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Abstract

Cell nuclei extraction from histopathology images is
necessary for breast cancer grading, and has become
one of the major problem in the domain of automatic
image analysis. Stochastic marked point processes
combined with birth and death processes are promis-
ing tools for such extraction, but they are extremely
compute intensive, especially on large images such as
scanned microscope slides. We here show that the
original birth and death process applied to marked
point processes is inherently sequential. We thus
rewrite this algorithm in order to obtain a highly par-
allel birth and death process. This algorithm is finally
efficiently deployed on multi-core and many-core ar-
chitectures, and the corresponding performance re-
sults are presented and analyzed.

1 Introduction

The Nottingham Grading System [1] used for breast
cancer grading in histopathology – the study of dis-
eased tissues at microscopic level – is strongly based
on the size and aspect of nuclei. The detection and
extraction of nuclei are thus important issues in the
domain of automatic image analysis of histopathol-
ogy images. Moreover, the reduction of the compu-
tation time is becoming critical, because of the huge

microscope slide sizes (up to 100, 000 by 100, 000 pix-
els at full resolution).
Extraction algorithms can be divided into two main

categories: classification and segmentation. The clas-
sification ones, see [2] for instance, will not be able to
separate and count nuclei. The segmentation can be
performed using active contour model (Snakes) [3],
but as one snake would be needed for every nucleus,
this solution is not relevant here. The segmentation
can also be performed using the level set approach
using free shapes [4, 5], or parametric ones [6]. A
parametric shape based model decreases the amount
of computation, and is sufficient for a good cell nuclei
detection here.

In breast cancer images, the nuclei often appear
joint or even overlapped. We thus consider in this
paper a marked point process, which enables us to
extract nuclei as individual joint or overlapping ob-
jects without necessarily discarding overlapping parts
and therefore without major loss in delineation pre-
cision [7]. Various authors applied point processes
to image analysis [8, 9]. We use here a simulated an-
nealing algorithm combined with a “birth and death”
process as described in [10].

This method could also easily be extended to other
sort of cancers, such as the renal cancer, whose gra-
dation is mainly based on the cytonuclear atypia, i.e.
the variation in size and shape of cell nuclei.
This process is extremely compute intensive, espe-
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cially on large images: its parallelization is therefore
crucial, as well as its good scaling on the number
of nuclei, hence on the image size. Moreover, with
the increasing number of cores on all parallel archi-
tectures (multi-core CPUs, GPUs, Intel Xeon Phi,
etc.), it is necessary to rely on parallel algorithms that
scale with the number of cores. Several images can of
course be processed in parallel on multiple compute
nodes: we focus here on the parallel processing of a
given image targeting in particular fine-grained par-
allelism for many-core architectures. To our knowl-
edge, such birth and death process has however not
been deployed on parallel architectures yet.

In Section 2, we thus present the original birth and
death process applied to histology images and show
that such algorithm is inherently sequential. We then
detail in Section 3 how we have revised this algorithm
in order to obtain a parallel birth and death algo-
rithm that scales on the number of cores and on the
number of nuclei. Performance results are presented
in Section 4 on both multi-core CPUs and GPU archi-
tectures. Finally, in Section 5 we present concluding
remarks and discuss future work.

2 Birth and death process

for cell nuclei extraction in

histopathology images

In this paper, we consider the framework of
histopathology images, more precisely using hema-
toxylin and eosin (H&E) stained images (see Fig. 1).
But this work could easily be generalized for the de-
tection of any elliptically shaped object. The goal
here is to perform the cell nuclei detection for the
purpose of breast cancer gradation. According to the
Nottingham grading system, the cell nuclei sizes are
one of the major criteria for breast cancer grading.
Small cell nuclei of almost same sizes will denote a
small grade, whereas a marked size variation will con-
duct to a higher grade. Fig. 1 presents H&E images
which have been classified as grades 1 to 3 by experts.

