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Numeri
al simulation of a kineti
 model for 
hemotaxis.N. Vau
heletUPMC, Univ Paris 06, UMR 7598 LJLL, Paris F-75005 Fran
e ;CNRS, UMR 7598 LJLL, Paris, F-75005 Fran
e,and INRIA Projet BANG,Tel.: (+33)(0)1 44 27 37 72 Fax: (+33)(0)1 44 27 72 00E-mail addresses: vau
helet�ann.jussieu.frAbstra
tThis paper is devoted to numeri
al simulations of a kineti
 model des
ribing 
hemo-taxis. This kineti
 framework has been investigated sin
e the 80's when experimentalobservations have shown that the motion of ba
teria is due to the alternan
e of 'runs andtumbles'. Sin
e paraboli
 and hyperboli
 models do not take into a

ount the mi
ros
opi
movement of individual 
ells, kineti
 models have be
ome of a great interest. Dolak andS
hmeiser (2005) have then proposed a kineti
 model des
ribing the motion of ba
teriaresponding to temporal gradients of 
hemoattra
tants along their paths. An existen
eresult for this system is provided and a numeri
al s
heme relying on a semi-Lagrangianmethod is presented and analyzed. An implementation of this s
heme allows to obtainnumeri
al simulations of the model and observe blow-up patterns that di�er greatly fromthe 
ase of Keller-Segel type of models.Keywords. Chemotaxis; Kineti
 equations; semi-Lagrangian method; 
onvergen
e analysis.AMS subje
t 
lassi�
ations: 92C17; 92B05; 65M12; 82C80.1 Introdu
tion and modellingChemotaxis is the phenomenon in whi
h 
ells dire
t their movements a

ording to 
ertain
hemi
als in their environment. A possible issue of a positive 
hemota
ti
al movement isthe aggregation of organisms involved to form a more 
omplex organism or body. Manyattempts for des
ribing 
hemotaxis from a Partial Di�erential Equations viewpoint, i.e. fora large population, have been 
onsidered. At the ma
ros
opi
 level the most famous is thePatlak, Keller and Segel model [28, 34℄. Although this models have been su

essfully used todes
ribe aggregation of the population (see [25, 26, 41℄ for surveys), these ma
ros
opi
 modelshave several short
omings, for instan
e they do not take into a

ount the detailed individualmovement of 
ells.Therefore another approa
h involving kineti
 equations to des
ribe 
hemotaxis has beenproposed. The so-
alled Othmer-Dunbar-Alt system [31, 33, 35℄ governs the evolution of the
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distribution fun
tion f of ba
teria at time t, position x ∈ ω and velo
ity v ∈ V and of the
on
entration of 
hemoattra
tant S. The system writes in the following way :




∂tf + v · ∇xf =

∫

v′∈V

(T [S](v′ → v)f(v′) − T [S](v → v′)f(v)) dv′,

−∆S + S = ρ(t, x) :=

∫

v∈V

f(t, x, v) dv,
(1.1)
ompleted with the initial 
ondition

f(0, x, v) = f 0(x, v). (1.2)The turning kernel T [S](v′ → v) denotes the rate of 
ells 
hanging their velo
ity from v′ to v.This system models the evolution of �agellated ba
teria su
h as E. Coli. It has beenobserved that a ba
terium moves along straight lines, suddenly stop to 
hoose a new dire
tionand then 
ontinue moving in the new dire
tion until the 
ells re
eptors saturate. The movementof the ba
terium is then due to the alternan
e of these 'run' and 'tumble' phases [1, 40℄. Cellsare able to 
ompare the present 
hemi
al 
on
entrations to previous ones and thus to respond totemporal gradients along their paths. The de
ision to 
hange dire
tion and turn or to 
ontinuemoving depends then on the 
on
entration pro�le of the 
hemi
al S along the traje
tories of
ells and detailed models have been proposed in [18, 19, 16℄. In [16℄ the authors propose to
onsider simply a turning kernel of the form :
T [S](v′ → v) = φ(∂tS + v′ · ∇xS). (1.3)The rate of turning is greater if the gradient 
on
entration along the traje
tory ∂tS+v ·∇xS isnegative than when it is positive. Experimentally, in the absen
e of gradients of 
on
entration,an individual 
ell of E. Coli performs a random walk with a mean duration of run times of

1s (see [30℄). Due to the in�uen
e of the 
hemoattra
tant a 
ell sensing a positive gradient of
on
entration has a run 4 times longer. Then, in this simpli�ed model, we 
onsider that φ isa positive nonin
reasing smooth fun
tion; more pre
isely,
φ ∈ C∞(R), φ′ < 0, φ(z) =

{
1 if z < −α,
1/4 if z > α,

(1.4)for a given positive α small.In this work, we are interested in the evolution of the ba
teria 
on
entration in a Petri box,whi
h is approximated by a bounded domain ω ⊂ R
2. The velo
ity of ba
teria has a 
onstantmodulus V , therefore we take V = SV := {v ∈ R

2 with ‖v‖ = V }. We denote Ω = ω×V. Thesystem 
an be then rewritten in the following way :





∂tf + v · ∇xf =

∫

v′∈V

φ(∂tS + v′∇xS)f(v′) dv′ − 2πφ(∂tS + v∇xS)f(v),

f(0, x, v) = f 0(x, v),

−∆S + S = ρ(t, x) :=

∫

v∈V

f(t, x, v) dv,

(1.5)This system is 
ompleted with the spe
ular re�e
tion 
onditions
f(t, x, v) = f(t, x, v − 2(v · ν)ν), ∀x ∈ ∂ω, v ∈ V su
h that v · ν(x) > 0, (1.6)2



where ν(x) is the outward unit ve
tor at the point x of the boundary ∂ω. And for the 
hemoat-tra
tant 
on
entration, we set Neumann boundary 
onditions :
∂νS(t, x) = 0, ∀x ∈ ∂ω. (1.7)This system is 
omposed of a kineti
 equation 
oupled to an ellipti
 equation. Therefore wepropose in this work to use te
hniques whi
h have proven their e�
ien
y for the numeri
al res-olution of the Vlasov-Poisson system in plasma physi
s to deal with the numeri
al approa
h ofsystem (1.5). Lagrangian methods like Parti
le-In-Cell methods whi
h 
onsist of approximatingthe plasma by a �nite number of ma
ro-parti
les are usually performed for the Vlasov equation(see [4℄). However, these methods are known to be very useful for large s
ale problems but arevery noisy and do poor job on the tail of the distribution fun
tion. To remedy this problem,Eulerian methods have been proposed. They 
onsist of dis
retizing the Vlasov equation on amesh of phase spa
e. Among them, �nite volume s
hemes are known to be robust and 
om-putationally 
heap [9, 12, 14, 22℄ but very 
onstrained by a CFL 
ondition. Semi-Lagrangianmethods are other kinds of Eulerian method allowing to obtain a

urate des
ription of the dis-tribution fun
tion [39, 2, 3, 15℄. They 
onsist of dire
tly 
omputing the distribution fun
tionat ea
h time step on a �xed Cartesian mesh of the phase spa
e by following the 
hara
teristi
s
urves ba
kward and interpolating the value at the base of the 
hara
teristi
s. We refer to [23℄for a review on Eulerian methods. Then, we will use in this work a semi-Lagrangian methodfor the numeri
al resolution of model (1.5).The paper is organized as follows. In the next se
tion we state and prove an existen
eand uniqueness result for the system (1.5)�(1.7). For the sake of simpli
ity this study is
onsidered in the whole domain R
2, whi
h allows to have an expli
it expression of S thanksto the Bessel potential. Se
tion 3 is devoted to the numeri
al resolution of this system. We�rst re
all the semi-Lagrangian method used for the dis
retization of the kineti
 transportequation. Then we present the algorithm of resolution of the whole system (1.5). Finally, ananalysis of this s
heme under additional assumptions furnishes a 
onvergen
e result in L2 ofthe dis
rete approximation towards the solution of model (1.5). Numeri
al simulations, whi
hshows the aggregation phenomenon observed for ba
teria E. Coli, are presented and dis
ussedin 
omparison to those for Keller-Segel in se
tion 4.2 Existen
e resultFor the sake of simpli
ity, we 
onsider in this se
tion that ω = R

2 and Ω = R
2 × V.The existen
e of solutions to kineti
 models of 
hemotaxis has been investigated in severalpapers. In [11, 27℄, global existen
e for the initial value problem (1.1) in R

3 and in R
2 has beenobtained under the assumption that the turning kernel is 
ontrolled by terms involving S(t, x+

v) and S(t, x − v′). Dispersive methods are used to obtain a priori estimates. These resultshas been extended in [8℄ for more general assumptions on the turning kernel. All these paperstook into a

ount the e�e
t of the gradient of the 
hemi
al signal and showed global existen
eof solutions. However, these rigorous global existen
e results have not in
luded the temporalderivative of the signal in the growth 
ondition of the turning frequen
y. In ref. [17℄, theauthors investigate global existen
e of solutions (not ne
essary unique) for general hyperboli

hemotaxis models where the turning kernel takes into a

ount the temporal derivative ofthe 
hemoattra
tant through the evolution of internal states but only in the one-dimensionalphysi
al spa
e. 3



For the sake of 
ompleteness of this paper, we propose here to extend these results to model(1.5) 
onsidered in the whole domain Ω = R
2 × V and to establish existen
e and uniquenessof global-in-time solution. The main novelty is due to the dependan
e of the 
ross-se
tion ofthe turning operator on the time derivative of the 
hemoattra
tant 
on
entration. We use thefollowing expression for the 
hemoattra
tant 
on
entration :

