N
N

N

HAL

open science

Numerical simulation of a kinetic model for chemotaxis
Nicolas Vauchelet

» To cite this version:

Nicolas Vauchelet. Numerical simulation of a kinetic model for chemotaxis. Kinetic and Related
Models , 2010, 3 (3), pp.501-528. 10.3934/krm.2010.3.501 . hal-00844174

HAL Id: hal-00844174
https://hal.science/hal-00844174
Submitted on 13 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00844174
https://hal.archives-ouvertes.fr

Numerical simulation of a kinetic model for chemotaxis.

N. Vauchelet

UPMC, Univ Paris 06, UMR 7598 LJLL, Paris F-75005 France ;
CNRS, UMR 7598 LJLL, Paris, F-75005 France,
and INRIA Projet BANG,

Tel.: (+33)(0)1 44 2737 72 Fax: (+33)(0)1 44 27 72 00

E-mail addresses: vauchelet@ann. jussieu.fr

Abstract

This paper is devoted to numerical simulations of a kinetic model describing chemo-
taxis. This kinetic framework has been investigated since the 80’s when experimental
observations have shown that the motion of bacteria is due to the alternance of runs and
tumbles’. Since parabolic and hyperbolic models do not take into account the microscopic
movement of individual cells, kinetic models have become of a great interest. Dolak and
Schmeiser (2005) have then proposed a kinetic model describing the motion of bacteria
responding to temporal gradients of chemoattractants along their paths. An existence
result for this system is provided and a numerical scheme relying on a semi-Lagrangian
method is presented and analyzed. An implementation of this scheme allows to obtain
numerical simulations of the model and observe blow-up patterns that differ greatly from
the case of Keller-Segel type of models.
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1 Introduction and modelling

Chemotaxis is the phenomenon in which cells direct their movements according to certain
chemicals in their environment. A possible issue of a positive chemotactical movement is
the aggregation of organisms involved to form a more complex organism or body. Many
attempts for describing chemotaxis from a Partial Differential Equations viewpoint, i.e. for
a large population, have been considered. At the macroscopic level the most famous is the
Patlak, Keller and Segel model [28, 34]. Although this models have been successfully used to
describe aggregation of the population (see [25, 26, 41] for surveys), these macroscopic models
have several shortcomings, for instance they do not take into account the detailed individual
movement of cells.

Therefore another approach involving kinetic equations to describe chemotaxis has been
proposed. The so-called Othmer-Dunbar-Alt system [31, 33, 35| governs the evolution of the



distribution function f of bacteria at time ¢, position = € w and velocity v € V and of the
concentration of chemoattractant S. The system writes in the following way :

Of +v-Vof = / @IS = 0)f0) = TS = ) ()

(1.1)
—AS+ S =p(t,z) = / f(t,z,v)dv,
veY

completed with the initial condition

f(0,z,v) = fO(z,v). (1.2)

The turning kernel T[S](v" — v) denotes the rate of cells changing their velocity from v’ to v.

This system models the evolution of flagellated bacteria such as E. Coli. It has been
observed that a bacterium moves along straight lines, suddenly stop to choose a new direction
and then continue moving in the new direction until the cells receptors saturate. The movement
of the bacterium is then due to the alternance of these 'run’ and ’tumble’ phases [1, 40]. Cells
are able to compare the present chemical concentrations to previous ones and thus to respond to
temporal gradients along their paths. The decision to change direction and turn or to continue
moving depends then on the concentration profile of the chemical S along the trajectories of
cells and detailed models have been proposed in [18, 19, 16]. In [16]| the authors propose to
consider simply a turning kernel of the form :

T[S|(W — v) = $(B,S + v - V,.9). (1.3)

The rate of turning is greater if the gradient concentration along the trajectory 9,5 +v-V,S is
negative than when it is positive. Experimentally, in the absence of gradients of concentration,
an individual cell of E. Coli performs a random walk with a mean duration of run times of
1s (see [30]). Due to the influence of the chemoattractant a cell sensing a positive gradient of
concentration has a run 4 times longer. Then, in this simplified model, we consider that ¢ is
a positive nonincreasing smooth function; more precisely,

¢ B
6 CPR), ¢ <0, ¢(z)= { 1/4 Ei i a’a,

(1.4)
for a given positive o small.

In this work, we are interested in the evolution of the bacteria concentration in a Petri box,
which is approximated by a bounded domain w C R2 The velocity of bacteria has a constant
modulus V, therefore we take V = Sy := {v € R? with ||v|]| = V'}. We denote Q = w x V. The
system can be then rewritten in the following way :

Of +v-V,f = $(0:S +V'V,8) f(V) dv' — 21h(9,S + vV,S) f (v),
v’ ey
f(O,l‘,U) :fo(l‘,'lj), (15)
—AS+S=p(tz) = / f(t,z,v)dv,
veY

This system is completed with the specular reflection conditions

f(t,z,v) = f(t,z,v—2(v-v)r), V€ odw, veV such that v-v(zx) >0, (1.6)



where v(z) is the outward unit vector at the point x of the boundary dw. And for the chemoat-
tractant concentration, we set Neumann boundary conditions :

0,5(t,z) =0, Vazeoiw. (1.7)

This system is composed of a kinetic equation coupled to an elliptic equation. Therefore we
propose in this work to use techniques which have proven their efficiency for the numerical res-
olution of the Vlasov-Poisson system in plasma physics to deal with the numerical approach of
system (1.5). Lagrangian methods like Particle-In-Cell methods which consist of approximating
the plasma by a finite number of macro-particles are usually performed for the Vlasov equation
(see [4]). However, these methods are known to be very useful for large scale problems but are
very noisy and do poor job on the tail of the distribution function. To remedy this problem,
Eulerian methods have been proposed. They consist of discretizing the Vlasov equation on a
mesh of phase space. Among them, finite volume schemes are known to be robust and com-
putationally cheap [9, 12, 14, 22| but very constrained by a CFL condition. Semi-Lagrangian
methods are other kinds of Eulerian method allowing to obtain accurate description of the dis-
tribution function [39, 2, 3, 15]. They consist of directly computing the distribution function
at each time step on a fixed Cartesian mesh of the phase space by following the characteristics
curves backward and interpolating the value at the base of the characteristics. We refer to [23]
for a review on Eulerian methods. Then, we will use in this work a semi-Lagrangian method
for the numerical resolution of model (1.5).

The paper is organized as follows. In the next section we state and prove an existence
and uniqueness result for the system (1.5)-(1.7). For the sake of simplicity this study is
considered in the whole domain R?, which allows to have an explicit expression of S thanks
to the Bessel potential. Section 3 is devoted to the numerical resolution of this system. We
first recall the semi-Lagrangian method used for the discretization of the kinetic transport
equation. Then we present the algorithm of resolution of the whole system (1.5). Finally, an
analysis of this scheme under additional assumptions furnishes a convergence result in L? of
the discrete approximation towards the solution of model (1.5). Numerical simulations, which
shows the aggregation phenomenon observed for bacteria E. Coli, are presented and discussed
in comparison to those for Keller-Segel in section 4.

2 Existence result

For the sake of simplicity, we consider in this section that w = R? and 2 = R? x V.

The existence of solutions to kinetic models of chemotaxis has been investigated in several
papers. In [11, 27|, global existence for the initial value problem (1.1) in R? and in R? has been
obtained under the assumption that the turning kernel is controlled by terms involving S(¢, x +
v) and S(t,x — v'). Dispersive methods are used to obtain a priori estimates. These results
has been extended in [8] for more general assumptions on the turning kernel. All these papers
took into account the effect of the gradient of the chemical signal and showed global existence
of solutions. However, these rigorous global existence results have not included the temporal
derivative of the signal in the growth condition of the turning frequency. In ref. [17], the
authors investigate global existence of solutions (not necessary unique) for general hyperbolic
chemotaxis models where the turning kernel takes into account the temporal derivative of
the chemoattractant through the evolution of internal states but only in the one-dimensional
physical space.



