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ABSTRACT

We consider a variational formulation of blind image recov-
ery problems. A novel iterative proximal algorithm is pro-
posed to solve the associated nonconvex minimization prob-
lem. Under suitable assumptions, this algorithm is shown to
have better convergence properties than standard alternating
minimization techniques. The objective function includesa
smooth convex data fidelity term and nonsmooth convex reg-
ularization terms modeling prior information on the data and
on the unknown linear degradation operator. A novelty of our
approach is to bring into play recent nonsmooth analysis re-
sults. The pertinence of the proposed method is illustratedin
an image restoration example.

Index Terms— Blind restoration, blind reconstruction,
proximal methods, nonlinear optimization, wavelets

1. INTRODUCTION

Blind restoration and reconstruction are challenging problems
in image processing [3, 4, 9]. Variational approaches to these
problems are often based on alternating minimization strate-
gies which, in spite of their practical usefulness, offer ingen-
eral few theoretical guarantees of convergence. In this pa-
per, we propose a novel proximal alternating minimization
algorithm for which stronger convergence results can be es-
tablished, under wide assumptions. In recent years, proxi-
mal methods have become increasingly popular for solving
inverse problems in image processing [6] due to their ability
to tackle minimization problems involving sums of possibly
nonsmooth functions, such as those arising in the presence of
hard or sparsity promoting constraints. However, most of the
existing work on proximal methods has focused on data re-
covery problems based on a model involving a linear operator
assumed to be known a priori.

Throughout the paper, we use the following notation.
Γ0(ℋ) denotes the class of lower semicontinuous convex
functions from a real Hilbert spaceℋ to ]−∞,+∞]. An
example of a function inΓ0(ℋ) is the indicator function�C
of a nonempty closed convex subsetC of ℋ, which takes on
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the value0 onC and+∞ onℋ∖ C. A fundamental tool for
the derivation of the algorithms in this paper is the proximity
operator of a functionf ∈ Γ0(ℋ), which is defined as

proxf :ℋ → ℋ : x 7→ argmin
y∈ℋ

f(y) +
1

2
∥x− y∥2. (1)

For background on proximity operators and their use in signal
and image processing problems, the reader is referred to [6,
7]. Subsequently, two Hilbert spaces will be of interest: the
standard Euclidean spaceℝN andℝM×N , the space of real
valued matrices of sizeM × N endowed with the Fröbenius
norm. For notational conciseness, the norms of both spaces
will be denoted by∥ ⋅ ∥.

In Section 2, the blind data recovery problem under con-
sideration is formulated. In Section 3, we emphasize some
of the limitations of basic alternating minimization schemes.
The new proximal optimization method is introduced in Sec-
tion 4. Finally, in Section 5, we apply the proposed algorithm
to a blind image deconvolution problem.

2. PROBLEM

We consider the standard linear observation model

z = Lx+ w, (2)

wherez ∈ ℝ
M is the observed data,L ∈ ℝ

M×N models to
the linear measurement process,x ∈ ℝ

N is the target data
andw ∈ ℝ

N is some noise perturbation. Our objective is to
recoverx from z, without knowledge ofL. Such a problem
arises in many blind data recovery problems in deconvolution,
source separation or reconstruction. An estimate of(L, x) is
obtained by solving the following optimization problem.

Problem 2.1 SetΦ: (x, L) 7→ f(x) + g(L) + ℎ(z − Lx),
whereℎ : ℝM → ℝ is a differentiable convex function which
has a Lipschitz continuous gradient over every bounded sub-
sets ofℝM , f ∈ Γ0(ℝ

N ), andg ∈ Γ0(ℝ
M×N ). The objective

is to
minimize

x∈ℝN , L∈ℝM×N
Φ(x, L). (3)
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For example, in a Bayesian framework, a solution to Prob-
lem 3 is a Maximum A Posteriori estimate of(L, x) if one as-
sumes thatw is a realization of a random vector with probabil-
ity density function∝ exp(−ℎ(⋅)), L is a realization of a ran-
dom matrix with probability density function∝ exp(−g(⋅)),
x is a realization of a random vector with probability den-
sity ∝ exp(−f(⋅)), and the three latter random variables are
jointly independent.

