Colette Johnen

Memory efficient Self-Stabilizing k-Independent Dominating Set Construction *

Keywords: distributed computing, fault tolerance, self-stabilization, k-dominating set, k-independent set, k-independent dominating set, memory efficient

We propose a memory efficient self-stabilizing protocol building k-independent dominating sets. A k-independent dominating set is a k-independent set and a kdominating set. A set of nodes, I, is k-independent if the distance between any pair of nodes in I is at least k + 1. A set of nodes, D, is a k-dominating if every node is within distance k of a node of D. Our algorithm, named SID, is silent; it converges under the unfair distributed scheduler (the weakest scheduling assumption). We established that any k-independent sets contains at most ⌊(2n)/(k + 2)⌋ nodes, n being the network size. The protocol SID is memory efficient : it requires only 2log((k + 1)n + 1) + 1 bits per node. The correctness and the termination of the protocol SID is proven. The computation of the convergence time of the protocol SID is opened question.

Introduction

The clustering of networks consists of partitioning network nodes into non-overlapping groups called clusters. Each cluster has a single head, called leader, that acts as local coordinator of the cluster, and eventually a set of standard nodes. In 1-hop clusters, the standard nodes are neighbor (at distance 1) of their leader. Clustering is found very attractive in infrastructure-less networks, like ad-hoc networks, since it limits the responsibility of network management only to leaders, and it allows the use of hierarchical routing. This is why numerous self-stabilizing 1-hop clustering protocols were proposed in the literature [START_REF] Dolev | Empire of colonies self-stabilizing and self-organizing distributed algorithms[END_REF][START_REF] Drabkin | Self-stabilizing wireless connected overlays[END_REF][START_REF] Demirbas | A fault-local self-stabilizing clustering service for wireless ad hoc networks[END_REF][START_REF] Goddard | Self-stabilizing protocols for maximal matching and maximal independent sets for ad hoc networks[END_REF][START_REF] Johnen | Robust self-stabilizing construction of bounded size weight-based clusters[END_REF][START_REF] Johnen | Self-stabilizing construction of bounded size clusters[END_REF][START_REF] Johnen | Robust self-stabilizing weight-based clustering algorithm[END_REF][START_REF] Kamei | A self-stabilizing approximation for the minimum connected dominating set with safe convergence[END_REF][START_REF] Mitton | Self-stabilization in selforganized multihop wireless networks[END_REF][START_REF] Xu | A synchronous selfstabilizing minimal domination protocol in an arbitrary network graph[END_REF].

Silent self-stabilizing protocols building k-hops clustering set are proposed for k > 1.

In k-hop clusters, the distance between a standard node and its leader is at most k [START_REF] Bein | A self-stabilizing linkcluster algorithm in mobile ad hoc networks[END_REF][START_REF] Bui | Self-stabilizing hierarchical construction of bounded size clusters[END_REF][START_REF] Caron | self-stabilizing k-clustering algorithm for weighted graphs[END_REF][START_REF] Datta | A self-stabilizing o(k)-time k-clustering algorithm[END_REF]. The sets of cluster heads built by these protocols are not k-independent. The protocol of [START_REF] Bein | A self-stabilizing linkcluster algorithm in mobile ad hoc networks[END_REF] is designed for k = 2. Routing tables are maintained by the cluster heads to store routing information to nodes both within and outside the cluster. The goal of the protocol in [START_REF] Bui | Self-stabilizing hierarchical construction of bounded size clusters[END_REF] is to build bounded size clusters (each cluster has at most Cluster M ax nodes). bits per node. The protocol of [START_REF] Caron | self-stabilizing k-clustering algorithm for weighted graphs[END_REF] is designed for weighted edges networks; it requires at least O(k.log(n)) bits per node. The protocol of [START_REF] Datta | A self-stabilizing o(k)-time k-clustering algorithm[END_REF] requires at least 2(k + 1)log(n)

In [START_REF] Larsson | A self-stabilizing (k,r)-clustering algorithm with multiple paths for wireless ad-hoc networks[END_REF][START_REF] Larsson | Self-stabilizing (k,r)-clustering in clock rate-limited systems[END_REF], Larsson and Tsigas propose self-stabilizing (l,k)-clustering protocols under various assupmtions. These protocols ensure, if possible, that each node has l clusterheads at distance at most k. Related Works. In [START_REF] Datta | A self-stabilizing o(n)-round k-clustering algorithm[END_REF], a silent self-stabilizing protocol extracting a minimal k-dominating set from any k-dominating set is proposed. A minimal k-dominating set has no proper subset which also a k-dominating set. The protocol requires at least O(k.log(n)) bits per node.