For the sake of completeness of this paper, we propose here to extend these results to model
(1.5) considered in the whole domain Q = R? X V and to establish existence and uniqueness
of global-in-time solution. The main novelty is due to the dependance of the cross-section of
the turning operator on the time derivative of the chemoattractant concentration. We use the
following expression for the chemoattractant concentration :

S(tx) = (G #p(t))(x),  where G(m):% / s
0

The function G is known as the Bessel potential. The idea to overcome the difficulty raised by
the term 0,5 in the turning kernel expression (1.3) is to use the conservation of the density :
Op+Vy-J=0, J(t, ) :/vf(t,:c,v) dv. (2.1)
1%
We have then
S =G*0p=—-GxV, - J=-V,GxJ, (2.2)

where the convolution between two vectors is defined by V,G % J = 0,,G * J; + 0,,G * Jy. It
implies a control on the partial derivatives of S with respect to time thanks to controls on J
(see [7]). We can then rewrite the problem (1.5) as

O +0-9af = | OV.G (= W) =200V G o = IS

F(0,2,0) = fO(x,0),
We first define the notion of weak solutions for (2.3) on (0,7") x 2.

Definition 2.1 We say that f is a weak solution of (2.3) on L(0,to; LP(Q)) for ty > 0 and
p,q > 1, if for any test function 1 € D([0,ty) x ), we have

/ (O) +v - Vob) f dedvdt = —/ / H(V,G * (v'p — J)) f (V') dtdzdvdy
(0,t0)x2 (0,to)xQ2 JV

+2m O(V.G * (vp — J)) fodtdedv + / £, v)¥(0, 2,v) dzdv,
(0,t0)x2 Q

where the cells density p and the current density J are defined by

p(t,x) = / f(t,z,v)dv, J(t,x) :/vf(t,:c,v) dv. (2.4)
1% %
We state the following existence and uniqueness result :

Theorem 2.2 Assume f° € L N L>*(Q) and that the turning kernel T is defined by (1.3)-
(1.4). Then the initial value problem (2.3) admits a unique global weak solution f satisfying
f € L2((0,00); L1 1 L®(2)).

Moreover, if f© € W22(Q) N WH>(Q) then for all ty > 0, there exists a constant Cj
depending on to and on the data such that the weak solution of (2.3) satisfies

1 Lo 0,0 w2 2@y < Cos and |0y fl Loe((0,t0):20 ) < Co-



The proof of this result is split into two steps. First, we prove the local-in-time existence
of a unique solution. The smoothness assumption (1.4) on ¢ provides thanks to a fixed point
procedure the uniqueness of solution. Then, thanks to a priori estimates, we extend this
solution up to ty for all 5 > 0 and then recover global existence. The main tool in the proof
of Theorem 2.2 is an a priori estimate given in the following Lemma :

Lemma 2.3 Let tg > 0 and f° € L°(Q). Let [ be a weak solution of (2.3), such that f €

L'((0,t0), LY N L>(Q)). Then we have for a.e. t € (0,t0), [|f(t, -, )i = I/l and
1z (oo @) < O Nlzoe(@) €,

where the constant C (|| f°|| L (q)) depends only on the initial data.

Proof. First the conservation of the mass shows that

£ e = 1z
From the bound 1/4 < ¢ <1 of ¢ (1.4) we deduce
Of(t,z,v)+v-Vif(t,z,v) < / f(t,x,v")dv'.
%

Integrating along the trajectories, we find

ft,z,v) < fO>x —tv,v) + /0 p(s,x+ (s —t)v)ds. (2.5)

We can bound the right hand side term by its L;° norm. Integrating with respect to v provides

t
lot, Mm@ < 27010l e + 2 / (s, e ey ds.

We obtain a bound on the L* norm on p thanks to Gronwall’s inequality and conclude the
proof with (2.5).

O

Proof of Theorem 2.2. The local-in-time existence is obtained by a fixed point argument.
Let to > 0, the map F on L'((0,t0); L°(€2)) is defined for all f by : F(f) is a weak solution
of the problem

OF +v-V,F = / G(VoG x (v'p = D) F (W) dv' = 21¢(V,G * (vp — ) F(v),
}—(0’.’,) :fo’ v’ ey

where p = [, f(t,z,v)dv and J = [, vf(t,x,v) dv. We will show that this map defines a con-
traction on L'((0,7), L>(Q)) for 7 small enough. Let f; and fy be given in L'((0, ), L=(Q))
and denoting Fio = F(f1) — F(f2) we have

OFr2+v-VyFip = / (Vi - G (vp1 — 1)) Fro(v') dv' = 21h(V, - G * (vpr — J1)) Fiz
1%
—2nF (f2)(9(Va - G (vp1 = 1)) = @(Va - Gk (vp2 — o))

+/vjr(fg)(v')(cb(vac G (Vpr = N1) = (Ve - G (Vpy = o)) dv,



with the notations p; = [, f;(t,x,v) dv and .J; = [, vfi(t, z,v) dv. We can rewrite this identity
in the following way

OF12+v-VoFio +210(Vy - G x (vpr — J1)) Fr2 = G, (2.6)
where
G(t,x,v) = / (Vi Gx (Vpr — 1)) Fra(v') dv' = 21 F (f2)(¢(Vi - G (vpr — Ji))—
v

(Vi G x(vps — J2)) + /V}"(fz)(vl)(éb(vx G (Vpr = 1)) = ¢(Vy - Gx (Vpa — Jo)) dv'.

(2.7)
Using the characteristics of the system, we can rewrite equation (2.6) as

% <e2ﬂ¢(Vx G (vpr = T)) T2+ (T =) (5 0 1 u(s — t)ﬂ,)) _
2mO(Vy - G (vpr — Ji)) (1,2 + v(T — t))g(s, r+o(s—1t),v).

At the initial time, Fi5(0, -, -) = 0. Integrating the latter equality between 0 and ¢, we have

Fuolt,a,v) = /Ot exp (27r /t (V- G * (vpy — J)) (T, 2+ v(T — t))d7'> G(s,z+v(s—t),v)ds.

Since ¢ (1.4) is bounded from below by 1/4 we deduce that for all 0 < ¢ < o,

¢
| Fra(t, z,0)| < / |G(t — s,x — vs,v)|ds. (2.8)
0

Moreover, from (2.7) and the assumptions on ¢ (1.4), we deduce

6= [ 17+ 10l (20702 + [ FR)w) )
X (VoG (1 = )| + VIVeG x (o1 = p2)])
where V' = max,ecy ||v||. Noticing that |J; — Jo| < V|p1 — p2|, we have moreover
192G % (1 = J2) (2 )|+ VIVaG * (01 = p) (& ety < VIVaGilliasy o1 = p2) b, oy

Finally, from (2.8) we deduce the bound

t
IFialt Mamiey € O [ 1Flt =, mimy st
0
t
02/0 [F(f2)(t = 8, Mle@ I VGl @y | (o1 — p2)(t — 5, ) || Lo w2y ds.

Therefore, using a Gronwall Lemma, we conclude that for 7 > 0 small enough, F defines a
contraction on L'((0,7), L>(9)). Tt allows to construct a unique solution as the fixed point
of the map F on the interval (0,7). Using the a priori estimates established in Lemma 2.3,
we can extend this solution on (0,ty) for all 5 > 0 and we have a bound on this solution in
L>(0,to; L' N L>®(Q)).