2.1 Marked Point Process framework:

mathematical background

A Marked Point Process (MPP) is used in order to
detect an arbitrary number of objects. MPP is a
stochastic process where a realization w is a set of
marked points w1, ..., wn. We denote W the set of all
possible realizations of w. A marked point wi is an
object described by its position xi, and its mark mi.
A mark either represents a complex shape, or a simple
parametric one like a circle or an ellipse. As cell nuclei
may be correctly approximated by ellipses (see [11]
for a justification), an object wi will be described
by the center of an ellipse xi, with small and big
axes ai, bi ∈ [rmin, rmax], and with an orientation
θi ∈ [0, 2π]. The mark of an object is then defined by
mi = (ai, bi, θi).
We suppose that the distribution of w is ruled by a

Gibbs field, i.e. a realization w has the probability:

P (w) =
1

Zβ

exp (−βU(w)) , (1)

where U is the energy of the Gibbs field, β
is a real and positive parameter and Zβ =
∑

w∈W
exp (−βU(w)) is a normalization constant.

The problem is then to determine the realization w

having the highest probability.
The function U(w) is defined as:

U(w) = γd
∑

i

Ud(wi) + γp
∑

i6=j

Up(wi, wj) , (2)

where Ud is the data-fidelity term, which measures
the relevance between w and the image, and Up is
the interaction term measuring the coherence of w.
The parameters γd and γp are weighting coefficients.
The goal of the data-fidelity term is to evaluate the
relevance of the objects in the image: for instance an
object wi correctly placed should give a low value for
Ud. The interaction term must be defined in order
to avoid the superposition of the objects wi. These
terms are discussed in the next subsection.
To compute the optimal realization w, we use a

simulated annealing algorithm combined to a “birth
and death” process: the birth step consists in gen-
erating a large number of objects wi, each one be-
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(a) Grade 1 (b) Grade 2 (c) Grade 3

Figure 1: The three grades of the Nottingham system.

(a) (b)

Figure 2: Example of a good quality detection on a H&E image

Figure 3: Example of detection and comparison to a ground truth

3



ing one realization of a Poisson distribution of in-
tensity z; the death step examines each object wi:
the object is isolated from w and we compute the
new energy U(w \ wi) with w \ wi ≡ {wj , ∀j 6= i}.
If the energy increases, the object is effectively re-
moved from w otherwise the object is kept with
probability δ△Pi

1+δ△Pi
with △Pi = P (w \ wi)/P (w) =

exp (−β(U(w)− U(w \ wi))) and δ a positive param-
eter. The birth and death process is iterated until
convergence. To expect a fast convergence, the pa-
rameter δ should decrease whereas the parameter β
should increase.
The convergence of such algorithm has been proved

in [10].

2.2 Elliptically shaped objects

In order to detect and extract correctly the cell nuclei,
we need to use a robust data-fidelity term. This term
depends on the position and mark of the ellipses. Fol-
lowing [11], we compute the Bhattacharyya distance
between Fin(wi) and Fout(wi) which are respectively
the inside and outside borders of the ellipse wi:

dB(Fin, Fout) =
(µin − µout)

2

4
√

σ2
in
+ σ2

out

−
1

2
log

2σinσout

σ2
in
+ σ2

out

(3)

where µin, σin, µout, σout are respectively the
mean and standard deviation of borders Fin(wi),
Fout(wi). It is shown in [11] that the insider bor-
der of a cell nucleus is darker than the outside one.
The data-fidelity term is then chosen as Ud(wi) =
Qd (dB(Fin(wi), Fout(wi))) , with Qd(dB) ∈ [−1, 1] a
quality function which gives a negative value for a
high Bhattacharyya distance (i.e. for well placed ob-
jects), and a positive value otherwise.
The prior energy Up controls the overlapping of ob-

jects by measuring the intersection between all el-
lipses:

Up(w) =
∑

wi∈w





⋃

wj∈w\wi

wj



 ∩ wi. (4)

This term increases when the percentage of over-
lapped surface grows.
More details on the mathematical background and

the elliptically shaped objects can be read in [11].

2.3 Overview of the original sequen-

tial birth and death algorithm

Algorithm

1. Initialization: give suitable values for parame-
ters β, z, γd, γp, and δ. Set w to an empty set.

2. Birth: sample a realization of objects following
a Poisson distribution with intensity δ × z and
add them to the current realization w.

3. Data-fidelity term computation: for each object
of the realization, Ud is computed.

4. Overlap map computation: in order to compute
Up in the next step, we first build a map giv-
ing the number of ellipses overlapping each pixel.
For each ellipse, we have to visit the pixels inside
this ellipse and update the map.