The paper [START_REF] Datta | Selfstabilizing small k-dominating sets[END_REF] presents a silent self-stabilizing protocol building a small k-dominating set : the obtained dominating set contains at most ⌈n/(k + 1)⌉ nodes. The protocol of [START_REF] Datta | Selfstabilizing small k-dominating sets[END_REF] requires O(log(n) + k.log(n/k)) bits per node. The protocol of [START_REF] Datta | Competitive self-stabilizing k-clustering[END_REF] builds competitive k-dominating sets : the obtained dominating set contains at most 1 + ⌊(n -1)/(k + 1)⌋ nodes. The protocol of [START_REF] Datta | Competitive self-stabilizing k-clustering[END_REF] requires O(log(2k.2(∆ + 1).2n.D)) bits per node, where D is the network diameter, and ∆ is a bound on node degree. These both protocols use the hierachical collateral composition of several silent self-stabilizing protocols whose a leader election protocol and a spanning tree construction rooted to the elected leader. So they require more memory space than our protocol.

In [START_REF] Johnen | Fast self-stabilizing k-independant dominating set construction[END_REF], a fast silent self-stabilizing protocol building a k-independent dominating set is proposed the protocol converges in 4n + k rounds and it requires (k + 1)log(n + 1) bits per node. The computation of the convergence time of the protocol SID is opened question.

Contribution. In this paper, we consider the problem of computing a k-independent dominating set in a self-stabilizing manner in case where k > 1. A nodes set is kindependent dominating set (also called maximal k-independent set) if and only if this set is a k-independent set and a k-dominating set. A set of nodes, I is k-independent if the distance between any pair of I's nodes is at least

k + 1. A set of nodes D is k-dominating if every node is within distance k of a node of D.
The presented protocol, named SID, is simple : no use of the the hierachical collateral composition, no need of leader election process, neither the building of spanning tree. The protocol SID converges under the unfair distributed scheduler (the weakest scheduling assumption). The algorithm SID is silent. The protocol SID is memory efficient : it requires only 2log((k + 1)n + 1) + 1 bits per node.

In section 2, we establish that any k-independent sets contain at most ⌊(2n)/(k + 2)⌋ nodes, n being the network size. So the protocol of [START_REF] Johnen | Fast self-stabilizing k-independant dominating set construction[END_REF] and the protocol SID have the same upper bound on the size of built k independent dominating sets : ⌊(2n)/(k + 2)⌋ nodes.

Paper outline. The rest of the paper is organised as follows. In section 2, communication and computation models are defined. The protocol SID is presented in section 3. In the section 4, the correctness of the SID protocol is proven. The termination of the SID protocol is established in the section 5.

Model and Concepts

A distributed system S is an undirected graph G = (V, E) where vertex set V is the set of nodes and edge set E is the set of communication links. A link (u, v) ∈ E if and only if u and v can directly communicate (links are bidirectional); so, u and v are neighbors. We denote by N v the set of v's neighbors:

N v = {u ∈ V | (u, v) ∈ E}. The distance between the nodes u and v is denoted dist(u, v). k-neigborhood(v) = {u ∈ V | dist(u, v) ∈ [1, k]}. Definition 1 (k-independent dominating set) Let D be a subset of V ; D is a k-dominating set if and only if ∀v ∈ V /D we have k-neigborhood(v) ∩ D = ∅.
Let I be a subset of V ; I is a k-independent set if and only if ∀u ∈ I we have k-neigborhood(u) ∩ I = ∅. A subset of V is a distance-k independent dominating set if this subset is a distance-k dominating set and a distance-k independent set.

Lemma 1

The size of a k-independent set is at most max(⌊(2n)/(k + 2)⌋, 1).