S(t, x) = (G ∗ ρ(t))(x), where G(x) =
1

4π

∫
∞

0

e−π |x|2

4s
−

s
4π
ds

s
.The fun
tion G is known as the Bessel potential. The idea to over
ome the di�
ulty raised bythe term ∂tS in the turning kernel expression (1.3) is to use the 
onservation of the density :

∂tρ+ ∇x · J = 0, J(t, x) =

∫

V

vf(t, x, v) dv. (2.1)We have then
∂tS = G ∗ ∂tρ = −G ∗ ∇x · J = −∇xG ∗ J, (2.2)where the 
onvolution between two ve
tors is de�ned by ∇xG ∗ J = ∂x1

G ∗ J1 + ∂x2
G ∗ J2. Itimplies a 
ontrol on the partial derivatives of S with respe
t to time thanks to 
ontrols on J(see [7℄). We 
an then rewrite the problem (1.5) as





∂tf + v · ∇xf =

∫

v′∈V

φ(∇xG ∗ (v′ρ− J))f(v′) dv′ − 2πφ(∇xG ∗ (vρ− J))f(v),

f(0, x, v) = f 0(x, v),

(2.3)We �rst de�ne the notion of weak solutions for (2.3) on (0, T ) × Ω.De�nition 2.1 We say that f is a weak solution of (2.3) on Lq(0, t0;L
p(Ω)) for t0 > 0 and

p, q ≥ 1, if for any test fun
tion ψ ∈ D([0, t0) × Ω), we have
∫

(0,t0)×Ω

(∂tψ + v · ∇xψ)f dxdvdt = −
∫

(0,t0)×Ω

∫

V

φ(∇xG ∗ (v′ρ− J))f(v′)ψ dtdxdvdv′

+2π

∫

(0,t0)×Ω

φ(∇xG ∗ (vρ− J))fψ dtdxdv +

∫

Ω

f 0(x, v)ψ(0, x, v) dxdv,where the 
ells density ρ and the 
urrent density J are de�ned by
ρ(t, x) =

∫

V

f(t, x, v) dv, J(t, x) =

∫

V

vf(t, x, v) dv. (2.4)We state the following existen
e and uniqueness result :Theorem 2.2 Assume f 0 ∈ L1
+ ∩ L∞(Ω) and that the turning kernel T is de�ned by (1.3)�(1.4). Then the initial value problem (2.3) admits a unique global weak solution f satisfying

f ∈ L∞((0,∞);L1
+ ∩ L∞(Ω)).Moreover, if f 0 ∈ W 2,2(Ω) ∩ W 1,∞(Ω) then for all t0 > 0, there exists a 
onstant C0depending on t0 and on the data su
h that the weak solution of (2.3) satis�es

‖f‖L∞((0,t0);W 2,2(Ω)∩W 1,∞(Ω)) ≤ C0 ; and ‖∂tf‖L∞((0,t0);L∞(Ω)) ≤ C0.4



The proof of this result is split into two steps. First, we prove the lo
al-in-time existen
eof a unique solution. The smoothness assumption (1.4) on φ provides thanks to a �xed pointpro
edure the uniqueness of solution. Then, thanks to a priori estimates, we extend thissolution up to t0 for all t0 > 0 and then re
over global existen
e. The main tool in the proofof Theorem 2.2 is an a priori estimate given in the following Lemma :Lemma 2.3 Let t0 > 0 and f 0 ∈ L∞(Ω). Let f be a weak solution of (2.3), su
h that f ∈
L1((0, t0), L

1
+ ∩ L∞(Ω)). Then we have for a.e. t ∈ (0, t0), ‖f(t, ·, ·)‖L1(Ω) = ‖f 0‖L1(Ω) and

‖f‖L∞((0,t0);L∞(Ω)) ≤ C(‖f 0‖L∞(Ω)) e
2πt,where the 
onstant C(‖f 0‖L∞(Ω)) depends only on the initial data.Proof. First the 
onservation of the mass shows that

‖f(t, ·, ·)‖L1(Ω) = ‖f 0‖L1(Ω).From the bound 1/4 ≤ φ ≤ 1 of φ (1.4) we dedu
e
∂tf(t, x, v) + v · ∇xf(t, x, v) ≤

∫

V

f(t, x, v′) dv′.Integrating along the traje
tories, we �nd
f(t, x, v) ≤ f 0(x− tv, v) +

∫ t

0

ρ(s, x+ (s− t)v) ds. (2.5)We 
an bound the right hand side term by its L∞
x norm. Integrating with respe
t to v provides

‖ρ(t, ·)‖L∞(R2) ≤ 2π‖f 0‖L∞(Ω) + 2π

∫ t

0

‖ρ(s, ·)‖L∞(R2) ds.We obtain a bound on the L∞ norm on ρ thanks to Gronwall's inequality and 
on
lude theproof with (2.5).Proof of Theorem 2.2. The lo
al-in-time existen
e is obtained by a �xed point argument.Let t0 > 0, the map F on L1((0, t0);L
∞(Ω)) is de�ned for all f by : F(f) is a weak solutionof the problem





∂tF + v · ∇xF =

∫

v′∈V

φ(∇xG ∗ (v′ρ− J))F(v′) dv′ − 2πφ(∇xG ∗ (vρ− J))F(v),

F(0, ·, ·) = f 0,where ρ =
∫
V
f(t, x, v) dv and J =

∫
V
vf(t, x, v) dv. We will show that this map de�nes a 
on-tra
tion on L1((0, τ), L∞(Ω)) for τ small enough. Let f1 and f2 be given in L1((0, t0), L

∞(Ω))and denoting F12 = F(f1) − F(f2) we have
∂tF12 + v · ∇xF12 =

∫

V

φ(∇x ·G ∗ (vρ1 − J1))F12(v
′) dv′ − 2πφ(∇x ·G ∗ (vρ1 − J1))F12

−2πF(f2)(φ(∇x ·G ∗ (vρ1 − J1)) − φ(∇x ·G ∗ (vρ2 − J2))

+

∫

V

F(f2)(v
′)(φ(∇x ·G ∗ (v′ρ1 − J1)) − φ(∇x ·G ∗ (v′ρ2 − J2)) dv

′,5



with the notations ρi =
∫
V
fi(t, x, v) dv and Ji =

∫
V
vfi(t, x, v) dv. We 
an rewrite this identityin the following way

∂tF12 + v · ∇xF12 + 2πφ(∇x ·G ∗ (vρ1 − J1))F12 = G, (2.6)where
G(t, x, v) =

∫

V

φ(∇x ·G ∗ (v′ρ1 − J1))F12(v
′) dv′ − 2πF(f2)(φ(∇x ·G ∗ (vρ1 − J1))−

φ(∇x ·G ∗ (vρ2 − J2)) +

∫

V

F(f2)(v
′)(φ(∇x ·G ∗ (v′ρ1 − J1)) − φ(∇x ·G ∗ (v′ρ2 − J2)) dv

′.(2.7)Using the 
hara
teristi
s of the system, we 
an rewrite equation (2.6) as
d

ds

(
e2πφ(∇x ·G ∗ (vρ1 − J1))(τ, x+ v(τ − t))F12(s, x+ v(s− t), v)

)
=

e2πφ(∇x ·G ∗ (vρ1 − J1))(τ, x+ v(τ − t))G(s, x+ v(s− t), v).At the initial time, F12(0, ·, ·) = 0. Integrating the latter equality between 0 and t, we have
F12(t, x, v) =

∫ t

0

exp

(
2π

∫ s

t

φ(∇x ·G ∗ (vρ1 − J1))(τ, x+ v(τ − t)) dτ

)
G(s, x+v(s−t), v) ds.Sin
e φ (1.4) is bounded from below by 1/4 we dedu
e that for all 0 < t < t0,

|F12(t, x, v)| ≤
∫ t

0

|G(t− s, x− vs, v)| ds. (2.8)Moreover, from (2.7) and the assumptions on φ (1.4), we dedu
e
|G| ≤

∫

V

|F12(v
′)| dv′ + ‖φ′‖∞

(
2πF(f2) +

∫

V

F(f2)(v
′) dv′

)
×

× (|∇xG ∗ (J1 − J2)| + V |∇xG ∗ (ρ1 − ρ2)|) ,where V = maxv∈V ‖v‖. Noti
ing that |J1 − J2| ≤ V |ρ1 − ρ2|, we have moreover
‖|∇xG ∗ (J1 −J2)(t, ·)|+V |∇xG ∗ (ρ1 − ρ2)(t, ·)|‖L∞(R2) ≤ V ‖∇xG‖L1(R2)‖(ρ1 − ρ2)(t, ·)‖L∞(R2).Finally, from (2.8) we dedu
e the bound
‖F12(t, ·, ·)‖L∞(Ω) ≤ C1

∫ t

0

‖F12(t− s, ·, ·)‖L∞(Ω) ds+

C2

∫ t

0

‖F(f2)(t− s, ·, ·)‖L∞(Ω)‖∇xG‖L1(R2)‖(ρ1 − ρ2)(t− s, ·)‖L∞(R2) ds.Therefore, using a Gronwall Lemma, we 
on
lude that for τ > 0 small enough, F de�nes a
ontra
tion on L1((0, τ), L∞(Ω)). It allows to 
onstru
t a unique solution as the �xed pointof the map F on the interval (0, τ). Using the a priori estimates established in Lemma 2.3,we 
an extend this solution on (0, t0) for all t0 > 0 and we have a bound on this solution in
L∞(0, t0;L

