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Numerial simulation of a kineti model for hemotaxis.N. VauheletUPMC, Univ Paris 06, UMR 7598 LJLL, Paris F-75005 Frane ;CNRS, UMR 7598 LJLL, Paris, F-75005 Frane,and INRIA Projet BANG,Tel.: (+33)(0)1 44 27 37 72 Fax: (+33)(0)1 44 27 72 00E-mail addresses: vauhelet�ann.jussieu.frAbstratThis paper is devoted to numerial simulations of a kineti model desribing hemo-taxis. This kineti framework has been investigated sine the 80's when experimentalobservations have shown that the motion of bateria is due to the alternane of 'runs andtumbles'. Sine paraboli and hyperboli models do not take into aount the mirosopimovement of individual ells, kineti models have beome of a great interest. Dolak andShmeiser (2005) have then proposed a kineti model desribing the motion of bateriaresponding to temporal gradients of hemoattratants along their paths. An existeneresult for this system is provided and a numerial sheme relying on a semi-Lagrangianmethod is presented and analyzed. An implementation of this sheme allows to obtainnumerial simulations of the model and observe blow-up patterns that di�er greatly fromthe ase of Keller-Segel type of models.Keywords. Chemotaxis; Kineti equations; semi-Lagrangian method; onvergene analysis.AMS subjet lassi�ations: 92C17; 92B05; 65M12; 82C80.1 Introdution and modellingChemotaxis is the phenomenon in whih ells diret their movements aording to ertainhemials in their environment. A possible issue of a positive hemotatial movement isthe aggregation of organisms involved to form a more omplex organism or body. Manyattempts for desribing hemotaxis from a Partial Di�erential Equations viewpoint, i.e. fora large population, have been onsidered. At the marosopi level the most famous is thePatlak, Keller and Segel model [28, 34℄. Although this models have been suessfully used todesribe aggregation of the population (see [25, 26, 41℄ for surveys), these marosopi modelshave several shortomings, for instane they do not take into aount the detailed individualmovement of ells.Therefore another approah involving kineti equations to desribe hemotaxis has beenproposed. The so-alled Othmer-Dunbar-Alt system [31, 33, 35℄ governs the evolution of the
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distribution funtion f of bateria at time t, position x ∈ ω and veloity v ∈ V and of theonentration of hemoattratant S. The system writes in the following way :




∂tf + v · ∇xf =

∫

v′∈V

(T [S](v′ → v)f(v′) − T [S](v → v′)f(v)) dv′,

−∆S + S = ρ(t, x) :=

∫

v∈V

f(t, x, v) dv,
(1.1)ompleted with the initial ondition

f(0, x, v) = f 0(x, v). (1.2)The turning kernel T [S](v′ → v) denotes the rate of ells hanging their veloity from v′ to v.This system models the evolution of �agellated bateria suh as E. Coli. It has beenobserved that a baterium moves along straight lines, suddenly stop to hoose a new diretionand then ontinue moving in the new diretion until the ells reeptors saturate. The movementof the baterium is then due to the alternane of these 'run' and 'tumble' phases [1, 40℄. Cellsare able to ompare the present hemial onentrations to previous ones and thus to respond totemporal gradients along their paths. The deision to hange diretion and turn or to ontinuemoving depends then on the onentration pro�le of the hemial S along the trajetories ofells and detailed models have been proposed in [18, 19, 16℄. In [16℄ the authors propose toonsider simply a turning kernel of the form :
T [S](v′ → v) = φ(∂tS + v′ · ∇xS). (1.3)The rate of turning is greater if the gradient onentration along the trajetory ∂tS+v ·∇xS isnegative than when it is positive. Experimentally, in the absene of gradients of onentration,an individual ell of E. Coli performs a random walk with a mean duration of run times of

1s (see [30℄). Due to the in�uene of the hemoattratant a ell sensing a positive gradient ofonentration has a run 4 times longer. Then, in this simpli�ed model, we onsider that φ isa positive noninreasing smooth funtion; more preisely,
φ ∈ C∞(R), φ′ < 0, φ(z) =

{
1 if z < −α,
1/4 if z > α,

(1.4)for a given positive α small.In this work, we are interested in the evolution of the bateria onentration in a Petri box,whih is approximated by a bounded domain ω ⊂ R
2. The veloity of bateria has a onstantmodulus V , therefore we take V = SV := {v ∈ R

2 with ‖v‖ = V }. We denote Ω = ω×V. Thesystem an be then rewritten in the following way :





∂tf + v · ∇xf =

∫

v′∈V

φ(∂tS + v′∇xS)f(v′) dv′ − 2πφ(∂tS + v∇xS)f(v),

f(0, x, v) = f 0(x, v),

−∆S + S = ρ(t, x) :=

∫

v∈V

f(t, x, v) dv,

(1.5)This system is ompleted with the speular re�etion onditions
f(t, x, v) = f(t, x, v − 2(v · ν)ν), ∀x ∈ ∂ω, v ∈ V suh that v · ν(x) > 0, (1.6)2



where ν(x) is the outward unit vetor at the point x of the boundary ∂ω. And for the hemoat-tratant onentration, we set Neumann boundary onditions :
∂νS(t, x) = 0, ∀x ∈ ∂ω. (1.7)This system is omposed of a kineti equation oupled to an ellipti equation. Therefore wepropose in this work to use tehniques whih have proven their e�ieny for the numerial res-olution of the Vlasov-Poisson system in plasma physis to deal with the numerial approah ofsystem (1.5). Lagrangian methods like Partile-In-Cell methods whih onsist of approximatingthe plasma by a �nite number of maro-partiles are usually performed for the Vlasov equation(see [4℄). However, these methods are known to be very useful for large sale problems but arevery noisy and do poor job on the tail of the distribution funtion. To remedy this problem,Eulerian methods have been proposed. They onsist of disretizing the Vlasov equation on amesh of phase spae. Among them, �nite volume shemes are known to be robust and om-putationally heap [9, 12, 14, 22℄ but very onstrained by a CFL ondition. Semi-Lagrangianmethods are other kinds of Eulerian method allowing to obtain aurate desription of the dis-tribution funtion [39, 2, 3, 15℄. They onsist of diretly omputing the distribution funtionat eah time step on a �xed Cartesian mesh of the phase spae by following the harateristisurves bakward and interpolating the value at the base of the harateristis. We refer to [23℄for a review on Eulerian methods. Then, we will use in this work a semi-Lagrangian methodfor the numerial resolution of model (1.5).The paper is organized as follows. In the next setion we state and prove an existeneand uniqueness result for the system (1.5)�(1.7). For the sake of simpliity this study isonsidered in the whole domain R
2, whih allows to have an expliit expression of S thanksto the Bessel potential. Setion 3 is devoted to the numerial resolution of this system. We�rst reall the semi-Lagrangian method used for the disretization of the kineti transportequation. Then we present the algorithm of resolution of the whole system (1.5). Finally, ananalysis of this sheme under additional assumptions furnishes a onvergene result in L2 ofthe disrete approximation towards the solution of model (1.5). Numerial simulations, whihshows the aggregation phenomenon observed for bateria E. Coli, are presented and disussedin omparison to those for Keller-Segel in setion 4.2 Existene resultFor the sake of simpliity, we onsider in this setion that ω = R

2 and Ω = R
2 × V.The existene of solutions to kineti models of hemotaxis has been investigated in severalpapers. In [11, 27℄, global existene for the initial value problem (1.1) in R

3 and in R
2 has beenobtained under the assumption that the turning kernel is ontrolled by terms involving S(t, x+

v) and S(t, x − v′). Dispersive methods are used to obtain a priori estimates. These resultshas been extended in [8℄ for more general assumptions on the turning kernel. All these paperstook into aount the e�et of the gradient of the hemial signal and showed global existeneof solutions. However, these rigorous global existene results have not inluded the temporalderivative of the signal in the growth ondition of the turning frequeny. In ref. [17℄, theauthors investigate global existene of solutions (not neessary unique) for general hyperbolihemotaxis models where the turning kernel takes into aount the temporal derivative ofthe hemoattratant through the evolution of internal states but only in the one-dimensionalphysial spae. 3



For the sake of ompleteness of this paper, we propose here to extend these results to model(1.5) onsidered in the whole domain Ω = R
2 × V and to establish existene and uniquenessof global-in-time solution. The main novelty is due to the dependane of the ross-setion ofthe turning operator on the time derivative of the hemoattratant onentration. We use thefollowing expression for the hemoattratant onentration :

S(t, x) = (G ∗ ρ(t))(x), where G(x) =
1

4π

∫
∞

0

e−π |x|2

4s
−

s
4π
ds

s
.The funtion G is known as the Bessel potential. The idea to overome the di�ulty raised bythe term ∂tS in the turning kernel expression (1.3) is to use the onservation of the density :

