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Introduction

Constructing a reference shape from a set of different segmentation results is an important point when dealing with segmentation evaluation without knowing the gold standard. It can also be useful in order to combine different expert segmentations in a single reference shape. The reference shape must then take advantage of the information provided by each input shape while being robust to outliers. The estimation of such a reference shape can then be modeled using information theory (mutual information and joint entropy) through the definition of a shape optimization problem. In this paper, we propose to compute what we call a "mutual shape" using the framework of active contours and shape gradients. Our method is illustrated on a cardiac Magnetic Resonance Imaging (MRI) study and applied to the estimation of a reference shape of the left ventricular cavity, using the contours provided by six different algorithms.

As far as segmentation evaluation without gold standard is concerned, let us note that two main strategies have been classically adopted. The first one consists in choosing one parameter and in evaluating the performance level of each segmentation algorithm according to the relevance of this parameter within a selected database (e.g. in the domain of cardiac MRI, the left ventricular ejection fraction is the most important global physiological parameter depicting the myocardial contraction). Such an evaluation may be performed without a ground truth using some assumptions on the distribution of the chosen parameter (see for example [START_REF] Lebenberg | Non supervised ranking of different segmentation approaches : application to the estimation of the left ventricular ejection fraction from cardiac cine MRI sequences[END_REF][START_REF] Soret | Accuracy of partial volume effect correction in clinical molecular imaging of dopamine transporter using spect[END_REF]). The second strategy consists in the estimation of a reference shape from all the segmentation entries. Each individual segmentation is then compared to the estimated reference contour using some quantitative measures (average distance to the reference contour, Hausdorff distance, Dice coefficient, specificity and sensitivity measures ...). We can say that this strategy corresponds to a verification step of the proposed algorithms accuracy, while in the former strategy, this is rather a validation step according to the user goal (e.g. ejection fraction). As far as the verification issue is concerned, the STAPLE algorithm (Simultaneous Truth and Performance Level Estimation) proposed by Warfield et al. [START_REF] Warfield | Simultaneous truth and performance level estimation (STAPLE) : an algorithm for the validation of image segmentation[END_REF] is now classically used in this difficult context. Their algorithm consists in one instance of the EM (Expectation Maximisation) algorithm where the true segmentation is estimated by maximizing the likelihood of the complete data. Their pixel-wise approach leads to the estimation of a reference shape simultaneously with the sensitivity and specificity of each input segmentation. From these measures, the performance level of each input segmentation can be estimated and a classification of all the segmentation entries can be performed.

The algorithms proposed above in order to estimate a shape reference are local and treat each pixel independently. The MAP-STAPLE [START_REF] Commowick | Estimating a reference standard segmentation with spatially varying performance parameters[END_REF] is semi-local by using a small window or patch around the pixel. Moreover, the reference domain does not appear in the proposed model since it is defined only through the union of the selected pixels or through a thresholding of some features. Using such local or semi-local approaches, it appears difficult to introduce global information on the estimated shape (e.g information on the regularity of the contour or continuity of the labels within a given domain). In order to cope with these drawbacks, we propose to revisit the seminal work of Warfield [START_REF] Warfield | Simultaneous truth and performance level estimation (STAPLE) : an algorithm for the validation of image segmentation[END_REF] within a continuous optimization setting by considering such a shape estimation under the umbrella of shape optimisation tools [START_REF] Delfour | Shapes and Geometries : Metrics, Analysis, Differential Calculus, and Optimization[END_REF] and deformable models [START_REF] Kass | Snakes : Active contour models[END_REF]. Indeed, the computation of a reference shape can be advantageously modeled as the optimum of a well chosen energy criterion and estimated by a shape gradient descent that corresponds to the deformation of an active shape. Such an estimate is also closely related to the introduction of shapes similarity measures. For example, such shape optimization algorithms have already been proposed in order to compute shape averages [START_REF] Charpiat | Approximations of shape metrics and application to shape warping and empirical shape statistics[END_REF][START_REF] Soatto | Deformotion : Deforming motion, shape average and the joint registration and segmentation of images[END_REF] or more recently median shapes [START_REF] Berkels | An SL(2) invariant shape median[END_REF] by minimising different shape metrics like the Hausdorff distance in [START_REF] Charpiat | Approximations of shape metrics and application to shape warping and empirical shape statistics[END_REF] or the symmetric area difference between shapes in [START_REF] Soatto | Deformotion : Deforming motion, shape average and the joint registration and segmentation of images[END_REF]. Some other approaches also take advantage of well-appropriated distances between level-set shapes (see for example [START_REF] Leventon | Statistical shape influence in geodesic active contours[END_REF]).

However, the shapes obtained using the previous variational algorithms cannot be considered as reference shapes especially in the case of outliers segmentation. One of the contributions of this paper is then to take advantage of the analogies between information theory and area measures in order to estimate what we call a "mutual shape". We propose to maximize the mutual information between the n input segmentations while minimizing the joint entropy. Such a statistical criterion can be interpreted as a robust measure of the symmetric area difference. In this variational setting, we propose to add a classical regularization term based on the curvature of the deformable contour. Such a term is weighted using a regularization parameter that controls the smoothness of the obtained contour. The statistical model brings out both the sensitivity and specificity parameters and these parameters are estimated jointly with the reference mutual shape in similar to the STAPLE algorithm. However, the energy criterion is different from STA-PLE and justified using analogies between information theory quantities and area measures. Moreover, the advantage of our formalism is to make explicitly appear the domain and the associated contour. Such a formalism may also be interesting in order to add some geometrical or photometric priors directly in the criterion to minimize.

The proposed algorithm is first tested on synthetic examples showing the differences between a classic average variational shape based on a symmetric area minimization [START_REF] Soatto | Deformotion : Deforming motion, shape average and the joint registration and segmentation of images[END_REF], a simple majority voting shape and the proposed mutual shape. It is also evaluated in order to classify the performance levels of different segmentation methods of the left ventricular cavity. The obtained mutual shape is compared with a classic average shape and with a reference shape drawn by an expert. The robustness of the estimation to some outliers is also tested for these real examples.

