implies that, when A tends to 1,

m—"n U= wy—w
A—1" A—1" A—1

converges to Zn, Zv, Zw, respectively, in the sense of distributions. To prove the wanted
result, we have to prove a uniform estimate for these quantities. Moreover, by using the
bootstrap argument explained above, it is sufficient to prove an uniform estimate on some
time interval [0, 7] with 7" > 0 possibly small. Given T in [0, 27} /3], we define

MAT) 1= sup [ IO = 0(0)] s + [1D21? (02(6) = w(0)

<3
H™2

(A.4.20)
+ || IDa]2 (wa(t) — w(t))]

|
Our goal is to prove that there exist two constants C' > 0 and T" > 0, depending only on Mg
as defined by (A.4.12), such that

(A.4.21) M(T) < C|XA—1].

Notice that assumption (A.4.8) implies that, at time 0,

(A.4.22) My (0) = O(|A —1]).

Hereafter, we denote by C' various constants depending only on Mg, whose values may vary
from places to places.

To prove (A.4.21), we shall prove three inequalities. The key step is to prove that there exists
C' depending only on Mj such that, for any T in [0, 27} /3],

(A.4.23) 1Ux = Ul e oz -1 yy < €€ (1A = 1 + TMA(T)).

We shall also prove that one can control a lower order norm. Namely, given T in [0, 27} /3],
one introduces

(A4.24) mA(T) = sup_ | [ma(t) = n(®)llges + |1 D212 (0a () = @) g -

te[0,T
We shall prove that, for any 7" in [0,277 /3],
(A.4.25) ma(T) < CeT(I\ — 1| + TM,\(T))
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and

Consequently, by combining these inequalities, we obtain that there exists C' > 0 depending
only on My such that, for any 7" in [0,27}/3],

(A.4.27) M\(T) < Ce™® (A — 1| + TMA\(T)).

Then, there exists T > 0, depending on Mg, such that My(T) < Ce®|X\ — 1| + $M,(T) and
hence My(T) < 2CeC|\ — 1].

To prove (A.4.23), we form an equation for Uy — U and estimate its H5 !-norm. Write the
equations (A.4.19) under the form

(A.4.28) L(V,a)U = F.
Since (1, 1)) solves (A.4.1), we have

(A.4.29) L(Vy,ax)Uy = Fa.
It follows from (A.4.28) and (A.4.29) that

(A.4.30) E(V)\, CM)\)(U)\ - U) =F\—F— (,C(V)\,Oé)\) - £(V, a))U.

The proof is then in four steps. Firstly, we state an energy estimate for the equation
(A.4.30). Secondly, we prove various estimates for A(ny)y¥x — A(n)y where A(n) denotes
either G(n), F(n),... This allows us to estimate the L>([0,T]; HS~!)-norm of the right-hand
side of (A.4.30). Thirdly, we estimate the L>°([0, T]; H*~1)-norm of Uy—U. Then we conclude
the proof.

STEP 1: Energy estimate

Here we state and prove an energy estimates for the equation (A.4.30).

Lemma A.4.3. Let p in R. Given 0 < T, consider two real valued functions V and &
such that V belongs to C°([0,T];C*(R)) and & belongs to C’O([O,T];C%(R)). Assume that
U e CO[0,T]; H*(R)) and F € LY([0,T]; H*(R)) are real-valued and satisfy L(V,&)U = F.
Then

(A.4.31) 1T g < 4O (UTO) | g + 1] e o1y )
where

J— (4 At
(A.4.32) AW = sw V@) o + 360 3]
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Proof. Write

L~ 1 *\ 771
<TV@;EU1,U1>H“><H” — §<(T‘~/8x + (Tf/a‘r) )U17U1>HHXHM‘

Since V is real-valued and C' in z, (A.1.9) implies that

1900+ (T502) | s gy S 1V Il
and hence
(A.4.33) (T 0.0, 0 ) | S [V el |01

Similarly, writing

1 1
‘D:c‘2 Tf/‘g‘*lﬂax = Tf/ax + UDQ;‘? ,Tms‘fl/zax]

and estimating the L(H*, H*)-norm of the commutator by means of (A.1.8) applied with
p =1, we find that

(A.4.34) (< D42 T 120, U2, U2>

Viel SV e 10

H#xHH
Also, using (A.1.9) with p = 1/2 to estimate the E(H“_% , H*)-norm of Ty — (Td)*, we obtain
that