For the proof of the second point of Theorem 2.2, let us assume that f° € W?2>(Q) and
that to > 0 is fixed. By differentiating with respect to x; the kinetic equation (2.3) satisfied
by f, we obtain

00, [+ v Voo, [ +210(Ve - G5 (vp— J))0e, f = [, (Ve - G (V'p — )y, f(V) dV
+ [y, VoG * (V00 p — 00y J)F (VoG (V'p = J)) f (V) dv/
=27V G % (V0 p — Oy, J) ' (V.G % (vp — J)) f(v).

The right hand side is bounded by

/v 100, ()| !+ 87V ] | e 1V Gl v / 100, £() .

Integrating along the characteristics and proceeding as above, we obtain that for all 0 < ¢ < ¢,

t
|8mf(t,x,v)| S Cl|a$1f0(x - tU,’U)| + C12/ / |a$1f(t —S5T = SU,U)| dS,
0o Jy

where C and ) stand for nonnegative constants depending only on ¢, and on the data. By
the same token as in proof of Lemma 2.3 using Gronwall’s inequality, we obtain a bound on
O, fin L>°((0,29); L>=(2)). Differentiating (2.3) with respect to xo and v, we deduce by the
same token that for all ¢t € (0,ty), we have f(t,-,-) € Wh*°(Q). With a similar argument we
deduce after straightforward calculations that f is bounded in L>°((0,ty); W2%(Q)). Moreover
from (2.3) we have an expression of 0,f with respect to f, p, J, V.G and V,f allowing to
obtain a bound on 9, f in L>((0,ty); L*°(£2)). O

Remark 2.4 For the sake of simplicity, this existence result has been established in the domain
w = R%. However, this existence and uniqueness result is still available in a bounded domain
w C R? provided that the boundary conditions allows to use the elliptic reqularity for the elliptic
equation satisfied by S. For numerical analysis, we will constraint the domain w to be bounded
and make use of this existence result in this framework.

3 Numerical approach

In this section, we present the numerical approach for solving (1.5). The computational domain
is defined by (z,v) € Q = wxSy where w is a rectangular domain of R?, w = [0, L, x [0, £,], and
Sy is the sphere Sy = {v € R?, such that ||v||s = V}, for a given constant velocity V' > 0. We
reduce this 4-dimensional problem to a 3-dimensional problem by considering the cylindrical
coordinate 6.

At the boundary of the domain, we assume to have specular reflection at the boundaries
y=0,y=14,z=0and x = L, for the distribution function; for the chemoattractant



concentration S we set Neumann conditions on the entire boundary :

f(z,0,0) = f(x,0,27 — 0), for 0 € [0,7], x€][0,L,],

[z, 0,,0) = f(x,b,,2r —0), for 0 € [, 2], €0, L,],

f(0,y,0) = f(0,y,m—6), for 6 € [0,7/2] U [37/2,27], y € [0,4,], (3.1)
f(La,y,0) = f(Loyy,m—0),  forelr/2,3r/2], yel0,4)],

0,5(0,y) = 0,5(L,,y) =0, for y € [0,74,],
0,5(z,0) = 9,8(x, £,) =0, for z € [0, L,|.

Obviously, in the 6 direction f is 27-periodic.

We introduce the nodes (z; = i hy)i—o,... No—1, (Y; = J hy)j=0,.. . n,—1 and (0 = k hg)o—o,... Ny—1
where h, = L,/(N, — 1), hy, = £,/(N, — 1) and hy = 27/Ny. We denote x; = (z;,,v;,) With
1 =11 +12 N, and we mesh the domain w with rectangular triangles using the nodes x;. There-
fore the triangulation is regular and all finite elements are affine equivalent to a single reference
element. We denote the time step At and set t" =n At forn=20,..., N;.

3.1 Semi-Lagrangian methods

In this section we describe the semi-Lagrangian method used for the numerical resolution in
w C R? of the kinetic equation :

Ohf+v-V.f = G(0S + 0" - V.8 f(V)dv' — 27p(0,S + v - V,.S9) f(v), (3.2)

Sy

completed with the initial datum (1.2). We assume in this section that the chemoattractant
concentration is known and we will therefore consider the turning kernel as a function of ¢, x
and v : T(t,z,v) = ¢p(0,S(t,z) + v - V. S(t,x)). Tts numerical approximation will be denoted
Th-

Semi-Lagrangian methods consist in calculating the distribution function at time t"*! =
t" + At thanks to the one which has been obtained at the time ™ by using the conservation
relation along the characteristics curves. We first define the characteristics (X, ©) of the system
forall 0 < s <tby:

d

d—X(s;X,H,t) =ve, with vg=(VcosO,VsinO) ; X(t;x,0,t) =
5 (3.3)

d

E@(S;X,e,t) =0; O(t;x,0,t) =0,

if X(s;x,0,t) € (0,L;) x (0,¢,). Therefore the velocity remains constant, except when the
trajectory meets a boundary of the domain : if there exists a time s > 0 such that X (s;x,0,t) €
(0, L;)x{0,¢,} then the angle ©(s; x, 0, t) is changed into 21 —0(s; x, 0, t); if there exists a time
s > O such that X (s;x,6,t) € {0, L, }x(0,¢,) then ©(s;x, 6, 1) is substituted by 7—0(s; x, 0, t).
More precisely, we have

X(s;x,0,t) =x+vy(s—t), withvy=(Vcosb,Vsinb), O(s;x,0,t) =0,

for all s € R* for which the trajectory does not cross the boundaries. By reflection, if the
trajectory reaches one of the boundaries y = 0 or y = ¢, only once at time %y, then for



t <ty <s,
X(s;%x,0,t) =x+ vg(tg —t) + Var_g(s — to) and O(s;x,0,t) =21 — 0.
If the trajectory crosses the boundary x = 0 or x = L, at time t;, then for ¢t < ¢; < s, we have
X(8;x%,0,t) =x+vo(t1 —t) + ve_g(s — t1) and O(s;x,0,t) =7 — 0.

Obviously, if the trajectory meets several times the boundaries, we make others reflections.
Using the characteristics, we can rewrite the kinetic equation (3.2) in the following way :

d o / . / /
£f(s,X(s;x,9,t),@(s;x,@,t)):/0 (T'(s, X(s;%,0,t),0") f(s, X(s;%,0,1),0") dO (3.4)

=21 T (s, X (s;%,0,t),0(s;%,0,t)) f(s,X(s;%,0,1),0(s;%,0,1))).

The semi-Lagrangian method relies on a discrete approximation of relation (3.4). We
assume to know the distribution function at time ¢" . We use an explicit in time Euler scheme
to compute this quantity at time ¢"*! = " + At on each point (x;,6;) of the grid. It leads to
the following system :

St %3, 0;) = [t X (7 %3, 05, 07, Ot x4, 05, 6"))

2
+At/ (T (", X (" %5, 05, "), 0)) fu(X (" x5, 0;, "), 0') dO/
0

=2 AL T (87, X (87 %5, 05, t71), O (1" x5, 0;, ™) fu(X (175 %3, 05, ¢"11), O x5, 05, t"11))),
(3.5)
where f;, and T}, stand for approximations of f and 7. For the sake of clarity, we will use from
now on the notations X7, (s) instead of X(s;x;,0;,t") and OF;(s) instead of O(s;x;,0;,t")).
The discretization relies on two main steps :

1. Find the point (X (t";x;, 6;,t"+At), O(t"; x;,0;,t"+At)) := (X"+1(t") @"“(t")) Start-
ing from (x;, 0;), it suffices to follow backward the characterlstlcs curves durlng the time
step At. To this end, we have to solve (3.3). Since the resolution of the second equation
in (3.3) is clear, this step is simple (in a general framework see e.g. [39, 2, 15|)

X" =x — At Vep:t, ert(t") = 0;.