In section 2, our mathematical framework and the proposed criterion for the estimation of the mutual shape are both presented. The criterion is then estimated in a continuous framework and expressed using domain or contour integrals in section 3. Such a continuous criterion can then be derived using shape optimization tools in order to compute the mutual shape (see section 4). Experimental results on synthetic examples are detailed in section 5 and on MR images in section 6.

Problem statement

Let U be a class of domains (open regular bounded sets, i.e. C 2 ) of R d (with d = 2 or 3). In this paper theoretical results are stated for d = 2 or d = 3 but the experimental results are conducted on 2D-images. We denote by Ω i an element of U of boundary ∂Ω i . We consider {Ω 1 , ..., Ω n } a family of n shapes where each shape corresponds to the segmentation of the same unknown object O in a given image. The image domain is denoted by Ω ∈ R d . Our aim is to compute a reference shape µ that can closely represent the true object O (Fig. 1). We propose to define the problem through a statistical representation of shapes embedded in an information theory criterion. Let us first recall the main shape representation models and criteria proposed in the literature.

Shape representation

The computation of a reference shape is closely linked to the choice of a representation. An analytical representation may be used as in [START_REF] Kendall | Shape manifolds, procrustean metrics, and complex projective spaces[END_REF] where the authors propose a statistical study of shapes by representing them as a finite number of points. Some authors prefer to choose an implicit representation of shapes which avoids the parametrization step. For example, in [START_REF] Berkels | An SL(2) invariant shape median[END_REF][START_REF] Charpiat | Shape metrics, warping and statistics[END_REF] shapes are represented us- ing their characteristic function as follows :

d i (x) = 1 if x ∈ Ω i 0 if x ∈ Ω i (1)
where x ∈ Ω is the location of the pixel within the image. We denote by Ω i the complementary shape of

Ω i in Ω with Ω i ∪ Ω i = Ω.
One may also takes advantage of the distance function associated to each shape. In [START_REF] Leventon | Statistical shape influence in geodesic active contours[END_REF] the authors propose to perform a principal component analysis on shapes in order to provide a statistical shape prior. In the same vein, some statistical shape priors have been proposed by [START_REF] Cremers | Shape statistics in kernel space for variational image segmentation[END_REF][START_REF] Paragios | A level set approach for shape-driven segmentation and tracking of the left ventricle[END_REF] using this implicit representation.

More recently shapes have been represented using Legendre moments in order to define shape priors for segmentation using active contours [START_REF] Foulonneau | Geometric shape priors for region-based active contours[END_REF][START_REF] Foulonneau | Affine-invariant geometric shape priors for region-based active contours[END_REF]. This representation can also be easily included in a variational setting [START_REF] Foulonneau | Geometric shape priors for region-based active contours[END_REF][START_REF] Foulonneau | Affine-invariant geometric shape priors for region-based active contours[END_REF][START_REF] Lecellier | Region-based active contours with noise and shape priors[END_REF].

We may also consider that each shape is a realization of a random variable. Such a representation has been introduced in [START_REF] Warfield | Simultaneous truth and performance level estimation (STAPLE) : an algorithm for the validation of image segmentation[END_REF] in order to evaluate a reference shape in a statistical framework, in [START_REF] Velasco-Forero | Statistical shape modeling using morphological representations[END_REF] for the morphological exploration of shape spaces and statistics, and also in [START_REF] Herbulot | Segmentation of vectorial image features using shape gradients and information measures[END_REF][START_REF] Kim | Nonparametric methods for image segmentation using information theory and curve evolution[END_REF] for image segmentation using information theory. In this paper, we take advantage of this statistical representation that appears to be well adapted to the definition of a statistical criterion. The shape is represented through a random variable D i whose observation is the characteristic function d i defined in (1). The reference shape µ is also represented through an unknown random variable T with the associated characteristic function t

(x) = 1 if x ∈ µ and t(x) = 0 if x ∈ µ.

Definition of average shapes

We also need to formalize the unknown shape using the definition of a criterion to minimize. In the literature, average shapes are defined through the minimization of the sum of the distances of the unknown shape µ to each shape Ω i as follows :

µ = arg min µ * n ∑ i=1 d(Ω i , µ * ) (2) 
Of course, the definition of the distance d is crucial and may lead to different results and average shapes. For example, an average shape can be computed by minimizing the area of the symmetric differences [START_REF] Soatto | Deformotion : Deforming motion, shape average and the joint registration and segmentation of images[END_REF] using d(Ω i , µ) := |Ω i △µ| where |.| stands for the cardinal of the considered domain. In a continuous optimization framework, the criterion to minimize according to µ can be expressed as follows :

SD(µ) = n ∑ i=1 |Ω i △µ| = n ∑ i=1 µ (1 -d i (x))dx + µ d i (x)dx (3) 
In [START_REF] Charpiat | Shape metrics, warping and statistics[END_REF][START_REF] Charpiat | Approximations of shape metrics and application to shape warping and empirical shape statistics[END_REF], the authors prefer to introduce the Hausdorff distance to perform shape warping while in [START_REF] Berkels | An SL(2) invariant shape median[END_REF], the authors modify the previous criterion in order to compute a median shape.

In addition to the previous works, we can also cite [START_REF] Velasco-Forero | Statistical shape modeling using morphological representations[END_REF] where the authors propose to explore shape spaces using mathematical morphology. The optimal shape is computed using a watershed performed on the squared sum of the distance functions or using a morphological computation of a median set. Another class of algorithms was proposed for the estimation of an unknown shape from multiple channels (color or multimodal segmentation). We can cite the work of Chan et al. [START_REF] Chan | Active contours without edges for vector-valued images[END_REF] or the multimodal segmentation approaches proposed in [START_REF] Herbulot | Segmentation of vectorial image features using shape gradients and information measures[END_REF][START_REF] Kim | Nonparametric methods for image segmentation using information theory and curve evolution[END_REF]. These works were not designed at first for segmentation evaluation but they are worth mentioning because they propose to treat the different channels in a single criterion (may also be useful for information fusion). Moreover in [START_REF] Herbulot | Segmentation of vectorial image features using shape gradients and information measures[END_REF][START_REF] Kim | Nonparametric methods for image segmentation using information theory and curve evolution[END_REF], some information theory quantities are used. Our work is different especially due to the fact that we consider both the maximization of mutual information coupled with the minimization of joint entropies and the joint estimation of evaluation quantities (sensitivity and specificity measures).