∂tρ+ ∇x · J = 0, J(t, x) =

∫

V

vf(t, x, v) dv. (2.1)We have then
∂tS = G ∗ ∂tρ = −G ∗ ∇x · J = −∇xG ∗ J, (2.2)where the onvolution between two vetors is de�ned by ∇xG ∗ J = ∂x1

G ∗ J1 + ∂x2
G ∗ J2. Itimplies a ontrol on the partial derivatives of S with respet to time thanks to ontrols on J(see [7℄). We an then rewrite the problem (1.5) as





∂tf + v · ∇xf =

∫

v′∈V

φ(∇xG ∗ (v′ρ− J))f(v′) dv′ − 2πφ(∇xG ∗ (vρ− J))f(v),

f(0, x, v) = f 0(x, v),

(2.3)We �rst de�ne the notion of weak solutions for (2.3) on (0, T ) × Ω.De�nition 2.1 We say that f is a weak solution of (2.3) on Lq(0, t0;L
p(Ω)) for t0 > 0 and

p, q ≥ 1, if for any test funtion ψ ∈ D([0, t0) × Ω), we have
∫

(0,t0)×Ω

(∂tψ + v · ∇xψ)f dxdvdt = −
∫

(0,t0)×Ω

∫

V

φ(∇xG ∗ (v′ρ− J))f(v′)ψ dtdxdvdv′

+2π

∫

(0,t0)×Ω

φ(∇xG ∗ (vρ− J))fψ dtdxdv +

∫

Ω

f 0(x, v)ψ(0, x, v) dxdv,where the ells density ρ and the urrent density J are de�ned by
ρ(t, x) =

∫

V

f(t, x, v) dv, J(t, x) =

∫

V

vf(t, x, v) dv. (2.4)We state the following existene and uniqueness result :Theorem 2.2 Assume f 0 ∈ L1
+ ∩ L∞(Ω) and that the turning kernel T is de�ned by (1.3)�(1.4). Then the initial value problem (2.3) admits a unique global weak solution f satisfying

f ∈ L∞((0,∞);L1
+ ∩ L∞(Ω)).Moreover, if f 0 ∈ W 2,2(Ω) ∩ W 1,∞(Ω) then for all t0 > 0, there exists a onstant C0depending on t0 and on the data suh that the weak solution of (2.3) satis�es

‖f‖L∞((0,t0);W 2,2(Ω)∩W 1,∞(Ω)) ≤ C0 ; and ‖∂tf‖L∞((0,t0);L∞(Ω)) ≤ C0.4



The proof of this result is split into two steps. First, we prove the loal-in-time existeneof a unique solution. The smoothness assumption (1.4) on φ provides thanks to a �xed pointproedure the uniqueness of solution. Then, thanks to a priori estimates, we extend thissolution up to t0 for all t0 > 0 and then reover global existene. The main tool in the proofof Theorem 2.2 is an a priori estimate given in the following Lemma :Lemma 2.3 Let t0 > 0 and f 0 ∈ L∞(Ω). Let f be a weak solution of (2.3), suh that f ∈
L1((0, t0), L

1
+ ∩ L∞(Ω)). Then we have for a.e. t ∈ (0, t0), ‖f(t, ·, ·)‖L1(Ω) = ‖f 0‖L1(Ω) and

‖f‖L∞((0,t0);L∞(Ω)) ≤ C(‖f 0‖L∞(Ω)) e
2πt,where the onstant C(‖f 0‖L∞(Ω)) depends only on the initial data.Proof. First the onservation of the mass shows that

‖f(t, ·, ·)‖L1(Ω) = ‖f 0‖L1(Ω).From the bound 1/4 ≤ φ ≤ 1 of φ (1.4) we dedue
∂tf(t, x, v) + v · ∇xf(t, x, v) ≤

∫

V

f(t, x, v′) dv′.Integrating along the trajetories, we �nd
f(t, x, v) ≤ f 0(x− tv, v) +

∫ t

0

ρ(s, x+ (s− t)v) ds. (2.5)We an bound the right hand side term by its L∞
x norm. Integrating with respet to v provides

‖ρ(t, ·)‖L∞(R2) ≤ 2π‖f 0‖L∞(Ω) + 2π

∫ t

0

‖ρ(s, ·)‖L∞(R2) ds.We obtain a bound on the L∞ norm on ρ thanks to Gronwall's inequality and onlude theproof with (2.5).Proof of Theorem 2.2. The loal-in-time existene is obtained by a �xed point argument.Let t0 > 0, the map F on L1((0, t0);L
∞(Ω)) is de�ned for all f by : F(f) is a weak solutionof the problem





∂tF + v · ∇xF =

∫

v′∈V

φ(∇xG ∗ (v′ρ− J))F(v′) dv′ − 2πφ(∇xG ∗ (vρ− J))F(v),

F(0, ·, ·) = f 0,where ρ =
∫
V
f(t, x, v) dv and J =

∫
V
vf(t, x, v) dv. We will show that this map de�nes a on-tration on L1((0, τ), L∞(Ω)) for τ small enough. Let f1 and f2 be given in L1((0, t0), L

∞(Ω))and denoting F12 = F(f1) − F(f2) we have
∂tF12 + v · ∇xF12 =

∫

V

φ(∇x ·G ∗ (vρ1 − J1))F12(v
′) dv′ − 2πφ(∇x ·G ∗ (vρ1 − J1))F12

−2πF(f2)(φ(∇x ·G ∗ (vρ1 − J1)) − φ(∇x ·G ∗ (vρ2 − J2))

+

∫

V

F(f2)(v
′)(φ(∇x ·G ∗ (v′ρ1 − J1)) − φ(∇x ·G ∗ (v′ρ2 − J2)) dv

′,5



with the notations ρi =
∫
V
fi(t, x, v) dv and Ji =

∫
V
vfi(t, x, v) dv. We an rewrite this identityin the following way

∂tF12 + v · ∇xF12 + 2πφ(∇x ·G ∗ (vρ1 − J1))F12 = G, (2.6)where
G(t, x, v) =

∫

V

φ(∇x ·G ∗ (v′ρ1 − J1))F12(v
′) dv′ − 2πF(f2)(φ(∇x ·G ∗ (vρ1 − J1))−

φ(∇x ·G ∗ (vρ2 − J2)) +

∫

V

F(f2)(v
′)(φ(∇x ·G ∗ (v′ρ1 − J1)) − φ(∇x ·G ∗ (v′ρ2 − J2)) dv

′.(2.7)Using the harateristis of the system, we an rewrite equation (2.6) as
d

ds

(
e2πφ(∇x ·G ∗ (vρ1 − J1))(τ, x+ v(τ − t))F12(s, x+ v(s− t), v)

)
=

e2πφ(∇x ·G ∗ (vρ1 − J1))(τ, x+ v(τ − t))G(s, x+ v(s− t), v).At the initial time, F12(0, ·, ·) = 0. Integrating the latter equality between 0 and t, we have
F12(t, x, v) =

∫ t

0

exp

(
2π

∫ s

t

φ(∇x ·G ∗ (vρ1 − J1))(τ, x+ v(τ − t)) dτ

)
G(s, x+v(s−t), v) ds.Sine φ (1.4) is bounded from below by 1/4 we dedue that for all 0 < t < t0,

|F12(t, x, v)| ≤
∫ t

0

|G(t− s, x− vs, v)| ds. (2.8)Moreover, from (2.7) and the assumptions on φ (1.4), we dedue
|G| ≤

∫

V

|F12(v
′)| dv′ + ‖φ′‖∞

(
2πF(f2) +

∫

V

F(f2)(v
′) dv′

)
×

× (|∇xG ∗ (J1 − J2)| + V |∇xG ∗ (ρ1 − ρ2)|) ,where V = maxv∈V ‖v‖. Notiing that |J1 − J2| ≤ V |ρ1 − ρ2|, we have moreover
‖|∇xG ∗ (J1 −J2)(t, ·)|+V |∇xG ∗ (ρ1 − ρ2)(t, ·)|‖L∞(R2) ≤ V ‖∇xG‖L1(R2)‖(ρ1 − ρ2)(t, ·)‖L∞(R2).Finally, from (2.8) we dedue the bound
‖F12(t, ·, ·)‖L∞(Ω) ≤ C1

∫ t

0

‖F12(t− s, ·, ·)‖L∞(Ω) ds+

C2

∫ t

0

‖F(f2)(t− s, ·, ·)‖L∞(Ω)‖∇xG‖L1(R2)‖(ρ1 − ρ2)(t− s, ·)‖L∞(R2) ds.Therefore, using a Gronwall Lemma, we onlude that for τ > 0 small enough, F de�nes aontration on L1((0, τ), L∞(Ω)). It allows to onstrut a unique solution as the �xed pointof the map F on the interval (0, τ). Using the a priori estimates established in Lemma 2.3,we an extend this solution on (0, t0) for all t0 > 0 and we have a bound on this solution in
L∞(0, t0;L