5. Death: sort the objects wi in decreasing order
of their data-fidelity term. This sorting step en-
sures the best ellipses (i.e. the ones having the
lowest Ud values) are processed as last, with thus
lowest Up values. Then for each sorted object wi:
compute the overlapping energy Up. This term
is directly given by the sum of elements of the
overlap map over the ellipse. The object is then
removed with probability 1− δ△Pi

1+δ△Pi
, and in this

case, its contribution is removed from the over-
lap map.

6. Stop if all the objects added in the birth step
and only them are removed in the death step;
otherwise, update δ and β such as: β ← β × cβ ,
δ ← δ

cδ
, with cβ > 1 and cδ > 1, and go to 2).

2.4 Quality measurement

The validity of our method can be verified by compar-
ing the results with a ground truth. The ground truth
has been obtained from a manual segmentation of the
cell nuclei, under the supervision of histopathologist
experts.
Given the ground truth, we can deduce the num-

ber of nuclei correctly or incorrectly detected, and
the number of nuclei missed by the algorithm. In
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order to match the manually segmented nuclei with
our automatically segmented ones, we have used the
Munkres’ Assignment Algorithm [12] based on the
number of common pixels between two nuclei. For
simplicity, we will call a correctly detected nucleus a
“true positive”, an incorrectly detected one a “false
positive”, and a missing one a “false negative”. Fig.
3 presents an example of detection, showing true pos-
itives, false positives and false negatives.

The quality of the cell nuclei detection is evaluated
using the F-measure widely used in the pattern recog-
nition community:

F-measure =
2TP

(2TP + FN + FP)
,

where TP, FP and FN are respectively the number
of true positives, false positives and false negatives.
An example of a good quality result is shown in

Fig. 2.

2.5 Inherent sequentiality of the

death step

As seen in Section 2.3, the birth and death algorithm
is principally composed of four steps: a birth step, a
data-fidelity term computation, an overlap map com-
putation and a death step. The three first steps can
be easily computed in parallel (with however some
synchronizations required among the threads: see
Section 3.2). The death step is however inherently
sequential: according to the original birth and death
algorithm, the ellipses have to be treated in the de-
creasing order of their data-fidelity term.
One could first consider not to parallelize the death

step. However, this would have a strong negative
impact on the overall performance of the birth and
death process. Indeed, given tb, tf , to and td re-
spectively the birth step computation time, the data-
fidelity term computation time, the overlap map com-
putation time and the death step computation time,
and assuming we keep a sequential death step, the
theoretical maximum speedup, given by Amdahl’s
law, is:

R =
1

(1− s) + s
N

,

with s =
tb+tf+to

tb+tf+to+td
the proportion of the execution

time that can be made parallel, and N the number
of processors used. We have measured the perfor-
mance of a serial CPU implementation of the orig-
inal birth and death algorithm. For one iteration,
we have the following mean values: tb = 10.0ms,
tf = 126.5ms, to = 42.9ms, td = 45.0ms, which gives

s =
tb+tf+to

tb+tf+to+td
= 0.8. The theoretical maximum

speedup (with N = ∞) is then R = 5.0 . The death
step thus has clearly to be parallelized in order to
reach high enough speedups on many-core architec-
tures.

2.6 Attempt to compute the original

death step in parallel

Considering the original birth and death algorithm,
one could then try to parallelize the death step by
browsing the sorted list of ellipses with a fixed num-
ber of threads NT . Starting with the ellipses with the
worst data-fidelity term, each thread proceeds with
the death computation for one ellipse at a time until
all ellipses have been treated. Doing so, an ellipse
can be treated concurrently to (or even before) an-
other ellipse with a worse data-fidelity. The ordering
of the ellipse is therefore only partially respected, in
contrary to the sequential execution for which the
ordering was strictly respected. This can decrease
the quality of the results since, in parallel, an ellipse
can thus be deleted due to overlapping ellipses with
worse data-fidelity whose death step is not yet com-
pleted. However, as the number of ellipses is quite
large (for example, around 20, 000 on a 1024× 1024
image or 320, 000 on a 4096× 4096 image), one could
aim to have this way high enough parallel speedups
with reasonably good result quality. Therefore we
will now simulate such parallel executions on multi-
core and many-core architectures (with up to thou-
sands of active threads) and study the impact of the
parallelism degree (the number of threads used) on
the quality of the results. We use here the OpenMP
multi-threading on 12 CPU cores with 2-way SMT
(Simultaneous multi-threading, hence up to 24 hard-
ware threads), but similar results were obtained on a
dual-core CPU. The browsing of the ellipse sorted list
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is here parallelized in OpenMP with either a static or
a dynamic scheduling. Figure 4 presents the corre-
sponding F-measure value depending on the number
of threads for various OpenMP parallelization strate-
gies: the quality of the results quickly drops to unac-
ceptable values as the degree of parallelism increases.
We now deeply analyze this issue thanks to the dif-
ferent OpenMP parallelization strategies presented.
We first consider a static OpenMP scheduling (with