Proposition of a criterion for the estimation of a mutual shape

Our goal is here to mutualize the information given by each segmentation to define a reference shape. Such a reference shape cannot be considered as a simple average shape. In this context, we propose to take advantage of the analogies between information measures (mutual information, joint entropy) and area measures. As previously mentioned, D i represents the random variable associated with the characteristic function d i of the shape Ω i and T the random variable associated with the characteristic function t of the reference shape µ. Using these notations, H(D i , T ) represents the joint entropy between the variables D i and T , and I(D i , T ) their mutual information. In [START_REF] Reza | An Introduction to Information Theory[END_REF][START_REF] Yeung | A new outlook on shannon's information measures[END_REF], it is shown that Shannon's information measures can be interpreted in terms of area measures as follows :

H(D i , T ) = mes( Di ∪ T ) and I(D i , T ) = mes( Di ∩ T ), (4) 
with X the abstract set associated with the random variable X and mes a signed measure defined on an algebra of sets with values in ] -∞, +∞[. The signed measure must satisfy mes( / 0) = 0 and mes( n k=1 A k ) = ∑ n k=1 mes(A k ) for any sequence {A k } n k=1 of disjoint sets. Each quantity can then be viewed as an operation on the sets (Fig. 2). These properties will help us to better understand the role of each term chosen in our criterion.

When estimating a classic average shape using the criterion (3), one performs the minimization of the sum of the union of the shapes Ω i with µ while maximizing the sum of the intersection between the same shapes. By analogy with this criterion, we prefer to minimize a measure of the union while maximizing a measure of the intersection through the use of information quantities. In other words, the sum of the joint entropies (union of sets) will be minimized while the sum of the mutual information quantities (intersection) will be maximized. In order to minimize a single criterion, we use the classic relation between mutual information and conditional entropy :

I(D i , T ) = H(D i ) -H(D i /T ). Since H(D i /T ) ≥ 0 and H(D i
) is independent of T , we will rather minimize H(D i , T ). Due to all these considerations and properties, we propose to minimize the following criterion :

E(T ) = n ∑ i=1 (H(D i , T ) + H(D i /T )) = JH(T ) + MI(T ), (5) 
where the sum of joint entropies is denoted by JH(T ) = ∑ n i=1 H(D i , T ) and the sum of conditional entropies by MI(T ) = ∑ n i=1 H(D i /T ). Note that this criterion is implicitly based on the assumption that random variables D i are considered as being independent. This assumption can be considered by the fact that the different Ω i are generated from different and independent segmentation algorithms. In order to get rid of this assumption, one can think of maximizing the mutual information of joint random variables I(D 1 , D 2 , .., D n , T ) but this criterion also leads to some computational issues that are difficult to solve.

Expression of the criterion in a continuous framework

In order to take advantage of the previous statistical criterion ( 5) within a continuous shape optimization framework, we propose to express the joint and conditional probability density functions according to the reference shape µ. This step is detailed in this section for both the mutual information and the joint entropy.

Maximization of mutual information (MI)

Here we try to express MI(T ) = ∑ n i=1 H(D i /T ) in a continuous setting according to the unknown shape µ. Denoting by t and d i the observations of the random variables T and D i , the conditional entropy of D i knowing T can be written as follows :

H(D i /T ) = -∑ t∈{0,1} p(t) ∑ d i ∈{0,1} p(d i /t) log(p(d i /t)) , (6) 
with p(T = t) = p(t) and p(

D i = d i /T = t) = p(d i /t).
The conditional probability p(d i = 1/t = 1) corresponds to the sensitivity parameter p i (true positive fraction) :

p i (µ) = p(d i = 1/t = 1) = 1 |µ| µ d i (x)dx. (7) 
The conditional probability p(d i = 0/t = 0) corresponds to the specificity parameter q i (true negative fraction) :

q i (µ) = p(d i = 0/t = 0) = 1 |µ| µ (1 -d i (x))dx. (8) 
In the rest of the paper, for the sake of simplicity, p i (µ) is replaced by p i and q i (µ) by q i . The random variable T takes the value 1 with a probability p(t = 1) = |µ|/|Ω| and 0 with a probability p(t = 0) = |µ|/|Ω|. The MI criterion can then be expressed according to µ :

MI(µ) = - n ∑ i=1 |µ| |Ω| ((1 -p i ) log (1 -p i ) + p i log p i ) (9) 
+ |µ| |Ω| (q i log q i + (1 -q i ) log (1 -q i )) .
The parameters p i and q i depend explicitly on µ, which must be taken into account in the optimization process. Indeed if µ is updated in an iterative process, the parameters p i and q i must also be updated which implies a joint estimation of these quantities with the unknown mutual shape.

Minimization of joint entropy

Let us now express, according to µ and in a continuous setting, the sum of the joint entropies

JH(T ) = ∑ n i=1 H(T, D i ).
The following expression of the joint entropy is considered :

H(D i , T ) = -∑ t∈{0,1} ∑ d i ∈{0,1} p(d i ,t) log (p(d i ,t)) , (10) 
with

p(D i = d i , T = t) = p(d i ,t).
The following estimates for the joint probabilities are then used (a = 0 or a = 1) :

p(d i = a,t = 1) = 1 |Ω| µ ((1 -a)(1 -d i (x)) + ad i (x)) dx, ( 11 
)
p(d i = a,t = 0) = 1 |Ω| µ ((1 -a)(1 -d i (x)) + ad i (x)) dx. ( 12 
)
The criterion to minimize is now denoted by JH(µ) and can be written as follows :

JH(µ) = - 1 |Ω| n ∑ i=1 µ ((1 -d i (x)) log (A i (µ)) + d i (x) log (B i (µ))) dx + µ ((1 -d i (x)) log (A i (µ)) + d i (x) log (B i (µ))) dx +C, (13) 
with

A i (µ) = µ (1 -d i (x)) dx , A i (µ) = µ (1 -d i (x)) dx ( 14 
)
and

B i (µ) = µ d i (x) dx , B i (µ) = µ d i (x)dx. (15) 
The term C is equal to n log(Ω) is independent from µ.