Proof 1 Let I be a k-independent set such that |I| > 1. Let v be a node of I. We denote by closer(v) the set of nodes closer to v than any other node of I. Notice that w∈I closer(w) ⊂ V and closer(v) ∩ closer(u) = ∅, ∀(u, v) ∈ I 2 . Let u be the closest node to v that belongs to I. Let x be node on the path from v to u such that 0 ≤ dist(v, x) ≤ ⌊k/2⌋. Let w be a node of I other than v. We have

dist(w, x) > k -dist(v, x) ≥ ⌊k/2⌋ because k < dist(w, v) ≤ dist(v, x) + dist(x, w). So, closer(v) contains the first ⌊k/2⌋ + 1 nodes in the path from v to u. We conclude that |I| ≤ ⌊(2n)/(k + 2)⌋.
The protocol SID builds k-independent sets. So, the obtained k-independent dominating set contains at most ⌊(2n)/(k + 2)⌋ nodes. Furthermore, at every node v in the network is assigned an identifier, denoted by id v . Two distinct nodes have different identifier. It is possible to order the identifier values. The symbol ⊥ denotes a value smaller than any identifier value in the network.

Each node v maintains a set of shared variables such that v can read its own variables and those of its neighbors, but it can modify only its variables. The state of a node is defined by the values of its local variables. The cartesian product of states of all nodes determines the configuration of the system. The program of each node is a set of rules. Each rule has the form: Rule i :< Guard i >-→< Action i >. The guard of a v's rule is a boolean expression involving the state of the node v, and those of its neighbors. The action of a v's rule updates v's state. A rule can be executed only if it is enabled, i.e., its guard evaluates to true. A node is said to be enabled if at least one of its rules is enabled. In a terminal configuration, no node is enabled. During a computation step c i → c i+1 , one or several enabled nodes perform an enabled action and the system reaches the configuration c i+1 from c i . A computation e is a sequence of configurations e = c 0 , c 1 , ..., c i , ..., where c i+1 is reached from c i by one computation step: ∀i 0, c i → c i+1 . We say that a computation e is maximal if it is infinite, or if it reaches a terminal configuration. We note by C the set of all possible configurations, and by E the set of all maximal computations. The set of maximal computations starting from a particular configuration c ∈ C is denoted E c . E A denotes the set of all maximal computations where the initial configuration belongs to the set of configurations A ⊂ C. Definition 2 (Attractor) Let B 1 and B 2 be subsets of C. B 2 is an attractor from B 1 , if and only if the following conditions hold:

• Convergence: ∀c ∈ B 1 , If (E c = ∅) then c ∈ B 2 otherwise ∀e ∈ E B 1 (e = c 1 , c 2 , ...), ∃i 1, c i ∈ B 2 ; • Closure: ∀e ∈ E B 2 (e = c 1 , ...), ∀i 1 : c i ∈ B 2 .
Definition 3 (Self-stabilization) A distributed system S is self-stabilizing for the specification SP (a predicate on configurations) if and only if there exists a non-empty set L ⊆ C, called set of legitimate configurations, such that the following conditions hold:

• L is an attractor from C; • Configurations of L satisfied SP.
A self-stabilizing protocol is silent if all maximal computations are finite.

Stabilization time. We use the round notion to measure the time complexity. The first round of a computation e = c 1 , ..., c j , ... is the minimal prefix e 1 = c 1 , ..., c j , such that every enabled node in c 1 either executes a rule or it is neutralized during a computation step of e 1 . A node v is neutralized during a computation step cs c i → c i+1 , if v is enabled in c i and disabled in c i+1 , but it did not execute any action during cs. Let e 2 be the suffix of e such that e = e 1 e 2 . The second round of e is the first round of e 2 , and so on.

The stabilization time is the number of rounds of a computation reaching a legitimate configuration from any initial one.

The protocol SID

In the following subsection, we gives the notation used by the protocol SID.

k-augmentedID type

Definition 4 k-augmentedID type An k-augmentedID value, a, is ⊥ or an n-tuple (d, x) such that d is integer with 0 ≤ d ≤ k, and x is a node identifier. Let a = (d, x) be k-augmentedID value. We use the following notation a.dist = d and a.id = x. Let v be a node of V , id + v is the following k-augmentedID value: (0, id v).

Definition 5

The total order relation dom on k-augmentedID

• dom(a, b) = a if b =⊥, a.id < b.id or a.id = b.id ∧ a.dist < b.dist, otherwise dom(a, b) = b.
• The k-augmented value a1 dominates the k-augmented value a2 if and only if dom(a1, a2) = a1.

• Let X be a finite set of k-augmentedID values. dom(X) is the k-augmentedID value belonging to X such that any value of X is dominated by dom(X) (i.e. ∀y ∈ X we have dom(dom(X), y) = dom(X)).