1 ∩ L∞(Ω)). 6



For the proof of the seond point of Theorem 2.2, let us assume that f 0 ∈ W 2,∞(Ω) andthat t0 > 0 is �xed. By di�erentiating with respet to x1 the kineti equation (2.3) satis�edby f , we obtain
∂t∂x1

f + v · ∇x∂x1
f + 2πφ(∇x ·G ∗ (vρ− J))∂x1

f =
∫
V
φ(∇x ·G ∗ (v′ρ− J))∂x1

f(v′) dv′

+
∫
V
∇xG ∗ (v′∂x1

ρ− ∂x1
J)φ′(∇xG ∗ (v′ρ− J))f(v′) dv′

−2π∇xG ∗ (v∂x1
ρ− ∂x1

J)φ′(∇xG ∗ (vρ− J))f(v).The right hand side is bounded by
∫

V

|∂x1
f(v′)| dv′ + 8πV ‖φ′‖L∞‖f‖L∞(Ω)‖∇xG‖L1(Ω)

∫

V

|∂x1
f(v′) dv′|.Integrating along the harateristis and proeeding as above, we obtain that for all 0 ≤ t ≤ t0,

|∂x1
f(t, x, v)| ≤ C1|∂x1

f 0(x− tv, v)| + C2

∫ t

0

∫

V

|∂x1
f(t− s, x− sv, v)| ds,where C1 and C2 stand for nonnegative onstants depending only on t0 and on the data. Bythe same token as in proof of Lemma 2.3 using Gronwall's inequality, we obtain a bound on

∂x1
f in L∞((0, t0);L

∞(Ω)). Di�erentiating (2.3) with respet to x2 and v, we dedue by thesame token that for all t ∈ (0, t0), we have f(t, ·, ·) ∈ W 1,∞(Ω). With a similar argument wededue after straightforward alulations that f is bounded in L∞((0, t0);W
2,2(Ω)). Moreoverfrom (2.3) we have an expression of ∂tf with respet to f , ρ, J , ∇xG and ∇xf allowing toobtain a bound on ∂tf in L∞((0, t0);L

∞(Ω)).Remark 2.4 For the sake of simpliity, this existene result has been established in the domain
ω = R

2. However, this existene and uniqueness result is still available in a bounded domain
ω ⊂ R

2 provided that the boundary onditions allows to use the ellipti regularity for the elliptiequation satis�ed by S. For numerial analysis, we will onstraint the domain ω to be boundedand make use of this existene result in this framework.3 Numerial approahIn this setion, we present the numerial approah for solving (1.5). The omputational domainis de�ned by (x, v) ∈ Ω = ω×SV where ω is a retangular domain of R
2, ω = [0, Lx]×[0, ℓy], and

SV is the sphere SV = {v ∈ R
2, suh that ‖v‖2 = V }, for a given onstant veloity V > 0. Weredue this 4-dimensional problem to a 3-dimensional problem by onsidering the ylindrialoordinate θ.At the boundary of the domain, we assume to have speular re�etion at the boundaries

y = 0, y = ℓy, x = 0 and x = Lx for the distribution funtion; for the hemoattratant
7



onentration S we set Neumann onditions on the entire boundary :
f(x, 0, θ) = f(x, 0, 2π − θ), for θ ∈ [0, π], x ∈ [0, Lx],

f(x, ℓy, θ) = f(x, ℓy, 2π − θ), for θ ∈ [π, 2π], x ∈ [0, Lx],

f(0, y, θ) = f(0, y, π − θ), for θ ∈ [0, π/2] ∪ [3π/2, 2π], y ∈ [0, ℓy],

f(Lx, y, θ) = f(Lx, y, π − θ), for θ ∈ [π/2, 3π/2], y ∈ [0, ℓy],

∂xS(0, y) = ∂xS(Lx, y) = 0, for y ∈ [0, ℓy],

∂yS(x, 0) = ∂yS(x, ℓy) = 0, for x ∈ [0, Lx].

(3.1)
Obviously, in the θ diretion f is 2π-periodi.We introdue the nodes (xi = i hx)i=0,··· ,Nx−1, (yj = j hy)j=0,··· ,Ny−1 and (θk = k hθ)θ=0,··· ,Nθ−1where hx = Lx/(Nx − 1), hy = ℓy/(Ny − 1) and hθ = 2π/Nθ. We denote xi = (xi1 , yi2) with
i = i1 + i2Nx and we mesh the domain ω with retangular triangles using the nodes xi. There-fore the triangulation is regular and all �nite elements are a�ne equivalent to a single refereneelement. We denote the time step ∆t and set tn = n∆t for n = 0, . . . , Nt.3.1 Semi-Lagrangian methodsIn this setion we desribe the semi-Lagrangian method used for the numerial resolution in
ω ⊂ R

2 of the kineti equation :
∂tf + v · ∇xf =

∫

SV

φ(∂tS + v′ · ∇xS)f(v′) dv′ − 2πφ(∂tS + v · ∇xS)f(v), (3.2)ompleted with the initial datum (1.2). We assume in this setion that the hemoattratantonentration is known and we will therefore onsider the turning kernel as a funtion of t, xand v : T (t, x, v) = φ(∂tS(t, x) + v · ∇xS(t, x)). Its numerial approximation will be denoted
Th. Semi-Lagrangian methods onsist in alulating the distribution funtion at time tn+1 =
tn + ∆t thanks to the one whih has been obtained at the time tn by using the onservationrelation along the harateristis urves. We �rst de�ne the harateristis (X,Θ) of the systemfor all 0 ≤ s ≤ t by :






d

ds
X(s;x, θ, t) = vΘ, with vΘ = (V cos Θ, V sin Θ) ; X(t;x, θ, t) = x,

d

ds
Θ(s;x, θ, t) = 0 ; Θ(t;x, θ, t) = θ,

(3.3)if X(s;x, θ, t) ∈ (0, Lx) × (0, ℓy). Therefore the veloity remains onstant, exept when thetrajetory meets a boundary of the domain : if there exists a time s > 0 suh thatX(s;x, θ, t) ∈
(0, Lx)×{0, ℓy} then the angle Θ(s;x, θ, t) is hanged into 2π−Θ(s;x, θ, t); if there exists a time
s > 0 suh thatX(s;x, θ, t) ∈ {0, Lx}×(0, ℓy) then Θ(s;x, θ, t) is substituted by π−Θ(s;x, θ, t).More preisely, we have

X(s;x, θ, t) = x + vθ(s− t), with vθ = (V cos θ, V sin θ), Θ(s;x, θ, t) = θ,for all s ∈ R
+ for whih the trajetory does not ross the boundaries. By re�etion, if thetrajetory reahes one of the boundaries y = 0 or y = ℓy only one at time t0, then for8



t < t0 < s,
X(s;x, θ, t) = x + vθ(t0 − t) + v2π−θ(s− t0) and Θ(s;x, θ, t) = 2π − θ.If the trajetory rosses the boundary x = 0 or x = Lx at time t1, then for t < t1 < s, we have
X(s;x, θ, t) = x + vθ(t1 − t) + vπ−θ(s− t1) and Θ(s;x, θ, t) = π − θ.Obviously, if the trajetory meets several times the boundaries, we make others re�etions.Using the harateristis, we an rewrite the kineti equation (3.2) in the following way :

d

ds
f(s,X(s;x, θ, t),Θ(s;x, θ, t)) =

∫ 2π

0

(T (s,X(s;x, θ, t), θ′)f(s,X(s;x, θ, t), θ′) dθ′

−2π T (s,X(s;x, θ, t),Θ(s;x, θ, t)) f(s,X(s;x, θ, t),Θ(s;x, θ, t))).