1 ∩ L∞(Ω)). 6



For the proof of the se
ond point of Theorem 2.2, let us assume that f 0 ∈ W 2,∞(Ω) andthat t0 > 0 is �xed. By di�erentiating with respe
t to x1 the kineti
 equation (2.3) satis�edby f , we obtain
∂t∂x1

f + v · ∇x∂x1
f + 2πφ(∇x ·G ∗ (vρ− J))∂x1

f =
∫
V
φ(∇x ·G ∗ (v′ρ− J))∂x1

f(v′) dv′

+
∫
V
∇xG ∗ (v′∂x1

ρ− ∂x1
J)φ′(∇xG ∗ (v′ρ− J))f(v′) dv′

−2π∇xG ∗ (v∂x1
ρ− ∂x1

J)φ′(∇xG ∗ (vρ− J))f(v).The right hand side is bounded by
∫

V

|∂x1
f(v′)| dv′ + 8πV ‖φ′‖L∞‖f‖L∞(Ω)‖∇xG‖L1(Ω)

∫

V

|∂x1
f(v′) dv′|.Integrating along the 
hara
teristi
s and pro
eeding as above, we obtain that for all 0 ≤ t ≤ t0,

|∂x1
f(t, x, v)| ≤ C1|∂x1

f 0(x− tv, v)| + C2

∫ t

0

∫

V

|∂x1
f(t− s, x− sv, v)| ds,where C1 and C2 stand for nonnegative 
onstants depending only on t0 and on the data. Bythe same token as in proof of Lemma 2.3 using Gronwall's inequality, we obtain a bound on

∂x1
f in L∞((0, t0);L

∞(Ω)). Di�erentiating (2.3) with respe
t to x2 and v, we dedu
e by thesame token that for all t ∈ (0, t0), we have f(t, ·, ·) ∈ W 1,∞(Ω). With a similar argument wededu
e after straightforward 
al
ulations that f is bounded in L∞((0, t0);W
2,2(Ω)). Moreoverfrom (2.3) we have an expression of ∂tf with respe
t to f , ρ, J , ∇xG and ∇xf allowing toobtain a bound on ∂tf in L∞((0, t0);L

∞(Ω)).Remark 2.4 For the sake of simpli
ity, this existen
e result has been established in the domain
ω = R

2. However, this existen
e and uniqueness result is still available in a bounded domain
ω ⊂ R

2 provided that the boundary 
onditions allows to use the ellipti
 regularity for the ellipti
equation satis�ed by S. For numeri
al analysis, we will 
onstraint the domain ω to be boundedand make use of this existen
e result in this framework.3 Numeri
al approa
hIn this se
tion, we present the numeri
al approa
h for solving (1.5). The 
omputational domainis de�ned by (x, v) ∈ Ω = ω×SV where ω is a re
tangular domain of R
2, ω = [0, Lx]×[0, ℓy], and

SV is the sphere SV = {v ∈ R
2, su
h that ‖v‖2 = V }, for a given 
onstant velo
ity V > 0. Weredu
e this 4-dimensional problem to a 3-dimensional problem by 
onsidering the 
ylindri
al
oordinate θ.At the boundary of the domain, we assume to have spe
ular re�e
tion at the boundaries

y = 0, y = ℓy, x = 0 and x = Lx for the distribution fun
tion; for the 
hemoattra
tant
7




on
entration S we set Neumann 
onditions on the entire boundary :
f(x, 0, θ) = f(x, 0, 2π − θ), for θ ∈ [0, π], x ∈ [0, Lx],

f(x, ℓy, θ) = f(x, ℓy, 2π − θ), for θ ∈ [π, 2π], x ∈ [0, Lx],

f(0, y, θ) = f(0, y, π − θ), for θ ∈ [0, π/2] ∪ [3π/2, 2π], y ∈ [0, ℓy],

f(Lx, y, θ) = f(Lx, y, π − θ), for θ ∈ [π/2, 3π/2], y ∈ [0, ℓy],

∂xS(0, y) = ∂xS(Lx, y) = 0, for y ∈ [0, ℓy],

∂yS(x, 0) = ∂yS(x, ℓy) = 0, for x ∈ [0, Lx].

(3.1)
Obviously, in the θ dire
tion f is 2π-periodi
.We introdu
e the nodes (xi = i hx)i=0,··· ,Nx−1, (yj = j hy)j=0,··· ,Ny−1 and (θk = k hθ)θ=0,··· ,Nθ−1where hx = Lx/(Nx − 1), hy = ℓy/(Ny − 1) and hθ = 2π/Nθ. We denote xi = (xi1 , yi2) with
i = i1 + i2Nx and we mesh the domain ω with re
tangular triangles using the nodes xi. There-fore the triangulation is regular and all �nite elements are a�ne equivalent to a single referen
eelement. We denote the time step ∆t and set tn = n∆t for n = 0, . . . , Nt.3.1 Semi-Lagrangian methodsIn this se
tion we des
ribe the semi-Lagrangian method used for the numeri
al resolution in
ω ⊂ R

2 of the kineti
 equation :
∂tf + v · ∇xf =

∫

SV

φ(∂tS + v′ · ∇xS)f(v′) dv′ − 2πφ(∂tS + v · ∇xS)f(v), (3.2)
ompleted with the initial datum (1.2). We assume in this se
tion that the 
hemoattra
tant
on
entration is known and we will therefore 
onsider the turning kernel as a fun
tion of t, xand v : T (t, x, v) = φ(∂tS(t, x) + v · ∇xS(t, x)). Its numeri
al approximation will be denoted
Th. Semi-Lagrangian methods 
onsist in 
al
ulating the distribution fun
tion at time tn+1 =
tn + ∆t thanks to the one whi
h has been obtained at the time tn by using the 
onservationrelation along the 
hara
teristi
s 
urves. We �rst de�ne the 
hara
teristi
s (X,Θ) of the systemfor all 0 ≤ s ≤ t by :






d

ds
X(s;x, θ, t) = vΘ, with vΘ = (V cos Θ, V sin Θ) ; X(t;x, θ, t) = x,

d

ds
Θ(s;x, θ, t) = 0 ; Θ(t;x, θ, t) = θ,

(3.3)if X(s;x, θ, t) ∈ (0, Lx) × (0, ℓy). Therefore the velo
ity remains 
onstant, ex
ept when thetraje
tory meets a boundary of the domain : if there exists a time s > 0 su
h thatX(s;x, θ, t) ∈
(0, Lx)×{0, ℓy} then the angle Θ(s;x, θ, t) is 
hanged into 2π−Θ(s;x, θ, t); if there exists a time
s > 0 su
h thatX(s;x, θ, t) ∈ {0, Lx}×(0, ℓy) then Θ(s;x, θ, t) is substituted by π−Θ(s;x, θ, t).More pre
isely, we have

X(s;x, θ, t) = x + vθ(s− t), with vθ = (V cos θ, V sin θ), Θ(s;x, θ, t) = θ,for all s ∈ R
+ for whi
h the traje
tory does not 
ross the boundaries. By re�e
tion, if thetraje
tory rea
hes one of the boundaries y = 0 or y = ℓy only on
e at time t0, then for8



t < t0 < s,
X(s;x, θ, t) = x + vθ(t0 − t) + v2π−θ(s− t0) and Θ(s;x, θ, t) = 2π − θ.If the traje
tory 
rosses the boundary x = 0 or x = Lx at time t1, then for t < t1 < s, we have
X(s;x, θ, t) = x + vθ(t1 − t) + vπ−θ(s− t1) and Θ(s;x, θ, t) = π − θ.Obviously, if the traje
tory meets several times the boundaries, we make others re�e
tions.Using the 
hara
teristi
s, we 
an rewrite the kineti
 equation (3.2) in the following way :

d

ds
f(s,X(s;x, θ, t),Θ(s;x, θ, t)) =

∫ 2π

0

(T (s,X(s;x, θ, t), θ′)f(s,X(s;x, θ, t), θ′) dθ′

−2π T (s,X(s;x, θ, t),Θ(s;x, θ, t)) f(s,X(s;x, θ, t),Θ(s;x, θ, t))).