chunk of size 1, i.e. a 1D cyclic distribution of the
ellipses among the threads) and a synchronization
(OpenMP barrier) between all threads after each el-
lipse computation: this enables to simulate a true
parallel execution with one core per thread. With
such synchronizations, the worst quality measure-
ments are obtained by treating each block of NT el-
lipses sequentially in reverse ordering. In each block
ofNT ellipses, we indeed start by the ellipses with the
best data-fidelity instead of the ones with the worst
data-fidelity as in the original sequential algorithm.
This corresponds thus to the worst case parallel exe-
cution with barriers. Performing the parallel execu-
tion with a static OpenMP scheduling (Static, with
barrier) gives in practice results similar to this worst
case execution strategy (Reverse ordering by block),
and does not scale beyond 128 threads.
If we remove the synchronizations, concurrent exe-

cutions can now proceed in parallel between ellipses
belonging to different blocks of NT ellipses. The gap
between the data-fidelity terms of the ellipses concur-
rently treated thus increases which strongly degrades
the quality of results (Static, without barrier). A
standard GPU parallelization of the death step with
thousands of active threads would treat the sorted list
of ellipses according to a cyclic distribution of the el-
lipses among the threads. These static schedulings
show that such GPU deployment is doomed to give
results with an unacceptable quality.
As far as multi-core CPU parallelization is con-

cerned, we would rather rely on a dynamic schedul-
ing because of the varying computation load per el-
lipse. The data-fidelity gap is here reduced com-
pared to the Static, without barrier strategy, since
the dynamic load balancing leads to a distribution of
the ellipses among the threads that follows the list
ordering. The quality of the results for this strat-

egy (Dynamic, without barrier) drops for more than
16 threads. But a realistic multi-core CPU paral-
lelization would require a coarse enough computa-
tion grain, with for example a chunk of size 32 (each
thread treating 32 consecutive ellipses at a time).
This again increases the data-fidelity gap among el-
lipses concurrently computed and the corresponding
quality drops with more than 4 threads. This shows
that a multi-core CPU parallelization of the original
algorithm is unlikely to scale beyond 4 threads.
Furthermore, we can see in Fig. 5 that the reduction

of quality comes along an increase of the number of
iterations, and thus of the overall computation time.
Indeed, the quality drop implies that we keep fewer
good ellipses at each iteration, which increases the
total number of iterations required to meet the con-
vergence criterion. The iteration number drops again
when the quality is too deteriorated, and the number
of kept ellipses then tends to zero.
The PBD curve in Fig. 4 will be discussed in the

next section, where a new death step algorithm will
be presented in order to solve these problems.

3 Scalable parallel birth and

death process

We show in this section how we have revised the orig-
inal birth and death algorithm in order to obtain a
parallel birth and death (PBD) process.

3.1 A new birth and death algorithm

3.1.1 A parallel death step

In the algorithm presented in Section 2.3, the death
step is computed for each object in the order of
the decreasing data-fidelity term. As shown in Sec-
tion 2.6, this order is important for good quality
results because the objects with better data-fidelity
terms are hence computed last, ensuring they are un-
likely to be deleted due to overlapping with objects
with worse data-fidelity terms.
In order to obtain an algorithm which scales with

the number of cores, a new way to compute the over-
lapping energy independently of any ordering is re-
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quired. In that aim, we propose a new overlapping
energy U∗

p (wi):

U∗
p (wi) =

∑

px∈Ai

min(px), (5)

with Ai the set of all pixels inside the ellipse wi, and
min(px) the minimal data-fidelity term of all ellipses
overlapping the pixel px. The energy U(w) described
in equation (2) is now computed as:

U(w) = γd
∑

i

Ud(wi) + γp
∑

i

U∗
p (wi). (6)

We can now compute this overlapping energy based
only on the objects with the best (i.e. minimal) data-
fidelity terms. Each ellipse thus needs to know the
exact number of its pixels which are overlapped by
an ellipse with a better data-fidelity term. Therefore,
we have to change the overlap map computation step
along with the death step. The 2D overlap map now
stores for each pixel the minimal data-fidelity term
among all ellipses overlapping this pixel. During the
new overlap map computation step, for each ellipse
we thus have to store its data-fidelity term d in the
overlap map, for each of its pixels p, if d is lower than
the current value of p.
During the death step, each ellipse can then count

the number of pixels having a better data-fidelity
term than its own one. It is thus possible to deter-
mine which ellipse to keep or to delete in any order.
This allows the death step to be computed in parallel.
Moreover, when an ellipse is deleted, the overlap map
is not modified any more, which reduces the compu-
tation load. The overlapping energy is indeed now
based on all possible ellipses, including both the al-
ready removed ones and the currently kept. This new
algorithm ensures that no ellipse will be removed due
to an overlapping with a worst ellipse. Thus, the re-
sults will be as good as or better than those of the
original algorithm.
We can see on Fig. 4 that the quality of the new

algorithm matches indeed the one of the original al-
gorithm in a serial execution, and that this quality is
not degraded when increasing the number of threads.
Moreover, the number of iterations should not change
depending on the number of threads: the variations

shown in Fig. 5 are due to the stochastic feature of
the algorithm, and could be equalized by averaging
on an increased number of runs.

3.1.2 Stop criterion

The stop criterion used in [11] – waiting for no new
ellipse created and no previous ellipse deleted – is too
strict: the number of iterations grows proportionally
to the image size. As we are looking for a scalable
algorithm, which can handle the biggest images, this
criterion is not relevant.

In order to deal with this problem, we introduce a
new stop criterion guaranteeing a number of itera-
tions independent of the image size. Our new birth
and death algorithm now stops whenever Rtotal

Rnew+Rold

>
µ, with Rtotal the total number of ellipses kept in
the realization after the death step, Rnew the num-
ber of ellipses added during the last birth step and
not deleted, and Rold the number of ellipses from the
past realization deleted during the last death step.

This new criterion checks that there is less than one
change (a new ellipse added or an old one deleted)
every µ ellipses. As the number of ellipses depends
on the image size, this leads to a stop criterion that
scales with the image size. Results presented here
were computed using µ = 500.

3.2 Efficient deployment on parallel

architectures

In order to show the scalability of our new PBD algo-
rithm, we have deployed it on both multi-core CPUs
and on GPU. We show here how these deployments
have been efficiently performed, and present perfor-
mance results in Section 4.

We focus here on the processing of one image on one
single node with multi-core CPUs or with one GPU.
One could easily add an MPI layer to treat multiples
images concurrently on multiple nodes. But this ap-
plication is primarily intended for histopatologists in
hospitals where only one single workstation will be
available.
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3.2.1 Deployment on multi-core CPUs

We have used C++ programming and multi-
threading with OpenMP in order to implement in
parallel the PBD algorithm on one compute node
with multi-core CPUs and shared memory. We now
show how each step of the algorithm has been paral-
lelized.

• Birth step: as far as the birth step is concerned,
the parallelization of the for loop over each pixel
of the image is straightforward and each thread
treats pixels according to a dynamic scheduling.
Each pixel presents indeed a different computa-
tion load depending on whether an ellipse will
be created in its center or not, which cannot be
known a priori. In order to have a coarse enough
computation grain per thread, a chunk of 512 is
used in the OpenMP dynamic scheduling. The
only limitation to the parallelism is the need of
atomic operations for the creation of ellipses, as
all threads store the created ellipses in the same
array. These atomic operations are not expected
to be problematic in practice since the number of
created ellipses is very small regarding the num-
ber of pixels: on a 1024 × 1024 image, around
20, 000 ellipses are created whereas the number
of pixels is 50 times greater.

• Data-fidelity term: in this step, the paralleliza-
tion of the for loop over the number of ellipses
is also straightforward. As each ellipse takes a
different amount of time to compute Ud due to
different ellipse sizes, a dynamic scheduling is
used to balance the computation load between
each thread.