Obviously, if the trajectory reaches a boundary of the domain, then we use specular
reflection : X{fjl(t") is replaced by its symmetric with respect to this boundary and
Or T (t") by 2 — ©7F!(t") at the vertical boundary y = 0 or y = £,, or by = — O (¢")
at the boundary x =0 or x = L,.

Therefore the computation of the foot of the characteristics is exact.

2. Since the functions f and T at time t" are only known on the nodes of the mesh, we
interpolate these functions at the points (X7'/!(t"), ©7'(t")). Actually, since we have
@Z;rl(t") = 6; or m — 0; or 2m — 0;, by taking Ny odd we only have a 2D interpolation
method to implement. In fact, we have that 27 — 0; = Oy,_; and ™ — 0; = Oy, /o if
g, € (0, 7). Several interpolation methods can be used. To avoid Runge phenomena, we



can use a linear interpolation : we define the linear interpolation operator II onto the
space of Lagrangian polynomials of degree lesser than or equal to 1 by :

NyNy—1

Of(xy) = > f(x)li(z,y), withl; € P'(w) such that [i(x5) =d;;,  (3.6)
=0

where P(w) is the set of piecewise polynomials whose restriction on each triangle of the
mesh holds in polynomials function of degree lesser than or equal to 1. The interpolation
error estimations in Sobolev spaces give that for all f € W*?(w) (see [13] Theorem 16.2
p. 128)

1f = Tf |2y < Cmax{hi, Ao} (| fllwez)- (3.7)

Moreover, this linear interpolation method preserves the L* bound :
MLf [ oo @) < M1l - (3.8)

For more precision on solutions, a Hermite spline interpolation method which is a well
established high order interpolation method can be used. We refer to [39, 15| for more
details about this interpolation step. However, spurious oscillations (e.g. Runge phe-
nomena) can appear with high order interpolation methods.

Finally, using a discretization of the integral in (3.5), the approximation of the distribution
function at time ¢t"*! is obtained by

Sn( x5, 05) = T (8", X7 (), ©F TH(#")) = 2w ALTI(T), f) (87, X750 (17), ©F 1 (1)) +
Ng—1

+A¢ Z ho (T fr) (", X7 (E7), 6k).
k=0

(3.9)

3.2 Numerical resolution of the coupled system

We recall the following notations : X/ (¢") instead of X (t";x;,6;,t"*"), ©T(¢") instead of
O(t";x3,0;,t")) and II is the interpolation operator. The numerical resolution of the coupled
problem (1.5) is then tackled in the following way. We assume that the approximation of
the distribution function f;, and of the chemoattractant concentration S; are known at time
t" at each nodes of the mesh. We describe the process to compute f;, and S, at time ¢"+1.
As described previously, the distribution function at time ¢"*! is approximated thanks to the
relation :

S x5,05) = TLf (87, X (™), @0 (#7)) — 2w ALTL(T, fr) (27, X7 (), ©7 1 (1)) +
Ny—1
HAL Y R TH(T fu) (87, X (E), 01),
o (3.10)
where the turning kernel 7}, is computed by a discretization of (1.3). As we have seen for the
proof of Theorem 2.2, estimates on T rely on the conservation equation for p (2.1) which allows
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to get an estimation of the term involving temporal derivative in the definition of 7". In fact,
the quantity 0,5 satisfies
—AOS + 0SS =-V - J, (3.11)

completed with Neumann boundary conditions deduced from (3.1). We define the approxima-

tion of the current by
Np—1

Jh<tn,Xi) = Z h@V@kfh<tn,Xi,¢9k). (312)
k=0
Then the approximation of 0,5, denoted Sy, is computed by solving (3.11) with Jj, using
conforming P! finite elements :

VVh € Xh, /(VSth . VVh —+ Stth) dr = / Jh . VVh dﬂ?, (313)

w

where X, is the set of function of C%(@) whose restriction to each triangle on the mesh holds
in P!. We define the approximation 7}, of the turning kernel by

Th(tn,Xi, ‘9]) = Qb (Sth(t,X> + é(ShOfn,Xi) - HSh<tn, Xxj(tnl))) . (314)

Once f;, is known at time t"*!, the chemoattractant concentration is updated by solving
the following elliptic equation with conforming P! finite elements :

Ng—1

—ASh<tn+1, Xi) -+ Sh(tn+1, Xi) = ph(thrl, Xi) = Z fh<tn+1, Xj, Gk) h,g. (315)
k=0

This system is completed with boundary conditions (3.1).
From basic error estimates on elliptic problem, we have (see [13] Theorem 18.1 p. 138) :

Proposition 3.1 Let u be a solution of the variational problem a(u,v) = l(v) where a is
bilinear continuous symmetric coercive on H'(w) and l is linear continuous on H'(w). Then,
if up, is the discrete approzimation computed by conforming P! finite elements, there exists a
nonnegative constant C' such that

= unllircey < Cmascts, byl sz

3.3 Convergence analysis

We are interested in this section in the convergence of the scheme (3.10)—(3.15) towards so-
lutions of model (1.5). Convergence analysis of semi-Lagrangian method in the framework of
Vlasov-Poisson system have been obtained in [3]; those results are presented in L>. Due to the
lack of regularity in our case caused by the presence of the turning operator, we present in the
following theorem a convergence result in L2. The main result of this section is presented in
Theorem 3.4 below under the following additional assumption allowing to simplify all integrals
in the computation.

11



Assumption 3.2 For the sake of simplicity of the proof and of the notations, we assume that
all particles are initially confined in the center of the device and that the time tq is small enough
to avoid particles to meet the boundary of the domain. Thus all trajectories are straight lines
and

X(s;x,0,t) =x+vy(s—1t); O(s;x,0,t) =0, for0<s<t.

Moreover, since f, vanishes near the boundary of the domain w, we have

/fh(t,X(s;X,Q,t),Q)dx:/fh(t,x,e)dx,

for 0 < s <t small enough.

From now on, we fix t; > 0 small enough and assume f° € W22 N W1>(Q) is chosen
such that Assumption 3.2 holds. Therefore, in this convergence analysis cells do not ’see’ the
boundary. The scheme (3.10)—(3.15) allows to define the approximated function f, only on the
nodes on the mesh. We extend this definition on all (x,6) € w x [0, 27] thanks to the linear
interpolation operator IT (3.6). We first establish the positivity and a priori estimates on the
discrete approximation fj.

Lemma 3.3 Let tg > 0 and assume that f° € W2 N WhH®(w x [0,27]) is a nonnegative
function such that Assumption 3.2 holds. If At < 1/(2w), then the scheme defined by (3.10)—
(3.15) gives a nonnegative approzimation fy, of the distribution function. Moreover fy, satisfies
the following estimate

Vit e (07 tO)a HHfh(tu *y ')”LDO(WX[O727T]) < 627rt0 HfOHLOO(wX[O,Qﬂ])u ”Hfh(tu "y ')”Hl(wx[o,%ﬂ) < CO7
where Cy is a nonnegative constant depending on to and || fO]| g (wxo,2x])-

Proof. From the definition of (3.6) and the assumptions on ¢ (1.4) we have that for all
nonnegative function f

7 <TTp) <f
Therefore assuming f(t", -, -) nonnegative, we deduce from (3.10) that
S x4, 05) > (1= 20 AL TLf, (8", x; — v, AL, 6;) > 0.
Moreover, from (3.10) and (3.8) we have
AR, o ooz < (14 27 AL) [TLfa(", )|z o o,2n) -

Applying a discrete Gronwall inequality allows to conclude the proof of the L> bound. Differ-
entiating (3.10) with respect to z; gives

83;1 fh<tn+1, Xj, ‘9]) = &Blﬂfh(t", Xi — V.ngt, 9])

3.16
-2 At 8x1H(Thfh)(tn, Xi — ng At, 0]) + At Zgﬁal hg 8x1H(Thfh)(tn, Xj — ng At, Qk) ( )

By linearity of the interpolation operator, we have that

Oy (T3 fn) = TU(Oa, (T3 ) (1L )]) = TL(Or, (WT3) LSy + (I1T3)Day (TLf ).