(3.4)The semi-Lagrangian method relies on a dis
rete approximation of relation (3.4). Weassume to know the distribution fun
tion at time tn . We use an expli
it in time Euler s
hemeto 
ompute this quantity at time tn+1 = tn + ∆t on ea
h point (xi, θj) of the grid. It leads tothe following system :
fh(t

n+1,xi, θj) = fh(t
n+1, X(tn;xi, θj, t

n+1),Θ(tn;xi, θj, t
n+1))

+∆t

∫ 2π

0

(Th(t
n, X(tn;xi, θj , t

n+1), θ′)fh(X(tn;xi, θj , t
n+1), θ′) dθ′

−2π∆t Th(t
n, X(tn;xi, θj , t

n+1),Θ(tn;xi, θj , t
n+1)) fh(X(tn;xi, θj , t

n+1),Θ(tn;xi, θj , t
n+1))),(3.5)where fh and Th stand for approximations of f and T . For the sake of 
larity, we will use fromnow on the notations Xn

i,j(s) instead of X(s;xi, θj , t
n) and Θn

i,j(s) instead of Θ(s;xi, θj, t
n)).The dis
retization relies on two main steps :1. Find the point (X(tn;xi, θj , t

n+∆t),Θ(tn;xi, θj , t
n+∆t)) := (Xn+1

i,j (tn),Θn+1
i,j (tn)). Start-ing from (xi, θj), it su�
es to follow ba
kward the 
hara
teristi
s 
urves during the timestep ∆t. To this end, we have to solve (3.3). Sin
e the resolution of the se
ond equationin (3.3) is 
lear, this step is simple (in a general framework see e.g. [39, 2, 15℄)

Xn+1
i,j (tn) = xi − ∆tvΘn+1

i,j
, Θn+1

i,j (tn) = θj .Obviously, if the traje
tory rea
hes a boundary of the domain, then we use spe
ularre�e
tion : Xn+1
i,j (tn) is repla
ed by its symmetri
 with respe
t to this boundary and

Θn+1
i,j (tn) by 2π −Θn+1

i,j (tn) at the verti
al boundary y = 0 or y = ℓy, or by π −Θn+1
i,j (tn)at the boundary x = 0 or x = Lx.Therefore the 
omputation of the foot of the 
hara
teristi
s is exa
t.2. Sin
e the fun
tions f and T at time tn are only known on the nodes of the mesh, weinterpolate these fun
tions at the points (Xn+1

i,j (tn),Θn+1
i,j (tn)). A
tually, sin
e we have

Θn+1
i,j (tn) = θj or π − θj or 2π − θj , by taking Nθ odd we only have a 2D interpolationmethod to implement. In fa
t, we have that 2π − θj = θNθ−j and π − θj = θNθ/2−j if

θj ∈ (0, π). Several interpolation methods 
an be used. To avoid Runge phenomena, we9




an use a linear interpolation : we de�ne the linear interpolation operator Π onto thespa
e of Lagrangian polynomials of degree lesser than or equal to 1 by :
Πf(x, y) =

NxNy−1∑

i=0

f(xi)li(x, y), with li ∈ P
1(ω) su
h that li(xj) = δij , (3.6)where P

1(ω) is the set of pie
ewise polynomials whose restri
tion on ea
h triangle of themesh holds in polynomials fun
tion of degree lesser than or equal to 1. The interpolationerror estimations in Sobolev spa
es give that for all f ∈ W 2,2(ω) (see [13℄ Theorem 16.2p. 128)
‖f − Πf‖L2(ω) ≤ Cmax{h2

x, h
2
y} ‖f‖W 2,2(ω). (3.7)Moreover, this linear interpolation method preserves the L∞ bound :

‖Πf‖L∞(ω) ≤ ‖f‖L∞(ω). (3.8)For more pre
ision on solutions, a Hermite spline interpolation method whi
h is a wellestablished high order interpolation method 
an be used. We refer to [39, 15℄ for moredetails about this interpolation step. However, spurious os
illations (e.g. Runge phe-nomena) 
an appear with high order interpolation methods.Finally, using a dis
retization of the integral in (3.5), the approximation of the distributionfun
tion at time tn+1 is obtained by
fh(t

n+1,xi, θj) = Πfh(t
n, Xn+1

i,j (tn),Θn+1
i,j (tn)) − 2π∆tΠ(Thfh)(t

n, Xn+1
i,j (tn),Θn+1

i,j (tn))+

+∆t

Nθ−1∑

k=0

hθ Π(Thfh)(t
n, Xn+1

i,j (tn), θk). (3.9)3.2 Numeri
al resolution of the 
oupled systemWe re
all the following notations : Xn+1
i,j (tn) instead of X(tn;xi, θj , t

n+1), Θn+1
i,j (tn) instead of

Θ(tn;xi, θj , t
n+1)) and Π is the interpolation operator. The numeri
al resolution of the 
oupledproblem (1.5) is then ta
kled in the following way. We assume that the approximation ofthe distribution fun
tion fh and of the 
hemoattra
tant 
on
entration Sh are known at time

tn at ea
h nodes of the mesh. We des
ribe the pro
ess to 
ompute fh and Sh at time tn+1.As des
ribed previously, the distribution fun
tion at time tn+1 is approximated thanks to therelation :
fh(t

n+1,xi, θj) = Πfh(t
n, Xn+1

i,j (tn),Θn+1
i,j (tn)) − 2π∆tΠ(Thfh)(t

n, Xn+1
i,j (tn),Θn+1

i,j (tn))+

+∆t

Nθ−1∑

k=0

hθ Π(Thfh)(t
n, Xn+1

i,j (tn), θk), (3.10)where the turning kernel Th is 
omputed by a dis
retization of (1.3). As we have seen for theproof of Theorem 2.2, estimates on T rely on the 
onservation equation for ρ (2.1) whi
h allows10



to get an estimation of the term involving temporal derivative in the de�nition of T . In fa
t,the quantity ∂tS satis�es
−∆∂tS + ∂tS = −∇ · J, (3.11)
ompleted with Neumann boundary 
onditions dedu
ed from (3.1). We de�ne the approxima-tion of the 
urrent by

Jh(t
n,xi) =

Nθ−1∑

k=0

hθvθkfh(t
n,xi, θk). (3.12)Then the approximation of ∂tS, denoted Sth, is 
omputed by solving (3.11) with Jh using
onforming P

1 �nite elements :
∀Vh ∈ Xh,

∫

ω

(∇Sth · ∇Vh + SthVh) dx =

∫

ω

Jh · ∇Vh dx, (3.13)where Xh is the set of fun
tion of C0(ω) whose restri
tion to ea
h triangle on the mesh holdsin P
1. We de�ne the approximation Th of the turning kernel by

Th(t
n,xi, θj) = φ

(
Sth(t,x) +

1

∆t
(Sh(t

n,xi) − ΠSh(t
n, Xn

i,j(t
n−1))

)
. (3.14)On
e fh is known at time tn+1, the 
hemoattra
tant 
on
entration is updated by solvingthe following ellipti
 equation with 
onforming P

1 �nite elements :
−∆Sh(t

n+1,xi) + Sh(t
n+1,xi) = ρh(t

n+1,xi) :=

Nθ−1∑

k=0

fh(t
n+1,xi, θk) hθ. (3.15)This system is 
ompleted with boundary 
onditions (3.1).From basi
 error estimates on ellipti
 problem, we have (see [13℄ Theorem 18.1 p. 138) :Proposition 3.1 Let u be a solution of the variational problem a(u, v) = l(v) where a isbilinear 
ontinuous symmetri
 
oer
ive on H1(ω) and l is linear 
ontinuous on H1(ω). Then,if uh is the dis
rete approximation 
omputed by 
onforming P

1 �nite elements, there exists anonnegative 
onstant C su
h that
‖u− uh‖H1(ω) ≤ C max{hx, hy}‖u‖H2(ω).3.3 Convergen
e analysisWe are interested in this se
tion in the 
onvergen
e of the s
heme (3.10)�(3.15) towards so-lutions of model (1.5). Convergen
e analysis of semi-Lagrangian method in the framework ofVlasov-Poisson system have been obtained in [3℄; those results are presented in L∞. Due to thela
k of regularity in our 
ase 
aused by the presen
e of the turning operator, we present in thefollowing theorem a 
onvergen
e result in L2. The main result of this se
tion is presented inTheorem 3.4 below under the following additional assumption allowing to simplify all integralsin the 
omputation.

11



Assumption 3.2 For the sake of simpli
ity of the proof and of the notations, we assume thatall parti
les are initially 
on�ned in the 
enter of the devi
e and that the time t0 is small enoughto avoid parti
les to meet the boundary of the domain. Thus all traje
tories are straight linesand
X(s;x, θ, t) = x + vθ(s− t); Θ(s;x, θ, t) = θ, for 0 ≤ s ≤ t.Moreover, sin
e fh vanishes near the boundary of the domain ω, we have

∫

ω

fh(t, X(s;x, θ, t), θ) dx =

∫

ω

fh(t,x, θ) dx,for 0 ≤ s ≤ t small enough.From now on, we �x t0 > 0 small enough and assume f 0 ∈ W 2,2 ∩ W 1,∞(Ω) is 
hosensu
h that Assumption 3.2 holds. Therefore, in this 
onvergen
e analysis 
ells do not 'see' theboundary. The s
heme (3.10)�(3.15) allows to de�ne the approximated fun
tion fh only on thenodes on the mesh. We extend this de�nition on all (x, θ) ∈ ω × [0, 2π] thanks to the linearinterpolation operator Π (3.6). We �rst establish the positivity and a priori estimates on thedis
rete approximation fh.Lemma 3.3 Let t0 > 0 and assume that f 0 ∈ W 2,2 ∩ W 1,∞(ω × [0, 2π]) is a nonnegativefun
tion su
h that Assumption 3.2 holds. If ∆t ≤ 1/(2π), then the s
heme de�ned by (3.10)�(3.15) gives a nonnegative approximation fh of the distribution fun
tion. Moreover fh satis�esthe following estimate
∀ t ∈ (0, t0), ‖Πfh(t, ·, ·)‖L∞(ω×[0,2π]) ≤ e2πt0‖f 0‖L∞(ω×[0,2π]), ‖Πfh(t, ·, ·)‖H1(ω×[0,2π]) ≤ C0,where C0 is a nonnegative 
onstant depending on t0 and ‖f 0‖H1(ω×[0,2π]).Proof. From the de�nition of (3.6) and the assumptions on φ (1.4) we have that for allnonnegative fun
tion f