(3.4)The semi-Lagrangian method relies on a disrete approximation of relation (3.4). Weassume to know the distribution funtion at time tn . We use an expliit in time Euler shemeto ompute this quantity at time tn+1 = tn + ∆t on eah point (xi, θj) of the grid. It leads tothe following system :
fh(t

n+1,xi, θj) = fh(t
n+1, X(tn;xi, θj, t

n+1),Θ(tn;xi, θj, t
n+1))

+∆t

∫ 2π

0

(Th(t
n, X(tn;xi, θj , t

n+1), θ′)fh(X(tn;xi, θj , t
n+1), θ′) dθ′

−2π∆t Th(t
n, X(tn;xi, θj , t

n+1),Θ(tn;xi, θj , t
n+1)) fh(X(tn;xi, θj , t

n+1),Θ(tn;xi, θj , t
n+1))),(3.5)where fh and Th stand for approximations of f and T . For the sake of larity, we will use fromnow on the notations Xn

i,j(s) instead of X(s;xi, θj , t
n) and Θn

i,j(s) instead of Θ(s;xi, θj, t
n)).The disretization relies on two main steps :1. Find the point (X(tn;xi, θj , t

n+∆t),Θ(tn;xi, θj , t
n+∆t)) := (Xn+1

i,j (tn),Θn+1
i,j (tn)). Start-ing from (xi, θj), it su�es to follow bakward the harateristis urves during the timestep ∆t. To this end, we have to solve (3.3). Sine the resolution of the seond equationin (3.3) is lear, this step is simple (in a general framework see e.g. [39, 2, 15℄)

Xn+1
i,j (tn) = xi − ∆tvΘn+1

i,j
, Θn+1

i,j (tn) = θj .Obviously, if the trajetory reahes a boundary of the domain, then we use speularre�etion : Xn+1
i,j (tn) is replaed by its symmetri with respet to this boundary and

Θn+1
i,j (tn) by 2π −Θn+1

i,j (tn) at the vertial boundary y = 0 or y = ℓy, or by π −Θn+1
i,j (tn)at the boundary x = 0 or x = Lx.Therefore the omputation of the foot of the harateristis is exat.2. Sine the funtions f and T at time tn are only known on the nodes of the mesh, weinterpolate these funtions at the points (Xn+1

i,j (tn),Θn+1
i,j (tn)). Atually, sine we have

Θn+1
i,j (tn) = θj or π − θj or 2π − θj , by taking Nθ odd we only have a 2D interpolationmethod to implement. In fat, we have that 2π − θj = θNθ−j and π − θj = θNθ/2−j if

θj ∈ (0, π). Several interpolation methods an be used. To avoid Runge phenomena, we9



an use a linear interpolation : we de�ne the linear interpolation operator Π onto thespae of Lagrangian polynomials of degree lesser than or equal to 1 by :
Πf(x, y) =

NxNy−1∑

i=0

f(xi)li(x, y), with li ∈ P
1(ω) suh that li(xj) = δij , (3.6)where P

1(ω) is the set of pieewise polynomials whose restrition on eah triangle of themesh holds in polynomials funtion of degree lesser than or equal to 1. The interpolationerror estimations in Sobolev spaes give that for all f ∈ W 2,2(ω) (see [13℄ Theorem 16.2p. 128)
‖f − Πf‖L2(ω) ≤ Cmax{h2

x, h
2
y} ‖f‖W 2,2(ω). (3.7)Moreover, this linear interpolation method preserves the L∞ bound :

‖Πf‖L∞(ω) ≤ ‖f‖L∞(ω). (3.8)For more preision on solutions, a Hermite spline interpolation method whih is a wellestablished high order interpolation method an be used. We refer to [39, 15℄ for moredetails about this interpolation step. However, spurious osillations (e.g. Runge phe-nomena) an appear with high order interpolation methods.Finally, using a disretization of the integral in (3.5), the approximation of the distributionfuntion at time tn+1 is obtained by
fh(t

n+1,xi, θj) = Πfh(t
n, Xn+1

i,j (tn),Θn+1
i,j (tn)) − 2π∆tΠ(Thfh)(t

n, Xn+1
i,j (tn),Θn+1

i,j (tn))+

+∆t

Nθ−1∑

k=0

hθ Π(Thfh)(t
n, Xn+1

i,j (tn), θk). (3.9)3.2 Numerial resolution of the oupled systemWe reall the following notations : Xn+1
i,j (tn) instead of X(tn;xi, θj , t

n+1), Θn+1
i,j (tn) instead of

Θ(tn;xi, θj , t
n+1)) and Π is the interpolation operator. The numerial resolution of the oupledproblem (1.5) is then takled in the following way. We assume that the approximation ofthe distribution funtion fh and of the hemoattratant onentration Sh are known at time

tn at eah nodes of the mesh. We desribe the proess to ompute fh and Sh at time tn+1.As desribed previously, the distribution funtion at time tn+1 is approximated thanks to therelation :
fh(t

n+1,xi, θj) = Πfh(t
n, Xn+1

i,j (tn),Θn+1
i,j (tn)) − 2π∆tΠ(Thfh)(t

n, Xn+1
i,j (tn),Θn+1

i,j (tn))+

+∆t

Nθ−1∑

k=0

hθ Π(Thfh)(t
n, Xn+1

i,j (tn), θk), (3.10)where the turning kernel Th is omputed by a disretization of (1.3). As we have seen for theproof of Theorem 2.2, estimates on T rely on the onservation equation for ρ (2.1) whih allows10



to get an estimation of the term involving temporal derivative in the de�nition of T . In fat,the quantity ∂tS satis�es
−∆∂tS + ∂tS = −∇ · J, (3.11)ompleted with Neumann boundary onditions dedued from (3.1). We de�ne the approxima-tion of the urrent by

Jh(t
n,xi) =

Nθ−1∑

k=0

hθvθkfh(t
n,xi, θk). (3.12)Then the approximation of ∂tS, denoted Sth, is omputed by solving (3.11) with Jh usingonforming P

1 �nite elements :
∀Vh ∈ Xh,

∫

ω

(∇Sth · ∇Vh + SthVh) dx =

∫

ω

Jh · ∇Vh dx, (3.13)where Xh is the set of funtion of C0(ω) whose restrition to eah triangle on the mesh holdsin P
1. We de�ne the approximation Th of the turning kernel by

Th(t
n,xi, θj) = φ

(
Sth(t,x) +

1

∆t
(Sh(t

n,xi) − ΠSh(t
n, Xn

i,j(t
n−1))

)
. (3.14)One fh is known at time tn+1, the hemoattratant onentration is updated by solvingthe following ellipti equation with onforming P

1 �nite elements :
−∆Sh(t

n+1,xi) + Sh(t
n+1,xi) = ρh(t

n+1,xi) :=

Nθ−1∑

k=0

fh(t
n+1,xi, θk) hθ. (3.15)This system is ompleted with boundary onditions (3.1).From basi error estimates on ellipti problem, we have (see [13℄ Theorem 18.1 p. 138) :Proposition 3.1 Let u be a solution of the variational problem a(u, v) = l(v) where a isbilinear ontinuous symmetri oerive on H1(ω) and l is linear ontinuous on H1(ω). Then,if uh is the disrete approximation omputed by onforming P

1 �nite elements, there exists anonnegative onstant C suh that
‖u− uh‖H1(ω) ≤ C max{hx, hy}‖u‖H2(ω).3.3 Convergene analysisWe are interested in this setion in the onvergene of the sheme (3.10)�(3.15) towards so-lutions of model (1.5). Convergene analysis of semi-Lagrangian method in the framework ofVlasov-Poisson system have been obtained in [3℄; those results are presented in L∞. Due to thelak of regularity in our ase aused by the presene of the turning operator, we present in thefollowing theorem a onvergene result in L2. The main result of this setion is presented inTheorem 3.4 below under the following additional assumption allowing to simplify all integralsin the omputation.

11



Assumption 3.2 For the sake of simpliity of the proof and of the notations, we assume thatall partiles are initially on�ned in the enter of the devie and that the time t0 is small enoughto avoid partiles to meet the boundary of the domain. Thus all trajetories are straight linesand
X(s;x, θ, t) = x + vθ(s− t); Θ(s;x, θ, t) = θ, for 0 ≤ s ≤ t.Moreover, sine fh vanishes near the boundary of the domain ω, we have

∫

ω

fh(t, X(s;x, θ, t), θ) dx =

∫

ω

fh(t,x, θ) dx,for 0 ≤ s ≤ t small enough.From now on, we �x t0 > 0 small enough and assume f 0 ∈ W 2,2 ∩ W 1,∞(Ω) is hosensuh that Assumption 3.2 holds. Therefore, in this onvergene analysis ells do not 'see' theboundary. The sheme (3.10)�(3.15) allows to de�ne the approximated funtion fh only on thenodes on the mesh. We extend this de�nition on all (x, θ) ∈ ω × [0, 2π] thanks to the linearinterpolation operator Π (3.6). We �rst establish the positivity and a priori estimates on thedisrete approximation fh.Lemma 3.3 Let t0 > 0 and assume that f 0 ∈ W 2,2 ∩ W 1,∞(ω × [0, 2π]) is a nonnegativefuntion suh that Assumption 3.2 holds. If ∆t ≤ 1/(2π), then the sheme de�ned by (3.10)�(3.15) gives a nonnegative approximation fh of the distribution funtion. Moreover fh satis�esthe following estimate
∀ t ∈ (0, t0), ‖Πfh(t, ·, ·)‖L∞(ω×[0,2π]) ≤ e2πt0‖f 0‖L∞(ω×[0,2π]), ‖Πfh(t, ·, ·)‖H1(ω×[0,2π]) ≤ C0,where C0 is a nonnegative onstant depending on t0 and ‖f 0‖H1(ω×[0,2π]).Proof. From the de�nition of (3.6) and the assumptions on φ (1.4) we have that for allnonnegative funtion f