Continuous expression of the criterion

Using the two previous sections, we can express the global criterion to minimize according to µ as follows :

E(µ) = JH(µ) + MI(µ) = - n ∑ i=1 |µ| |Ω| ((1 -p i ) log (1 -p i ) + p i log p i ) + |µ| |Ω| (q i log q i + (1 -q i ) log (1 -q i )) + 1 |Ω| µ ((1 -d i (x)) log (A i (µ)) + d i (x) log (B i (µ))) dx + 1 |Ω| µ ((1 -d i (x)) log (A i (µ)) + d i (x) log (B i (µ))) dx +C, (16) 
where p i , q i , A i and B i are some quantities depending on the unknown shape µ expressed using integrals over µ.

In this given form, the minimization of such a criterion can be considered using active contours and shape gradients as detailed in the following section.

Optimization using shape gradients

In order to compute a local minimum of the criterion E, we propose to take advantage of the framework developed in [1] which is based on the shape optimization tools proposed in [START_REF] Delfour | Shapes and Geometries : Metrics, Analysis, Differential Calculus, and Optimization[END_REF]Chap.8]. The main idea is to deform an initial curve (or surface) towards the boundaries of the region of interest. Formally, the contour then evolves according to the following Partial Differential Equation (PDE) :

∂Γ(z, τ) ∂τ = v(x, µ)N(x) ( 17 
)
where Γ(z, τ) is the evolving curve, z a parameter of the curve, τ the evolution parameter, v(x, µ) the amplitude of the velocity in x = Γ(z, τ) directed along the normal of the curve N(x, τ). The evolution equation and more particularly the velocity v must be computed in order to make the contour evolve towards an optimum of the energy criterion [START_REF] Foulonneau | Geometric shape priors for region-based active contours[END_REF]. From an initial curve Γ 0 defined by the user, we will have lim τ→∞ Γ(τ) = µ at convergence of the process.

The main issue lies in the computation of the velocity v in order to find the unknown shape µ at convergence. This term is deduced from the derivative of the criterion according to the shape. The method of derivation is explained in details in [1,[START_REF] Jehan-Besson | DREAM 2 S : Deformable regions driven by an eulerian accurate minimization method for image and video segmentation[END_REF] and is based on shape derivation principles developed formally in [START_REF] Delfour | Shapes and Geometries : Metrics, Analysis, Differential Calculus, and Optimization[END_REF][START_REF] Sokolowski | Introduction to shape optimization. Shape sensitivity analysis[END_REF]. For completeness, we recall some useful definitions and theorems and we then explain briefly how the evolution equation of an active contour can be deduced from the shape derivative. For each part of the criterion, the associated shape derivatives are computed with some explanations on the derivation.

Main mathematical tools

The following theorem is the central theorem for derivation of integral domains of the form µ k(x, µ) dx. It gives a general relation between the Eulerian derivative and the shape derivative for region-based terms.

Theorem 1 Let Ω be a C 1 domain in R n and V a C 1 vector field. Let k be a C 1 function. The functional J(µ) = µ k(x, µ) dx is differentiable and its Eulerian derivative in the direction of V is the following :

< J ′ (µ), V >= µ k s (x, µ) dx - ∂µ k(x, µ)(V • N) da ( 18 
)
where k s is the shape derivative of k defined by k s (x, µ) = lim τ→0 k(x,µ(τ))-k(x,µ) τ . The term N denotes the unit inward normal to ∂µ and da its area element (in R 2 , we have da = ds where s stands for the arc length).

The Eulerian derivative of J in the direction V is defined as

< J ′ (µ), V >= lim τ→0 J(µ(τ)) -J(µ) τ
if the limit exists, with µ(τ) = T τ (V)(µ) the transformation of µ through the vector field V. The proof of the theorem can be found in [START_REF] Delfour | Shapes and Geometries : Metrics, Analysis, Differential Calculus, and Optimization[END_REF][START_REF] Jehan-Besson | DREAM 2 S : Deformable regions driven by an eulerian accurate minimization method for image and video segmentation[END_REF].

Methodology for the computation of the evolution equation

The following proposition gives us a way to compute the evolution equation of the active contour when the Eulerian derivative can be expressed as an integral over the boundary of the domain.

Proposition 1 Let us consider that the shape derivative of the criterion J(µ) in the direction V may be written in the following way :

< J ′ (µ), V >= - ∂µ v(x, µ)(V • N)da ( 19 
)
Interpreting this equation as the L 2 inner product on the space of velocities, the straightforward choice in order to minimize J(µ) consists in choosing V = vN for the deformation. We can then deduce that, from an initial contour Γ 0 , the boundary ∂µ can be found at convergence of the following evolution equation :

∂Γ ∂τ = v(x, τ) N ( 20 
)
with v the velocity of the curve and τ the evolution parameter.

The shape derivatives of the criteria SD(µ) (3), MI(µ) [START_REF] Cousty | Segmentation of 4D cardiac MRI : automated method based on spatio-temporal watershed cuts[END_REF] and JH(µ) [START_REF] Dice | Measures of the amount of ecologic association between species[END_REF], can be written in the form [START_REF] Herbulot | Segmentation of vectorial image features using shape gradients and information measures[END_REF] which allows us to find some geometrical PDEs of the form [START_REF] Jehan-Besson | DREAM 2 S : Deformable regions driven by an eulerian accurate minimization method for image and video segmentation[END_REF] for each criterion. The derivation is developed thereafter.

Shape derivatives

This paragraph details the computations of the shape derivatives of SD(µ) (3), MI(µ) [START_REF] Cousty | Segmentation of 4D cardiac MRI : automated method based on spatio-temporal watershed cuts[END_REF] and JH(µ) [START_REF] Dice | Measures of the amount of ecologic association between species[END_REF].

Shape derivative for the criterion SD(µ) Theorem 2

The shape derivative in the direction V of the functional SD(µ) defined in (3) is :

< SD ′ (µ), V >= - Γ N ∑ i=1 (1 -2 d i (x))(V • N)da (21) 
Corollary 1 From Theorem (1), the velocity that will drive an active contour towards a minimum of the criterion SD(µ) is reduced to :

v SD = N ∑ i=1 (1 -2 d i (x)) ( 22 
)
where v SD is directed along N.

