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Abstract

In this communication, vehicle localization in a
2D-mapped environment from inaccurate telemetric
measurements is stated as a set-inversion problem.
A novel methodology based upon a mechanical inter-
pretation of a range measurement and interval anal-
ysis is presented. The approach aims at characteriz-
ing the set Q of all vehicle configurations which are
consistent with all range measurements, their asso-
ciated inaccuracies and the environment model. It
provides a global, guaranteed and accurate charac-
terization of the solution set @, even when this set
is non-connected. Moreover, the method naturally
produces and manages the multiple hypothesis of
feature-measurement association.
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1 INTRODUCTION

As the process of determining the position and orien-
tation of a vehicle with respect to a global reference
frame, localization is one of the fundamental skills re-
quired for autonomous navigation in a working envi-
ronment. Due to autonomy restriction which implies
that the vehicle must only use its aboard sensors to
locate itself, a direct configuration measurement is
not available and localization must be obtained by
estimation. Hence, different approaches have been
proposed to address the difficult question: ”where
am I7”. Many vehicle localization methods reported
in the literature use statistical state estimation tech-
niques, like Extended Kalman Filtering, to provide
a point estimate associated with a confidence region
which quantifies the estimation accuracy. Under the
assumptions of small variations and noise statistical
modelling, these methods are simple to use and ef-
ficient but they require good initial estimates and a
good feature-measurement association, [18] [11] [3]
[2]. An attractive alternative to such a sta,txstlcal ap-
proach is set-membership estimation [19] [15) [16] [13]
which takes advantages of bounds on measurement



inaccuracy to deduce from observed data a set of pos-
sible configurations for the vehicle [1] [5] [4]. This
allows a natural representation of both the measure-
ment error and the set of configuration estimations.
As in a statistical context, estimation is simpler when
the error is affine in the parameters and application
of set-membership estimation to vehicle localization
has so far relied on a linearization of the error equa-
tion, which led to approximate solutions [13]. In this
paper, we introduce a new set-membership approach
for the problem of vehicle localization in a mapped
environment from inaccurate telemetric data. The
proposed methodology, based upon a mechanical in-
terpretation of the range measurement, defines local-
ization as a set-inversion problem. Afterwards, an al-
gorithm based on interval analysis is used to solve this
set-inversion problem and provides a non necessarily
connected set of all vehicle configurations which are
consistent with both the telemetric measurements,
their associated inaccuracies and the world model.
Thus, each connected component of this solution set
corresponds to a matching hypothesis. The measure-
ment error is assumed to be unknown but bounded
and the simulator of the model equations can be
viewed as a function f which associates to any given
vehicle configuration q the vector of all associated
telemetric data. Localization is thus performed by
inverting the measurement set generated by f. Be-
sides the natural management of multiple hypothesis,
this approach produces a set-membership estimate of
the vehicle configuration which is global, guaranteed
and accurate. In contrast with previous approaches,
it does not involve any linearizing approximation.
This paper is organized as follows; the problem and
the principle used to solve it will be defined in Section
2. The set-inversion approach for vehicle localization
will be detailed in Section 3. Finally, a simulation
result will be presented to highlight the performance
of this approach.

2 LOCALIZATION

2.1 Problem Statement

Consider the static localization problem of a single-
body vehicle in a 2D-mapped environment. The ve-
hicle is able to perform displacements on a plane floor
and its configuration q = (z¢,yc,8)T is defined by
the coordinates of a characteristic point C together
with the vehicle orientation 6 as illustrated in Figure
1. The configuration space C is defined by C = R? x S*
with 8' = [—m, 47 mod 27. Let M be a reference
frame tied to the mobile and let W be a fixed frame
called world-reference frame. By convention, primed
variables (z/,3/,...) are coordinates defined in the
mobile frame M whereas non-primed ones (z,y, .. J)
are defined in the fixed frame W. The vehicle can
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Figure 1: Vehicle configuration and map feature.

feel its environment by using a belt of ultrasonic Po- »
laroid range sensors. The environment is described
by a polygonal approximation. Thus the world map
consists of a collection of line segments. From a prac-
tical viewpoint, the world reference frame is defined
by using a subset of the map features. A line seg-
ment is commonly defined by its endpoints A and B.
By convention, its reflecting side is called front side
and is defined by the direction of 7 such as (zﬁ ,71) is
a direct dihedral. Localizing the vehicle means esti-
mating its actual position and orientation in the fixed
reference frame or more specifically the geometrical
transformation from the mobile frame to the fixed
reference one.