• Overlap map computation: we choose to paral-
lelize this step on the for loop of the number of
ellipses, with a dynamic scheduling. As each el-
lipse needs to write the minimum data energy
for each of its pixels, we need to ensure that two
parallel threads will not write different minima
on the same pixel. This has been solved using
a lock table with 10 × NT locks, NT being the
number of threads. Each line of the image is pro-
tected by a given lock, according to a 1D cyclic

distribution of the 10 × NT locks. Thanks to a
1D block distribution of the ellipse array among
the threads, and thanks to the approximate geo-
graphical locality of the ellipses within the array,
this enables us to reduce the lock contention. It
can be noticed that a more efficient deployment
may possibly be obtained with the future im-
plementations of the forthcoming OpenMP 4.0
standard1. This new OpenMP version will in-
deed enable atomic “exchange” operations that
could replace our multiple OpenMP locks (as de-
tailed on GPU in Section 3.2.2).

• Death step: the parallelization of the death step
is similar to the one of the birth step, and only
requires atomic operations to store the kept el-
lipses in the same array. These atomic opera-
tions are not expected to be problematic as the
number of kept ellipses is very small regarding
the number of created ellipses: on a 1024× 1024
image, around 200 ellipses are kept whereas the
total number of ellipses is 100 times greater.

Finally, in order to accelerate the generation of ran-
dom numbers, we used a specific random generator
for each thread. The initialization (with different
seeds) of this generator is negligible compared to the
other steps, and is only done once for multiple im-
ages.

3.2.2 Deployment on GPU

We here detail how we have efficiently deployed the
PBD algorithm on GPU using CUDA. A CUDA pro-
gram consists of device codes (kernels) running on the
GPU, and a host code running on the CPU that can
invoke these device kernels. A CUDA kernel is exe-
cuted by a grid of thread blocks. When a multi-core
implementation can only use a few tens of threads,
a GPU requires thousands of threads to achieve ef-
ficient computations. We refer the reader to the
NVIDIA CUDA documentations2 for more details on
CUDA, especially for the notions of warp, coalesced
memory accesses and for the tuning of the number

1See: http://openmp.org
2See: http://docs.nvidia.com/cuda/index.html
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of threads per block. We now detail how each PBD
step has been deployed on GPU.

• Birth step: similarly to the OpenMP one, the
GPU deployment of the birth step is straight-
forward. Each GPU thread handles one single
pixel, within a 2D grid of the size of the image,
and the blocks of threads are organized so as to
ensure coalesced memory loads. CUDA atomic
operations are also required: like in OpenMP
their overhead is expected to be low. The ellipse
data are stored in three buffers, containing axe
sizes and angles. These buffers are stored on the
device. The only communications between the
host and the device are the number of ellipses
kept at each iteration (one integer).

• Data-fidelity term: in a first naive version, di-
rectly based on the CPU version, each GPU
thread handles one single ellipse to compute its
data-fidelity term. In order to better match the
fine-grained parallelism of GPUs, we modified
this using multiple threads per ellipse. Each
thread computes the value of a point from its
polar coordinates inside or outside the ellipse.
Reductions are then applied to retrieve the vari-
ances and the means from the inside and outside
borders, needed to compute the Bhattacharyya
distance. In that aim, we use an efficient GPU
reduction provided in the NVIDIA CUDA GPU
computing SDK. 3

• Overlap map computation: in a first naive GPU
version, directly based on the CPU version, each
thread handles one single ellipse, in order to com-
pute the minimal data-fidelity term for each of
its pixels. We scan the ellipse area line by line,
from top left to bottom right, and for each pixel
we store in the overlap map the data-fidelity
term of the current ellipse if this one is lower
than the current value. This however leads to
uncoalesced memory accesses, to irregularities
in the control flow within each warp (each el-
lipse having a different size), and to a high data
throughput per thread.

3See: https://developer.nvidia.com/

gpu-computing-sdk
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Figure 6: A new scan of the ellipse area on GPU.

Considering instead a surrounding rectangle
with one pixel per thread implies a much greater
computation load for each pixel to test its be-
longing to the ellipse. This has been discarded
after serial performance tests on CPU.

We thus propose here a new area scan of the
ellipse more efficient on GPU. As presented in
Fig. 6, we start the scan from the horizontal line
passing by the center of the ellipse. One half of
the threads then scans up, while the other half
scans down. This ensures much more coalesced
memory accesses and threads within a warp now
share their cache lines.