Shape derivative for the criterion MI(µ)

The computation of the shape derivative of MI(µ) is more complex because the functions inside the integrals depend on µ.

Theorem 3

The shape derivative in the direction V of the functional MI(µ) defined in ( 9) is :

< MI ′ (µ), V >= - Γ 1 |Ω| n ∑ i=1 (1 -d i (x)) log q i 1 -p i ( 23 
)
+d i (x) log 1 -q i p i (V • N)da ( 24 
)
with N the inward normal of the boundary of µ (denoted by Γ).

Corollary 2 From the Theorem (1) and (3), the velocity that will drive an active contour towards a minimum of the criterion JH(µ) is then equal to :

v MI = 1 |Ω| n ∑ i=1 (1 -d i (x)) log q i 1 -p i + d i (x) log 1 -q i p i ( 25 
)
where v MI is directed along N.

Shape derivative for the criterion JH(µ) Theorem 4

The shape derivative in the direction V of the functional JH(µ) defined in [START_REF] Dice | Measures of the amount of ecologic association between species[END_REF] is :

< JH ′ (µ), V >= - Γ 1 |Ω| n ∑ i=1 d i (x) log B i (µ) B i (µ) (26) 
+(1 -d i (x)) log A i (µ) A i (µ) (V • N)da
where N is the inward normal of the boundary of µ (denoted by Γ) and where the functionals A i and B i are given by equations ( 14) and [START_REF] Fleureau | Assessment of global cardiac function in MSCT imaging using fuzzy connectedness segmentation[END_REF].

Corollary 3

From Theorem (1) and (4), the velocity that will drive an active contour towards a minimum of the criterion JH(µ) takes the following expression :

v JH = 1 |Ω| n ∑ i=1 d i (x) log B i (µ) B i (µ) + (1 -d i (x)) log A i (µ) A i (µ) ( 27 
)
where v JH is directed along N.

Global evolution equations for the different criteria

A standard regularization term is added in the criterion to minimize in order to favor smooth shapes :

Reg(µ) = ∂µ ds.
This term corresponds to the minimization of the curve length. It is balanced with a positive coefficient λ in the energy criterion and leads to the following velocity in the evolution equation :

v Reg = κ ( 28 
)
where κ is the curvature of the contour Γ(τ).

Finally, we propose to define our mutual reference shape through the minimization of a global criterion called J IT (Information Theoretic criterion) :

J IT (µ) = JH(µ) + MI(µ) + λReg(µ). (29) 
In order to minimize this criterion, the following evolution equation is used :

∂Γ ∂τ IT = (v JH + v MI + λv Reg ) N (30) 
where v MI , v JH and v Reg are defined respectively in equations ( 25), ( 27) and [START_REF] Lalande | Left ventricular ejection fraction calculation from automatically selected and processed diastolic and systolic frames in short axis cine-MRI[END_REF].

In the experimental results, the mutual reference shape is also compared to the classic average shape that corresponds to the minimization of the following criterion :

J SD (µ) = SD(µ) + λReg(µ). (31) 
In order to minimize this second criterion, the following evolution equation is applied :

∂Γ ∂τ SD = (v SD + λv Reg ) N (32) 
where v SD and v Reg are defined respectively in equations ( 22) and [START_REF] Lalande | Left ventricular ejection fraction calculation from automatically selected and processed diastolic and systolic frames in short axis cine-MRI[END_REF]. Note also that using this formalism, some other prior information (photometric or geometric) can be inserted by adding some additional velocities in the PDE. For example, we may take advantage of the tools developed in [START_REF] Chan | Active contour without edges[END_REF][START_REF] Cremers | A review of statistical approaches to level set segmentation : integrating color, texture, motion and shape[END_REF][START_REF] Foulonneau | Affine-invariant geometric shape priors for region-based active contours[END_REF][START_REF] Lecellier | Region-based active contours with noise and shape priors[END_REF][START_REF] Paragios | A level set approach for shape-driven segmentation and tracking of the left ventricle[END_REF].

Experimental results on a synthetic example

The behaviour of our mutual shape estimation is tested on a synthetic example. We propose to compare the mutual shape with the classic average shape and with a simple majority voting. We also study the joint evolution of the sensitivity and specificity parameters.

Difference between a mutual shape and a classic average shape

In this section, the behaviour of such a mutual informative shape is illustrated by a synthetic example that highlights the difference between the mutual shape and a classic average shape. A test sequence consisting of different segmentations of a lozenge (Fig. 3) was built. The first entry is the true segmentation mask, the other entries represent the segmentation of 1/4 of the true lozenge (Fig. 3(b)). When computing the average of the different characteristic functions using the formula : ∑ n i=1 d i /n, we can remark (Fig. 4(b)) that some masks share an intersection. Indeed the values of the average image belong to the interval [0, 0.6]. The value 0 corresponds to black points in Fig. 4(a) and the value 0.6 corresponds to the white grey level in this image. We then binarize this average image I A in an image named I AT displayed in (Fig. 4(b)). If I A (x) ≥ 0.5 then I AT = 0 (black points) and if I A (x) < 0.5 then I AT = 255 (white points). This procedure gives us a simple majority voting procedure. The result is the black line inside the lozenge. The result obtained using this procedure is also dependent on the threshold parameter choice.

Then an active contour evolves according to the evolution equation of the mutual shape [START_REF] Lebenberg | Non supervised ranking of different segmentation approaches : application to the estimation of the left ventricular ejection fraction from cardiac cine MRI sequences[END_REF] and of the SD shape [START_REF] Leventon | Statistical shape influence in geodesic active contours[END_REF]. The initial contour for the evolution is chosen as a circle including the lozenge (Fig. 5(a) and Fig. 6(a)). The mutual shape algorithm is able to recover the whole lozenge and is then different from a classic average shape (see Fig. 5 and Fig. 6). The curve evolves and segments the whole lozenge by an iterative process (images resulted from different iterations in Fig. 5(b) and Fig. 5)(c)). The final contour is given in Fig. 5(d). The mutual shape is compared to a shape average computed using the minimization of the classic symmetrical difference (criterion J SD with evolution equation ( 32)). The evolution is given in Fig. 6. In this case, the final contour is similar to the result obtained by computing a binarized mean I AT (Fig. 4(b)) since it corresponds to a line due to the small overlap between masks 2 and 5. The same small value is taken for the regularization parameter λ in order to give an higher importance to the data term. 

