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ABSTRACT

We propose a twofold method that first automatically builds
a statistical shape model of anatomical 3D brain structures
of interest, then uses this model for delineating structure
contours onto any patient MRI. First of all, an estimated
training set of shapes is infered by registration of a 3D anato-
mical atlas over a set of brain MRIs, then automatically
landmarked using the “Minimum Description Length” based
method developed by Davies et al.[4]. A 3D “Point Distri-
bution Model” is then established and used to constrain the
delineation process. It is lead by a novel intensity model
specifically developed to overcome the estimated nature of
our training set in exploiting only local intensities.

1. INTRODUCTION

Neuro-imaging praticians currently need tools to perform
delineation of structures of interest (i.e the accurate determi-
nation of contour) over large 3D brain MRIs sets in order to
help several studies going from functional brain mapping to
data-mining applications. Correlations are sought between
structure and patient characteristics like pathology, handed-
ness or gender.

Automation is necessary to cope with the amount of data
to process and with the low quality of images: human ex-
perts require a lot of time to segment only one structure onto
one MRI, and will inherently introduce variability in their
decisions. Furthermore, structures of interest show weak
contrast and high noise at boundaries since they are made
of anatomical tissues mixtures: Cerebro-Spinal Fluid, Grey
Matter and White Matter.

Our first approach revamped a region-based method[9]
developed in our team by J.H.Xue, where small homoge-
neous regions were progressively accumulated to build struc-
tures, accounting for a priori information derived into fuzzy
sets from an anatomical atlas Atlas, (cf 2.2).
Nevertheless, relevant accuracy at contours was still ran-
domly achieved since this bottom-up approach, willing to
leave room for shape variability, modeled quite loosely the
geometric information from Atlas,. Though, Bloch et al.[2]

achieved excellent results with another fuzzy approach based
upon quite different assumptions. But for now, it still needs
to follow a precise path for segmenting structures and can-
not strictly ensure shape consistency of the result.

To overcome this limitation, we selected the statistical
Point Distribution Model (PDM) from Cootes, Taylor et al.
[3] that considers a mean shape and its allowed linear de-
formation modes, both inferred from a training set of valid
shapes annotated by corresponding landmark points (cf. 2.1).
Their delineation method, named Active Shape Model (ASM,
or smart snake), is lead by a statistical Intensity Model of the
gray level environment around each landmark over train-
ing set MRIs, and constrained by the PDM Shape Model
to only raise consistent results. This top-down approach
widely proved its efficiency in medical imaging (e.g [7][5]),
but becomes really demanding in 3D as it requires delin-
eated and landmarked shapes.

For this reason, every considered 3D ASM implemen-

tation started from a set of structure contours provided by
fellow experts, hence each often concerns few structures.
The second challenge, namely automatic landmarking, is
frequently handled with arbitrament due to the difficulty to
formalize an inherently intuitive process.
Former methods like [6] are restricted to compound tubular
shapes so as to decompose the problem in several afford-
able 2D PDMs. Frangi et al. [5] designate noticeable points
in decimating a mean volumic shape, then establish corre-
spondence through warp-registering these over the training
set. Kelemen et al. [7] obtain correspondence in project-
ing parameterized shapes surfaces into an object-centered
coordinate system, where uniform sampling finally raises
some landmarks. Though these methods produce functional
PDMs through reasonable assumptions, none might war-
ranty their optimality.

Davies et al.[4] recently managed to establish an auto-
mated and objective landmarking method using simplex op-
timization framework guided by an objective function esti-
mating PDM relevance in exploiting the Minimum Descrip-



tion Length (MDL) principle. This exciting contribution fi-
nally enables us to propose a novel ASM method.

1.1. Proposed Method

We first propose a method that can automatically build a
single PDM Shape Model for any structure contained in
Atlas, over any MRI population. Training set delineation is
performed through Atlas, registration over selected MRIs,
an arguable choice that we expressly defend. Landmarking
is then performed by the optimal MDL method[4].

We also propose a new Intensity Model that will fit the con-
strains of our training set to guide delineation without sta-
tistical priors in accurately exploiting subtle local changes
in the current M i) around the boundary.

2. AUTOMATIC 3D PDM BUILDING IN BRAIN
MRI

2.1. Point Distribution Model Principle

Each shape of the training set must be annotated by n; land-
marks, each designating the same anatomical locus along
the set. The set is considered as a collection of shape vec-
tors {si}(ic,n,)) With 85 = {21,Y1, 21 %0y, Ynys 20y )
which after alignment raises a covariance matrix.

Principal Component Analysis (PCA) provides n, n,,-D eig-
envectors describing linear variation modes infered from
{si} and sorted by corresponding eigenvalues A, :

Np
si=5+ Y p"by (1)
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The PDM formulation (Eq. 1) defines an Allowable Shape
Domain (ASD) centered on mean shape s as the set of lin-
ear combinations of significant eigenvectors ponderated by
shape coefficients b!", bounded by +/—3),, (details in [3]).