(A.4.35) (< D2 <(Id v Td)ffl) , ﬁ2> - <(Id T) | Da|? U2, ﬁ1>

HHrxH#P HHixHH

- ~ 12

S llall oy 101 -
By classical arguments, one can further assume that U is C! in time with values in H¥, so
that the time derivative of HUHZH is given by 2<8tU, U>
previous estimates we find that

fuxpn- LThen, by combining the

d - N ) . . i
101 S (17l + &l ) 1915 + 1 a1 e

which yields the desired result. O

STEP 2: Estimates for the differences

Lemma A.4.4. Consider s >4+ 1, ni,n in H3(R) and ¢ € H%’S_%(R). Set

1
(A.4.36) M = [mllgs + In2ll s + |1 Dal2 ]

3
There exists a constant C' depending only on M such that

(A.4.37) |G(n2) — G| gs—2 < Clinz — mill gs—1
(A.4.38) (n2)Y — B(n)Y || a2 < C'|ln2 — mill o1 ,
(A.4.39) WV (n2) — V(m)vll gs—2 < Clinz —mill gs—1,
(A.4.40) (m2)Y — Fn)Yl gs— < Cllng — mll o1 -

’11
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Proof. For y in [0, 1], introduce

g(y) = G(m + y(m2 —m)), b(y) = B(m + y(n2 —m)),
v(y) = V(m +yle —m)), f(y) = F(m +y(m2 —m))y.

To prove (A.4.37), (A.4.38), and (A.4.39), we have to estimate the H*~2-norm of g(1) — g(0),
b(1) — b(0), and v(1) — v(0). To do so, if ¢ denotes either g,b or v, we write

1
(A.441) o) = 2Ol < [ /)

Hs—2 dy

We shall prove that, for any fixed y in [0, 1], ||¢/(y)| gs—2 < C'[|m — 12]| ys—1 for some constant
C depending only on M defined by (A.4.36). Similarly, to prove (A.4.40), we shall prove that
|l W)l grs—1 < C'||m — n2l| gs—1 for some constant C' depending only on M.

Let us prove (A.4.37). Fix y in [0, 1] and set

ny)=m+ym—m), n=ny)=mn—mn.

We use the property, proved by Lannes [32], that one has an explicit expression of the deriva-
tive of G(n)1 with respect to n. As in (2.6.8), one has

(A.4.42) 9'(y) = =G(n(y)) [1b(y)] — 0x [nv(y)].

In this proof, we denote by C' various constants depending only on M defined by (A.4.36)
(and independent of y € [0,1]). With this notation, it follows from (2.1.2) and the Sobolev
embedding that ||b(y)]| -1 < C and [Jv(y)||ys—1 < C. Also, it follows from (2.1.2) and the
Sobolev embedding that for any s > 3 + %, any y in [0,1] and any f in H25 2 (R),

IG(W)) flggeer < C||IDal? f|

1.
H°"2

By using this estimate with s replaced by s — 1 and f replaced by B, we find that

|G () [7b(y)]]

Hs—2 é CHnb(y)‘ Hs—1°*

Since H°~!(R) is an algebra, this gives
|G () [ab(y)] |

On the other hand, using the fact that H*~!(R) is an algebra, one has

102 [0 ()] |

sz < C IO o 10l gromr < O] gyos-

w2 S Wl 10 @) g2 < C il o -

By combining the two previous estimates we conclude that there exists a constant C' = C(M)
such that, for any y in [0,1], one has ||¢'(y)|| gs—2 < C ||| gs-1. Then (A.4.37) follows from
(A.4.41).
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Since

m (9(y) + (Du)0un(v)),  v(y) = 0utd — b(y)Dun(y),

and since H57?(R) is an algebra for s > 2 + 1, the previous estimate for the H5~?(R)-norm

b(y) =

of ¢'(y) easily implies that

(A.4.43) V' ()]

Hs—2 + H,U,(y)‘ Hs—1 <C ||”;}||H5*1 )
which proves (A.4.38) and (A.4.39) (using (A.4.41)).