2.2 Localization Principle

For the sake of clarity, the localization principle is
first stated in the ideal case when perfect telemeters
are used. The inaccuracy of the real ultrasonic sen-
sor will be taken into account later by converting the
exact solution obtained in the ideal case into a set
of possible solutions which are admissible with re-
spect to measurement inaccuracy. A telemeter (see
Figure 2) the position (2%,yr) and orientation az
of which are known in the mobile frame M, emits
a wave that is reflected by a surface element of an
environment feature and received back. The time lag
between emitted and received signals gives a distance
measurement that is the one of the nearest object in
the target direction. This distance d and the angle
a7 being known, this telemetric measurement can be
interpreted as a mechanical link between the sensor
and the map feature. Localizing the vehicle can then
be viewed as fixing it in the environment by means of
those virtual mechanical links. Each telemetric mea-
surement is seen as a rigid mechanical component,
like a bar. The length of this bar is equal to the mea-
sured distance and the bar joins the detected obstacle
to the vehicle by means of two different virtual links,
(see Figure 2). The first link modelled at the sen-

(-2) link

Figure 2: Mechanical interpretation of a range mea-
surement.

sor point T' between the sensor (tied to the vehicle)
and the emitted ray, is rigid. The second link defined
between the detected point P and the map feature
S removes one degree of freedom (P € S). Thus,
because of the previous rigid link, one measurement

removes one degree of freedom to the vehicle config-
uration. The fact that three distance measurements
from three vehicle sensors to at least two non paral-
lel map features are sufficient to localize the vehicle
is an intuitive mechanism theory result. In such an
ideal case the configuration is unique. We propose
now to take into account the sensor inaccuracy which
produces a dispersion of the possible configurations.
This dispersion will be expressed by the solution set
Q which contains all the configuration vectors con-
sistent with the telemetric measurements and their
associated inaccuracies.

2.3 A Single Measurement Model

Polaroid sensors set aboard the vehicle have been
widely used in mobile robotic applications by using
Extended Kalman Filtering [12] or Bounded Error es-
timation [13]. Physical models of such sensors have
been extensively studied in [10]. The sensor mea-
sures the time lag between the emission of an acous-
tic wave and its reception at the same place after its
reflection. From time lag, the distance to the near-
est reflective surface in the sonic ray direction can be
computed. As any antenna, the sensor emits waves
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Figure 3: Sonar measurement model.

inside a cone whose axis is the sensor direction (see
Figure 3). This implies that the sensor measures the
distance between itself and the nearest object of the
environment inside the emission cone. The fact that
the object belongs to an a priori known map feature



constitutes the measurement equation. In Figure 3,
the sensor T' emits a wave reflected by a straight seg-
ment S. The detected surface element is around a
segment point denoted by P* which is the nearest
point to the sensor 7" inside the cone. As the informa-
tion given by the sensor T is the distance d, one can
state that the real direction o* lies in [ar —7, ar +4]
where both ar and v are known a priori. Taking a
2% distance measurement inaccuracy into account,
the real distance d* is then inside the following inter-
val:

Dimeas = [0.98d,1.02d] (1)

3 GUARANTEED ESTIMA-
TION

After stating the model of ultrasonic measurement in-
accuracy, this section translates the localization prob-
lem into a set-inversion problem where one looks for
the set of all configurations which are mapped into
the admissible measurement domain by a simulation
of the sensors behavior. Solving this set-inversion
problem will be by means of interval analysis.

3.1 Global Measurement Model

Consider the set of ¢ sensors T} of the vehicle belt,
defined in M, and the set of s map features S ; defined
in W. The aperture angle of the emission cone of any
sensor is assumed to be constant and equal to 2+ (see
Figure 3). The vehicle configuration is denoted by
a=(z¢,yc,0)T.

The following program defines a simulation function
f which maps q € C in d € R¢:

dy
zc f dz
e | — (2
g .
dy

For all sensors T;
Initialize d; = dpax
For all map features S;
Compute d;; = distance of the nearest point of

Sj in the emission cone
d; = min(d;, di;)
End For
End For

The sensor configurations and the environment
map are implicit data of the function definition.
The set-inversion problem for the localization is
then as follows: Knowing a feasible domain D for
the measurement vector defined by (3) and the

- simulation function f 2, what is the set Q which is

mapped into D by f?