Definition 6

The total order relation min on k-augmentedID

• min(a, b) = a if b =⊥, a.dist < b.dist or a.dist = b.dist ∧ a.id < b.id otherwise min(a, b) = b.
• The k-augmented value a1 is larger than the k-augmented value a2 if and only if min(a1, a2) = a2.

• Let X be a finite set of k-augmentedID values. min(X) is the k-augmentedID value belonging to X such that any value of X is larger than min(X) (i.e. ∀y ∈ X we have min(min(X), y) = min(X)).

The node u1 is closer to the node v than the node u2 iff dist(u1, v)) < dist(u2, v) or id u1 < id u2 . We have min((dist(u1, v), id u1), (dist(u2, v), id u)) = (dist(u1, v); id u1).

Definition 7

The operation +1 on k-augmentedID is defined as follow :

a + 1 = a if a =⊥ or if a.dist = k otherwise a + 1 = (a.dist + 1, a.id)
Protocol 1 : Variables, Predicates and Rules of the Protocol SID on the node v

Shared variables

• firstHead(v) and secondHead(v). They take value in k-augmentedID

Internal variable

• beReal a boolean variables used by some macros.

Notation • firstAugmentedIdSet(v) = {a + 1 ∈ k -augmentedID | a = firstHead(u) ∨ a = secondHead(u) with u ∈ N v ∧ a.dist < k ∧ a.id = id v } • secondAugmentedIdSet(v) = {a ∈ firstAugmentedIdSet |a.id = firstHead(v).id} Macros • isDefended(v) returns true iff firstAugmentedIdSet(v) = ∅. • isDominated(v) returns true iff id + v = dom(firstAugmentedIdSet(v) ∪ id + v). • correctFirstHead(v) returns true iff firstHead(v) == min(firstAugmentedIdSet(v)). • computingFirstHead(v) returns the value of min(firstAugmentedIdSet(v)). • correctSecondHead(v) returns true iff secondHead(v) == min(secondAugmentedIdSet(v)∪ ⊥). • computingsSecondHead(v) returns the value of min(secondAugmentedIdSet(v)∪ ⊥). Predicates • Head(v) ≡ firstHead(v) == (0, id v) • toResign(v) ≡ isDominated(v) • toElect(v) ≡ ¬isDefended(v) • headToUpdate(v) ≡ firstHead(v) = (0, id v) ∨ secondHead(v) =⊥ • ordinaryToUpdate(v) ≡ ¬correctFirstHead(v) ∨ ¬correctSecondHead(v) Rules RE(v) : ¬Head(v) ∧ toElect(v) -→ firstHead(v) := (0, id v); secondHead(v) :=⊥; RU(v) : ¬Head(v) ∧ ¬toElect(v) ∧ ordinaryToUpdate(v) -→ computingFirstHead(v); computingSecondHead(v); RR(v) : Head(v) ∧ toResign(v) -→ computingFirstHead(v); computingSecondHead(v); RC(v) : Head(v) ∧ ¬toResign(v) ∧ headToUpdate(v) -→ firstHead(v) := (0, id v); secondHead(v) :=⊥;

Code of the protocol SID

A node v is said to be a head if firstHead(v) = id + v ; otherwise it is an ordinary node. The heads set built by the protocol SID (defined in protocol 1) is a k-independent dominating set. The codes of the macros are defined in the protocols 2 to 7.

In the figure 1 is presented a terminal configuration having three heads. On the same network is presented another terminal configuration having a single head, in the figure 2.

The variable firstHead(v) contains the identifier of the closest head to v (with its distance to v).

The variable secondHead(v) contains the identifier of the second closest head to v (with its distance to v) inside its k-neighborhood. If a node v does not have two heads in its k-neighborhood then secondHead(v) is set to ⊥. The execution of the rules RU or the rules RC updates the two variables firstHead(v), and secondHead(v) without changing the status of v (i.e. v stays ordinary or head). for u ∈ N v do if firstHead(u).dist < k ∧ firstHead(u).id = id v then return true; if secondHead(u).dist < k ∧ secondHead(u).id = id v then return true; done; return false;

The macro isDominated(v) (defined in protocol 3) returns true if a value x of firstAugmentedIdSet(v) dominates the value id + v ; otherwise the macro returns false.

The macro correctFirstHead(v) (defined in protocol 4) returns true if the value of firstHead(v) is min(firstAugmentedIdSet(v)); otherwise the macro returns false. Notice that if the set firstAugmentedIdSet(v)) is empty the macro returns false;

The macro computingFirstHead(v) (defined in protocol 5) returns min(firstAugmentedIdSet(v)) if the set firstAugmentedIdSet(v) is not empty; otherwise the macro returns ⊥.