Often, f and g can be decomposed as sums of sim-
pler functions, sayf =

∑p

i=1 fi andg =
∑q

j=1 gj, where
(fi)1≤i≤p are functions inΓ0(ℝ

N ), and(gj)1≤j≤q are func-
tions inΓ0(ℝ

M×N ). Problem (3) then becomes

minimize
x∈ℝN , L∈ℝM×N

p∑

i=1

fi(x) +

q∑

j=1

gj(L) + ℎ(z − Lx). (4)

Because of the coupling term(x, L) 7→ ℎ(z − Lx), the ob-
jective function is in general not convex. In the supervised
case whenL (respectively,x) is known a natural choice is to
set q = 1 andg1 = �{0}(⋅ − L) (respectively,p = 1 and
f1 = �{0}(⋅−x)). In such instances, (4) reduces to a classical
convex problem.

3. LIMITATIONS OF BASIC ALTERNATING
MINIMIZATION PROCEDURES

Let us define the following auxiliary functions. For everyL ∈
ℝ
M×N , we set

'L : x 7→

p∑

i=1

fi(x) + ℎ(z − Lx) (5)

and, for everyx ∈ ℝ
N , we set

 x : L 7→

q∑

j=1

gj(L) + ℎ(z − Lx), (6)

For fixed values ofL andx, we have'L ∈ Γ0(ℝ
N ) and

 x ∈ Γ0(ℝ
M×N ).

A popular approach for solving Problem 3 consists of
applying an alternating minimization approach. The cor-
responding algorithm, sometimes called the Gauss-Seidel
method, takes the following form.

Algorithm 3.1

Fix L0 ∈ ℝ
M×N

For k = 0, 1, . . .
⌊
xk ∈ Argmin'Lk

Lk+1 ∈ Argmin xk
.

This algorithm may provide satisfactory results in practice.
However, it is well known that such an alternating minimiza-
tion procedure requires quite restrictive conditions to guaran-
tee convergence to a local minimizer, e.g., [4] (the lack of

convergence of alternating minimization procedures can also
be observed with convex objectives). In the present context, a
simple counterexample is the following.

Example 3.2 Assume thatN =M and set

f = �C , g = ∥ ⋅ ∥1 + �D, and ℎ =
1

2
∥ ⋅ ∥2, (7)

whereC = [−1, 1]N and whereD is the vector subspace of
diagonal matrices ofℝN×N . If we suppose thatz ∈ C and
initialize Algorithm 3.1 withL0 = 0, a resulting sequence of
iterates is given by

(∀k ∈ ℕ) xk = (−1)k[1, . . . , 1]⊤, Lk = 0. (8)

Hence,(xk)k∈ℕ does not converge.

4. PROPOSED OPTIMIZATION METHOD

As an alternative to Algorithm 3.1, we propose to use the fol-
lowing alternating proximal algorithm generating a sequence
(xk, Lk)k∈ℕ in ℝ

N × ℝ
M×N :

Algorithm 4.1

Fix x0 ∈ ℝ
N , L0 ∈ ℝ

M×N and]�, �[⊂ ]0,+∞[

For k = 0, 1, . . .
⎢⎢⎢⎢⎣

(�k, �k) ∈ [�, �]2

xk+1 = prox�k'Lk
xk

Lk+1 = prox�k xk+1
Lk.

It is worth pointing out that, in the supervised case when
q = 1 andg1 = �{0}(⋅ − L) (respectively,p = 1 andf1 =
�{0}(⋅ − x)), the method reduces to the standard proximal
point algorithm [6].