D= ®[ 0.98d;,1.02d; ] (3)
' i=1

3.2 Set Inversion

Consider a continuous computable function f from
R" into NP. Let Y be a set in the image space KP. A
set inversion problem is that of finding the set X in
R”* so that:

X=flY)={xe® | fx) eV} (4

The function f-! is the reciprocal image of the
vectorial function f, ) is the set to be inverted and
X is the solution set of the set-inversion problem.
According to results of topology theory, when Y is
compact one can approximate the solution set by
a union of boxes, as can be provided by interval
analysis.” Here, f is the function defined by (2) and
the set ) to be inverted is the measurement box
defined by (3).

Interval analysis has been a very active field in sci-
entific computation over the last 20 years [14]. The
domain has matured enough for that the resulting
methods can be implemented using software tools
[17]. We focus on the use of the SIVIA algorithm [7
[9] to solve our localization problem. We will now
recall the notions of interval analysis that will be
used for the description of SIVIA, more details on
interval analysis can be found in [14] and [6).

Consider an interval X in R:

X={z | 2" <e<azt}=[z7,2%)

5)



which can be generalized in ®" as the Cartesian prod-
uct of n scalar intervals (i.e. a box):

n
X =@ 7]
i=1

Let SR™ be the space of the boxes in ®", and let X
be a box in SRN™. The width of this box is defined
by:

(6)

. K
i=1,...,n

Consider a function f : ®* — ®P. The image by
f of any box X in SR" is a set £(X) in ®?, which
usually cannot be computed exactly. With the help
of the notion of inclusion function, however one can
compute a box in SRP guaranteed to contain the set
£(X). Thefunction [f] : SR — QR is an inclusion
function associated with f if it satisfies:

YX e SR, £(X) ¢ [f](X) (8)
Inclusion functions thus make it possible to com-
pute boxes guaranteed to contain the image of X by
f. This approximation of f(X) by [f](X) may be
very pessimistic but can be improved by considering
smaller boxes provided that the inclusion function is
inclusion monotonic:

VX1, X2 € SR, X; € Xp = [f](X1) C [f)(X2)
9)

Infinitely many inclusion functions can be derived for
a given continuous function f, and more efficient in-
clusion functions may be obtained by taking the in-
tersection of the image of several inclusion functions.
A simple way to obtain an inclusion function for any
continuous function defined by an explicit formal ex-
pression (or program) is to replace all elementary op-
erators such as +, -, x, / or functions such as cos,
sin, exp by their interval counterparts. For example,
if A, B and C are intervals of SR so that C = A+ B.
Then the endpoints of C are computed as:

{ T =a" +b”

ct

=at + bt (10)

The result of these substitutions is called a natural
interval extension of the function f. Computing such
natural interval extensions is readily performed by
software libraries such as C-XSC [17].
Let [f] be an inclusion function for the function f
defined by 2. Any box X such as [f}(X) C D belongs
to Q. Any box X such as [fl(X) N D = 0 has an
empty intersection with Q. These two tests make it
possible to partition the initial search domain X (0)
into three subpavings (union of boxes). Q;, consists
of all boxes which have been proved to belong to Q.
Qout consists of all boxes which have been proved to
have an empty intersection with Q. Q;,4 consists
of all boxes for which no conclusion could be drawn.
Provided X (0) is large enough to contain Q, these
subpavings can be used to bracket the solution set Q
between two subpavings:

Qin C Q C QinU Qing (11)
Any box in Q;n4 can be split into subboxes to try
to improve the precision of the bracketing by tak-
ing advantage of the inclusion monotonicity of the
inclusion function. This splitting only takes place
if the width of the indeterminate box is larger than
some predefined tolerance ¢, so the algorithm is finite.
Its convergence has been proved [8] under quite gen-
eral conditions. The results obtained are global and
guaranteed, even if the solution set is not connected,
as illustrated in the next section. For the sake of
brevity, the technical details of the algorithm are not
described here. In Appendix A, an academic exam-
ple is presented to illustrate the partition of the prior
domain of interest into three subpavings by SIVIA.
Hereafter, we present a simulation result which illus-
trates the characterization of the configuration do-
main,