1

4
Πf ≤ Π(Tf) ≤ Πf.Therefore assuming f(tn, ·, ·) nonnegative, we dedu
e from (3.10) that

fh(t
n+1,xi, θj) ≥ (1 − 2π∆t) Πfh(t

n,xi − vθj∆t, θj) ≥ 0.Moreover, from (3.10) and (3.8) we have
‖Πfh(t

n+1, ·, ·)‖L∞(ω×[0,2π]) ≤ (1 + 2π∆t) ‖Πfh(t
n, ·, ·)‖L∞(ω×[0,2π]).Applying a dis
rete Gronwall inequality allows to 
on
lude the proof of the L∞ bound. Di�er-entiating (3.10) with respe
t to x1 gives

∂x1
fh(t

n+1,xi, θj) = ∂x1
Πfh(t

n,xi − vθj∆t, θj)

−2π∆t ∂x1
Π(Thfh)(t

n,xi − vθj∆t, θj) + ∆t
∑Nθ−1

k=0 hθ ∂x1
Π(Thfh)(t

n,xi − vθj∆t, θk).
(3.16)By linearity of the interpolation operator, we have that

∂x1
Π(Thfh) = Π(∂x1

[(ΠTh)(Πfh)]) = Π(∂x1
(ΠTh)Πfh + (ΠTh)∂x1

(Πfh)).12



From the de�nition of Th (3.14), we dedu
e that
‖∂x1

(ΠTh)(t
n)‖L2(ω) ≤ ‖∂x1

Sth(t
n)‖L2(ω) +

1

∆t
‖∂x1

Sh(t
n, ·) − ∂x1

ΠSh(t
n, X(tn−1; ·, θ, tn))‖L2(ω).From the ellipti
 regularity on the equation (3.13) and the bound of fh in L∞(ω × [0, 2π]), wehave that Sth is bounded in H1(ω). The ellipti
 regularity on (3.15) gives

‖Sh(t
n, ·) − ΠSh(t

n, X(tn−1; ·, θ, tn−1))‖H1(ω) ≤ ‖ρh(t
n, ·) − Πρh(t

n, X(tn−1; ·, θ, tn))‖L2(ω).Using a Taylor expansion gives
ρh(t

n,x) − Πρh(t
n,x− vθ∆t) =

∫ 0

−∆t

vθ · ∇Πρh(t,x + vθs) ds.From Assumption 3.2 we dedu
e that
‖ρh(t

n,x) − Πρh(t
n,x − vθ∆t)‖L2(ω) ≤ ∆tV ‖∇(Πρh)(t

n, ·)‖L2(ω).Thus,
‖∂x1

(ΠTh)‖L2(ω×[0,2π]) ≤ C(1 + ‖∇(Πρh)‖L2(ω×[0,2π])).Doing the same with x2, (3.16) leads to the following estimate
‖∇Πfh(t

n+1)‖L2(ω×[0,2π]) = ‖∇Πfh(t
n)‖L2(ω×[0,2π]) + C∆t(1 + ‖∇Πfh(t

n)‖L2(ω×[0,2π])).A Gronwall inequality allows to 
on
lude the proof.Theorem 3.4 Let t0 > 0 and assume that f 0 ∈ W 2,2 ∩W 1,∞(ω × [0, 2π]) is a nonnegativefun
tion su
h that Assumption 3.2 holds. Let f be the global weak solution of (1.5) on (0, t0)and fh be its approximation 
omputed at the nodes of the mesh thanks to the algorithm (3.10)�(3.15) where Π is de�ned in (3.6). Then there exists a nonnegative 
onstant C depending on
t0, f 0 and the data su
h that

‖f − Πfh‖L∞(0,t0;L2(ω×[0,2π])) ≤ C(∆t+ h2 +
h

∆t
+ h),where h = max{hx, hy, hθ}.Proof. From Theorem 2.2 we have f(t, ·, ·) ∈ W 1,∞ ∩W 2,2(ω × [0, 2π]) We de�ne the globalerror at time tn+1 by

ǫn+1 = ‖f(tn+1,x, θ) − Πfh(t
n+1,x, θ)‖L2(ω×[0,2π]). (3.17)A �rst remark is that sin
e 
hara
teristi
s are straight lines the numeri
al 
omputation of the
hara
teristi
s (X,Θ) is exa
t. From (1.5), we dedu
e that for 0 ≤ s ≤ t

d

ds
f(s,x− vθ(t− s), θ) =

∫ 2π

0

T (s,x− vθ(t− s), θ′)f(s,x − vθ(t− s), θ′) dθ′

−2π T (s,x − vθ(t− s),Θn(s))f(s,x− vθ(t− s), θ),13



where
T (t,x, θ) = φ(∂tS + vθ · ∇xS),and S being the solution of the ellipti
 problem
−∆S + S =

∫ 2π

0

f(t,x, θ) dθ.We dedu
e from the regularity of the fun
tion f proved in Theorem 2.2 that the fun
tion
s 7→ f(s,x − vθ(t − s), θ) is bounded in W 2,2(0, t0). Hen
e a Taylor expansion gives, underAssumption 3.2 :

f(tn+1,x, θ) = f(tn,x − vθ∆t, θ) + ∆t

∫ 2π

0

T (tn,x − vθ∆t, θ
′)f(tn,x − vθ∆t, θ

′) dθ′

−2π∆t T (tn,x − vθ∆t, θ)f(tn,x − vθ∆t, θ) +OL2(∆t2),where OL2(∆t) means that there exists C > 0 su
h that ‖OL2(∆t2)‖L2 ≤ C∆t2. Therefore,using the de�nition (3.10), we rewrite the di�eren
e f(tn+1,x, θ) − Πfh(t
n+1,x, θ) as

f(tn+1,x, θ) − Πfh(t
n+1,x, θ) = f(tn,x − vθ∆t, θ) − Πfh(t

n,x − vθ∆t, θ)

+∆t

(∫ 2π

0

(Tf)(tn,x − vθ∆t, θ
′) dθ′ −

Nθ−1∑

k=0

hθ Π(Thfh)(t
n,x − vθ∆t, θk)

)

−2π∆t ((Tf)(tn,x − vθ∆t, θ) − Π(Thfh)(t
n,x − vθ∆t, θ)) +OL2(∆t2).To evaluate the global error ǫn+1, we de
ompose f(tn+1,x, θ) − fh(t

n+1,x, θ) as
f(tn+1,x, θ) − Πfh(t

n+1,x, θ) = f(tn,x − vθ∆t, θ) − Πfh(t
n,x − vθ∆t, θ)

+∆t((1 − Π)I1 + I2 + I3) +OL2(∆t2),
(3.18)where

I1 =

Nθ−1∑

k=0

hθ(Tf)(tn,x − vθ∆t, θk) − 2π(Tf)(tn,x − vθ∆t, θ), (3.19)
I2 =

Nθ−1∑

k=0

hθ(Tf − Thfh)(t
n,x − vθ∆t, θk) − 2π(Tf − Thfh)(t

n,x − vθ∆t, θ), (3.20)
I3 =

∫ 2π

0

(Tf)(tn,x − vθ∆t, θ
′) dθ′ −

Nθ−1∑

k=0

hθ(Tf)(tn,x − vθ∆t, θk). (3.21)Taking the L2 norm of (3.18) implies with Assumption 3.2
ǫn+1 ≤ ǫn + ∆t(‖(1 − Π)I1‖L2(ω×[0,2π]) + ‖I2‖L2(ω×[0,2π]) + ‖I3‖L2(ω×[0,2π])) + C∆t2. (3.22)We will estimate ea
h term separately thanks to the following Lemmata.Lemma 3.5 Let (f, S) being solution of (1.5) for f 0 ∈ W 1,∞ ∩ W 2,2(ω × [0, 2π]). If I1 isde�ned by (3.19), then there exists a nonnegative 
onstant C su
h that for all t ∈ (0, t0),

‖(1 − Π)I1‖L2(ω×[0,2π]) ≤ C max{h2
x, h

2
y}.14



Proof. Let 0 ≤ t ≤ t0. From Theorem 2.2, we have that f(t, ·, ·) ∈W 1,∞ ∩W 2,2(ω× [0, 2π]).Therefore, by ellipti
 regularity, we dedu
e that ∇S(t, ·) ∈W 3,2(ω). Moreover, (3.11) implies
−∆∂tS(t, ·) + ∂tS(t, ·) = −∇ · J(t, ·) ∈W 1,2(ω).Then the ellipti
 regularity furnishes ∂tS(t, ·) ∈W 3,2(ω) and sin
e with our de�nition on φ weget φ′ ∈ C∞

c (R), we dedu
e that T (t, ·, ·) = φ(∂tS + vθ · ∇S) ∈W 3,2(ω × [0, 2π]). Then
∂2

xixj
(Tf) = (∂xixj

T )f + ∂xi
T∂xj

f + ∂xj
T∂xi

f + T (∂xixj
f) ∈ L2(ω × [0, 2π]).Hen
e (T f)(t, ·, ·) ∈ W 2,2(ω × [0, 2π]). Finally, the result of the Lemma is a straightforward
onsequen
e of the interpolation error (3.7).Lemma 3.6 Let f and T being de�ned previously, there exists a nonnegative 
onstant C su
hthat for all 0 ≤ t ≤ t0 and x ∈ ω,

∥∥∥∥∥

∫ 2π

0

(Tf)(t,x, θ′) dθ′ −
Nθ−1∑

k=0

hθ(Tf)(t,x, θk)

∥∥∥∥∥
L2(ω)