Difference between the mutual shape and the union of the masks

An outlier (Fig. 7(a)) was introduced in the initial sequence of masks in order to test the robustness of the mutual shape estimation. Indeed, our goal is to test that the mutual shape is also different to a simple union of the different masks. In Fig. 7, the different steps of the evolution of the contour are displayed. The final contour (Fig. 7(d)) fits the lozenge and excludes the outlier from the final contour. 

Joint evolution of the sensitivity and specificity parameters

When the active contour evolves using the evolution equation ( 30), the parameters p i and q i are estimated jointly with the mutual shape as proposed in STAPLE [START_REF] Warfield | Simultaneous truth and performance level estimation (STAPLE) : an algorithm for the validation of image segmentation[END_REF]. The joint evolution of these parameters associated to each segmentation result are shown in Table 1. These results are obtained when considering the different entries displayed in the first row of this Table . According to the final values reported in Table 1, we can conclude that the best segmentation corresponds to the shape 1 with p 1 = 1 and q 1 = 1 and that the shape 6 is an outlier since the sensitivity coefficient is equal to 0. The other segmentations correspond to one quarter of the lozenge which leads to a sensitivity parameter around the value of 0.25. Note that the initial values of p i and q i are computed directly using the initial contour as an intial guess of the reference shape µ.

We can notice that the parameter q i is less relevant. Indeed this parameter is estimated using the external domain (μ) and is then estimated using a higher number of pixels. It should be normalized in order to be comparable to the p i value. One solution consists in the selection of a smaller working area (a mask that includes the union of masks and that limits the size of the region outside this union in order to get two regions with a comparable size).

In order to give an idea of the computational cost, it takes around 5 s. to perform the estimation of the mutual shape for an image 256 * 256 using an Intel Core i7 2.70GHz and a code written in C++ within the image processing library Pandore1 . q 1 = 1 q 2 = 1 q 3 = 1 q 4 = 1 q 5 = 1 q 6 = 1 It. 100 p 1 = 0.60 p 2 = 0.15 p 3 = 0.15 p 4 = 0.13 p 5 = 0.16 p 6 = 0.27 (Fig. 7.c)

q 1 = 1 q 2 = 1 q 3 = 1 q 4 = 1 q 5 = 1 q 6 = 1 Final p 1 = 1 p 2 = 0.
24 p 3 = 0.26 p 4 = 0.22 p 5 = 0.27 p 6 = 0 (Fig. 7.d)

q 1 = 1 q 2 = 1 q 3 = 1 q 4 = 1 q 5 = 1 q 6 = 0.93
TABLE 1: Joint evolution of the contour and of the sensitivity and specificity coefficients p i and q i for the all the segmentation entries (masks 1 to 6) corresponding to the evolution of the contour displayed in Fig. 7 (initial contour, iteration 100 and final contour).

Application to the evaluation of different segmentation methods of the left ventricular cavity from cardiac MRI

The estimation of such a mutual shape is here tested for the unsupervised evaluation of segmentation methods of the left ventricular cavity from cardiac cine-MRI. It takes place in a larger project on medical segmentation evaluation first introduced in [START_REF] Kissi | Initiative multicentrique pour une plateforme d'évaluation en imagerie cardiaque[END_REF][START_REF] Frouin | Méthodologie pour comparer différentes méthodes d'extraction de biomarqueurs sans méthode de référence. application à la segmentation du ventricule gauche en irm cardiaque pour estimer la fraction d'éjection[END_REF] and developed thereafter in [START_REF] Jehan-Besson | Estimation d'une forme mutuelle pour l'évaluation de la segmentation en imagerie cardiaque[END_REF][START_REF] Lalande | A reference free approach for the comparative evaluation of eight segmentation methods for the estimation of the left ventricular ejection fraction in cardiac mri[END_REF][START_REF] Lebenberg | Comparison of different segmentation approaches without using gold standard. application to the estimation of the left ventricle ejection fraction from cardiac cine mri sequences[END_REF][START_REF] Lebenberg | Non supervised ranking of different segmentation approaches : application to the estimation of the left ventricular ejection fraction from cardiac cine MRI sequences[END_REF]. To illustrate our method, one image is extracted from a series acquired with a SSFP sequence in a short axis orientation. The test carried out on this image can be used for all the images from all the series.

In order to compare a given shape Ω with a reference shape Ω re f , we mainly use three quantitative values : the classic Dice coefficient (DC), the maximum and the average distance to the reference contour (d max and d mean ). The quantity DC [START_REF] Dice | Measures of the amount of ecologic association between species[END_REF] is a similarity measure between two sets that ranges into the interval [0, 1] :

DC(Ω, Ω re f ) = 2|Ω ∩ Ω re f | |Ω| + |Ω re f | . ( 33 
)
This measure is equal to 1 when the two sets are equal and 0 when they are disjoints.

The distance between a point of the contour Γ to the contour Γ re f is computed as follows :

d(y, Γ re f ) = inf x∈Γ re f (||y -x||). (34) 
From this previous definition, we can compute the maximum and the average distance (in pixels) using :

d max (Γ, Γ re f ) = max y∈Γ d(y, Γ re f ), (35) 
d mean (Γ, Γ re f ) = 1 |Γ| ∑ y∈Γ d(y, Γ re f ). (36) 
where |Γ| gives the number of pixels y ∈ Γ.

Estimation of the mutual shape for one slice

The segmentation inputs correspond to the segmentation results obtained by different research teams [START_REF] Constantinides | Development and evaluation of an algorithm for the automated segmentation of the left and right ventricles on cine MRI[END_REF][START_REF] Cousty | Segmentation of 4D cardiac MRI : automated method based on spatio-temporal watershed cuts[END_REF][START_REF] Fleureau | 3D multi-object segmentation of cardiac MSCT imaging by using a multi-agent approach[END_REF][START_REF] Fleureau | Assessment of global cardiac function in MSCT imaging using fuzzy connectedness segmentation[END_REF][START_REF] Lalande | Left ventricular ejection fraction calculation from automatically selected and processed diastolic and systolic frames in short axis cine-MRI[END_REF][START_REF] Lecellier | Region-based active contours with noise and shape priors[END_REF][START_REF] Schaerer | A dynamic elastic model for segmentation and tracking of the heart in MR image sequences[END_REF] for a MRI slice of the 2009 MICCAI challenge database (SCN05, slice 4, time 20) [START_REF] Radau | Evaluation framework for algorithm segmenting short axis cardiac MRI[END_REF] (Fig. 8). The corresponding contours of the different entries of the algorithm are given in Fig. 8. The expert contour is available for this slice and represented in Fig. 8(g).