1

4
Πf ≤ Π(Tf) ≤ Πf.Therefore assuming f(tn, ·, ·) nonnegative, we dedue from (3.10) that

fh(t
n+1,xi, θj) ≥ (1 − 2π∆t) Πfh(t

n,xi − vθj∆t, θj) ≥ 0.Moreover, from (3.10) and (3.8) we have
‖Πfh(t

n+1, ·, ·)‖L∞(ω×[0,2π]) ≤ (1 + 2π∆t) ‖Πfh(t
n, ·, ·)‖L∞(ω×[0,2π]).Applying a disrete Gronwall inequality allows to onlude the proof of the L∞ bound. Di�er-entiating (3.10) with respet to x1 gives

∂x1
fh(t

n+1,xi, θj) = ∂x1
Πfh(t

n,xi − vθj∆t, θj)

−2π∆t ∂x1
Π(Thfh)(t

n,xi − vθj∆t, θj) + ∆t
∑Nθ−1

k=0 hθ ∂x1
Π(Thfh)(t

n,xi − vθj∆t, θk).
(3.16)By linearity of the interpolation operator, we have that

∂x1
Π(Thfh) = Π(∂x1

[(ΠTh)(Πfh)]) = Π(∂x1
(ΠTh)Πfh + (ΠTh)∂x1

(Πfh)).12



From the de�nition of Th (3.14), we dedue that
‖∂x1

(ΠTh)(t
n)‖L2(ω) ≤ ‖∂x1

Sth(t
n)‖L2(ω) +

1

∆t
‖∂x1

Sh(t
n, ·) − ∂x1

ΠSh(t
n, X(tn−1; ·, θ, tn))‖L2(ω).From the ellipti regularity on the equation (3.13) and the bound of fh in L∞(ω × [0, 2π]), wehave that Sth is bounded in H1(ω). The ellipti regularity on (3.15) gives

‖Sh(t
n, ·) − ΠSh(t

n, X(tn−1; ·, θ, tn−1))‖H1(ω) ≤ ‖ρh(t
n, ·) − Πρh(t

n, X(tn−1; ·, θ, tn))‖L2(ω).Using a Taylor expansion gives
ρh(t

n,x) − Πρh(t
n,x− vθ∆t) =

∫ 0

−∆t

vθ · ∇Πρh(t,x + vθs) ds.From Assumption 3.2 we dedue that
‖ρh(t

n,x) − Πρh(t
n,x − vθ∆t)‖L2(ω) ≤ ∆tV ‖∇(Πρh)(t

n, ·)‖L2(ω).Thus,
‖∂x1

(ΠTh)‖L2(ω×[0,2π]) ≤ C(1 + ‖∇(Πρh)‖L2(ω×[0,2π])).Doing the same with x2, (3.16) leads to the following estimate
‖∇Πfh(t

n+1)‖L2(ω×[0,2π]) = ‖∇Πfh(t
n)‖L2(ω×[0,2π]) + C∆t(1 + ‖∇Πfh(t

n)‖L2(ω×[0,2π])).A Gronwall inequality allows to onlude the proof.Theorem 3.4 Let t0 > 0 and assume that f 0 ∈ W 2,2 ∩W 1,∞(ω × [0, 2π]) is a nonnegativefuntion suh that Assumption 3.2 holds. Let f be the global weak solution of (1.5) on (0, t0)and fh be its approximation omputed at the nodes of the mesh thanks to the algorithm (3.10)�(3.15) where Π is de�ned in (3.6). Then there exists a nonnegative onstant C depending on
t0, f 0 and the data suh that

‖f − Πfh‖L∞(0,t0;L2(ω×[0,2π])) ≤ C(∆t+ h2 +
h

∆t
+ h),where h = max{hx, hy, hθ}.Proof. From Theorem 2.2 we have f(t, ·, ·) ∈ W 1,∞ ∩W 2,2(ω × [0, 2π]) We de�ne the globalerror at time tn+1 by

ǫn+1 = ‖f(tn+1,x, θ) − Πfh(t
n+1,x, θ)‖L2(ω×[0,2π]). (3.17)A �rst remark is that sine harateristis are straight lines the numerial omputation of theharateristis (X,Θ) is exat. From (1.5), we dedue that for 0 ≤ s ≤ t

d

ds
f(s,x− vθ(t− s), θ) =

∫ 2π

0

T (s,x− vθ(t− s), θ′)f(s,x − vθ(t− s), θ′) dθ′

−2π T (s,x − vθ(t− s),Θn(s))f(s,x− vθ(t− s), θ),13



where
T (t,x, θ) = φ(∂tS + vθ · ∇xS),and S being the solution of the ellipti problem
−∆S + S =

∫ 2π

0

f(t,x, θ) dθ.We dedue from the regularity of the funtion f proved in Theorem 2.2 that the funtion
s 7→ f(s,x − vθ(t − s), θ) is bounded in W 2,2(0, t0). Hene a Taylor expansion gives, underAssumption 3.2 :

f(tn+1,x, θ) = f(tn,x − vθ∆t, θ) + ∆t

∫ 2π

0

T (tn,x − vθ∆t, θ
′)f(tn,x − vθ∆t, θ

′) dθ′

−2π∆t T (tn,x − vθ∆t, θ)f(tn,x − vθ∆t, θ) +OL2(∆t2),where OL2(∆t) means that there exists C > 0 suh that ‖OL2(∆t2)‖L2 ≤ C∆t2. Therefore,using the de�nition (3.10), we rewrite the di�erene f(tn+1,x, θ) − Πfh(t
n+1,x, θ) as

f(tn+1,x, θ) − Πfh(t
n+1,x, θ) = f(tn,x − vθ∆t, θ) − Πfh(t

n,x − vθ∆t, θ)

+∆t

(∫ 2π

0

(Tf)(tn,x − vθ∆t, θ
′) dθ′ −

Nθ−1∑

k=0

hθ Π(Thfh)(t
n,x − vθ∆t, θk)

)

−2π∆t ((Tf)(tn,x − vθ∆t, θ) − Π(Thfh)(t
n,x − vθ∆t, θ)) +OL2(∆t2).To evaluate the global error ǫn+1, we deompose f(tn+1,x, θ) − fh(t

n+1,x, θ) as
f(tn+1,x, θ) − Πfh(t

n+1,x, θ) = f(tn,x − vθ∆t, θ) − Πfh(t
n,x − vθ∆t, θ)

+∆t((1 − Π)I1 + I2 + I3) +OL2(∆t2),
(3.18)where

I1 =

Nθ−1∑

k=0

hθ(Tf)(tn,x − vθ∆t, θk) − 2π(Tf)(tn,x − vθ∆t, θ), (3.19)
I2 =

Nθ−1∑

k=0

hθ(Tf − Thfh)(t
n,x − vθ∆t, θk) − 2π(Tf − Thfh)(t

n,x − vθ∆t, θ), (3.20)
I3 =

∫ 2π

0

(Tf)(tn,x − vθ∆t, θ
′) dθ′ −

Nθ−1∑

k=0

hθ(Tf)(tn,x − vθ∆t, θk). (3.21)Taking the L2 norm of (3.18) implies with Assumption 3.2
ǫn+1 ≤ ǫn + ∆t(‖(1 − Π)I1‖L2(ω×[0,2π]) + ‖I2‖L2(ω×[0,2π]) + ‖I3‖L2(ω×[0,2π])) + C∆t2. (3.22)We will estimate eah term separately thanks to the following Lemmata.Lemma 3.5 Let (f, S) being solution of (1.5) for f 0 ∈ W 1,∞ ∩ W 2,2(ω × [0, 2π]). If I1 isde�ned by (3.19), then there exists a nonnegative onstant C suh that for all t ∈ (0, t0),

‖(1 − Π)I1‖L2(ω×[0,2π]) ≤ C max{h2
x, h

2
y}.14



Proof. Let 0 ≤ t ≤ t0. From Theorem 2.2, we have that f(t, ·, ·) ∈W 1,∞ ∩W 2,2(ω× [0, 2π]).Therefore, by ellipti regularity, we dedue that ∇S(t, ·) ∈W 3,2(ω). Moreover, (3.11) implies
−∆∂tS(t, ·) + ∂tS(t, ·) = −∇ · J(t, ·) ∈W 1,2(ω).Then the ellipti regularity furnishes ∂tS(t, ·) ∈W 3,2(ω) and sine with our de�nition on φ weget φ′ ∈ C∞

c (R), we dedue that T (t, ·, ·) = φ(∂tS + vθ · ∇S) ∈W 3,2(ω × [0, 2π]). Then
∂2

xixj
(Tf) = (∂xixj

T )f + ∂xi
T∂xj

f + ∂xj
T∂xi

f + T (∂xixj
f) ∈ L2(ω × [0, 2π]).Hene (T f)(t, ·, ·) ∈ W 2,2(ω × [0, 2π]). Finally, the result of the Lemma is a straightforwardonsequene of the interpolation error (3.7).Lemma 3.6 Let f and T being de�ned previously, there exists a nonnegative onstant C suhthat for all 0 ≤ t ≤ t0 and x ∈ ω,