12



From the definition of T}, (3.14), we deduce that
n n 1 n n n— n
192 (T () 12y < NP2 Sen(E") 120 + Z7 1022 St ) = D TLSW(E", X (£, 6,8%)) | 20

From the elliptic regularity on the equation (3.13) and the bound of f;, in L*>°(w x [0, 27]), we
have that Sy, is bounded in H'(w). The elliptic regularity on (3.15) gives

802", ) = TS, (", X (", 0, ") L1y < on(t™,) = Tpn(t™, X ("5, 60,8) 12

Using a Taylor expansion gives
0
pn(t",x) — Tp, (1", x — veAL) = / vy - VIpp(t, x + vys) ds.
—At

From Assumption 3.2 we deduce that
lon(#", %) = Tpn (", x — VoAt | 2y < ALV [V (M) (¢, ) | 1200

Thus,
102, (T3 [ 2w (0,207 < C(1 4[|V ILpw) || L2(wx [0,27]) ) -

Doing the same with z9, (3.16) leads to the following estimate

||VHfh(tn+1)||L2(wx[0,27r}) = [IVILf (") 2w (0,27 + CAL(L 4[| VILfL (") || L2(x 0,27 ) -

A Gronwall inequality allows to conclude the proof. 0

Theorem 3.4 Let ty > 0 and assume that f© € W2 N W1 (w x [0,27]) is a nonnegative
function such that Assumption 3.2 holds. Let f be the global weak solution of (1.5) on (0, )
and fp, be its approzimation computed at the nodes of the mesh thanks to the algorithm (3.10)—
(3.15) where 11 is defined in (3.6). Then there exists a nonnegative constant C depending on
to, f° and the data such that

h
1f = fnll no(0,t0:02(x 0,2m))) < C(AE+ h* + A +h),

where h = max{h,, h,, ho}.

Proof. From Theorem 2.2 we have f(t,-,-) € Wh* N W22(w x [0, 27]) We define the global
error at time ¢t"*! by

= f(E %, 0) = T %, 0) || 120 0,20 (3.17)

A first remark is that since characteristics are straight lines the numerical computation of the
characteristics (X, ©) is exact. From (1.5), we deduce that for 0 < s <t

if(s,X—V9(7f—s),0): /0ﬂT(S,X—Vg(t—S),e/)f(S,X—Vg(t—8),9’)d9/

ds
=21 T (s,x — vo(t — 5),0"(s)) f(s,x — vg(t — 5),0),

13



where

T(t,x,0) = ¢(0,S + vy - Vx5),
and S being the solution of the elliptic problem

21
—AS+S:/ F(t,x,0) do.
0

We deduce from the regularity of the function f proved in Theorem 2.2 that the function
s — f(s,x —vg(t — 5),0) is bounded in W*2(0,¢y). Hence a Taylor expansion gives, under
Assumption 3.2 :
2m
FE"x,0) = f(t",x — veAt,0) + At/ T(t", x — vgAt,0") f(t",x — veAt, 0") db’
0
=2 AL T (1", x — voAt, 0) f (1", x — voAt, 0) + Opa(At?),

where Op2(At) means that there exists C' > 0 such that ||Op2(A#?)||z2 < CAt?. Therefore,
using the definition (3.10), we rewrite the difference f(t"*! x,0) — I1f,(t"™!, x, 0) as

U x,0) = LA (0, x,0) = F(17, % — VoA, ) — TLf, (1", x — voAAt, )
Nyg—1

2w
—|—At </ (Tf)( X — V@At 9/ d@’ Z h@ Thfh , X — V@At, Hk)>
0
2w At ((Tf)(t", x — vgAt, ) — (Thfh)(t X — vgAt,0)) + Op2(At?).
To evaluate the global error ¢"*1, we decompose f(t"™!, x,0) — f,(t"",x,0) as

f(thrl, X, 0) . Hfh(tn+1; X, 0) — f(tn, X — VgAt, 0) — Hfh(tn’ X — VGAt, 0)

) (3.18)
+AL(1 = 1II) 11 + Lo + I3) + Or2(At7),
where
Np—1
L= ho(Tf) (", x — voAAt,0;) — 2(Tf)(£", x — VoAt 0), (3.19)
k=0
Np—1
]2 = Z hg(Tf — Thfh)(tn, X — VgAt, Qk) - 27T(Tf - Thfh)(tn, X — VgAt, 0), (320)
k=
27 Ny—1
I :/ (TF) (" x — VoL, ¢) 6’ — Z ho(TF) (i, % — VoAl 0). (3.21)
0

Taking the L? norm of (3.18) implies with Assumption 3.2
et <€ + AL(|(1 = M) L1l 2 o2n)) + 12l 22xpozn)) + sl 2w o2qa)) + CAE. (3.22)
We will estimate each term separately thanks to the following Lemmata.

Lemma 3.5 Let (f,S) being solution of (1.5) for fO € Wbt N W22(w x [0,2x]). If I; is
defined by (3.19), then there exists a nonnegative constant C' such that for all t € (0,ty),

(1T =TI 1] L2wxo2n)) < C max{h?, h2}.

z) 'y
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Proof. Let 0 <t <t,. From Theorem 2.2, we have that f(t,-,-) € WL N W?22(w x [0, 27]).
Therefore, by elliptic regularity, we deduce that VS(t,-) € W3?(w). Moreover, (3.11) implies

—AOS(t, )+ 0, S(t,) = -V - J(t,-) € W(w).

Then the elliptic regularity furnishes 9,S(t,-) € W*?(w) and since with our definition on ¢ we
get ¢ € C°(R), we deduce that T(¢,-,-) = ¢(0;,S + vy - VS) € W2 (w x [0,27]). Then

0% (Tf) = Onia; TV f 4 00, T, f 4 00, TOr f + T (O, f) € LP(w x [0, 271]).

Hence (T f)(t,-,-) € W?%*(w x [0,27]). Finally, the result of the Lemma is a straightforward
consequence of the interpolation error (3.7). 0

Lemma 3.6 Let f and T being defined previously, there exists a nonnegative constant C' such
that for all 0 <t <ty and x € w,

Np—1

/zw(Tf)(t x,0') do’ — Z ho(T f)(t, %, 01) < Ch2.
0

L2(w)

Proof. Let 0 <t <tyand x € w. As noticed in the proof of Lemma 3.5 we have that (T f)
belongs to W22(w x [0, 27]). Hence the result of Lemma 3.6 is a consequence of the well-known
error estimate for the trapezoidal rule : if g € W%2(0,27), there exists 6 € (0,27) such that

7 |9%9(0)
00> |-

Np—1

2
/ 9(0)d0 — ) hag(6r)
0

k=0

—h
6

(3.23)

O

The two previous Lemmata allow us to estimate the terms involving [; and I3 in (3.22).
For I, we need first to estimate the error T' — T}, with respect to f — fj,.