The macro correctsecondHead(v) (defined in protocol 6) returns true if the value of tributed scheduler are finite by reductio ad absurdam arguments.

Correctness of the protocol SID

In this section, we prove that all terminal configuration of SID protocol are legitimate: the set of heads is a k-independent dominating set.

Definition 8

The property OrdinaryPr(i) defined for all i ∈ [1, k] is verifierd if the two following statements are satisfied:

• OrdinaryPrFirst(i): for all ordinary node v, firstHead(v) = (i, id u) if and only if u is the closest head to v and i is the distance between u and v.

• OrdinaryPrSecond(i): for all node v, secondHead(v) = (i, id w) if and only if w is the second closest head to v and i is the distance between w and v.

Observation 1 In a terminal configuration,

1. An ordinary node v does not verify OrdinaryToUpdate(v); so firstHead(v) = min(firstAugmentedIdSet(v)) and secondHead(v) = min(secondtAugmentedIdSet(v)∪ ⊥).

A head u does not verify HeadToUpdate(u);

3. Let w be a node (head or ordinary), firstHead(w) =⊥;

4. if v is an ordinary node then firstHead(v).dist > 0 ;

5. if secondHead(v) =⊥ then secondHead(v).dist > 0 ;

6. if secondHead(v) =⊥ then secondHead(v).dist ≥ firstHead(v).dist because secondAugmentedIdSet(v) ⊂ firstAugmentedIdSet(v).
Lemma 2 In a terminal configuration of protocol SID, the property OrdinaryPr(1) is verified.

Proof 2

Let v be an ordinary node, in a terminal configuration of protocol SID, named c. Assume that (1, x) ∈ firstAugmentedIdSet(v). So v has a neighbor u such that firstHead(u) = (0, x) or secondHead(u) = (0, x).

According to observation 1.4 secondHead(u).dist > 0 or secondHead(u) =⊥. So v has a neighbor u such that firstHead(u) = (0, x). According to observation 1.3 u is a head; so x = id u . Notice that ∀a ∈ firstAugmentedIdSet(v), we have a.dist > 0, in c.

Proof of OrdinaryPrFirst(1)

. If v has a head at distance 1 then v has a neighbor u such that firstHead(u) = (0, id u). So, We have firstHead(v) = (1, id u) with u being the head in v's neighborhood having the smallest identifier. If v has not a head at distance 1 then for any u neighbor, we have firstHead(u).dist > 0. and secondHead(u).dist > 0 or secondHead(u) =⊥ (according to observation 1.4). In this case, firstHead(v).dist > 1.

Proof of OrdinaryPrSecond [START_REF] Bein | A self-stabilizing linkcluster algorithm in mobile ad hoc networks[END_REF]. If v has several heads at distance 1 then v has a neighbor w such that firstHead(w) = (0, id w) with id w = firstHead(v).id. So, secondHead(v) = (1, id w) with w being the head in v's neighborhood having the second smallest identifier.

If v has at most one head at distance 1 then v has not a neighbor w such that firstHead(w) = (0, id w) with id w = firstHead(v).id. In this case, secondHead(v).dist is larger than 1 or secondHead(v) =⊥.

Lemma 3 Let i be a positive integer smaller than k. In a terminal configuration of protocol SID, if the properties OrdinaryPr(j) are verified for all j ∈ [1, i] then the property OrdinaryPr(i + 1) is verified.

Proof 3 Let us assume that the properties OrdinaryPr(j) are verified for all j ∈ [1, i] in any terminal configuration of protocol SID.

In a terminal configuration c, (j, x) ∈ augmentedIdSet(v) iff v has a neighbor u such that firstHead(u) = (j -1, x), or secondHead(u) = (j -1, x). If j = 1 then u is a head in c, according to Observation 1. If 1 < j ≤ i + 1 then x is the identifier of a head in c at distance j -1 of u, according to the property OrdinaryPr(j -1). So x is the identifier of a head at distance at most j of v, in c.