∥∥∥∥∥

∫ 2π

0

(Tf)(t,x, θ′) dθ′ −
Nθ−1∑

k=0

hθ(Tf)(t,x, θk)

∥∥∥∥∥
L2(ω)

≤ Ch2
θ.Proof. Let 0 ≤ t ≤ t0 and x ∈ ω. As notied in the proof of Lemma 3.5 we have that (T f)belongs toW 2,2(ω× [0, 2π]). Hene the result of Lemma 3.6 is a onsequene of the well-knownerror estimate for the trapezoidal rule : if g ∈W 2,2(0, 2π), there exists θ ∈ (0, 2π) suh that

∣∣∣∣∣

∫ 2π

0

g(θ) dθ −
Nθ−1∑

k=0

hθg(θk)

∣∣∣∣∣ = h2
θ

π

6

∣∣∣∣
∂2g(θ)

∂θ2

∣∣∣∣ . (3.23)The two previous Lemmata allow us to estimate the terms involving I1 and I3 in (3.22).For I2, we need �rst to estimate the error T − Th with respet to f − fh.Lemma 3.7 Let assume that Assumption 3.2 holds. Let T be de�ned in (1.3)�(1.4) and Th beits approximation omputed with (3.14). Then, there exists C > 0 suh that for n = 1, . . . , Nt,we have
‖ sup

α∈[0,2π]

|T (tn, ·, α) − ΠTh(t
n, ·, α)|‖L2(ω) ≤ C(∆t+ max{hx, hy} +

max{hx, hy}
∆t

+ h2
θ+

+‖f(tn, ·, ·) − fh(t
n, ·, ·)‖L2(ω×[0,2π])).Proof. Let n ∈ {1, . . . , Nt}, x ∈ ω and α ∈ [0, 2π]. We have from (3.14) that

|T (tn,x, α) − ΠTh(t
n,x, α)| = |φ(∂tS(tn,x) + vα · ∇xS(tn,x)) − ΠTh(t

n,x, α)|

≤ ‖φ′‖L∞(|∂tS(tn,x) − Sth(t
n,x)| + |vα · ∇xS(tn,x) − 1

∆t
(Sh(t

n,x) − ΠSh(t
n,x − vα∆t))|),(3.24)where Sth is de�ned in (3.13). We will estimate separately eah term of the sum of the righthand side. Let us introdue S̃t a weak solution of

−∆S̃t + S̃t = −∇ · ΠJh, (3.25)15



ompleted with Neumann boundary onditions, where Jh is de�ned in (3.12) at the nodes ofthe mesh and extended on ω thanks to the linear interpolation operator Π. From Proposition3.1, we dedue that
‖S̃t − Sth‖L2(ω) ≤ Cmax{hx, hy}‖S̃t‖W 2,2(ω) ≤ C max{hx, hy}‖∇ΠJh‖L2(ω),where the ellipti regularity on equation (3.25) is used. And Lemma 3.3 allows to bound theterm ‖∇ΠJh‖L2(ω). Moreover, from (3.11) and (3.25), we dedue that

‖∂tS − S̃t‖L2(ω) ≤ C‖J − ΠJh‖L2(ω) ≤ C(h2
θ + ‖f − Πfh‖L2(ω×[0,2π])),where we have used the error estimate given by the trapezoidal rule (3.23) to estimate J − Jhfor f ∈W 2,2(ω × [0, 2π]). We onlude then that

‖∂tS−Sth‖L2(ω) ≤ ‖∂tS−S̃t‖L2(ω)+‖S̃t−Sth‖L2(ω) ≤ C(h2
θ+‖f−Πfh‖L2+max{hx, hy}). (3.26)We introdue S̃ weak solution of the ellipti problem

−∆S̃ + S̃ = Πρh, (3.27)ompleted with Neumann boundary onditions. Therefore, we have that
‖ sup

α∈[0,2π]

|vα · ∇xS − vα · ∇xS̃|‖L2(ω) ≤ V ‖S − S̃‖W 1,2(ω) ≤ C‖ρ− Πρh‖L2(ω)

≤ C(h2
θ + ‖f − Πfh‖L2(ω×[0,2π])),

(3.28)where we use the ellipti regularity for equation (3.27) and the error estimate for the trapezoidalrule (3.23). Moreover, Πρh belonging to L∞(ω) →֒ L2(ω), we have by ellipti regularity on(3.27) that S̃ ∈W 2,2(ω). A Taylor expansion gives that for all x ∈ ω and all α ∈ [0, 2π],
S̃(tn,x) = S̃(tn,x − vα∆t) − vα · ∇S̃(tn,x)∆t+OL2(ω)(∆t

2).Hene, for all x ∈ ω

‖ sup
α∈[0,2π]

|vα · ∇xS̃(tn,x) − 1

∆t
(Sh(t

n,x) − ΠSh(t
n,x − vα∆t))|‖L2

x(ω) ≤ C∆t+

1

∆t
‖S̃(tn,x) − Sh(t

n,x)‖L2
x(ω) +

1

∆t
‖ sup

α∈[0,2π]

|S̃(tn,x − vα∆t) − ΠSh(t
n,x − vα∆t)|‖L2

x(ω).Assumption 3.2 implies that the last two terms of the sum are equals. Sine Sh is obtained bysolving equation (3.27) with onforming P
1 �nite elements, Proposition 3.1 implies that

‖S̃(tn, ·) − Sh(t
n, ·)‖L2(ω) ≤ C max{hx, hy}‖S̃‖W 2,2(ω).Therefore,

‖ sup
α∈[0,2π]

|vα · ∇S̃(tn,x) − 1

∆t
(Sh(t

n,x) − ΠSh(t
n,x − vα∆t))|‖L2(ω) ≤ C(∆t+

max{hx, hy}
∆t

).(3.29)16



Finally, injeting (3.26), (3.28), (3.29) in (3.24) and with Assumption 3.2, we obtain
‖ sup

α∈[0,2π]

|T (tn, ·, α) − Th(t
n, ·, α)|‖L2(ω) ≤

≤ C(∆t+ max{hx, hy} +
max{hx, hy}

∆t
+ h2

θ + ‖f(tn, ·, ·) − Πfh(t
n, ·, ·)‖L2(ω×[0,2π])).Return to the proof of Theorem 3.4. Sine Π is de�ned by its values at the nodes, wehave that Π(Thfh) = Π(ΠThΠfh). Then, for k = 0, . . . , Nθ − 1,

|Tf(tn,x− vθ∆t, θk) − Π(Thfh)(t
n,x − vθ∆t, θk)| ≤

|(1 − Π)(Tf)(tn,x − vθ∆t, θk)| + |Π(Tf − ΠThΠfh)(t
n,x − vθ∆t, θk)|.Moreover,

|Tf − ΠThΠfh| ≤ |T (f − Πfh)| + |Π(fh)(T − ΠTh)|. (3.30)From the de�nition of T and with Lemma 3.3, we have ‖T‖L∞ ≤ 1 and ‖Πfh‖L∞ ≤ C. FromAssumption 3.2,
‖ sup

k
|(Π(Tf) − ΠThΠfh)(t

n,x − vθ∆t, θk)|‖L2
x,θ

(ω×[0,2π])

= 2π‖ sup
k

|(Tf − ΠThΠfh)(t
n, ·, θk)|‖L2(ω)

≤ 2π‖ sup
k

|(f − Πfh)(t
n, ·, θk)|‖L2(ω) + C‖ sup

k
|(T − ΠTh)(t

n, ·, θk)|‖L2(ω).And from (3.7) we have,
‖ sup

k
|(1 − Π)Tf(t, ·, θk)|‖L2(ω) ≤ C max{h2

x, h
2
y}.Thus by ontinuity of the appliation θ 7→ (f − Πfh)(t,x, θ) we have from (3.30)

‖ sup
k

|(Tf −Π(Thfh))(t
n, ·, θk)|‖L2(ω) ≤ C(ǫn +max{h2

x, h
2
y}+ ‖ sup

k
|(T −ΠTh)(t

n, ·, θk)|‖L2(ω)),where we use Lemma 3.3. It omes from the expression of I2 (3.20) that
‖I2‖L2(ω) ≤ 4π‖ sup

k
|(Tf − Π(Thfh))(t

n, ·, θk)|‖L2(ω)

≤ C(∆t+ h2 + max{hx, hy} +
max{hx, hy}

∆t
+ ǫn),where we use Lemma 3.7. Moreover, Lemma 3.5 and 3.6 furnish an estimate on (1−Π)I1 and

I3 in L2(ω × [0, 2π]) in inequality (3.22). It leads to
ǫn+1 ≤ ǫn + C1∆t

(
∆t+ h2 +

max{hx, hy}
∆t

+ max{hx, hy} + ǫn
)
.A disrete Gronwall inequality enables us to get

ǫn ≤ exp(C1t0) ǫ
0 + C2

(
∆t+ h2 +

max{hx, hy}
∆t

+ max{hx, hy}
)
.17



As ǫ0 is only a �xed interpolation error, we have ǫ0 = 0 and
ǫn ≤ C

(
∆t+ h2 +

max{hx, hy}
∆t

+ max{hx, hy}
)
.