Let us prove (A.4.40). We want to prove that || f'(y)|| gs—1 < C'||m — n2| gs—1. Since

FW) = 9) — D] (¥ — Tyuyn(y)) + 02 (Toyn(y))

it follows from (A.4.42) that

) ==Gm) [nby)] — 0z [1v(y)] + [Dal Tyt + 02Ty
+ [Dz| Ty (yn(y) + 0= Tor(yyn(y)-

Replace G(n(y)) by G(n(y)) — |Dz| + |Dz| in the first term of the right-hand side to obtain
f'(y) = A1 + Az + A3 with

Al = ’Dx’ (ﬁb(y)) - a:c (ﬁv(y ) + ’Dx’ Tb(y)ﬁ + 8xTv(y)777
Ay = —(G(n(y)) — |Ds| ) (7b(y)),
Az = [De| Ty (yn(y) + 0Ty yyn(y)-

Let us estimate the HS~'-norm of Ay. Since s —3/2 > 3 — 1/2, we can apply the estimate
(2.5.1) with u = s (and the Sobolev embedding) to obtain that

sl zos < C (W)L ) 102 (b(v))]

3.
H%

Now write
1
[1D2]2 (7b(y))]

This prove that [|Az|| gs—1 < C'[|9]] gs—1-

g Sl 1) s < Cllillgecs

Next we estimate the H5~!-norm of A3. It follows from (A.1.12) that

1Al st SN0 W] oo 10 15 + [0 @) oo Im@) ] s -

Since s > 5/2, the Sobolev embedding implies that

1A e S [V ()]

o2 @) s 4 [V @)| oz 1) [l 7 -
So the estimate (A.4.43) for ||/ (y)|| gs—2 and [|v/(y)]| ys—2 imply that ||As| ge—1 < C||7]] s-1-
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Finally, it remains to estimate the H* !'-norm of A;. Here we cannot estimate the terms
separately: we need to exploit some cancellations and follow the proof of Lemma 6.8 in [3].
Firstly, we paralinearize 7b(y) and nv(y) (see (A.1.15)) to obtain that

— 0u(Tyv(y)) — Oz (R, v(y)).

Directly from (A.1.17) and the Sobolev embedding we have

11D (Rs(9,b(y))|
[1D=] (Ri(i v(y)) |

ot S 0l s 0@ | gor < Cllill gor s
1 S Wil 10 @) L2 < C il g1 -

It remains to estimate the H5 ‘-norm of A; := — |D,]| (Tyb(y)) — O0x(Tyv(y)). This we now
do using the identity G(n(y))b(y) = —0v(y) (see (A.3.11) or (4.1.7)). Write

Ay = =Ty | Do | by) — Tyduv(y) + [Ty, [ Dl [0(y) = To.no(y),
and replace 9,v(y) by —G(n(y))b(y) in the second term, to obtain

Ay = Ty(G(n(y)) = IDx] )b(y) + [Ty [Dx] [(y) = To,no(y)-

Using (A.1.12), (2.5.1) and the Sobolev embedding, we have

IT:(G(n(y)) — |Da| )b(y)]

e S il [[(G(y)) = [Dal )o(y)|| s
S Clll s 116 | rs=1 < C {lll o -

On the other hand, using (A.1.24) and the Sobolev embedding, we have

[T, 1D o(w)]

-1 S Illon 18| grs—1 < C 1l s -

Also, using (A.1.12) and the Sobolev embedding H*~2(R) C L*°(R), we have

| To,mv(y))|

-1 S Nl s 0@ -1 < Cllall o1 -

This completes the proof of the lemma. O

Use the abbreviate notations

G =Gy, B=DBny, V=Vmny,  F=F@ny,
Gy =G(m)Yx, Bx=Bm)vx, V=V, Fx= F(m)va.
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Lemma A.4.5. There exists a constant C' depending only on Mg such that for any X\ in
[1/2,3/2] and any T in (0,211 /3],

(A.4.44) 1Gx = Gl qo,rpsms—2y < CMA(T),
(A.4.45) 1By = Bl (o,rp;m5-2) < CMA(T),
(A.4.46) VA = Vliseqoapms—=y < CMA(T),
(A.4.47) 1Ex = Fllpooqoryms—1y < CMA(T),
(A.4.48) lax — a||L°°([O,T};HS*3) < CM(T),
(A.4.49) lox = el oo o.rpsms-sy < CMA(T),
(A.4.50) 1k — Buarl e ooty < CMA(T):

Proof. We shall see that these inequalities hold with M) (T) replaced by

(A4.51) sup | (t) = 00l re-s + [[1D2 1> a0 = ¥@)] g ]

te[0,T

Notice that, since 1y = A73(\t, \2z), we have

(A.4.52) sup Sup} |:||77)\||H5 + H|D:v|% 1/),\(75)|

1} < M,
Ag[%,g}te[O,T

H*"2

where M, is defined by (A.4.12).
To prove (A.4.44), we write

Gr— G = (G(m\) — G(n)r+ G(n) [vr — ¥].
The estimate (A.4.37) and (A.4.52) imply that

[(G(m\) = G(m) v

On the other hand, the estimate (2.1.2) and the Sobolev embedding imply that

Hs—2 <C H77)\ - "7||H5*1 .