Lemma 3.7 Let assume that Assumption 3.2 holds. Let T' be defined in (1.3)—(1.4) and Ty}, be
its approzimation computed with (3.14). Then, there exists C > 0 such that forn =1,... Ny,
we have

ha, h
| sup [T, ) — ITL (", - )|l 2wy < 0<At+max{hx,hy}+%ty}+h3+
a€(0,27]

L) = Fa@ - )l L2 o2m))-
Proof. Letn € {l,...,N;}, x € wand a € [0,27]. We have from (3.14) that
T(t", %, o) = HTH (8", x, a)| = [#(0S (", %) + Vo - VoS (1", %)) — T, (1", %, o))
(S %)~ TISH (17 x — va ),

At
(3.24)
where Sy, is defined in (3.13). We will estimate separately each term of the sum of the right

< ML (1005 (2", %) = Sin (8", %)| + [va - VoS, %) —

hand side. Let us introduce §t a weak solution of

—AS, + 8, = -V -1LJj, (3.25)
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completed with Neumann boundary conditions, where Jj, is defined in (3.12) at the nodes of
the mesh and extended on w thanks to the linear interpolation operator II. From Proposition
3.1, we deduce that

15, — Sinl|L2(w) £ Cmax{hg, hy}”"gtHWQ’Q(w) < Cmax{hg, hy}|VILJ,|| L2(w),

where the elliptic regularity on equation (3.25) is used. And Lemma 3.3 allows to bound the
term ||VILJ, || r2(,). Moreover, from (3.11) and (3.25), we deduce that

|0.S — §t||L2(w) < O\ J = U2y < Clhg + ||f = Ifallz2(ox 020 )

where we have used the error estimate given by the trapezoidal rule (3.23) to estimate J — .Jj,
for f € W?2(w x [0,27]). We conclude then that

105 ~Sunllze) < 19:5=Sull 2o H15—Sunll 2y < COF+F~TLill o+ ma{hy, by }). (3.26)
We introduce S weak solution of the elliptic problem
—AS + 5 =Tlp,, (3.27)
completed with Neumann boundary conditions. Therefore, we have that

|| sup |Va . sz — Vo V$S|||L2(w) S VHS - S||W1,2(w) S CHp - th||L2(w)
a€(0,27] (328)

< C(hg + | f = Whnllr2xo2n)),

where we use the elliptic regularity for equation (3.27) and the error estimate for the trapezoidal
rule (3.23). Moreover, I1p, belonging to L>(w) — L?*(w), we have by elliptic regularity on
(3.27) that S € W?2%(w). A Taylor expansion gives that for all x € w and all « € [0, 27],

S(t",x) = S(t",x — VaAl) — vy - VS, x) At + Oz (A1),

Hence, for all x € w

~ 1
| sup |va - VaS(t",x) — —(SK(t",x) = [LSK (1", x — Vo AL))| || 12(w) < CALH
a€(0,27] Atl

1~ ~
KHS(t",X) — Sp(t", %) || 2 (w) +KH sup [S(t", x — Vo At) — TLSK (1", x — Vo AL) ||| 22(w)-
t t a€(0,27]

Assumption 3.2 implies that the last two terms of the sum are equals. Since S}, is obtained by
solving equation (3.27) with conforming P! finite elements, Proposition 3.1 implies that

15", ) = Sult", Mza) < Cmax{hy, by} Sllwee.

Therefore,
~ 1 ho h
| sup |V - VS(E, %) — ——(S(t",x) — TLSH(£", x — vaAt))|[l 12y < C(AL + M).
a€l0,27] At At
(3.29)

16



Finally, injecting (3.26), (3.28), (3.29) in (3.24) and with Assumption 3.2, we obtain

H sup |T<tn7 *y Oé) - Th(tnv *y O‘)‘ ”LQ(w) <
a€(0,27]

g, b
< C(At +max{h,, h,} + max{fs, ,}

AL + hg + 1FE ) = L™, - ) 2w o.2a))-

(I
Return to the proof of Theorem 3.4. Since II is defined by its values at the nodes, we

have that H(Thfh) = H(HTthh) Then, for k = 0, ey Ng — 1,
ITf(t",x — voAt,0y) — (T} fr) (1", x — voAL, )| <
‘(1 — H)(Tf)(tn, X — V@At, Hk)‘ —+ ‘H(Tf - HTthh)(tn, X — V@At, Gk)\

Moreover,
T f = UL < [T(f = ILf) | 4 [T(fa)(T — 1IT},)]. (3.30)

From the definition of 7" and with Lemma 3.3, we have | T||z~ < 1 and ||I1f3]|z~ < C. From
Assumption 3.2,

lsup [(TI(T'f) = TITLILSR) (27, % = VoA, O)l 122 y(oxio2n)
= 2ml|sup [(Tf = ITLILfu) (2, -, Ol 2
< 2mllsup [(f = TLn)(#", - Ol 2y + Cllsup [(T' =TT (-, )l 2w

And from (3.7) we have,

x? Yy

I sup (1= Tt )l 2y < € max{1, 7).

Thus by continuity of the application 6 — (f — ILf,)(t,x,6) we have from (3.30)

I Sup (T =TT f)(E", -, 00) 2oy < O +ma{h, B2} + | sup (T =TT, -, 6. 20

x? Y

where we use Lemma 3.3. It comes from the expression of I, (3.20) that
IT2llz2y - < 4l sup [(Tf =TT fa)) (", Ol 2o

he,h
< C(At + h* + max{hy, h,} + %z’y} +€"),

where we use Lemma 3.7. Moreover, Lemma 3.5 and 3.6 furnish an estimate on (1 —II)/; and
I3 in L*(w x [0, 27]) in inequality (3.22). It leads to

max{h,, hy,}

ntl < n At | At + h?
€ <€+ O ( + h” + At

+ max{h,, hy,} + en) :
A discrete Gronwall inequality enables us to get

B B
€" < exp(Cito) €+ Cy (At +h2+ %ty} + max{h, hy}) )
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As €” is only a fixed interpolation error, we have ¢ = 0 and

max{hy, hy,}

n < A 2
e_C( t+ h°+ At

+ max{h,, hy}) :

This convergence result has been established under additional assumption which gives the
invariance of all integrals on the computational domain along characteristics. Assumption 3.2
boils down to consider that the domain w is very large with respect to the place where cells
are. However the property of invariance of integrals along characteristics remains valid if we
take into account boundary conditions at the boundary of the domain, provided that these
boundary conditions are conservative (e.g. periodic boundary conditions, specular reflection
conditions). The idea of the proof of Theorem 3.4 is the same but is much more technical since
all integrals should be decomposed between a part for which characteristics meet the boundary
and a part for which characteristics do not meet the boundary.

4 Numerical simulations

In this section, we present the numerical results obtained with the algorithm presented in
Section 3. We are interested in the dynamics of the cells concentration for bacteria E. Coliin a
Petri box. In this simulation we take the numerical values of [5] where the Petri box is strongly
elongated. In fact, the authors are looking for traveling pulse at macroscopic scale due to the
presence of nutrient. In their study, they observe the concentration of bacteria in a slice that
moves along the Petri box. Here we do not consider nutrient and we want to study numerically
the aggregation in a slice of the cells for such a Petri box. Then we take w = [0, L,] x [0,¢,]
with L, = 107%m and ¢, = 10~*m. Moreover this very elongated device allows us to avoid
the influence of the left and right boundary. Bacteria are modelled by spheres of radius 1 um.
Their initial density is assumed to be ny = 10® cells per em™3. Each individual cell has a

constant speed V' = 20 um.s~! during the run phase.