The computational complexity of Algorithm 4.1 is usually
similar to that of Algorithm 3.1. In addition, Algorithm 4.1
enjoys attractive convergence properties. First, we recall that
Φ is coercive if lim∥x∥+∥L∥→+∞ Φ(x, L) = +∞ and it is
semi-algebraic if its graphgraΦ =

{(
(x, L), �

) ∣∣ � = Φ(x, L)
}

is a semi-algebraic set, that is, it can be expressed as a finite
union of subsets of(ℝN × ℝ

M×N ) × ℝ defined by a finite
number of polynomial inequalities. The set of semi-algebraic
functions constitutes a wide class of functions, including
many standard functions, and it is stable through common
operations (e.g., addition, multiplication, inversion, and com-
position). The following result follows from Lemma 5 and
Theorem 9 in [2].

Proposition 4.2 LetΦ be as in Problem 2.1. Then, for every
k ∈ ℕ,

Φ(xk+1, Lk+1)+
1

2�k
∥xk+1−xk∥

2+
1

2�k
∥Lk+1−Lk∥

2

≤ Φ(xk, Lk). (9)

2



If, in addition,Φ is coercive, thenΦ has a global minimizer.
If, furthermore,Φ is semi-algebraic, then every sequence
(xk, Lk)k∈ℕ generated by Algorithm 4.1 converges to a criti-
cal point ofΦ.

Proposition 4.3 [2, Theorem 11]LetΦ be as in Problem 2.1
and suppose that it is coercive and semi-algebraic. Let(x̃, L̃)
be the limit of a sequence(xk, Lk)k∈ℕ generated by Algo-
rithm 4.1. Then one of the following holds.

(i) Convergence occurs in a finite number of iterations.

(ii) There exist� ∈ ]0, 1[ and� ∈ ]0,+∞[ such that, for
everyk ∈ ℕ, ∥xk − x̃∥2 + ∥Lk − L̃∥2 ≤ ��k.

(iii) There exist� and� in ]0,+∞[ such that, for everyk ∈

ℕ ∖ {0}, ∥xk − x̃∥2 + ∥Lk − L̃∥2 ≤ �k−�.

A main difficulty in the implementation of Algorithm 4.1
is the computation of the proximity operatorsprox�k'Lk

and
prox�k xk+1

at each iterationk. This task can be efficiently
performed by using the parallel Dykstra-like proximal algo-
rithm proposed in [5]. This leads to the following routine to
computeprox�'L

x with � ∈ ]0,+∞[, L ∈ ℝ
M×N , and

x ∈ ℝ
N (a similar method can be employed to compute

prox� x
L with � ∈ ]0,+∞[, x ∈ ℝ

N , andL ∈ ℝ
M×N ).

Algorithm 4.4

Fix y0 = x, s1,0 = y0, . . . , sp+1,0 = y0, and

(!i)1≤i≤p+1 ∈ ]0, 1]p+1 such that
∑p+1

i=1 !i = 1

For ℓ = 0, 1, . . .
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

For i = 1, . . . , p⌊
ri,ℓ = prox�fi

!i

si,ℓ

rp+1,ℓ = prox�ℎ(z−L⋅)
!p+1

sp+1,ℓ

yℓ+1 =
∑p+1
i=1 !iri,ℓ

For i = 1, . . . , p+ 1⌊
si,ℓ+1 = yℓ+1 + si,ℓ − ri,ℓ.

Proposition 4.5 [5, Theorem 4.2] The sequence(yℓ)ℓ∈ℕ gen-
erated by Algorithm 4.4 converges toprox�'L

x.