Proof of OrdinaryPrFirst(i+1). Let v ′ be the closest head to v and d ′ the distance from v ′ to v in the terminal configuration c. Assume that 0 < d ′ ≤ i + 1. v has a neighbor u at distance d ′ -1 to v ′ . In c, the node v ′ is the closest head of u; so firstHead(u) = (d ′ -1, id v ′), according to the properties OrdinaryPr(d ′ -1). According to the properties OrdinaryPr(j) forall j ∈ [1, i], in c, we have the following properties,

• if (l, id) ∈ firstAugmentedIdSet(v) then l ≥ d ′ ; and • if (d ′ , id) ∈ firstAugmentedIdSet(v) then id ≥ id v ′ . In c, We conclude that firstHead(v) = (d ′ , id v ′), in c.
Proof of OrdinaryPrSecond(i+1). Assume that the network has several heads. Let v" be the second closest head to v and d" the distance from v" to v, in a terminal configuration c. v has a neighbor u at distance d" -1 to v" in c. (we have d" > 0). v" is the first or second closest head to u, in c. Assume that d" ≤ i + 1. According to the property

OrdinaryPr(d" -1), firstHead(u) = (d" -1, id v") ∨ secondHead(u) = (d" -1, id v"), in c.
According to the properties OrdinaryPr(j) forall j ∈ [1, i), in c, we have the following properties,

• if (l, id) ∈ secondAugmentedIdSet(v) then l ≥ d"; • if (d", id) ∈ secondAugmentedIdSet(v) then id ≥ id v" .
We conclude that secondHead(v) = (d", id v").

The following corollary is a direct result of lemmas 2 and 3. It establishes that the set of heads is a k-dominating set.

Corollary 1 Let v be a ordinary node, in a terminal configuration of protocol SID. firstHead(v).id is the closest head to v; their distance is firstHead(v).dist ≤ k. If secondHead(v) =⊥ then v has a single head in its k-neigborhood; otherwise secondHead(v).id is the second closest head to v; their distance is secondHead(v).dist.

The following theorem establishes that the set of heads is a k-independent set.

Theorem 1 Let v be a head, in a terminal configuration of protocol SID, named c. v has not head in its k-neigborhood.

Proof 4 We will prove that if a head has another head in its k-neigborhood then the configuration c is not terminal.

Let wrongHeadSet the set of heads having one or several heads in their k-neigborhood. Assume that wrongHeadSet is not empty. We denoted by v1 the node of wrongHeadSet having the largest identifier. We denote by v2, the closest head to v1 and by d the distance between v1 and v2. We have 0 < d ≤ k and id v2 < id v1 .

The node v1 has a neighbor u at distance d-1 of v2. The node v2 is the first or the second closest head to u. According to corollary 1, (d-1, id v2) = firstHead(u) or (d-1, id v2) = secondHead(u). v1 is enabled because v1 satisfied the predicate toResign(v1).

Termination of the protocol SID

In this section, we prove that all maximal computations of protocol SID under any unfair distributed scheduler are finite by reductio ad absurdam arguments.

Let e be a maximal computation starting from a configuration, named c0. In a configuration c reached by e, for all node v, firstHead(v) c .id is either the identifier of an node or this value appears in the initial configuration (i.e. there is a node u, such that firstHead(v) c .id = firstHead(u) c0 .id ∨ firstHead(v) c .id = secondHead(u) c0 .id). So, the value taken by a variable firstHead in e belongs to a bounded set. Similary we prove also that the value taken by a variable secondHead in e belongs to a bounded set.

RR and RE rules

Along any computation, a node performs at most one time the rule RC.

Assume that a or several nodes perform infinitely often the action RE or the action RR.

Between two consecutive actions RE by a node u, this node has performed on time the action RR. So a node u that infinitely often perform the action RE or the action RR changes its status infinitely often. We name u + the node the smallest identifier among nodes that changes their status infinitely often. e has a suffix e1 where only nodes having a identifier larger than id u + changes their status (i.e. to perform the action RE or the action RR).

As the set of value taken by firstHead(u +) is bounded; along e1, infinitely often after the action RR(u +), firstHead(u +) has the same value, denoted (l + 1, id). Notice that id < id u + and 0 < l < k. So u + has a neighbor u l such that, infinitely often before the action RR(u +), u l verfies firstHead(u l) = (l, id) or secondHead(u l) = (l, id).

At time, where u + becomes head, we have firstAugmentedIdSet(u +) = ∅. So, the values of u l variables are infinitely often larger than (l, id) : So u l gives infinitely often to one of its variables the value (l, id), but also gives a larger value to the same variable.