Comparison of the mutual shape with the expert contour and the SD shape

The mutual shape is estimated using the evolution equation ( 30) from the masks of the Fig. 8. The initial contour is chosen near the contour of the masks union and the regularization parameter is fixed to the value 100.

The estimated mutual shape is shown in Fig. 9(a) as well as the shape obtained using SD in Fig. 9(c). The maximum distance to the expert contour (d max ) and the mean distance to the expert contour (d mean ) were calculated in order to validate the robustness of our algorithm. The mutual shape is nearer the expert contour in terms of distance. In Fig. 9(b) and (d), the expert contour is drawn in white while the estimated shape is drawn in different colors according to the distance to the expert contour. DC is equal to 0.89 for the mutual shape and to 0.87 for the SD shape using the same regularization parameter λ = 100. The influence of this parameter is developed in the next section.

Influence of the regularization parameter

The influence of the parameter λ that controls the weight of the regularization parameter was then tested.We report in Table 2 the different values of the three parameters d mean , d max and DC for the two shapes "mutual shape" and "SD shape" according to the regularization parameter λ. We also show the influence of this parameter on the different contours obtained for the mutual shape in Fig. 10. In both cases, a value of λ around 100 may improve the evaluation coefficients DC, d mean and d max . This can be easily explained by the fact that the left ventricular cavity is a convex structure. Choosing a high value for λ may then help to provide such a convex shape. Reasonable values for the segmentation of this structure range into the interval [100 -300]. The best value is probably around 100 for the mutual shape and 300 for the SD shape but there are very few differences when taking a regularization parameter into the interval [100 -300]. When taking a higher value for λ, the regularization term takes a higher importance than the data term leading to an under-segmentation of the cavity. 

Robustness to outliers

In order to study the robustness, we introduce some outliers shapes represented in Fig. 11. The outliers (1) and/or (2) and/or (3) were introduced to the initial sequence of masks (Fig. 8). The variation of the chosen parameters (DC, d mean , d max ) is then studied. The results are reported in Table 3 and compared to the ones obtained while estimating the reference shape using the classic symmetric difference [START_REF] Leventon | Statistical shape influence in geodesic active contours[END_REF]. We remark that the quantitative parameters are quite stable when adding outliers to the initial sequence up to 3 added outliers which represent half of the number of initial masks. Using the SD shape, the coefficient is not as stable as with the mutual shape. The evolution of the curve with both the mutual shape and the SD shape is displayed in Fig. 12. The initial contour is chosen near to the union of the mask (choosing exactly the union can sometimes conduct to local minima due to the initial values of q i that are all equal to 1). 

Joint estimation of the sensitivity and specificity parameters

During the curve evolution, the parameters p i and q i are estimated jointly with the mutual shape and allow us to perform a classification of the performance level of each segmentation. According to the final values reported in Table 4, we can conclude that the best segmentation corresponds to shape 3 and that the shapes 1 and 2 have smaller sensitivity and specificity values. Such a classification seems to be visually coherent. When computing p i and q i note that it works better when the regions inside and outside the contour have a comparable number of pixels. Indeed adding a pixel in each region will then lead to a comparable change in the computation of p i and q i . In this work, in order to deal with this issue, a region of interest outside the contour is defined at the beginning of the evolution. However, a region of interest that evolves during the curve evolution could be a better solution but needs further investigation and probably the framework introduced in [START_REF] Mille | Narrow band region-based active contours and surfaces for 2D and 3D segmentation[END_REF].

Conclusion

In this work, we propose a continuous optimization framework for the STA-PLE algorithm using a different criterion to minimize that comes from information theory. We take advantage of information theory quantities such as the mutual information and joint entropy. We propose a new criterion based on the minimization of a robust area difference that can be expressed using mutual information and joint entropy. We search for an unknown reference shape that minimizes the sum of joint entropies while maximizing the sum of mutual information between each entry shape and the unknown reference shape. The optimization is performed using active contours by computing a shape gradient and the associated evolution equation. Shape derivatives are detailed for the given criterion but also for a classic area difference minimization. Our theoretical formalism is valid for 2D slices or 3D images. Some experimental results are provided in 2D images on both synthetic and real cardiac cine-MRI images. The robustness of such an estimate is (a) Quantitative results with the mutual shape (evolution equation [START_REF] Lebenberg | Non supervised ranking of different segmentation approaches : application to the estimation of the left ventricular ejection fraction from cardiac cine MRI sequences[END_REF] Classification using p i and q i i 1 2 3 4 5 6 q i 0.93 0.97 0.97 0.91 1 0.99 p i 0.77 0.68 0.98 0.85 0.83 0.92 TABLE 4: Specificity and specificity parameters p i and q i for the different segmentation methods of the left ventricular cavity displayed in Fig. 8 (without considering the outliers).

tested by adding some outliers to the input sequence. We show that the mutual shape acts differently and is more robust to outliers than other conventional approaches.

As far as perpectives are concerned, one of the main issues may concern the choice of the main objective for the evaluation. Indeed in our case, in cardiac imaging, the goal was to estimate the volume of the cardiac cavity. In this case, adding a prior term on the shape of the endocardium may be valuable. If the objective is different, some other prior shapes may be added (such as the homogeneity of the inside region for example). Our mathematical framework seems well adapted for this purpose since other information may be easily added in the criterion to minimize. Our work in progress concerns also the comparison of our method to STAPLE algorithms and will be extended to a larger database of real cardiac cine-MRI images. with k(x, µ) = 1d i (x).

In order to derive SD 2 , the same theorem is applied :

< SD ′ 2 (µ), V >= - ∂µ d i (x)(V • N 2 ) da
with N 2 the inward normal of the boundary of µ.