≤ Ch2
θ.Proof. Let 0 ≤ t ≤ t0 and x ∈ ω. As noti
ed in the proof of Lemma 3.5 we have that (T f)belongs toW 2,2(ω× [0, 2π]). Hen
e the result of Lemma 3.6 is a 
onsequen
e of the well-knownerror estimate for the trapezoidal rule : if g ∈W 2,2(0, 2π), there exists θ ∈ (0, 2π) su
h that

∣∣∣∣∣

∫ 2π

0

g(θ) dθ −
Nθ−1∑

k=0

hθg(θk)

∣∣∣∣∣ = h2
θ

π

6

∣∣∣∣
∂2g(θ)

∂θ2

∣∣∣∣ . (3.23)The two previous Lemmata allow us to estimate the terms involving I1 and I3 in (3.22).For I2, we need �rst to estimate the error T − Th with respe
t to f − fh.Lemma 3.7 Let assume that Assumption 3.2 holds. Let T be de�ned in (1.3)�(1.4) and Th beits approximation 
omputed with (3.14). Then, there exists C > 0 su
h that for n = 1, . . . , Nt,we have
‖ sup

α∈[0,2π]

|T (tn, ·, α) − ΠTh(t
n, ·, α)|‖L2(ω) ≤ C(∆t+ max{hx, hy} +

max{hx, hy}
∆t

+ h2
θ+

+‖f(tn, ·, ·) − fh(t
n, ·, ·)‖L2(ω×[0,2π])).Proof. Let n ∈ {1, . . . , Nt}, x ∈ ω and α ∈ [0, 2π]. We have from (3.14) that

|T (tn,x, α) − ΠTh(t
n,x, α)| = |φ(∂tS(tn,x) + vα · ∇xS(tn,x)) − ΠTh(t

n,x, α)|

≤ ‖φ′‖L∞(|∂tS(tn,x) − Sth(t
n,x)| + |vα · ∇xS(tn,x) − 1

∆t
(Sh(t

n,x) − ΠSh(t
n,x − vα∆t))|),(3.24)where Sth is de�ned in (3.13). We will estimate separately ea
h term of the sum of the righthand side. Let us introdu
e S̃t a weak solution of

−∆S̃t + S̃t = −∇ · ΠJh, (3.25)15




ompleted with Neumann boundary 
onditions, where Jh is de�ned in (3.12) at the nodes ofthe mesh and extended on ω thanks to the linear interpolation operator Π. From Proposition3.1, we dedu
e that
‖S̃t − Sth‖L2(ω) ≤ Cmax{hx, hy}‖S̃t‖W 2,2(ω) ≤ C max{hx, hy}‖∇ΠJh‖L2(ω),where the ellipti
 regularity on equation (3.25) is used. And Lemma 3.3 allows to bound theterm ‖∇ΠJh‖L2(ω). Moreover, from (3.11) and (3.25), we dedu
e that

‖∂tS − S̃t‖L2(ω) ≤ C‖J − ΠJh‖L2(ω) ≤ C(h2
θ + ‖f − Πfh‖L2(ω×[0,2π])),where we have used the error estimate given by the trapezoidal rule (3.23) to estimate J − Jhfor f ∈W 2,2(ω × [0, 2π]). We 
on
lude then that

‖∂tS−Sth‖L2(ω) ≤ ‖∂tS−S̃t‖L2(ω)+‖S̃t−Sth‖L2(ω) ≤ C(h2
θ+‖f−Πfh‖L2+max{hx, hy}). (3.26)We introdu
e S̃ weak solution of the ellipti
 problem

−∆S̃ + S̃ = Πρh, (3.27)
ompleted with Neumann boundary 
onditions. Therefore, we have that
‖ sup

α∈[0,2π]

|vα · ∇xS − vα · ∇xS̃|‖L2(ω) ≤ V ‖S − S̃‖W 1,2(ω) ≤ C‖ρ− Πρh‖L2(ω)

≤ C(h2
θ + ‖f − Πfh‖L2(ω×[0,2π])),

(3.28)where we use the ellipti
 regularity for equation (3.27) and the error estimate for the trapezoidalrule (3.23). Moreover, Πρh belonging to L∞(ω) →֒ L2(ω), we have by ellipti
 regularity on(3.27) that S̃ ∈W 2,2(ω). A Taylor expansion gives that for all x ∈ ω and all α ∈ [0, 2π],
S̃(tn,x) = S̃(tn,x − vα∆t) − vα · ∇S̃(tn,x)∆t+OL2(ω)(∆t

2).Hen
e, for all x ∈ ω

‖ sup
α∈[0,2π]

|vα · ∇xS̃(tn,x) − 1

∆t
(Sh(t

n,x) − ΠSh(t
n,x − vα∆t))|‖L2

x(ω) ≤ C∆t+

1

∆t
‖S̃(tn,x) − Sh(t

n,x)‖L2
x(ω) +

1

∆t
‖ sup

α∈[0,2π]

|S̃(tn,x − vα∆t) − ΠSh(t
n,x − vα∆t)|‖L2

x(ω).Assumption 3.2 implies that the last two terms of the sum are equals. Sin
e Sh is obtained bysolving equation (3.27) with 
onforming P
1 �nite elements, Proposition 3.1 implies that

‖S̃(tn, ·) − Sh(t
n, ·)‖L2(ω) ≤ C max{hx, hy}‖S̃‖W 2,2(ω).Therefore,

‖ sup
α∈[0,2π]

|vα · ∇S̃(tn,x) − 1

∆t
(Sh(t

n,x) − ΠSh(t
n,x − vα∆t))|‖L2(ω) ≤ C(∆t+

max{hx, hy}
∆t

).(3.29)16



Finally, inje
ting (3.26), (3.28), (3.29) in (3.24) and with Assumption 3.2, we obtain
‖ sup

α∈[0,2π]

|T (tn, ·, α) − Th(t
n, ·, α)|‖L2(ω) ≤

≤ C(∆t+ max{hx, hy} +
max{hx, hy}

∆t
+ h2

θ + ‖f(tn, ·, ·) − Πfh(t
n, ·, ·)‖L2(ω×[0,2π])).Return to the proof of Theorem 3.4. Sin
e Π is de�ned by its values at the nodes, wehave that Π(Thfh) = Π(ΠThΠfh). Then, for k = 0, . . . , Nθ − 1,

|Tf(tn,x− vθ∆t, θk) − Π(Thfh)(t
n,x − vθ∆t, θk)| ≤

|(1 − Π)(Tf)(tn,x − vθ∆t, θk)| + |Π(Tf − ΠThΠfh)(t
n,x − vθ∆t, θk)|.Moreover,

|Tf − ΠThΠfh| ≤ |T (f − Πfh)| + |Π(fh)(T − ΠTh)|. (3.30)From the de�nition of T and with Lemma 3.3, we have ‖T‖L∞ ≤ 1 and ‖Πfh‖L∞ ≤ C. FromAssumption 3.2,
‖ sup

k
|(Π(Tf) − ΠThΠfh)(t

n,x − vθ∆t, θk)|‖L2
x,θ

(ω×[0,2π])

= 2π‖ sup
k

|(Tf − ΠThΠfh)(t
n, ·, θk)|‖L2(ω)

≤ 2π‖ sup
k

|(f − Πfh)(t
n, ·, θk)|‖L2(ω) + C‖ sup

k
|(T − ΠTh)(t

n, ·, θk)|‖L2(ω).And from (3.7) we have,
‖ sup

k
|(1 − Π)Tf(t, ·, θk)|‖L2(ω) ≤ C max{h2

x, h
2
y}.Thus by 
ontinuity of the appli
ation θ 7→ (f − Πfh)(t,x, θ) we have from (3.30)

‖ sup
k

|(Tf −Π(Thfh))(t
n, ·, θk)|‖L2(ω) ≤ C(ǫn +max{h2

x, h
2
y}+ ‖ sup

k
|(T −ΠTh)(t

n, ·, θk)|‖L2(ω)),where we use Lemma 3.3. It 
omes from the expression of I2 (3.20) that
‖I2‖L2(ω) ≤ 4π‖ sup

k
|(Tf − Π(Thfh))(t

n, ·, θk)|‖L2(ω)

≤ C(∆t+ h2 + max{hx, hy} +
max{hx, hy}

∆t
+ ǫn),where we use Lemma 3.7. Moreover, Lemma 3.5 and 3.6 furnish an estimate on (1−Π)I1 and

I3 in L2(ω × [0, 2π]) in inequality (3.22). It leads to
ǫn+1 ≤ ǫn + C1∆t

(
∆t+ h2 +

max{hx, hy}
∆t

+ max{hx, hy} + ǫn
)
.A dis
rete Gronwall inequality enables us to get

ǫn ≤ exp(C1t0) ǫ
0 + C2

(
∆t+ h2 +

max{hx, hy}
∆t

+ max{hx, hy}
)
.17



As ǫ0 is only a �xed interpolation error, we have ǫ0 = 0 and
ǫn ≤ C

(
∆t+ h2 +

max{hx, hy}
∆t

+ max{hx, hy}
)
.