2.2. Automatic Estimated Training Set Building

Obtaining a delineated training set is quite straightforward
in 2D, since it generally requires one slice over about 20 pa-
tients (cf [3][4]). In 3D, the increased shape complexity and
variability requires more instances and, for each structure,
about 15 slices per volume.

Thus, when a team of experts achieve such training sets
through many efforts, these cover just a few specific struc-
tures over a given MRI population. Mixing such results
to increase the structure number is difficult since popula-
tions might be inconsistent (eg, significant differences ap-
pear with age on ventricles). But the main problem is that
experts tend to restrict use and diffusion of their sets to their
own research teams.

Using experience acquired in our previous work[9], we
considered Atlas,, i.e. the result of an expert delineation of
structures on a reference MRI, and decided to warp-register
(AIR) it over a mixed set of 30 patient MRIs selected among
the wide pool available from Cyceron center. Though arbi-
trary and rather simplistic, this method eventually appears
both automatic and consistent:

« We can finally work with any structure featured in any
atlas. Harvard SPL & Cyceron already contain all struc-
tures of interest, and adding one to selected atlas, if nec-
essary, will require affordable work (=~ 20 slices).

Difference between expected and obtained contours ap-
pears really acceptable (within 2 voxels) after many vi-
sual checks. This is helped by the global nature of the
registration and also the favorable configuration of our
structures[1].

Delineated instances have the same shape as Atlas, ref-
erence, since they derive from it through (global) warp
deformation.

Though, they show obvious variations over the selected
MRIs

It appears that the conditions required to build a relevant
Shape Model - namely, numerous correct shapes and likely
variability - are fulfilled. Nevertheless, the real cost of this
assumption is that exact matching between delineation and
MRIs is broken, which will disrupt learning of a precise
gray-level environment (more details in [1]).

2.3. Automatic Training Set Landmarking

Landmarking a training set of delineated shape instances of
a single structure consists in inferring both the mean shape
geometry and the ways it varies along the set: landmarks
are shape invariants. This quite intuitive process can be af-
fordable in 2D, but no longer in 3D where shape complexity
and variability invalidate any intuition. Automation of this
usually manual process represented for long the major chal-
lenge for extending PDMs to 3D.

Davies et al.[4] recently developed a method that performs
automatic landmarking through a Neder-Mead Simplex op-
timization process ensuring good confidence in the optimal-
ity of resulting PDM. Consequences are twofold:

. Landmarking hypothesis must be parameterized to enable
the simplex to steer the optimization. This is achieved in
expressing reparameterizations of landmarked unit spheres
using Cauchy Kernels, the landmarks being back-projected
to the set via amended conformal mapping between each
instance and the unit sphere.

« The corresponding PDM relevance must be evaluated to
enable the simplex to reach the best annotation hypoth-
esis: this is the major contribution of Davies et al. Fol-
lowing the MDL principle, the PDM model is considered



as a discrete message encoding both parameters and data.
Minimizing the PDM’s MDL, the simplex will attempt
to improve both PDM compactness and accuracy, pre-
serving its generalization ability balanced by correctness.
Full details are reviewed in [4].

In our method[1], we used the method of Davies et al.[4]
implemented by Kildeby et al.[8].

3. ANEW ASM INTENSITY MODEL

The Active Shape Model (ASM) delineation procedure, es-
tablished in [3], primarily consists in a dialog between an
Intensity Model and a Shape Model. First, a mean shape
5 is approximately posed into the target image. Then, the
Intensity Model proposes moves for each of its landmark
along their normal direction so as to better fit the image.
Nevertheless, noisy and low-contrasted borders often occur
in medical imaging, causing incorrect proposals. The pur-
pose of the Shape Model is to examine and amend these
move proposals if they threaten shape integrity, namely if
the shape escapes from the ASD.

To ensure final success, the move amplitude is restricted
and dialogs between both models are iterated until eventual
idempotence, that is assumed to raise an optimal delineation
result. Nevertheless, even if a correct PDM is required to
regulate the process, it is primarily driven by the selected
Intensity Model.

3.1. Standard Framework

Though 2D/3D ASM implementations might vary signifi-
cantly in the way both models communicate or in the amend-
ment phase, every reviewed method uses the standard Ma-
halanobis model (or close one). In this case, gray-level in-
formation is collected for each landmark [ in all training
set images as voxel segments {g; ;} (with ¢ € [1,n,],j €
[1,n]) of length i, = 142l f, following normal direction
to the delineated surface. Mean segments g; and covariance
matrix S; can then be computed.

When delineating a patient Mriy, voxel segments G; of
length I >> [, are also collected around posed shape
landmarks. Moves proposals are formulated in selecting the
position of g; onto G; minimizing the Mahalanobis distance
(G—31)" S, (gi—G1), namely showing highest similarity
with the training set learned gray-level environment.