Since µ and µ share the same boundary Γ with opposite normal vectors (i.e. N = -N 2 ), we find the derivative given in [START_REF] Jehan-Besson | Estimation d'une forme mutuelle pour l'évaluation de la segmentation en imagerie cardiaque[END_REF].

Proof of theorem 3

Proof : Using Theorem (1), the shape derivatives of p i and q i are equal to :

< p ′ i ,V >= 1 |µ| Γ (p i -d i (x))(V • N)da, < q ′ i ,V >= 1 |µ| Γ (1 -d i (x) -q i )(V • N)da.
Let us denote K i (µ) = |µ| f (p i ) with f (p i ) = (1p i ) log(1p i ) + p i log(p i ), we can deduce :

< K ′ i (µ), V >= - Γ f (p i ) + (p i -d i ) f ′ (p i )(V • N)da.
with f ′ (p i ) = log p i 1-p i the classic derivative of f according to the variable p i . After simplifications, we get :

< K ′ i (µ), V >= - Γ (d i log p i + (1 -d i ) log (1 -p i ))(V • N)da.
In the same manner, E i (µ) = |µ| f (q i ) with f (q i ) = (1q i ) log (1q i ) + q i log q i and then :

< E ′ i (µ), V >= Γ ((1 -d i (x)) log q i + d i (x) log (1 -q i ))(V • N)da.
By adding the different terms, we find the final shape derivative.

FIGURE 1 :

 1 FIGURE 1: Diagram of the problem statement : evaluation of a reference shape µ from a set of n segmented shapes of the same object.

FIGURE 2 :

 2 FIGURE 2: Mutual information and joint entropy as area measures

FIGURE 3 :

 3 FIGURE 3: The image to segment is given in (a) and the different segmentation entries (masks) for this image are given in (b).

FIGURE 4 :

 4 FIGURE 4: The average image I A (a) and the corresponding binarized average image I AT (b) of the masks of the Fig.3(b) (simple majority voting procedure).

FIGURE 5 :

 5 FIGURE 5: Evolution using the mutual shape (evolution equation (30) with λ = 10). In the first image (a), the initial contour is in white (circle) and the other white lines represent the boundaries of the different segmentation entries. Intermediate results obtained from 80 and 140 iterations are displayed in images (b) and (c) and the final estimated mutual shape in (d) (240 iterations).

FIGURE 6 :

 6 FIGURE 6: Evolution using the SD shape (evolution equation (32) with λ = 10). In the first image, the initial contour is in white (circle) and the other white lines represent the boundaries of the different segmentation entries. Intermediate results obtained from 300 and 400 iterations are displayed in images (b) and (c) and the final estimated SD shape in (d) (600 iterations).

FIGURE 7 :

 7 FIGURE 7: Introduction of an outlier (a) in the initial sequence of masks (Fig.3.a b) and estimation of the mutual shape (evolution equation (30) with λ = 10). In the image (b), the initial contour is in white and the other white contours and lines represent the different boundaries of the initial masks (the segmentation entries and the outlier).

  p 1 = 0.35 p 2 = 0.09 p 3 = 0.09 p 4 = 0.08 p 5 = 0.09 p 6 = 0.15 (Fig. 7.b)

FIGURE 8 :

 8 FIGURE 8: The final contours of the six methods are given in (a),(b),(c),(d),(e),(f). These methods all aim to segment the left ventricular cavity from a MRI slice (SCN05, slice 4, time 20). The expert contour is also given in (g).

  (a) mutual and expert shape (b) distances to the expert for the mutual shape (in red and green) (d mean = 1.65, d max = 3.35, DC = 0.89) (c) SD and expert shape (d) distances to the expert for the SD shape (in red and green) (d mean = 1.80, d max = 5.22, DC = 0.87)

FIGURE 9 :

 9 FIGURE 9: Qualitative and quantitative comparisons of the mutual shape ((a) and (b)) and the SD shape ((c) and (d)). In the images (a) and (c), the final contours are given in red and the expert contour in green (λ = 100)). In the images (b) and (d) the expert contour (in white) is superimposed with the final contour (the different colors correspond to the distance to the expert contour : the point x of the contour is in blue when d(x) ≤ 2, in green when 2 < d(x) ≤ 4 and in red when d(x) > 4).

FIGURE 10 :

 10 FIGURE 10: Influence of the parameter λ on the final mutual shape. In the images (a), (b) and (c), the expert contour (in white) is surimposed with the final contour (in different colors according to the distance to the expert contour : the point x of the contour is in blue when d(x) ≤ 2, in green when 2 < d(x) ≤ 4 and in red when d(x) > 4).

  (a) Initial contour (red) (b) iteration 900 (c) Mutual final shape (d) SD final shape

FIGURE 12 :

 12 FIGURE 12: Evolution of the curve for the mutual shape and the SD shape. The initial contour is given in red (a) surimposed on the contours of the different segmentation entries (blue). For the mutual shape, the iteration 900 is shown in (b) while the final contour given in (c). In order to compare, we show the final contour for the SD (symmetrical difference) criterion.

TABLE 2 :

 2 Influence of the regularization parameter λ on the final shape for both the mutual shape (a) and the SD shape (b).

TABLE 3 :

 3 Comparison of the final contour with the expert contour in presence of outliers.
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Annexes

We give here some proofs in order to detail the computation of shape derivatives.

Proof of theorem 2

Proof : The criterion (3) can be divided into two parts : the first one depends on the domain µ and is denoted by SD 1 (µ) with SD 1 = µ (1d i (x))dx while the second one depends on the complementary domain of µ and is denoted by SD 2 (µ) with SD 2 = µ d i (x)dx.

From Theorem (1) and using the fact that the derivative k s is equal to 0 (d i is independent of µ), the following equation can be obtained :

Proof of theorem 4

Proof : As with the theorem 2, the criterion is separated in different terms, such that

The term C denotes a constant independent of µ. The shape derivative of

The classic theorems for the derivation of products and functions can be applied to derive JH i 1 , which leads to :

Replacing the shape derivative of A i (µ) and B i (µ) by their expressions in the above formula, we find :

In a similar manner, using the fact that the inward normal of the moving boundary of µ is equal to -N, we find :

By adding the two derivatives, the shape derivative of JH(µ) is finally obtained.
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