G [n = ¥]|| yea < C||IDal? (1 — )]

3.
H°™2

By combining the two previous estimates we obtain (A.4.44).

The proof of (A.4.45), (A.4.46), and (A.4.47) are similar. Now the estimate (A.4.48) fol-
lows from similar arguments, the previous estimates and the formula (A.3.9). The estimate
(A.4.49) follows from (A.4.48) and the definition of & = /a — 1. To prove (A.4.50), one
differentiates in time the formula (A.3.9) using the rule (3.1.6) and then one replaces in the
expression thus obtained 0;V and dyn by the expressions given by Lemma A.3.1 (and one
replaces 9B by —V0,B + a — 1 according to the definition a = 1+ 0;B + V0, B). O
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STEP 3: Energy estimates for Uy — U

Hereafter, we denote by C' various constants depending only on My (defined by (A.4.12)),
whose values may vary from places to places. With this notation, it follows from (2.1.2),
(3.1.8) and the Sobolev embedding that

(A.4.53) IVllgs <C Bl <€, laller < C.

Remembering that

(A.4.54) LWy, o) (Uxy —U) = Fx — F+ (L(Va,an) — L(V, o)) U,

the wanted estimate (A.4.23) will be obtained by applying Lemma A.4.3 with

(Ad55)  U=U\-U, V=V, a=ay, F=F —F+(LVra)-LV,a)U.

Since V) = A™1V(\t, A2z) and oy = a()Mt, \2x), as can be checked by direct computations, it
follows from (A.4.53) and the Sobolev embedding that

sup || Vall pee(po,2m zicry) S IV e o mpermy) < €

A A€[3,3]

4.56

( ) sup || by el by = O
red,z o E(027/3CE ®) Y TEILe(0 0 (R) T

Similarly, for any 7" in [0,27} /3], the estimates (A.4.46) and (A.4.49) imply that

Sgllpg} VA =Vl oo oy Loe ) < CMAT),
AE[5,2
(A.4.57) o

sup ||OZ)\ - a”Loo([O’T];Loo(R)) < CM)\(T)

Ael3,3]

We use (A.4.56) to control the quantity A defined by (A.4.32). Our next task consists in
proving that the source term F defined by (A.4.55) satisfies

(A.4.58) 1F ] < TCM(T).

[0, T];Hs—1)

To do so, it is obviously sufficient to prove that H]:"HLOO([ < CM(T). By (A.4.57)

and (A.1.12) we have

0,T);Hs1)

[(£(Va, an) = L(V; ) < CM(T).

UHLOO([O,T};HS*U

On the other hand, by using the paradifferential rules recalled in Appendix A.1, the estimates
proved in Lemma A.4.5 imply that

H.F)\ < CM\(T).

B ‘FHLOO([O,T};HS*U

241



This completes the proof of (A.4.58) and hence gives the wanted estimate (A.4.23).
STEP 4: End of the proof
It remains only to prove (A.4.25) and (A.4.26).

Let us prove that

(A.4.59) llx = 77”L°°([0,T];HS*2(R)) < CeTc(‘)‘ -1+ TM,\(T)),

(A.4.60) [1D2]2 (5 — < CeTO(|A = 1] + TMA(T)).

w)HLw([O,TLHS*%(R)) =

Using the previous notations, write 0;(n) —n) = G\ — G. By integrating in time this identity,
it follows from (A.4.44) that for any T in [0,277 /3],

A () = () gs—2 < 112 (0) = 7(0) || gro—2 + TCMA(T).

So the estimate (A.4.59) follows from M) (0) = O(|]A —1]) (see (A.4.22)) and the fact that
72 (0) — n(0)|| js—2 is smaller than M, (0). The estimate (A.4.60) is proved similarly. This
proves (A.4.25).

It remains only to prove (A.4.26). By definitions (A.4.20) and (A.4.24), and (A.4.18) we have

My(T) 1= sup L1 ®) = n(®) s + [1D21? (r () = ()] -y

te[0,T

+||U% - U?|

H571:|

and

mA(T) = sup | [nn(8) = n(t) | gz + || D217 (1) = (1)

3]
t€[0,T] H2

So to prove (A.4.26), we need only prove that
(A461)  lox =l pee o)1 (®)) < CmA(T) + CIUN = Ull poo 0,73, 15-1 (m)) »
1
(A462) H‘DI, 2 (w)\ - w)HLOO([O,T 3 S Cm)\(T) + C HU)\ - UHL“’([O,T];Hsfl(R)) .