4.1 Numerical results

The Keller-Segel model [28] was originally derived to describe aggregation of cells. Microscopic
models presented here allow to incorporate additional informations during the motion and
therefore to obtain an accurate description of the dynamics of the cells concentration. We
present numerical simulations of model (1.5) using the algorithm described in Section 3 with
a Hermite spline interpolation method.

We assume that cells are initially concentrated in a slice of the device :

viom )
Pz, y,0) =ng exp(—Cyp(z — 0.5L,)%), with  C, > 1. (4.1)
7
In this simulation, we take N, = 120, N, = 20 and Ny = 52. The time step is chosen

dt = 4.1072 and the constant C, = 2.10°. For such initial data and since for specular reflection
the evolution is invariant in the y-direction, we only represent in Figure 1 the dynamics of the

18



2( 1015

—t=0s
t=200 s
251 ——1t=400 s
t=600 s
——1t=800's
—~ t=1000 s
T_o2r
S
N—r
#A
I5 L15F
—
0
a 1ir
0.5+
0 =~ L L ]
0 0.002 0.004 0.006 0.008 0.01
X (m)

Figure 1: Dynamics of the density p(t, z, £, /2) for different times. One can observe concentra-
tion of cells in the center z = L, /2.

density p in a horizontal section y = ¢,/2 of the device. As time becomes longer, we notice
aggregation of cells in the center x = L, /2.

To illustrate the dynamics of the density in the Petri dish, we non-dimensionalize the system
(1.1) by introducing the dimensionless quantities

T = T07, t = tot, v = VT,

S(ta "L‘) = Sog(fa E)a .f(ta x, U) = fO?(Ea Ea E)a ¢(Z) = Cboa(z)
¢o is the typical value for the size of the turning kernel, vg = V' is the typical speed, x¢o = L,
is the characteristic length of the device and the typical time is defined by ¢ty = zo/vo. Using
the same arguments than in [16], the dimensionless system is (dropping the bars)

0uf + - Vof = 1 (Jy, 90 + - VoS f(v') do' = 216015 + v - VoS)f(v))

(4.2)
“AS+ S8 =p,

PoTo
Vo
i = 5103 Here 1 > 1, then the solutions of the kinetic model are not far from solutions of
the macroscopic model obtained thanks to the hydrodynamic limit z~! — 0. The rigorous
derivation of the hydrodynamic limit for prescribed smooth chemoattractant density is carried

out in ref. [16]. We recall that the hydrodynamic limit is given by

—AS+ S =p,

where we set p = . With the numerical values used here, we have ¢y = 1 and obtain

(4.3)

where x(0,5,|V,S|) is the chemotactic sensitivity. In the case @ = 0 in the definition of ¢
(1.4), this chemotactic sensitivity can be computed explicitly (see [16]). We find

B 6V s\ _1
X(0:S, |V.S|) = om —3/2 arccos(&tS/(V\VISD)\/l B (V\VIS\) IV.S|’
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if [0,S/(VV,S)| < 1, and x(9,S,|V.S|) = 0 if |0,5/(VV,S)] > 1 or V,S = 0. In [16],
the authors implement a numerical simulation of this macroscopic model allowing to observe
aggregation for Dictyostelium Discoideum where a very simple model for the production of
cAMP is used. We recover here this dynamics.

4.2 Influence of the 0,S term

In several papers [8, 11|, the kinetic system presented in (1.5) is studied assuming that the
turning operator does not depend on the partial derivative of S with respect to time. In [6], a
critical mass phenomenon occurs in a kinetic model and the solutions converge in finite time to
a Dirac under the assumption that the turning kernel grows linearly with V,.S. In this section
we present numerical simulations when the turning kernel only depends on the spatial gradient
of the chemoattractant concentration S. The system considered is then (1.5) where we drop
the term 0,5 :

Of 40 Vaf = [ 6T [0 dv' - 2m0(07.5) 1 0),
f(0,z,v) = Oz, v), (4.4)
—AS+ 8 =p(t,z) = / f(t,x,v)dv,

veY

It boils down to assume that cells are able to evaluate the gradient of chemoattractant at their
position. Actually when cells are big enough and have sensors along their body like slime mold
Dictyostelium Discoideum [19], they can sense the chemoattractant concentration along their
body. For such amoeba, the use of this system is relevant. Here it can be understood as a
model simplification.

Figure 2 on the left represents the dynamics in the section y = ¢, /2 of the density obtained
by solving the model with the algorithm described in Section 3 using a Hermite spline inter-
polation method. We observe spurious oscillations near the maximum of the density. Whereas
when we apply the same algorithm with a linear interpolation method the oscillations disappear
(Figure 2 on the right). These artificial oscillations are known as Runge phenomenon.

We observe that the aggregation phenomenon is stronger than in previous subsection. In
fact the maximum value of p for t = 125s in this case is greater than 10'® m™3 whereas in
Figure 1 even for ¢ = 1000 s the maximum is smaller than 3. 10 m=3. Moreover the dynamics
of p does not seem to be smooth in the vicinity the position x = L, /2. Comparing with Figure
1, the aggregation is faster and less regular than when we use the term 0,5 for the computation
of T'. This large and rapid variation of p in the vicinity of the maximum is surely responsible of
oscillations that appear with a high order interpolation method in this case whereas no Runge
phenomenon is noticed in Figure 1.

This simulation seems to indicate that the solution blows up as a Dirac in the center of
the device. A simple argument in 1D confirms this observation. In fact, the dimensionless 1D
version of (4.4) is written for all z € [0, L] and v € {-V,V'}

Of + 00 f = p(P(—v0:5) f(—v) — ¢(vd:5) f(v)),
with 11> 1. When p~! — 0, the equilibrium is obtained for

P(=v0:5)

f=) = 56a,9)

f(v). (4.5)
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Figure 2: Dynamics of the density p(t,z,(,/2) when the turning kernel depends only on 09,5
(4.4). On the left we use a Hermite spline interpolation method : spurious oscillations appear
(Runge phenomenon). On the right a linear interpolation method is implemented.

Summing the one dimensional kinetic equations for v = V and v = —V, we obtain the equation
for the first moment :

O(f(V)+ f(=V)) + VA (f(V) = f(=V)) =0. (4.6)
Moreover, assuming that f is at equilibrium (4.5) we deduce that

(=V0:5) = ¢(VI,5)

JV) = 1) = S s T amag (V) + /()

The density at equilibrium is defined by p := f(V) + f(=V). With (4.6) we finally obtain the
1D version of the hydrodynamic model (4.3) without 0,5 :

Op + 0,(a(0,5)p) = 0, (4.7)
where
We can approximate the model by assuming that « in (1.4) is small compared to the values of

the chemoattractant concentration gradient such that ¢(z) = 1/4 for z > 0 and ¢(z) = 1 for
z < 0. In this case, we deduce from (4.8) that

a(0,8) =V (4.8)

a(0.5) = 2V sign (2.5), (4.9)
where the function sign is defined by
sign (z) =1for z >0; —1for 2 < 0; 0 for z = 0.
This system is completed with the elliptic equation for S :

—0pS + 5 = p.
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We can prove that with our initial guess f° (4.1) the function S is increasing for z < 0.5L,,
decreasing for x > 0.5L,. Therefore, sign (0,5) = sign (z — 0.5L,) and equation (4.7)
becomes

3
Op + @C(gV sign (z —0.5L,)p) = 0.

It is well-known that the solution p of this hyperbolic system becomes instantaneously a Dirac
at © = 0.5L, (see e.g. [36]).