Assume that l > 0. At time where u l gives the value (l, id) to one of its variable : u l has a neigbor u l-1 , having the value (l -1, id). At time where u l gives a larger value than (l, id) to the same variable : u l-1 has a larger value than (l -1, id). We conclude that there is a series of l + 1 nodes : u l , u l-1 , ..u 0 such that u i has infinitely often has the value (i, id) and infinitely often does not have this value along e1.

Along e1, u 0 performs infinitely often the action RR and the action RE. We have id = id u 0 < id u + : there is a contradiction. So e has a suffix, named e2, in which the only rule performed is RU.

RU rule

Assume that a node or several nodes changing infinitely often their value firstHead or their value secondHead along e2. We named min + the smallest value infinitely often allocates to the variable firstHead or to the variable secondHead of one of these nodes. Let e3 be the suffix of e2 in which no variable firstHead and no variable secondHead gets a value smaller than min + . Along e3, infinitely often, a node, named u + , performs RU action to set the value min + to its variable firstHead or its variable secondHead; and infinitely often, u + performs RU action to set to the same variable a value larger than min + .

Let c → c ′ be a computation step of e3 where u + performs RU action to set a value larger than min + to its variable firstHead or to its variable secondHead. In c, min + is smaller than min(firstAugmentedIdSet(u +)) or min + is smaller than min(secondAugmentedIdSet(u +)) . This property stays verified along e3 : u + never sets the value min + to its variable firstHead (resp. to its variable secondHead). There is a contradiction.

We have established that e2 has a suffix e4 where no rule is executed. A terminal configuration is reached.

Conclusion

A simple and silent self-stabilizing protocols building k-independent dominating sets is presented. The obtained k-independent dominating set contains at most ⌊(2n)/(k + 2)⌋ nodes. The protocol converges under the unfair distributed scheduler (the weakest scheduling assumption). The protocol is memory efficient : it requires only 2log((k + 1)n + 1) + 1 bits per node.

The computation of the convergence time of the protocol SID is opened question.

 head identifiers are underlined. In each node, it is indicated the value of firstHead and the value of secondHead. The color of a node is the color of its closest head.

Figure 1 :

 1 Figure 1: A terminal configuration of SID

Figure 2 :

 2 Figure 2: Another terminal configuration of SID

* This work was partially supported by the ANR project Displexity.

Protocol 3 : macro isDominated(v) for u ∈ N v do if firstHead(u).dist < k ∧ firstHead(u).id < id v then return true; if secondHead(u).dist < k ∧ secondHead(u).id < id v then return true; done; return false;

, secondHead(u) + 1) then return false; if firstHead(v) = (secondHead(u) + 1) then beReal := true; done; return beReal; secondHead(v) is min(firstAugmentedIdSet(v)∪⊥); otherwise the macro returns false.

The macro computingSecondHead(v) (defined in protocol 7) returns min(secondAugmentedIdSet(v)) if the set secondAugmentedIdSet(v) is not empty; otherwise the macro returns ⊥.

Once the system is stabilized, the set firstAugmentedIdSet(v)) contains some heads in k-neighborhood of v. More precisely, this set contains the closest and second closest head to v if there are in the k-neighborhood of v. If the k's neighborhood of a node v does not contain any head then the set firstAugmentedIdSet(v)) is empty. So the predicate isDefended(v) is not verified. If v is an ordinary node then v is enabled (the rule RE or the rule RU is enabled). Therefore, the heads set is a k-dominating set, in a terminal configuration.

If toResign(v) is verified then v has in its k-neighborhood a head u having a smaller identifier than v's identifier (i.e. id v > id u). In this case, if v is a head, it is enabled. So, the set of heads is a k-independent set, in any terminal configuration.

The proof of the protocol SID has two parts.

• In the section 4, we prove that a terminal configuration of SID protocol is legitimate : the set of heads is a k-independent dominating set.

• In the section 5, we prove that all maximal computations under any unfair dis-

if secondHead(v) = secondHead(u) + 1 then beReal = true; done; if ¬beReal and (secondHead(v) =⊥) then return false; return true;

.id = firstHead(v).id ∧ firstHead(u).dist < k then secondHead(v) := (min(secondHead(v), firstHead(u) + 1); if secondHead(u) =⊥ ∧ secondHead(u).id = id v ∧ secondHead(u).id = firstHead(v).id ∧ secondHead(u).dist < k then secondHead(v) := min(secondHead(v), secondHead(u) + 1); done;