This 
onvergen
e result has been established under additional assumption whi
h gives theinvarian
e of all integrals on the 
omputational domain along 
hara
teristi
s. Assumption 3.2boils down to 
onsider that the domain ω is very large with respe
t to the pla
e where 
ellsare. However the property of invarian
e of integrals along 
hara
teristi
s remains valid if wetake into a

ount boundary 
onditions at the boundary of the domain, provided that theseboundary 
onditions are 
onservative (e.g. periodi
 boundary 
onditions, spe
ular re�e
tion
onditions). The idea of the proof of Theorem 3.4 is the same but is mu
h more te
hni
al sin
eall integrals should be de
omposed between a part for whi
h 
hara
teristi
s meet the boundaryand a part for whi
h 
hara
teristi
s do not meet the boundary.4 Numeri
al simulationsIn this se
tion, we present the numeri
al results obtained with the algorithm presented inSe
tion 3. We are interested in the dynami
s of the 
ells 
on
entration for ba
teria E. Coli in aPetri box. In this simulation we take the numeri
al values of [5℄ where the Petri box is stronglyelongated. In fa
t, the authors are looking for traveling pulse at ma
ros
opi
 s
ale due to thepresen
e of nutrient. In their study, they observe the 
on
entration of ba
teria in a sli
e thatmoves along the Petri box. Here we do not 
onsider nutrient and we want to study numeri
allythe aggregation in a sli
e of the 
ells for su
h a Petri box. Then we take ω = [0, Lx] × [0, ℓy]with Lx = 10−2m and ℓy = 10−3m. Moreover this very elongated devi
e allows us to avoidthe in�uen
e of the left and right boundary. Ba
teria are modelled by spheres of radius 1µm.Their initial density is assumed to be n0 = 108 
ells per cm−3. Ea
h individual 
ell has a
onstant speed V = 20µm.s−1 during the run phase.4.1 Numeri
al resultsThe Keller-Segel model [28℄ was originally derived to des
ribe aggregation of 
ells. Mi
ros
opi
models presented here allow to in
orporate additional informations during the motion andtherefore to obtain an a

urate des
ription of the dynami
s of the 
ells 
on
entration. Wepresent numeri
al simulations of model (1.5) using the algorithm des
ribed in Se
tion 3 witha Hermite spline interpolation method.We assume that 
ells are initially 
on
entrated in a sli
e of the devi
e :
f 0(x, y, θ) = n0

√
Cx

π
exp(−Cx(x− 0.5Lx)

2), with Cx ≫ 1. (4.1)In this simulation, we take Nx = 120, Ny = 20 and Nθ = 52. The time step is 
hosen
dt = 4.10−2 and the 
onstant Cx = 2 .105. For su
h initial data and sin
e for spe
ular re�e
tionthe evolution is invariant in the y-dire
tion, we only represent in Figure 1 the dynami
s of the18
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Figure 1: Dynami
s of the density ρ(t, x, ℓy/2) for di�erent times. One 
an observe 
on
entra-tion of 
ells in the 
enter x = Lx/2.density ρ in a horizontal se
tion y = ℓy/2 of the devi
e. As time be
omes longer, we noti
eaggregation of 
ells in the 
enter x = Lx/2.To illustrate the dynami
s of the density in the Petri dish, we non-dimensionalize the system(1.1) by introdu
ing the dimensionless quantities
x = x0x, t = t0t, v = v0v,

S(t, x) = S0S(t, x), f(t, x, v) = f0f(t, x, v), φ(z) = φ0φ(z).

φ0 is the typi
al value for the size of the turning kernel, v0 = V is the typi
al speed, x0 = Lxis the 
hara
teristi
 length of the devi
e and the typi
al time is de�ned by t0 = x0/v0. Usingthe same arguments than in [16℄, the dimensionless system is (dropping the bars)
∂tf + v · ∇xf = µ

(∫
SV
φ(∂tS + v′ · ∇xS)f(v′) dv′ − 2πφ(∂tS + v · ∇xS)f(v)

)
,

−∆S + S = ρ,
(4.2)where we set µ =

φ0x0

v0
. With the numeri
al values used here, we have φ0 = 1 and obtain

µ = 5 103. Here µ ≫ 1, then the solutions of the kineti
 model are not far from solutions ofthe ma
ros
opi
 model obtained thanks to the hydrodynami
 limit µ−1 → 0. The rigorousderivation of the hydrodynami
 limit for pres
ribed smooth 
hemoattra
tant density is 
arriedout in ref. [16℄. We re
all that the hydrodynami
 limit is given by
∂tρ+ divx (ρχ(∂tS, |∇xS|)∇xS) = 0,

−∆S + S = ρ,
(4.3)where χ(∂tS, |∇xS|) is the 
hemota
ti
 sensitivity. In the 
ase α = 0 in the de�nition of φ(1.4), this 
hemota
ti
 sensitivity 
an be 
omputed expli
itly (see [16℄). We �nd

χ(∂tS, |∇xS|) =
6V

2π − 3/2 arccos(∂tS/(V |∇xS|))

√

1 −
(

∂tS

V |∇xS|

)2
1

|∇xS|
,19



if |∂tS/(V∇xS)| < 1, and χ(∂tS, |∇xS|) = 0 if |∂tS/(V∇xS)| ≥ 1 or ∇xS = 0. In [16℄,the authors implement a numeri
al simulation of this ma
ros
opi
 model allowing to observeaggregation for Di
tyostelium Dis
oideum where a very simple model for the produ
tion of
AMP is used. We re
over here this dynami
s.4.2 In�uen
e of the ∂tS termIn several papers [8, 11℄, the kineti
 system presented in (1.5) is studied assuming that theturning operator does not depend on the partial derivative of S with respe
t to time. In [6℄, a
riti
al mass phenomenon o

urs in a kineti
 model and the solutions 
onverge in �nite time toa Dira
 under the assumption that the turning kernel grows linearly with ∇xS. In this se
tionwe present numeri
al simulations when the turning kernel only depends on the spatial gradientof the 
hemoattra
tant 
on
entration S. The system 
onsidered is then (1.5) where we dropthe term ∂tS :





∂tf + v · ∇xf =

∫

v′∈V

φ(v′∇xS)f(v′) dv′ − 2πφ(v∇xS)f(v),

f(0, x, v) = f 0(x, v),

−∆S + S = ρ(t, x) :=

∫

v∈V

f(t, x, v) dv,

(4.4)It boils down to assume that 
ells are able to evaluate the gradient of 
hemoattra
tant at theirposition. A
tually when 
ells are big enough and have sensors along their body like slime moldDi
tyostelium Dis
oideum [19℄, they 
an sense the 
hemoattra
tant 
on
entration along theirbody. For su
h amoeba, the use of this system is relevant. Here it 
an be understood as amodel simpli�
ation.Figure 2 on the left represents the dynami
s in the se
tion y = ℓy/2 of the density obtainedby solving the model with the algorithm des
ribed in Se
tion 3 using a Hermite spline inter-polation method. We observe spurious os
illations near the maximum of the density. Whereaswhen we apply the same algorithmwith a linear interpolation method the os
illations disappear(Figure 2 on the right). These arti�
ial os
illations are known as Runge phenomenon.We observe that the aggregation phenomenon is stronger than in previous subse
tion. Infa
t the maximum value of ρ for t = 125 s in this 
ase is greater than 1016m−3 whereas inFigure 1 even for t = 1000 s the maximum is smaller than 3. 1015m−3. Moreover the dynami
sof ρ does not seem to be smooth in the vi
inity the position x = Lx/2. Comparing with Figure1, the aggregation is faster and less regular than when we use the term ∂tS for the 
omputationof T . This large and rapid variation of ρ in the vi
inity of the maximum is surely responsible ofos
illations that appear with a high order interpolation method in this 
ase whereas no Rungephenomenon is noti
ed in Figure 1.This simulation seems to indi
ate that the solution blows up as a Dira
 in the 
enter ofthe devi
e. A simple argument in 1D 
on�rms this observation. In fa
t, the dimensionless 1Dversion of (4.4) is written for all x ∈ [0, L] and v ∈ {−V, V }

∂tf + v∂xf = µ(φ(−v∂xS)f(−v) − φ(v∂xS)f(v)),with µ ≫ 1. When µ−1 → 0, the equilibrium is obtained for
f(−v) =

φ(−v∂xS)

φ(v∂xS)
f(v). (4.5)20
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Figure 2: Dynami
s of the density ρ(t, x, ℓy/2) when the turning kernel depends only on ∂xS(4.4). On the left we use a Hermite spline interpolation method : spurious os
illations appear(Runge phenomenon). On the right a linear interpolation method is implemented.Summing the one dimensional kineti
 equations for v = V and v = −V , we obtain the equationfor the �rst moment :
∂t(f(V ) + f(−V )) + V ∂x(f(V ) − f(−V )) = 0. (4.6)Moreover, assuming that f is at equilibrium (4.5) we dedu
e that

f(V ) − f(−V ) =
φ(−V ∂xS) − φ(V ∂xS)

φ(−V ∂xS) + φ(V ∂xS)
(f(V ) + f(−V ))The density at equilibrium is de�ned by ρ := f(V ) + f(−V ). With (4.6) we �nally obtain the1D version of the hydrodynami
 model (4.3) without ∂tS :

∂tρ+ ∂x(a(∂xS)ρ) = 0, (4.7)where
a(∂xS) = V

φ(−V ∂xS) − φ(V ∂xS)

φ(−V ∂xS) + φ(V ∂xS)
. (4.8)We 
an approximate the model by assuming that α in (1.4) is small 
ompared to the values ofthe 
hemoattra
tant 
on
entration gradient su
h that φ(z) = 1/4 for z > 0 and φ(z) = 1 for

z < 0. In this 
ase, we dedu
e from (4.8) that
a(∂xS) =

3

5
V sign (∂xS), (4.9)where the fun
tion sign is de�ned bysign (z) = 1 for z > 0 ; −1 for z < 0 ; 0 for z = 0.This system is 
ompleted with the ellipti
 equation for S :