4 SIMULATION RESULTS

The vehicle environment is a triangular room de-
picted by the Figure 4(a). Distance measurements
in the form of ultrasonic range data are simulated
according to the sensor model described in Subsec-
tion 2.3. In this experiment, the vehicle is placed in



the configuration q* = (~2m, 3m,0°)7, and four ul-
trasonic sensors are set in action (see Figure 4(a)).
Thus, in this case four distance measurements are re-
turned with a 2% distance relative precision and a
+12° direction absolute precision. The initial search
domain is X (0) = [~10m, 10 m] x [~10 m, 10 m] x
[—180°,+180°] and the width of the smallest box to
be explored is set to € = 0.04 m. The resulting solu-
tion set is a non-connected set which consists of two
connected component @; and Q, which define two
quite different types of configurations. To make in-
terpretation easier, we choose to characterize Q; and
Q2 by boxes guaranteed to contain them, other set
features like volume could be used as well. Q, is in-
side the box [~2.10m, —1.87 m] x [2.92m, 3.11m] x
[~5.73°,+5.73°] and Q, is inside [—3.09m, —2.88m] x
[3.63 m, 3.81 m] x [83.08°,91.67°], (see Figures 4(b)
and 4(c)). The first solution subset is the largest and
contains the true vehicle configuration q* whereas the
second one reveals an ambiguity in data association.
Indeed, Q; corresponds to the matching hypothesis
h1 = { (Tl,Sl) (Tz,Sz) (T3,Sg) (T4,53) } (see Figure
5(a)) while Q; is related to the matching hypoth-
esis hy = { (T1,52) (T2, S3) (T3, S3) (T4, 51) } (see
Figure 5(b)). So, these two sets correspond to two
different placements of the vehicle which are consis-
tent with very few (four) range measurements. Notice
that each connected set is relatively narrow compared
with common results obtained with sonars. Besides
natural management of multiple hypothesis, the char-
acterization of the admissible configuration domain is
very accurate and guaranteed, as illustrated.

T 3 0
X (m}

(a) Vehicle environment and simulated measure-
ments.

y(mj)
Lo}

x(m)

{b) Configuration domain in the plane (z,y).

6(0)
e %

Q Xm)

— B

(c) Configuration domain in the plane (z, §).

Figure 4: Configuration domain consistent with the
measurements. To make the figure clearer, only boxes
belonging to Qin U Qing are drawn. Other explored
boxes are not represented.
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(b) Second association hypothesis.

Figure 5: Hypothesis of feature-measurement match-
ing.

5 CONCLUSION

In this paper, a static vehicle localization method-
ology based upon set inversion via interval analysis
has been presented. Vehicle localization problem has
been defined as a set-inversion problem and solved
by inverting the ultrasonic measurement model. The
proposed methodology quickly eliminates large por-

tions of the parameter space before focusing on the
indeterminate region from which the solution set is
deduced. The so obtained solution set is global, very
accurate even using sonars which are individually in-
accurate, and contains the real vehicle configuration
if the error bounds on the measurements are underly
optimistic. When the solution set is non-connected,
the method generates multiple hypothesis which are
derived from the connected components of the so-
lution set and so reveals an ambiguity in the range
data association. Thus, a set of hypothesis is de-
fined, which can be further pruned by taking more
range measurements into account. Contrary to clas-
sical statistical localization methods, the proposed
approach does not need an initial localization and
moreover there is no explicit matching step. The
measurement-map matching application can be de-
duced as a side product for any connected part of the
feasible domain.
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Appendix A: Basic example

Consider the problem of characterizing the set of all
points (z,y) which satisfy the nonlinear inequalities
system defined by the intersection between the unit
disc (12) and a domain defined by the complementary
of an ellipse centered in the origin (13). The initial
search box is given by X (0) = [-2.5,2.5] x [~2, 2].

22 +42-1<0
-222 4y +1<0

Although the solution set is described by a set of
nonlinear inequalities, we do not know for all that
the elementary features of the set such as its shape
and volume or whether it is empty or not. As illus-
trated by Figure 6, the solution set is characterized
by SIVIA by means of two subpavings Q;,, and Q;na
such as @in C Q C Qin U Qing. The subpaving
Qout 1s thus defined as the complementary on the
search box of Qi U Qing.

Figure 6: Solution set and resulting subpavings.