J;H> 2 (R))

We shall prove (A.4.61) only. To do so, we shall write ny —7 in terms of U )1\ —U"! and in terms
of a smoothing operator acting on 7, —n. To do so, remembering that o = y/a — 1, we first
write that

(A.4.63) T an = (Id+Ta)n + (T1 — Id)n.
Then we let act a parametrix of T' 7, that is T} Jvas to obtain

’I’]:Tl/\/aT\/aU—F (Id_Tl/\/ET\/E)n
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and hence, using (A.4.63),

(A.4.64) n="T,a(Id+To)n+ Ty 4T — Idn+ (Id — Ty 5T /a)n

Remembering that U! = (Id + Ta)n, this yields = KU' + Ry where
K=Tym R=Ty4T—-1d)+ (Id-T4;T/m)

Using obvious notations, one thus writes that

m —n=K\[U} — U] + Ry[ny —n]
+ (K — K)U' 4 (R\ — R)n,

and hence

lnx =l re=r < BN g1y [UX = U] e + IRAN ggare—2 gy ln = 11l o2

+ KN = Kl g o1, sy 10|

1 T = Bl g ey [0l o -

Notice that
U]

Hs—1 S C7 HT,”HS*1 S Cu H77>\ - T,”HS*2 S my.

Also, using (A.1.12) and (A.1.14) applied with p = 1, we easily check that
HK)\HL‘,(HS*LHS*U < C, ||R)\H[,(H5*2,HS*1) < C,

where one used again that ,/ay and 1/,/a, are uniformly bounded in L°°([0, (2/3)T}]; C*(R))
with respect to A € [1/2,3/2].

Finally, to estimate |[Kx — K| z(gs—1 gs—1y and [[Rx — Rl z(gs—1 gs—1) We apply (A.4.48) with
s replaced by s — 1, to obtain

llax — aHLoo([o,T};Loo) S llax — aHLOO([O,T};HS*‘l) < Omy(T).

Indeed, as mentioned in the proof of Lemma A.4.5, the estimate (A.4.48) remains true when
M,(T) is replaced by (A.4.51). O

We conclude this appendix by proving a technical result. Consider two functions n and
and use the notations recalled above (see (A.4.15) and (A.4.17)) for V and a. We consider
the operator C' defined by

1 RS
Cn,v)U = Ty -0,90:U" = To i 41p, 1y [Dsl U

N 1
1Del Ty, pyjg-1202U% + Dol To gy, U

The operator C' is of order 1. The following result states that its real part is of order 0 with
tame estimates for its operator norm.
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Lemma A.4.6. Consider o €]4,400[ and p € R. For any (n,vy) € C? x C3 such that
(n,1) belongs to the set £, introduced after the statement of Proposition 1.1.6, and for any
U= (U',U?) in H*1(R) x H**Y(R), there holds

2
(A4.65) | Re(Cn, )0, U) sncran| < K (Il + (1Dl %]l ) U150
for some constant K depending only on ||n]| . + H\Dx\% O] o

Proof. Set V =V —0,¢ and & = a+ 1 |Dy| . It follows from (A.4.33), (A.4.34), and (A.4.35)
that

So to prove (A.4.65) we need only prove that
Ve + 16],p < K(NNZ - where Ny = |1l + ||| Dal = 9|2,
Recall (cf (2.0.4)) that
(A.4.66) [Bllge-1 + IVl[ge-1 < K(Ng)Ny.
Since V — 0,9 = BJd,n the wanted estimate for V — 9,1 follows from the previous inequality
and the fact that C'(R) is an algebra.
Also, using (A.4.66) and applying (2.0.4) with 1 replaced by B2 or V2, there holds
1G B[ comr + |GV gorr < K(No)N,-
It thus follows from the identity (3.1.7) for a that
la =1+ G(mnllcr < C(N,)N;.
Now recall from (2.6.12) that, for any v > 3, there holds
IG@)% = [Dal Y2 < Cllnllo) 0l 11212 ] -y
By using this estimate with n = 1) we conclude that
la =1+ [Dalnllca < C(N,)N;.

So the wanted estimate for o + & |D,|n follows from the definition of o = v/a — 1. O
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