This onvergene result has been established under additional assumption whih gives theinvariane of all integrals on the omputational domain along harateristis. Assumption 3.2boils down to onsider that the domain ω is very large with respet to the plae where ellsare. However the property of invariane of integrals along harateristis remains valid if wetake into aount boundary onditions at the boundary of the domain, provided that theseboundary onditions are onservative (e.g. periodi boundary onditions, speular re�etiononditions). The idea of the proof of Theorem 3.4 is the same but is muh more tehnial sineall integrals should be deomposed between a part for whih harateristis meet the boundaryand a part for whih harateristis do not meet the boundary.4 Numerial simulationsIn this setion, we present the numerial results obtained with the algorithm presented inSetion 3. We are interested in the dynamis of the ells onentration for bateria E. Coli in aPetri box. In this simulation we take the numerial values of [5℄ where the Petri box is stronglyelongated. In fat, the authors are looking for traveling pulse at marosopi sale due to thepresene of nutrient. In their study, they observe the onentration of bateria in a slie thatmoves along the Petri box. Here we do not onsider nutrient and we want to study numeriallythe aggregation in a slie of the ells for suh a Petri box. Then we take ω = [0, Lx] × [0, ℓy]with Lx = 10−2m and ℓy = 10−3m. Moreover this very elongated devie allows us to avoidthe in�uene of the left and right boundary. Bateria are modelled by spheres of radius 1µm.Their initial density is assumed to be n0 = 108 ells per cm−3. Eah individual ell has aonstant speed V = 20µm.s−1 during the run phase.4.1 Numerial resultsThe Keller-Segel model [28℄ was originally derived to desribe aggregation of ells. Mirosopimodels presented here allow to inorporate additional informations during the motion andtherefore to obtain an aurate desription of the dynamis of the ells onentration. Wepresent numerial simulations of model (1.5) using the algorithm desribed in Setion 3 witha Hermite spline interpolation method.We assume that ells are initially onentrated in a slie of the devie :
f 0(x, y, θ) = n0

√
Cx

π
exp(−Cx(x− 0.5Lx)

2), with Cx ≫ 1. (4.1)In this simulation, we take Nx = 120, Ny = 20 and Nθ = 52. The time step is hosen
dt = 4.10−2 and the onstant Cx = 2 .105. For suh initial data and sine for speular re�etionthe evolution is invariant in the y-diretion, we only represent in Figure 1 the dynamis of the18
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Figure 1: Dynamis of the density ρ(t, x, ℓy/2) for di�erent times. One an observe onentra-tion of ells in the enter x = Lx/2.density ρ in a horizontal setion y = ℓy/2 of the devie. As time beomes longer, we notieaggregation of ells in the enter x = Lx/2.To illustrate the dynamis of the density in the Petri dish, we non-dimensionalize the system(1.1) by introduing the dimensionless quantities
x = x0x, t = t0t, v = v0v,

S(t, x) = S0S(t, x), f(t, x, v) = f0f(t, x, v), φ(z) = φ0φ(z).

φ0 is the typial value for the size of the turning kernel, v0 = V is the typial speed, x0 = Lxis the harateristi length of the devie and the typial time is de�ned by t0 = x0/v0. Usingthe same arguments than in [16℄, the dimensionless system is (dropping the bars)
∂tf + v · ∇xf = µ

(∫
SV
φ(∂tS + v′ · ∇xS)f(v′) dv′ − 2πφ(∂tS + v · ∇xS)f(v)

)
,

−∆S + S = ρ,
(4.2)where we set µ =

φ0x0

v0
. With the numerial values used here, we have φ0 = 1 and obtain

µ = 5 103. Here µ ≫ 1, then the solutions of the kineti model are not far from solutions ofthe marosopi model obtained thanks to the hydrodynami limit µ−1 → 0. The rigorousderivation of the hydrodynami limit for presribed smooth hemoattratant density is arriedout in ref. [16℄. We reall that the hydrodynami limit is given by
∂tρ+ divx (ρχ(∂tS, |∇xS|)∇xS) = 0,

−∆S + S = ρ,
(4.3)where χ(∂tS, |∇xS|) is the hemotati sensitivity. In the ase α = 0 in the de�nition of φ(1.4), this hemotati sensitivity an be omputed expliitly (see [16℄). We �nd

χ(∂tS, |∇xS|) =
6V

2π − 3/2 arccos(∂tS/(V |∇xS|))

√

1 −
(

∂tS

V |∇xS|

)2
1

|∇xS|
,19



if |∂tS/(V∇xS)| < 1, and χ(∂tS, |∇xS|) = 0 if |∂tS/(V∇xS)| ≥ 1 or ∇xS = 0. In [16℄,the authors implement a numerial simulation of this marosopi model allowing to observeaggregation for Dityostelium Disoideum where a very simple model for the prodution ofAMP is used. We reover here this dynamis.4.2 In�uene of the ∂tS termIn several papers [8, 11℄, the kineti system presented in (1.5) is studied assuming that theturning operator does not depend on the partial derivative of S with respet to time. In [6℄, aritial mass phenomenon ours in a kineti model and the solutions onverge in �nite time toa Dira under the assumption that the turning kernel grows linearly with ∇xS. In this setionwe present numerial simulations when the turning kernel only depends on the spatial gradientof the hemoattratant onentration S. The system onsidered is then (1.5) where we dropthe term ∂tS :





∂tf + v · ∇xf =

∫

v′∈V

φ(v′∇xS)f(v′) dv′ − 2πφ(v∇xS)f(v),

f(0, x, v) = f 0(x, v),

−∆S + S = ρ(t, x) :=

∫

v∈V

f(t, x, v) dv,

(4.4)It boils down to assume that ells are able to evaluate the gradient of hemoattratant at theirposition. Atually when ells are big enough and have sensors along their body like slime moldDityostelium Disoideum [19℄, they an sense the hemoattratant onentration along theirbody. For suh amoeba, the use of this system is relevant. Here it an be understood as amodel simpli�ation.Figure 2 on the left represents the dynamis in the setion y = ℓy/2 of the density obtainedby solving the model with the algorithm desribed in Setion 3 using a Hermite spline inter-polation method. We observe spurious osillations near the maximum of the density. Whereaswhen we apply the same algorithmwith a linear interpolation method the osillations disappear(Figure 2 on the right). These arti�ial osillations are known as Runge phenomenon.We observe that the aggregation phenomenon is stronger than in previous subsetion. Infat the maximum value of ρ for t = 125 s in this ase is greater than 1016m−3 whereas inFigure 1 even for t = 1000 s the maximum is smaller than 3. 1015m−3. Moreover the dynamisof ρ does not seem to be smooth in the viinity the position x = Lx/2. Comparing with Figure1, the aggregation is faster and less regular than when we use the term ∂tS for the omputationof T . This large and rapid variation of ρ in the viinity of the maximum is surely responsible ofosillations that appear with a high order interpolation method in this ase whereas no Rungephenomenon is notied in Figure 1.This simulation seems to indiate that the solution blows up as a Dira in the enter ofthe devie. A simple argument in 1D on�rms this observation. In fat, the dimensionless 1Dversion of (4.4) is written for all x ∈ [0, L] and v ∈ {−V, V }

∂tf + v∂xf = µ(φ(−v∂xS)f(−v) − φ(v∂xS)f(v)),with µ ≫ 1. When µ−1 → 0, the equilibrium is obtained for
f(−v) =

φ(−v∂xS)

φ(v∂xS)
f(v). (4.5)20
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Figure 2: Dynamis of the density ρ(t, x, ℓy/2) when the turning kernel depends only on ∂xS(4.4). On the left we use a Hermite spline interpolation method : spurious osillations appear(Runge phenomenon). On the right a linear interpolation method is implemented.Summing the one dimensional kineti equations for v = V and v = −V , we obtain the equationfor the �rst moment :
∂t(f(V ) + f(−V )) + V ∂x(f(V ) − f(−V )) = 0. (4.6)Moreover, assuming that f is at equilibrium (4.5) we dedue that

f(V ) − f(−V ) =
φ(−V ∂xS) − φ(V ∂xS)

φ(−V ∂xS) + φ(V ∂xS)
(f(V ) + f(−V ))The density at equilibrium is de�ned by ρ := f(V ) + f(−V ). With (4.6) we �nally obtain the1D version of the hydrodynami model (4.3) without ∂tS :

∂tρ+ ∂x(a(∂xS)ρ) = 0, (4.7)where
a(∂xS) = V

φ(−V ∂xS) − φ(V ∂xS)