In the case studied in the previous subsection where the term 0;S is not neglected, the
hydrodynamic limit leads to

0p + 0p(a(,S, 8,5)p) = 0,

where

O(0,S —V0,8) — ¢(0.S + V0,.5)
&(0S — VO,8) + ¢p(0S + VI,S)
Figure 1 seems to show that the presence of the term 0,S has a regularization effect. The
rigorous mathematical analysis of these phenomena is a work in progress.

a(8,5,0,8) =V (4.10)

4.3 Locus of aggregation

Another interesting question is the determination of the aggregation locus. In the previous
case when f© is given in (4.1) and is symmetric, the aggregation takes place in the center of
the device where the concentration is initially maximal. However, in Figure 3, we represent
the dynamics of the density when the initial data is not symmetric :

VC,

nog~—— exp(—Cy(x — 0.5L,)?), forx € [L,/2, L,],
T
fo<x7 Y, 0) = \/C_
ng~—— exp(—0.5C,(z — 0.5L,)*), for x € [0, L,/2].
T
3)(1015 10x1015
om0 “‘ o0
25}  t=400s il —t-30s
=600’ ——1-60s
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Figure 3: Dynamics of the density p(t,z,¢,/2) when the initial concentration is a smooth
function but not symmetric. Left : with the term 0,5 in the definition of the turning kernel
(1.5). Right : without 9,5 (4.4).

Figure 3 left represents dynamics of the density p(t, , ¢, /2) when the turning kernel depends
of the temporal derivative of the chemical signal 9,S as in (1.5). Figure 3 right represents
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evolution of p when 0,5 is dropped in the definition of the turning kernel (4.4). We observe
that the aggregation locus is not the same with and without 0;S. As noticed previously, the
behaviour of solutions seems to be more regular for model (1.5) than with (4.4).

For model (4.4) when the term 0,5 is dropped in the definition of the turning kernel (Figure
3 right) the place where aggregation occurs seems to be invariant and fixed. It is readily seen
in this case that the points where accumulation occurs for the one dimensional problem (4.7)—
(4.9) are the points xy for which 0,5(z) = 0 and is maximal. In fact, the characteristics for
the conservation law (4.7) converge and cross at these points. When the temporal derivative
of the chemoattractant is not neglected, a careful study of the expression (4.10) is needed to
determine the points where aggregation occurs. In Figure 3 left, the locus of the maximum of
p 1s not invariant.

We consider now the case when the density of cells is not invariant with respect to y. We
assume for instance that cells are initially concentrated in the center of the device :

V200, .

™

f(z,y,0) = ng xp(—Cy((x — 0.5L,)* + 20(y — 0.5¢,)%)).

For this simulation, we take N, = 40 and C, = 10°. Figure 4 presents the evolution of the
density of cells in the device. We observe an evolution in two steps. Firstly, cells diffuse in the
y direction. After 2250 s, when the density becomes invariant with respect to y, aggregation
phenomenon involves in a slice in the center of the device.

On the one hand, this dynamics is not comparable to the one observed without the depen-
dence on 0,5 of the turning kernel (4.4). Actually, we notice in Figure 5 that for model (4.4)
the blow up occurs in the center of the device. On the other hand, let us consider a square
domain L, = ¢, = 7.107® m and spherically symmetric initial data

(z,y,0) = nog—; exp(—Cy((x — 0.5L,)% + (y — 0.5€y)2)).

We observe in Figure 6 that bacterias concentrate in the center of the device. We conclude
then that the behaviour observed in Figure 4 is due to the particular domain that we take
which is very thin in the y-direction. In fact, due to specular reflection at the boundary,
bacterias on the slice x = 0.5L, close to the boundary that swim in an unfavorable direction
(i.e. for which the gradient of the chemoattractant decreases), reflect to the top or bottom
boundary. After a reflection they swim in a favourable direction (i.e. for which the gradient
of the chemoattractant along their paths increases). Since the device is very elongated, cells
are initially close to the top and the bottom boundary; this is the reason why we first notice
a diffusion in the y direction.

5 Conclusion

A kinetic model describing chemotaxis for a population of bacteria has been presented in (1.5).
This model has been previously introduced in ref. [16] where its hydrodynamic limit was
derived. It incorporates the ability of cells to assess temporal changes of the chemoattractant
concentration as well as its spatial variations. In this work, we are interested in obtaining a
numerical simulation of this kinetic model. We proved rigorously in Theorem 2.2 existence and
uniqueness of solutions for this model. Then a semi-Lagrangian method has been implemented
to obtain numerical simulations of this well-posed problem in Section 4.
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Figure 4: Dynamics of the density p of cells in the device for model (1.5).
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Figure 5: Dynamics of the density p of cells in the device without the 0,S dependence of the
turning kernel (4.4) when the concentration is initially maximal in the center of the device.
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Figure 6: Dynamics of the density p of cells for a square domain with the 0,S dependence of
the turning kernel when the concentration is initially maximal in the center of the device.

We have noticed in this simulation aggregation of cells in some place of the device. This
aggregation phenomenon was observed in experiments and mathematical study of this phe-
nomenon was the motivation of the work of Keller and Segel [28]|. Some numerical simulations of
macroscopic models describing chemotaxis have been obtained (see e.g. [10, 20, 21, 16, 24, 37|)
but not at microscopic level which is the aim of this work.

We have tested two expressions of the turning kernel which is taken depending on the
temporal derivative of the chemical signal or not. A first observation is the fact that the
presence of the term 0,5 in the definition of the T seems to smooth solutions and to slow
down the aggregation phenomena. This phenomena was expected since in the case 'without
0,57 cells are able to estimate instantly the gradient of the chemical and to decide instantly
either to change direction or not. In the case 'with 9,5 cells must swim (at least during one
numerical time step) to sense the chemical gradient. Moreover the place where aggregation
occurs is not exactly the same for both models in some situation. A rigorous explanation of
these phenomena for these mathematical models is at our knowledge still an open question.

Furthermore, the numerical simulation of model (1.5) implemented in this article shows
the blow-up along lines while for the Keller-Segel model the blow-up is always point-wise
[10, 20, 24, 29, 37, 38|. It is observed in |20, 37| that due to instabilities the blow-up peak
usually moves to a corner of the computational domain. In [29] the mass concentrates in some
particular points of the boundary that can collides to form isolated peaks in the boundary
of domain. In [24], the authors concentrate on capturing the correct blow-up dynamics by
using a particle method : cells aggregate in two singularities that collide to form one single
heavy particle carrying almost all of the mass while diffusion occurs in the rest of the domain.
However, in the numerical test presented in this paper, one can observe blow-up profiles that
are not point-wise and that can be located inside the domain. Moreover, blow up profiles along
lines seems to be stable (see Figure 4).

Finally, this study leads to the question of deriving macroscopic model from this kinetic
system. When the time derivative is not taken into account in the expression of the turning
kernel, we refer to [21] when a hierarchy of models is presented. Including the time derivative
of the chemical implies that all coefficients depending on S at the macroscopic level depends
on 0,5 too, such as in model (4.3). However, this term represents the dynamics of the gradient
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of the chemoattractant along the trajectories of the cells. At macroscopic level, it has no
meaning since we do not consider the motion of individual cells. From a mathematical point
of view, we can use (2.2) to have an expression of ;S with respect to the flux of cells which is
a macroscopic quantity. An other idea following [16] is to consider an evolution equation for
the chemoattractant density, even if the time scaling of this equation is very fast compared to
the cells dynamics.

Acknowledgement. The author thanks warmly Benoit Perthame for its valuable comments,
his help and his support during this work.
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