5. SIMULATION EXAMPLE

We consider a blind deconvolution scenario where an original
8 bitN1 ×N2 imagex is degraded by a blur and the addition
of a zero-mean white Gaussian noise with variance�2. We
have thusM = N = N1N2 andℎ = ∥⋅∥2/(2�2). A classical
generalized Gaussian frame-analysis prior [1, 8] is assumed
for the original image, which yields

(∀x ∈ ℝ
N) f1(x) =

K∑

ℓ=1

�ℓ∣(Fx)
(ℓ)∣�ℓ , (10)

whereF ∈ ℝ
K×N corresponds to a frame analysis opera-

tor, (�ℓ)1≤ℓ≤K ∈ [0,+∞[
K and (�ℓ)1≤ℓ≤K ∈ [1,+∞[K

(rational values of(�ℓ)1≤ℓ≤K are chosen so thatf1 is a semi-
algebraic function). We also take into account the available
information on the range intensity values by settingf2 =
�[0,255]N . Hence,p = 2.

The blur is modeled by a periodic convolution with a ker-
nel H ∈ ℝ

P×Q. Let S be the linear operator which maps
a filter kernelH ∈ ℝ

P×Q to its associated circulant block-
circulant transform matrix of sizeN × N (whenN1 ≥ P
andN2 ≥ Q). This yieldsL = S(H). Prior information on
the unknown degradation operator can be incorporated by as-
suming thatL = S(H), whereH = (Hn,m)1≤n≤P,1≤m≤Q

satisfies the following properties.

∙ nonnegativity:H ∈ ([0,+∞[)P×Q.

∙ mean:
∑P

n=1

∑Q

m=1Hn,m = 1.

∙ bounds on vertical variations of the blur:

(∀n ∈ {1, . . . , P − 1})(∀m ∈ {1, . . . , Q})

�1,n,m ≤ Hn+1,m −Hn,m ≤ �1,n,m, (11)

where(�1,n,m)n,m and(�1,n,m)n,m are given.

∙ bounds on horizontal variations of the blur:

(∀n ∈ {1, . . . , P})(∀m ∈ {1, . . . , Q− 1})

�2,n,m ≤ Hn,m+1 −Hn,m ≤ �2,n,m, (12)

where(�2,n,m)n,m and(�2,n,m)n,m are given.

The above constraints define four closed convex subsets
(Dj)1≤j≤4 of ℝP×Q. We consequently chooseq = 4 and
(∀j ∈ {1, 2, 3, 4}) gj = �S(Dj).

Fig. 1 displays the original satellite image (withN1 =
N2 = 512) which is blurred by an anisotropic truncated Gaus-
sian kernel of size7 × 7. The blurred signal-to-noise ratio is
equal to 20.7 dB in the degraded image shown in Fig 2. Fig. 3
shows the result provided by Algorithm 4.1. The method was
initialized with the blurred image (x0 = z) and a uniform ker-
nel. A symlet 8 wavelet basis decomposition computed over
4 resolution levels is used in this example, and the parame-
ters(�ℓ)1≤ℓ≤K and(�ℓ)1≤ℓ≤K are subband-dependent (they
have been chosen with a maximum likelihood approach). The
bounds on the vertical (respectively, horizontal) variations of
the blur are(∀m ∈ {1, . . . , 7}) (∀n ∈ {1, . . . , 3}) �1,n,m =
0 and�1,n,m = 6 × 10−3 and(∀n ∈ {4, . . . , 6}) �1,n,m =
−6× 10−3 and�1,n,m = 0 (respectively,(∀n ∈ {1, . . . , 7})
(∀m ∈ {1, . . . , 3}) �2,n,m = 0 and�2,n,m = 3 × 10−3 and
(∀m ∈ {4, . . . , 6}) �2,n,m = −3 × 10−3 and�2,n,m = 0).
As shown visually, and confirmed by the provided signal-to-
noise ratios (SNR), the results are close to those obtained by
a similar wavelet-based restoration approach which assumes
that the blur is known (see Fig. 4).
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Fig. 1. Original imagex.

Fig. 2. Degraded imagez: SNR = 12.5 dB, SSIM = 0.683.
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