3.2. A New Intensity Model

Since our estimated training set forbids accurate determina-
tion of g; and S;, we had to design a new model free from
training set priors in focusing on “subtle” intensity varia-
tions occuring at structure contours. We also expect better
results since, besides intensity normalization problems, the

standard approach mainly seeks for best similarity with a
learned intensity context.

On segment GG, we consider several boundary hypothe-
sis h centered around landmark [ position, and for each we
retrieve left and right subsegments of constant length [, ¢:
leftmost voxels are supposed to lie inside the structure and
rightmost outside. From now on, we assume that finding the
boundary consists in choosing h for which voxels of both
subsegments will appear most dissimilar.

From other approaches, we noticed that image variability
and noise did not let a single intensity-derived measure find
the boundary in most cases. Thus we will attempt to find
multiple criterions that separately proved to work in - at
least - some favorable cases, expecting their combination to
raise quite reliable results in most cases. Since we are look-
ing for discontinuities, we will focus on peak values when
examining measures.

For image validation purposes, focus was set on a given
Mriy and a mean posed model of left Putamen, an “av-
eragely difficult” structure for noise and contrast at bor-
ders. Figure 2 display success rates of measures for our case
study; after a long sequence of tests, here are those which
eventually proved relevant:

Intensity difference: (Fig 1, green) Though expecting
boundaries at maximal intensity differences between the
2 in/out voxels seems a fair assumption, it is not very ac-
curate (33% success) even if it generally helps anyway.

« Means difference: (dark blue) The absolute difference
between inner and outer intensity means should be max-
imal at boundary, assuming anatomical tissues should be
quite different (50%).

« Inner voxels regularity: (pink) We can also expect ho-
mogeneity of anatomical structures: minimization of in-
ner standard deviation finally proves relevant (64%).

« Outer/Inner regularity difference:
(light blue) As a corollary, high degree of outer inhomo-
geneity is expected, hence maximization of outer and in-
ner standard deviation differences (70%).

Combining these different measures first requires a com-
mon normalization, trivially performed by framing each mea-
sure values between 0 and 1. A boundary likelihood (Fig 1,
bold red) is then estimated in adding these separate mea-
sures, then normalizing the sum, and finally selecting high-
est likelihood peak. In Figl, it is reached at hypothesis -1,
suggesting a landmark move of 1 voxel inside (visual check-
ing on Mriy confirms this boundary hypothesis).
Coefficients can also be applied to each measure so as to
emphasize the most trustful ones. Furthermore, since nor-
malization is very sensitive to min and max values, it is very
helpful to discard unlikely hypothesis. These concern land-



mark positions for which boundary voxel intensity has an
outlier value regarding the current inner segment voxels.
Also, when outliers are in majority beyond an hypothesis
h, or when a “wall” of 3 consecutive outliers is found - too
much for an occasional artifact, we consider we certainly
left the inner structure area and discard upcoming hypothe-
sis.
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Fig. 1. boundary likelihoods along normal of landmark 1. Highest
peak suggests a left move from current model position (black).

Though simplistic at first view, this method proved to be
reliable (cf results), since it can adapt to low intensity dif-
ferences thanks to a strong focus on local discontinuities.

4. PRELIMINARY RESULTS

PDMs have been built from 30 MRIs for left/right instances
of Caudate Nuclei, Putamens, Thalami and Hippocampi, the
ventricles being delineated by our preliminary method.
Our case study Putamen PDM seems correct, since it shows
fast decreasing in eigenvalues (80% on first 8 modes) and
since associated principal eigenvectors only generate valid
shapes (cf fig. 3). Also, the standard deviation around each
landmark is about only 3% of shape bounding box diagonal.
The new intensity model proved to be very accurate for our
case study, with a critical miss rate (3+ voxels) of 10%, a
moderate miss (2) of 15%, and raising the “eye” delineation
(miss of 0/1) in 75% of cases. Preliminary tests suggest
that similar results can be expected on other structures and
MRIs, which is encouraging considering the ASM proce-
dure mostly needs move directions and compensates errors
with the PDM.

5. CONCLUSION AND PERSPECTIVES

We engaged deliberate efforts to design an automatic de-
lineation method depending only on a single brain atlas an
a set of patient MRIs, namely data reasonably available.

% intensity | means inner outer/inner
A A std-dev std-dev A

Ist peak 33 50 64 45

lower peak 45 33 11 33

critical miss 22 17 25 22

Fig. 2. success rates for each normalized measure

Fig. 3. First variation mode of Left Putamen.

The required statistical shape model is built automatically
and will be soon used in conjunction with our suitable in-
tensity model to achieve segmentation results[3]. With the
help of praticians, a larger validation campaign is eventually
planned.
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