In order to compute the minimal value during
the scan, we could use an atomic “min” function.
Unfortunately, the corresponding CUDA func-
tion only deals with integers, whereas our data-
fidelity term is a single precision floating-point
number. Our solution is to use the atomic “ex-
change” function: for each pixel p of each ellipse,
in case the data-fidelity term d of the current el-
lipse is smaller than the actual value of p in the
overlap map, we exchange this value with d and
we check that no other thread has performed an
exchange with an even lower data-fidelity term
in between. In this case, the exchange process
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is repeated until the correct minimal value has
been written.

• Death step: for this step, the overlapping en-
ergy computation relies on a scan of each ellipse,
which is performed in the same way as in the
previous step. However, we need here to sum
the number of pixels which are overlapped by an
ellipse with a better data-fidelity term. There-
fore, since an ellipse area scan is performed by
multiple threads, a reduction is needed to sum
up the values of all threads. In that aim, we
use the GPU reduction provided in the NVIDIA
CUDA GPU computing SDK.

Besides, we store the kept ellipses by performing
an atomic “increment” on the number of ellipses.
In the same way as for the OpenMP deployment,
the number of atomic instructions is negligible
compared to the number of ellipses.

Finally, the random numbers are generated on GPU
by the MWC64X Random Number Generator devel-
oped by David B. Thomas4, based on the Multiply-
With-Carry (MWC) generator [13]. In order to en-
able each thread to compute quickly a random num-
ber, the generator was initialized once for every pixel.
This step takes a few seconds on GPU and can be
done once for multiple images, so it has not be taken
in account in our performance results.

4 Performance results

We now present performance results for the new PBD
algorithm on both multi-core CPUs and on a GPU, in
order to show our parallel speedups and their scalabil-
ity when the number of cores increases. All tests are
performed on one compute server composed of 48 GB
of DDR3 memory, one NVIDIA Fermi C2070 GPU
and two Intel X5650 hex-core CPUs running at 2.67
GHz with 2-way SMT. We use gcc (version 4.7.2)
with OpenMP 3.1 for CPU multi-threading, and
CUDA (version 5.0) for GPU programming. Since
the computer server is a NUMA architecture, we use

4See: http://cas.ee.ic.ac.uk/people/dt10/research/

rngs-gpu-mwc64x.html

LikwidPin5 to bind each OpenMP thread on one
CPU core.

Figures 7 and 8 present the detailed and overall per-
formance results obtained on a 4096×4096 image. All
computation times are averaged over 20 runs of the
complete application. In our new PBD algorithm,
the total number of iterations required for a com-
plete cell nuclei extraction does not depend on the un-
derlying architecture, neither on the execution mode
(parallel or sequential). More precisely, on such im-
age we require between 500 and 580 iterations, with
a mean value of 540. Besides, in the first (respec-
tively last) iterations of the birth and death process
roughly 320,000 (resp. 20,000) ellipses are created
and roughly 150 (resp. 2,000) kept. In all these per-
formance results, we include all the required CPU-
GPU communication times, but we do not consider
the following times that can be amortized over the
processing of multiple histopathology images: GPU
initialization, CPU and GPU memory allocations,
initialization of the random seed array. As far as
multi-core CPU performance is concerned, we use
1, 6, 12 and 24 threads which correspond respec-
tively to a sequential CPU run (without OpenMP),
to a one-processor run without SMT (6 threads on
6 physical CPU cores), to a two-processor run with-
out SMT (12 threads on 12 physical cores) and to a
two-processor run with 2-way SMT (24 threads on 12
physical cores).

As presented in Section 3.2.1, the parallelization
of the birth step of the PBD process is straightfor-
ward (except for the atomic operations required to
store the resulting ellipses). We therefore obtain very
good parallel performance on both CPU and GPU on
Figs. 7a and 7b, with speedups up to 9.21 on the two
multi-core CPUs and up to 39.46 on the GPU.

The parallelization of the data-fidelity term com-
putation step is also straightforward and offer very
good speedups on CPU (up to 14.47) as presented
on Figs. 7c and 7d. A good speedup of 21.28 is also
obtained on GPU when using one GPU thread per
ellipse (CUDA NAIVE). Using multiple threads per
ellipse enables us to reach an acceleration of 29.58.