−∂xxS + S = ρ.21



We 
an prove that with our initial guess f 0 (4.1) the fun
tion S is in
reasing for x < 0.5Lx,de
reasing for x > 0.5Lx. Therefore, sign (∂xS) = sign (x − 0.5Lx) and equation (4.7)be
omes
∂tρ+ ∂x(

3

5
V sign (x− 0.5Lx)ρ) = 0.It is well-known that the solution ρ of this hyperboli
 system be
omes instantaneously a Dira
at x = 0.5Lx (see e.g. [36℄).In the 
ase studied in the previous subse
tion where the term ∂tS is not negle
ted, thehydrodynami
 limit leads to

∂tρ+ ∂x(a(∂tS, ∂xS)ρ) = 0,where
a(∂tS, ∂xS) = V

φ(∂tS − V ∂xS) − φ(∂tS + V ∂xS)

φ(∂tS − V ∂xS) + φ(∂tS + V ∂xS)
. (4.10)Figure 1 seems to show that the presen
e of the term ∂tS has a regularization e�e
t. Therigorous mathemati
al analysis of these phenomena is a work in progress.4.3 Lo
us of aggregationAnother interesting question is the determination of the aggregation lo
us. In the previous
ase when f 0 is given in (4.1) and is symmetri
, the aggregation takes pla
e in the 
enter ofthe devi
e where the 
on
entration is initially maximal. However, in Figure 3, we representthe dynami
s of the density when the initial data is not symmetri
 :

f 0(x, y, θ) =





n0

√
Cx

π
exp(−Cx(x− 0.5Lx)

2), for x ∈ [Lx/2, Lx],

n0

√
Cx

π
exp(−0.5Cx(x− 0.5Lx)

2), for x ∈ [0, Lx/2].
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Figure 3: Dynami
s of the density ρ(t, x, ℓy/2) when the initial 
on
entration is a smoothfun
tion but not symmetri
. Left : with the term ∂tS in the de�nition of the turning kernel(1.5). Right : without ∂tS (4.4).Figure 3 left represents dynami
s of the density ρ(t, x, ℓy/2)when the turning kernel dependsof the temporal derivative of the 
hemi
al signal ∂tS as in (1.5). Figure 3 right represents22



evolution of ρ when ∂tS is dropped in the de�nition of the turning kernel (4.4). We observethat the aggregation lo
us is not the same with and without ∂tS. As noti
ed previously, thebehaviour of solutions seems to be more regular for model (1.5) than with (4.4).For model (4.4) when the term ∂tS is dropped in the de�nition of the turning kernel (Figure3 right) the pla
e where aggregation o

urs seems to be invariant and �xed. It is readily seenin this 
ase that the points where a

umulation o

urs for the one dimensional problem (4.7)�(4.9) are the points x0 for whi
h ∂xS(x0) = 0 and is maximal. In fa
t, the 
hara
teristi
s forthe 
onservation law (4.7) 
onverge and 
ross at these points. When the temporal derivativeof the 
hemoattra
tant is not negle
ted, a 
areful study of the expression (4.10) is needed todetermine the points where aggregation o

urs. In Figure 3 left, the lo
us of the maximum of
ρ is not invariant.We 
onsider now the 
ase when the density of 
ells is not invariant with respe
t to y. Weassume for instan
e that 
ells are initially 
on
entrated in the 
enter of the devi
e :

f 0(x, y, θ) = n0

√
20Cx

2π
exp(−Cx((x− 0.5Lx)

2 + 20(y − 0.5ℓy)
2)).For this simulation, we take Ny = 40 and Cx = 106. Figure 4 presents the evolution of thedensity of 
ells in the devi
e. We observe an evolution in two steps. Firstly, 
ells di�use in the

y dire
tion. After 2250 s, when the density be
omes invariant with respe
t to y, aggregationphenomenon involves in a sli
e in the 
enter of the devi
e.On the one hand, this dynami
s is not 
omparable to the one observed without the depen-den
e on ∂tS of the turning kernel (4.4). A
tually, we noti
e in Figure 5 that for model (4.4)the blow up o

urs in the 
enter of the devi
e. On the other hand, let us 
onsider a squaredomain Lx = ℓy = 7. 10−3 m and spheri
ally symmetri
 initial data
f 0(x, y, θ) = n0

Cx

2π
exp(−Cx((x− 0.5Lx)

2 + (y − 0.5ℓy)
2)).We observe in Figure 6 that ba
terias 
on
entrate in the 
enter of the devi
e. We 
on
ludethen that the behaviour observed in Figure 4 is due to the parti
ular domain that we takewhi
h is very thin in the y-dire
tion. In fa
t, due to spe
ular re�e
tion at the boundary,ba
terias on the sli
e x = 0.5Lx 
lose to the boundary that swim in an unfavorable dire
tion(i.e. for whi
h the gradient of the 
hemoattra
tant de
reases), re�e
t to the top or bottomboundary. After a re�e
tion they swim in a favourable dire
tion (i.e. for whi
h the gradientof the 
hemoattra
tant along their paths in
reases). Sin
e the devi
e is very elongated, 
ellsare initially 
lose to the top and the bottom boundary; this is the reason why we �rst noti
ea di�usion in the y dire
tion.5 Con
lusionA kineti
 model des
ribing 
hemotaxis for a population of ba
teria has been presented in (1.5).This model has been previously introdu
ed in ref. [16℄ where its hydrodynami
 limit wasderived. It in
orporates the ability of 
ells to assess temporal 
hanges of the 
hemoattra
tant
on
entration as well as its spatial variations. In this work, we are interested in obtaining anumeri
al simulation of this kineti
 model. We proved rigorously in Theorem 2.2 existen
e anduniqueness of solutions for this model. Then a semi-Lagrangian method has been implementedto obtain numeri
al simulations of this well-posed problem in Se
tion 4.23



Figure 4: Dynami
s of the density ρ of 
ells in the devi
e for model (1.5).

Figure 5: Dynami
s of the density ρ of 
ells in the devi
e without the ∂tS dependen
e of theturning kernel (4.4) when the 
on
entration is initially maximal in the 
enter of the devi
e.
24



Figure 6: Dynami
s of the density ρ of 
ells for a square domain with the ∂tS dependen
e ofthe turning kernel when the 
on
entration is initially maximal in the 
enter of the devi
e.We have noti
ed in this simulation aggregation of 
ells in some pla
e of the devi
e. Thisaggregation phenomenon was observed in experiments and mathemati
al study of this phe-nomenon was the motivation of the work of Keller and Segel [28℄. Some numeri
al simulations ofma
ros
opi
 models des
ribing 
hemotaxis have been obtained (see e.g. [10, 20, 21, 16, 24, 37℄)but not at mi
ros
opi
 level whi
h is the aim of this work.We have tested two expressions of the turning kernel whi
h is taken depending on thetemporal derivative of the 
hemi
al signal or not. A �rst observation is the fa
t that thepresen
e of the term ∂tS in the de�nition of the T seems to smooth solutions and to slowdown the aggregation phenomena. This phenomena was expe
ted sin
e in the 
ase 'without
∂tS' 
ells are able to estimate instantly the gradient of the 
hemi
al and to de
ide instantlyeither to 
hange dire
tion or not. In the 
ase 'with ∂tS' 
ells must swim (at least during onenumeri
al time step) to sense the 
hemi
al gradient. Moreover the pla
e where aggregationo

urs is not exa
tly the same for both models in some situation. A rigorous explanation ofthese phenomena for these mathemati
al models is at our knowledge still an open question.Furthermore, the numeri
al simulation of model (1.5) implemented in this arti
le showsthe blow-up along lines while for the Keller-Segel model the blow-up is always point-wise[10, 20, 24, 29, 37, 38℄. It is observed in [20, 37℄ that due to instabilities the blow-up peakusually moves to a 
orner of the 
omputational domain. In [29℄ the mass 
on
entrates in someparti
ular points of the boundary that 
an 
ollides to form isolated peaks in the boundaryof domain. In [24℄, the authors 
on
entrate on 
apturing the 
orre
t blow-up dynami
s byusing a parti
le method : 
ells aggregate in two singularities that 
ollide to form one singleheavy parti
le 
arrying almost all of the mass while di�usion o

urs in the rest of the domain.However, in the numeri
al test presented in this paper, one 
an observe blow-up pro�les thatare not point-wise and that 
an be lo
ated inside the domain. Moreover, blow up pro�les alonglines seems to be stable (see Figure 4).Finally, this study leads to the question of deriving ma
ros
opi
 model from this kineti
system. When the time derivative is not taken into a

ount in the expression of the turningkernel, we refer to [21℄ when a hierar
hy of models is presented. In
luding the time derivativeof the 
hemi
al implies that all 
oe�
ients depending on S at the ma
ros
opi
 level dependson ∂tS too, su
h as in model (4.3). However, this term represents the dynami
s of the gradient25



of the 
hemoattra
tant along the traje
tories of the 
ells. At ma
ros
opi
 level, it has nomeaning sin
e we do not 
onsider the motion of individual 
ells. From a mathemati
al pointof view, we 
an use (2.2) to have an expression of ∂tS with respe
t to the �ux of 
ells whi
h isa ma
ros
opi
 quantity. An other idea following [16℄ is to 
onsider an evolution equation forthe 
hemoattra
tant density, even if the time s
aling of this equation is very fast 
ompared tothe 
ells dynami
s.A
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