φ(−V ∂xS) + φ(V ∂xS)
. (4.8)We an approximate the model by assuming that α in (1.4) is small ompared to the values ofthe hemoattratant onentration gradient suh that φ(z) = 1/4 for z > 0 and φ(z) = 1 for

z < 0. In this ase, we dedue from (4.8) that
a(∂xS) =

3

5
V sign (∂xS), (4.9)where the funtion sign is de�ned bysign (z) = 1 for z > 0 ; −1 for z < 0 ; 0 for z = 0.This system is ompleted with the ellipti equation for S :

−∂xxS + S = ρ.21



We an prove that with our initial guess f 0 (4.1) the funtion S is inreasing for x < 0.5Lx,dereasing for x > 0.5Lx. Therefore, sign (∂xS) = sign (x − 0.5Lx) and equation (4.7)beomes
∂tρ+ ∂x(

3

5
V sign (x− 0.5Lx)ρ) = 0.It is well-known that the solution ρ of this hyperboli system beomes instantaneously a Diraat x = 0.5Lx (see e.g. [36℄).In the ase studied in the previous subsetion where the term ∂tS is not negleted, thehydrodynami limit leads to

∂tρ+ ∂x(a(∂tS, ∂xS)ρ) = 0,where
a(∂tS, ∂xS) = V

φ(∂tS − V ∂xS) − φ(∂tS + V ∂xS)

φ(∂tS − V ∂xS) + φ(∂tS + V ∂xS)
. (4.10)Figure 1 seems to show that the presene of the term ∂tS has a regularization e�et. Therigorous mathematial analysis of these phenomena is a work in progress.4.3 Lous of aggregationAnother interesting question is the determination of the aggregation lous. In the previousase when f 0 is given in (4.1) and is symmetri, the aggregation takes plae in the enter ofthe devie where the onentration is initially maximal. However, in Figure 3, we representthe dynamis of the density when the initial data is not symmetri :

f 0(x, y, θ) =





n0

√
Cx

π
exp(−Cx(x− 0.5Lx)

2), for x ∈ [Lx/2, Lx],

n0

√
Cx

π
exp(−0.5Cx(x− 0.5Lx)

2), for x ∈ [0, Lx/2].
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Figure 3: Dynamis of the density ρ(t, x, ℓy/2) when the initial onentration is a smoothfuntion but not symmetri. Left : with the term ∂tS in the de�nition of the turning kernel(1.5). Right : without ∂tS (4.4).Figure 3 left represents dynamis of the density ρ(t, x, ℓy/2)when the turning kernel dependsof the temporal derivative of the hemial signal ∂tS as in (1.5). Figure 3 right represents22



evolution of ρ when ∂tS is dropped in the de�nition of the turning kernel (4.4). We observethat the aggregation lous is not the same with and without ∂tS. As notied previously, thebehaviour of solutions seems to be more regular for model (1.5) than with (4.4).For model (4.4) when the term ∂tS is dropped in the de�nition of the turning kernel (Figure3 right) the plae where aggregation ours seems to be invariant and �xed. It is readily seenin this ase that the points where aumulation ours for the one dimensional problem (4.7)�(4.9) are the points x0 for whih ∂xS(x0) = 0 and is maximal. In fat, the harateristis forthe onservation law (4.7) onverge and ross at these points. When the temporal derivativeof the hemoattratant is not negleted, a areful study of the expression (4.10) is needed todetermine the points where aggregation ours. In Figure 3 left, the lous of the maximum of
ρ is not invariant.We onsider now the ase when the density of ells is not invariant with respet to y. Weassume for instane that ells are initially onentrated in the enter of the devie :

f 0(x, y, θ) = n0

√
20Cx

2π
exp(−Cx((x− 0.5Lx)

2 + 20(y − 0.5ℓy)
2)).For this simulation, we take Ny = 40 and Cx = 106. Figure 4 presents the evolution of thedensity of ells in the devie. We observe an evolution in two steps. Firstly, ells di�use in the

y diretion. After 2250 s, when the density beomes invariant with respet to y, aggregationphenomenon involves in a slie in the enter of the devie.On the one hand, this dynamis is not omparable to the one observed without the depen-dene on ∂tS of the turning kernel (4.4). Atually, we notie in Figure 5 that for model (4.4)the blow up ours in the enter of the devie. On the other hand, let us onsider a squaredomain Lx = ℓy = 7. 10−3 m and spherially symmetri initial data
f 0(x, y, θ) = n0

Cx

2π
exp(−Cx((x− 0.5Lx)

2 + (y − 0.5ℓy)
2)).We observe in Figure 6 that baterias onentrate in the enter of the devie. We onludethen that the behaviour observed in Figure 4 is due to the partiular domain that we takewhih is very thin in the y-diretion. In fat, due to speular re�etion at the boundary,baterias on the slie x = 0.5Lx lose to the boundary that swim in an unfavorable diretion(i.e. for whih the gradient of the hemoattratant dereases), re�et to the top or bottomboundary. After a re�etion they swim in a favourable diretion (i.e. for whih the gradientof the hemoattratant along their paths inreases). Sine the devie is very elongated, ellsare initially lose to the top and the bottom boundary; this is the reason why we �rst notiea di�usion in the y diretion.5 ConlusionA kineti model desribing hemotaxis for a population of bateria has been presented in (1.5).This model has been previously introdued in ref. [16℄ where its hydrodynami limit wasderived. It inorporates the ability of ells to assess temporal hanges of the hemoattratantonentration as well as its spatial variations. In this work, we are interested in obtaining anumerial simulation of this kineti model. We proved rigorously in Theorem 2.2 existene anduniqueness of solutions for this model. Then a semi-Lagrangian method has been implementedto obtain numerial simulations of this well-posed problem in Setion 4.23



Figure 4: Dynamis of the density ρ of ells in the devie for model (1.5).

Figure 5: Dynamis of the density ρ of ells in the devie without the ∂tS dependene of theturning kernel (4.4) when the onentration is initially maximal in the enter of the devie.
24



Figure 6: Dynamis of the density ρ of ells for a square domain with the ∂tS dependene ofthe turning kernel when the onentration is initially maximal in the enter of the devie.We have notied in this simulation aggregation of ells in some plae of the devie. Thisaggregation phenomenon was observed in experiments and mathematial study of this phe-nomenon was the motivation of the work of Keller and Segel [28℄. Some numerial simulations ofmarosopi models desribing hemotaxis have been obtained (see e.g. [10, 20, 21, 16, 24, 37℄)but not at mirosopi level whih is the aim of this work.We have tested two expressions of the turning kernel whih is taken depending on thetemporal derivative of the hemial signal or not. A �rst observation is the fat that thepresene of the term ∂tS in the de�nition of the T seems to smooth solutions and to slowdown the aggregation phenomena. This phenomena was expeted sine in the ase 'without
∂tS' ells are able to estimate instantly the gradient of the hemial and to deide instantlyeither to hange diretion or not. In the ase 'with ∂tS' ells must swim (at least during onenumerial time step) to sense the hemial gradient. Moreover the plae where aggregationours is not exatly the same for both models in some situation. A rigorous explanation ofthese phenomena for these mathematial models is at our knowledge still an open question.Furthermore, the numerial simulation of model (1.5) implemented in this artile showsthe blow-up along lines while for the Keller-Segel model the blow-up is always point-wise[10, 20, 24, 29, 37, 38℄. It is observed in [20, 37℄ that due to instabilities the blow-up peakusually moves to a orner of the omputational domain. In [29℄ the mass onentrates in somepartiular points of the boundary that an ollides to form isolated peaks in the boundaryof domain. In [24℄, the authors onentrate on apturing the orret blow-up dynamis byusing a partile method : ells aggregate in two singularities that ollide to form one singleheavy partile arrying almost all of the mass while di�usion ours in the rest of the domain.However, in the numerial test presented in this paper, one an observe blow-up pro�les thatare not point-wise and that an be loated inside the domain. Moreover, blow up pro�les alonglines seems to be stable (see Figure 4).Finally, this study leads to the question of deriving marosopi model from this kinetisystem. When the time derivative is not taken into aount in the expression of the turningkernel, we refer to [21℄ when a hierarhy of models is presented. Inluding the time derivativeof the hemial implies that all oe�ients depending on S at the marosopi level dependson ∂tS too, suh as in model (4.3). However, this term represents the dynamis of the gradient25



of the hemoattratant along the trajetories of the ells. At marosopi level, it has nomeaning sine we do not onsider the motion of individual ells. From a mathematial pointof view, we an use (2.2) to have an expression of ∂tS with respet to the �ux of ells whih isa marosopi quantity. An other idea following [16℄ is to onsider an evolution equation forthe hemoattratant density, even if the time saling of this equation is very fast ompared tothe ells dynamis.Aknowledgement. The author thanks warmly Benoît Perthame for its valuable omments,his help and his support during this work.
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