The performance of the overlap map computation

5See: http://code.google.com/p/likwid/wiki/LikwidPin
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Figure 7: Average computation times and corresponding speedups (with respect to the sequential CPU run
without OpenMP) for a GPU and 12 CPU cores of the birth and death steps on a 4096× 4096 image.
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Figure 8: Total computation times and speedups (with respect to the sequential CPU run without OpenMP)
per iteration (averaged over all iterations) for a GPU and 12 CPU cores of the birth and death process on
a 4096× 4096 image.

step (see Figs. 7e and 7f) is however constrained by
the numerous atomic operations required to update,
in each pixel, the minimum data-fidelity value of all
the ellipses that overlap on this pixel. In OpenMP,
we rely on multiple locks (see Section 3.2.1) and we
manage to obtain a speedup of 5.79 on the two CPUs.
As presented in Section 3.2.1, better performance re-
sults may possibly be obtained with the forthcoming
OpenMP 4.0. The CUDA code can already benefit
from atomic “exchange” operations for this overlap
map computation step, but the naive CUDA imple-
mentation (with one CUDA thread per ellipse) of-
fers only a speedup of 6.99. This is due to the non-
coalesced memory accesses and to the GPU cache
trashing. Our new scan of the ellipse area presented
in Section 3.2.2 enables here to have much more co-
alesced memory accesses and to reduce the cache
trashing within each warp. Moreover, the reduction
over all pixels within each ellipse is also efficiently
performed. Thanks to this new ellipse area scan we
thus obtain a good speedup of 19.35.

With the new PBD algorithm, the death step is also
efficiently performed in parallel on both CPU and
GPU as shown in Figs 7g and 7h. On the multi-
core CPUs, the few atomic operations required to
store the ellipses that live through the death step do
not prevent us from reaching a very good speedup
of 13.73. On the GPU, the death step also benefits

strongly from our new ellipse area scan which offers
a speedup of 19.86 (against 11.26 for the naive GPU
implementation).

Besides, as far as 2-way SMT on CPU is concerned,
one can see that depending on the considered step we
obtain very good additional gains between 4.20% and
33.57% for this birth and death process. Moreover,
it has to be noticed that for serial executions the new
PBD process is already up to 1.3 times faster than
the original birth and death process. As presented in
Section 3.1.1, the computation load of the death step
has indeed been reduced with PBD.

If considering a complete run with all iterations of
the four steps on Figs 8a and 8b, we obtain very
good overall speedups (up to 11.00) with OpenMP
on multi-core CPUs. Whereas the naive GPU imple-
mentation offers a limited speedup of 11.64, whereas
a better match with the fine-grained parallelism of
GPUs enables us to obtain a good GPU speedup of
22.94 over a sequential CPU run. This is almost 2
times faster than the two multi-core CPUs for this
application which justifies the GPU code develop-
ment and optimization. We recall that according to
Amdahl’s law, we were limited to a theoretical max-
imum speedup of 5.0 for the complete original birth
and death process with a non-parallelized death step.
Therefore our new parallel birth and death process
enables us to obtain much higher effective speedups
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on both multi-core and many-core architectures.

5 Conclusion

In this paper, we have presented a new scalable par-
allel birth and death algorithm for cell nuclei extrac-
tion in histopathology images. Contrary to the orig-
inal birth and death algorithm, it scales on the num-
ber of cores and on the number of ellipses. Thanks
to efficient deployements in OpenMP and in CUDA,
we manage to obtain very good speedups on multi-
core CPUs and good speedups on GPU. We empha-
size that such birth and death process can accel-
erate breast cancer grading applications, as well as
numerous other applications based on extraction of
elliptically-shaped objects.

We are currently developing an OpenCL implemen-
tation of our parallel birth and death algorithm in
order to have one single source code for both CPU
and GPU with similar (or better) performance than
in OpenMP and in CUDA. In particular, we plan to
rely on the OpenCL atomic “exchange” operations in
order to obtain an efficient overlap map computation
on CPU, to study which step of the birth and death
process can benefit from the implicit vectorization on
multi-core CPU (SSE, AVX) and to test the scalabil-
ity of our algorithm on the 60 cores of the Intel Xeon
Phi coprocessor.
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